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1 Transferability of Policies to Control Agricultural Nonpoint Pollution in Relatively 

2                                      Similar Catchments 

3 Abstract

4 The EU’s WFD requires cost-effective compliance with good ecological and chemical status 

5 across EU surface waters. Previous studies have modelled single catchments or been limited 

6 by their realism when investigating multiple catchments. We investigate whether the cost-

7 effectiveness ranking of policy instruments to control agricultural nonpoint nitrate pollution 

8 (NP) is consistent across two relatively similar catchments. Transferability may interest 

9 regulators seeking to identify policies implementable in relatively similar catchments, rather 

10 than setting high transaction cost catchment specific policies. Detailed nonlinear stochastic 

11 biophysical economic optimisation models of two catchments are constructed. We estimate 

12 the distribution of daily river pollution for 10 years in each catchment without assuming an 

13 underlying pollutant distribution that is likely to distort policy ranking. We report consistency 

14 of policy rankings and outperformance in distinct regulatory target ranges in both catchments 

15 as well as pollution swapping. The transferability evidence may not be as robust as 

16 policymakers would like. Mixed instruments are cost-effective at higher regulatory targets 

17 and display characteristics suited to uniform application across catchments. Our study would 

18 benefit from improved modelling of farming heterogeneity, groundwater hydrology and policy 

19 transaction costs. Further research is required to identify catchment characteristics that 

20 determine transferability across a broader set of catchments.  

21

22 1. Introduction 

23 The EU’s Water Framework Directive (WFD) (2000/60) requires cost-effective compliance 

24 with good ecological and good chemical status (GECS) across all EU surface waters. 

25 Several key principles underlie the Directive’s aims including the polluter pays principle and 

26 the management of rivers on a river basin basis. In Scotland’s rivers diffuse nutrient pollution 

27 from agriculture is the single most important pollution pressure (SEPA, 2007) since 24.3% of 

28 all rivers and 45% of estuaries fail to meet WFD targets due to such pollution (SEPA, 2005). 

29 In this paper, we estimate the cost-effectiveness of policies to control agricultural nonpoint 
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30 nitrate pollution (NP) in two relatively similar mixed farming Scottish catchments with a 

31 diffuse nitrate pollution problem, the Motray and Brothock. 

32

33 At present a variety of policy mechanisms to achieve GECS are being assessed by UK 

34 regulators. Since cost-effectiveness is a WFD criteria and there is evidence of the cost-

35 effectiveness of economic instruments in the literature (see below), regulators have 

36 considered the role economic instruments can play (NERA, 2006). However, concerns exist 

37 over the environmental effectiveness, transactions costs and political acceptability of 

38 economic instruments to reduce nutrient pollution. Thus presently, regulators have employed 

39 a range of managerial controls (regulatory codes of good practice, general binding rules, best 

40 management practices etc.), including limits on fertiliser applications and timings, limitations 

41 on stocking rates etc. (under various cross-compliance schemes). 

42

43 There is a growing consensus among UK policy makers/regulators1 (DEFRA, EA and SEPA) 

44 and catchment stakeholders (rivers trusts, farmers’ unions etc.) that a one size fits all 

45 agricultural diffuse pollution policy for catchments characterised by different agricultural 

46 systems, weather patterns etc. is inappropriate and cost-ineffective. However, unfortunately 

47 the high transaction costs of formulating and enforcing catchment specific policies may also 

48 be arguably prohibitively expensive. Thus recent and on going research in the UK2 has 

49 focused on identifying cost-effective policies that can be applied to similar catchments, i.e. 

50 with similar agricultural systems, weather patterns and hydrogeology. 

51

52 Economists have undertaken numerous single catchment studies to assess the cost-

53 effectiveness of instruments to control NP. Yet, for practicality and wider consistency, 

54 regulators are looking for cost-effective policies that are in general consistently efficient 

1 Department for Environment, Food & Rural Affairs (DEFRA), Environment Agency (EA) and Scottish Environment Protection Agency 

(SEPA). 
2 E.g. DEFRA’s Demonstration Test Catchment research platform.
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55 across relatively similar water bodies3. We investigate the characteristics and consistency of 

56 policies, in particular mixed instruments, to control NP in two relatively similar catchments. 

57 The transferability of cost-effective policy instrument rankings across catchments is not 

58 something economists have addressed conclusively as previous cross catchment studies 

59 have been limited by their realism, modelling assumptions, simulated regulatory policies 

60 and/or ability to model farmer’s response to them. 

61

62 Moreover, cost-effective instrument ranking has not always been consistent in the empirical 

63 literature. This inconsistency could be attributed to differences in biophysical economic 

64 modelling sophistication, realism, assumptions (scale, resolution, fate, transport and 

65 hydrological modelling, heterogeneity, soil dynamics, livestock management, crop rotations, 

66 input substitution, transformation of regulatory concentration standards into load (mass) 

67 equivalents, farmer’s behavioural response options etc.), economic incentives (prices, 

68 subsidies etc.), regulatory restrictions, geophysical catchment characteristics (Martinez and 

69 Albiac, 2004), and/or importantly the catchment weather patterns that drive the stochastic NP 

70 processes etc. In considering the stochastic nature of NP studies have made different 

71 distributional assumptions in estimating deterministic equivalents in chance-constrained 

72 optimisation models. Such differences affect the cost-effectiveness of regulatory instruments 

73 and render a comparison of NP policies in separate studies inappropriate, e.g. it is not 

74 meaningful to compare results of a study in semi-arid Spain (Martinez and Albiac, 2004) or 

75 California (Larson et al., 1996) with a high rainfall UK catchment (Kampas and White, 2004). 

76 Thus, in this research the modelling, assumptions and policy options were kept consistent 

77 enough to compare two separate catchments that differ in terms of scale, soils, crop 

78 rotations, arable to grassland ratio, agricultural activities, diffuse pollution levels, and 

3 The high transaction costs/political acceptability of tailoring policies to individual catchments necessitates this. Moreover, in practice 

operational EU “river-basin areas” can be considerably larger, e.g. Scotland comprises of only two river-basin (Scottish-Government, 2015). 
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79 importantly weather – but not drastically. Thereby allowing a meaningful comparison to help 

80 identify consistently cost-effective instruments across two relatively similar4 catchments.

81

82 By using nonlinear stochastic biophysical economic modelling this paper 1) examines the 

83 cost-effectiveness and transferability of policies to control NP in two relatively similar 

84 catchments based on estimates of daily river concentration (mg/L) for 10 continuous years; 

85 2) accounts for physical mixing, retention and lags in the diffuse pollutant transport process 

86 without assuming an underlying pollutant distribution - which is likely to distort instrument 

87 cost-effectiveness; 3) investigates the characteristics of mixed instruments (MI), comprising 

88 of economic instruments and managerial/regulatory controls, that make them more suited to 

89 being applied across catchments; and; 5) estimates pollution swapping (or substitution) of 

90 catchment phosphorus (P) and potassium (K) consumption from implementing policies to 

91 control NP. This is important as farmer’s response to regulation may have unintended 

92 consequences and actually prevent attainting GECS.

93

94 2. Previous Work

95 Past research on the economics of NP control has largely focussed on single instrument 

96 policies and concluded that economic instruments are generally cost-efficient under a range 

97 of restrictive conditions (Balana et al., 2011; Shortle and Horan, 2001; Weersink et al., 1998). 

98 Previous studies have also detailed the efficiency gains of using policies that combine two or 

99 more economic incentives to control NP. However, in practice the information, monitoring 

100 and enforcement transaction costs of such policies have prevented their uptake. One study 

101 reported the superiority of MI in ‘wet weather’ conditions and improvements in their relative 

102 cost-effectiveness at higher regulatory targets (RT) under ‘mean weather’ (Aftab et al., 2010). 

103 These results were based on weekly averages of NP for just one representative ‘wet’ and 

104 ‘mean’ year’s weather, which may not realistically capture the stochastic nature of NP over 

4 Identifying a set of relatively similar catchment characteristics that ensure the cost-effective transferability of policies is beyond the scope 

of this study. This would require an assumptions/methodologically consistent analysis of numerously more catchments with different 

characteristics.
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105 time. This paper improves on these limitations and uses more realistic modelling 

106 assumptions to determine whether the cost-effectiveness of MI and other policies across 

107 relatively similar catchments is consistent and thus more broadly implementable. 

108

109 Previous large-scale studies have provided valuable insights and modelled catchments by 

110 using either an econometric or applied general equilibrium approach. However, both 

111 approaches have their limitations. Econometric studies have been limited by: extremely 

112 broad classifications of land use incapable of differentiating between crops, grassland, 

113 livestock or setaside etc. (Langpap et al., 2008); unrealistically large land units of 

114 assessment (Wu et al., 2004); not permitting land use to change in response to policies 

115 (Fezzi et al., 2010). While an applied general equilibrium approach requires numerous 

116 simplifying assumptions, such as arbitrarily converting the loads of different pollutants into 

117 one generic nutrient unit (Brouwer et al., 2008). A few cross catchment comparison studies 

118 have used a biophysical economic modelling approach. These have been limited by: the 

119 absence of livestock and manure management (Brady, 2003); a simple linear economic 

120 model and infeasible high transaction costs policies (Volk et al., 2008); very small study 

121 areas as well as the assumption that livestock types and amounts remain constant (Vatn et 

122 al., 1997)5. More importantly, these studies estimate average pollutant loads6 and do not 

123 consider pollutant concentration, river mixing and the probability of achieving a concentration 

124 standard with a specific certainty as well as its impact on the cost-effectiveness of policies. 

125 Most assume an arbitrary average annual load reduction equates to compliance with an 

126 environmental concentration standard. Pollutant loads are not necessarily reliable proxies for 

127 concentration and environmental impact. There is a trade-off between the complexity/realism 

128 and the scale of modelling (Brady, 2003). Generally, an econometric approach is restrictive 

129 in: capturing diffuse pollution processes; the type of policies that can be simulated and the 

130 ability to model farmers’ behavioural response to policies. Whereas landscape scale 

5 It compares annual pollutant loads in two catchments with a combined area of 4313ha.
6 Although Volk et al. estimate the concentration of total N they do not report how the stochastic variation impacts on the cost-

effectiveness of policies (Volk et al., 2008). 
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131 biophysical economic approach is more interdisciplinary, data intensive and, as discussed 

132 earlier, involves assumptions that can vary across studies and affect the cost-effective 

133 rankings of policies. 

134

135 Most of the diffuse water pollution chance constrained (stochastic), biophysical economic 

136 literature (Elofsson, 2003; Milon, 1987) involves imposing a deterministic equivalent on the 

137 optimisation problem by assuming that the distribution of pollution estimates are normal 

138 (Gren et al., 2000), log-normal (Kampas and White, 2004) or truncated normal (Kataria et al., 

139 2009). The normality assumption is motivated by the central limit theorem, i.e., the statistics 

140 of sample loads will asymptotically converge to a normal distribution, while the log-normality7 

141 and truncated normal assumption is justified by the need to avoid the possibility of negative 

142 pollution loads. Alternatively, a distribution-free approach uses the Chebyshev’s inequality to 

143 approximate the probabilistic constraint (Wets, 1983). The literature is inconclusive and often 

144 contradictory as to which distribution should be used. Besides probabilistic programming 

145 models are sensitive to such distributional assumptions (Gren et al., 2002; Kampas and 

146 White, 2004; Xu et al., 1996; Zhu et al., 1994). More recent research has estimated that the 

147 assumed distribution can bias results by as much as 60% (Kataria et al., 2009). Moreover, a 

148 review of environmental data concluded there was little support for a general use of either 

149 the log-normal or normal distribution (Reimann and Filzmoser, 2000). 

150

151 Although numerous studies have investigated controlling P (Goetz and Keusch, 2005; Iho 

152 and Laukkanen, 2012; Johansson et al., 2004; Schleich et al., 1996), and the joint 

153 management of P and nitrogen (N) pollution has been conceptually considered (Heathwaite 

154 et al., 2000), few empirical studies have used detailed biophysical economic modelling to 

155 consider the trade-off between their consumption (Kampas et al., 2002; Vatn et al., 1997). 

156 We consider the consequences of policies to control diffuse N pollution on farm P and K 

7 A ‘theory of successive random dilutions’ attempts to explain how lognormal distributions may arise from physical processes responsible 

for generating pollutant concentrations in the environment (Ott, 1990). However, more recent work by the US EPA has confirmed that such 

environmental datasets are not necessarily lognormally distributed (Simon, 2014).
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157 consumption. Coordinating policies targeted at different agricultural externalities is critical 

158 (Aftab et al., 2007). This also emphasises the importance of attaining a final ecological 

159 outcome, the stated WFD intention, instead of realising a specific nutrient standard. K, unlike 

160 N and P, is not usually a limiting macronutrient in rivers and less likely to contribute to 

161 eutrophication. However, the amount of K in rivers is known to play a role in species 

162 composition and impact river ecology, even though previous studies have highlighted the 

163 possible contribution of elevated K to river eutrophication (Czernas, 1978; Leentvaar, 1980).

164

165 3. Study Area

166 The relatively similar catchments are approximately 39.03km apart and share reasonably 

167 similar farming practice, weather, ground water base flow and comparable soil profiles (table 

168 1). The Motray is entirely underlain by lavas and tuffs, rising to over 300 m, with lower areas 

169 mantled by fluvioglacial deposits.  While the Brothock is underlain mostly by a permeable 

170 geology of sandstones in the lower areas, supporting fertile soils and mixed farming, while 

171 the upper catchment, rising to 150 m, is underlain by lavas and supports a mix of rough 

172 grazing and forestry. The catchments suffer from low flow in summer from surface water 

173 potato irrigation. Both catchments are also in Nitrate Vulnerable Zone (NVZ)8 designated 

174 areas and infrequent SEPA spot sampling indicates a risk of exceeding the WFD nitrate 

175 standard from NP (see 4.4).  Information on catchment crops, rotations, tillage and livestock 

176 was collected from Scottish Agricultural College regional field agronomists as well as surveys 

177 of farmers in the catchments. 

178
179 4. Biophysical Economic Modelling

180 4.1 Farming Activities

181 Six main arable crops (winter wheat, spring barely, winter barley, winter oilseed rape, ware 

182 potatoes and seed potatoes), seven different livestock types (dairy, sheep, lowland suckler 

183 and four types of beef cattle), and three types grasslands (permanent grazing grass, 

8 NVZ require a maximum of 250kg N/ha/yr of organic manure and 170kg N/ha/yr averaged over the farm; fertiliser management plans and 

restrictions on the storage/application of slurry.
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184 temporary grassland (silage) and hay) were modelled9. Crop-soil specific production 

185 functions were derived from the literature (Chambers and Johnson, 1990). Farms also had 

186 the option to purchase silage from the market. Livestock waste is accounted for as a source 

187 of N, P and K on grassland and relevant farm subsidies (e.g. Scottish Beef Calf Scheme), 

188 were included. Potatoes are the only irrigated crop and the variable costs of contracting the 

189 supply of irrigation water is incorporated. Catchment agronomic practices and parameters, 

190 crop rotations and the existing baseline scenario were taken from the literature and 

191 catchment farm survey data. Field level crop data for both catchments were collected from 

192 the IACS-SAF database (2000-2010) while livestock numbers were based on lower 

193 resolution parish level data (2008-2010). Approximately 150 crop rotations in each catchment 

194 were considered. For practical reasons these were simplified to catchment specific crop-pair 

195 rotations. Crop-pairs account for the N applied to both crops in a two crop rotation. The 

196 Motray was modelled as 34 crop-pair and the Brothock as 33 catchment specific crop-pair 

197 rotations for each of the three catchment specific soil types. Considering the previous crop in 

198 the rotation accounts for soil N dynamics (Martinez and Albiac, 2004). 

199

200 4.2 Farming Heterogeneity 

201 The Motray’s (4743 ha) and Brothock (3580 ha) was modelled as 5 and 7 farms respectively. 

202 The farms represent hypothetical aggregated land use categories since individual farm data 

203 are not made available due to confidentiality concerns. They denote heterogeneity in farming 

204 practice across catchments in terms of farming knowledge, experience, spatial 

205 characteristics, preferences and capital/infrastructure considerations etc. (Wossink et al., 

206 2001). These heterogeneous farms differ in terms of acreage, distribution of soil types, crop 

207 mix, crop rotations, livestock types, stocking densities, arable to grassland ratios, amount of 

208 non-agricultural sources of NPS nitrate pollution from forestry, rough grazing and urban 

209 areas (FRU). Modelling farm heterogeneity allows more realistic approximation of farms’ 

210 responses to regulatory policies, especially since farming practice is notoriously varied. 

211

9 Spring oats, a relatively minor crop, was the only catchment crop that as not modelled. Note all crops are conventionally tilled. 
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212 4.3 Pollutant flux

213 Fluctuations in daily river N concentrations are driven by temporal interactions between farm 

214 management practices, stochastic weather patterns and crop growth demands. The link 

215 between land use and nitrate run-off was simulated using NITCAT (DEFRA, 2001). 

216 Regressing the N load estimates of catchment specific crop/soil combinations against a 

217 range of nitrogen input levels provided nitrogen leaching functions. Three separate soil 

218 classes for each catchment were determined based on HOST10 classification, profile water 

219 column, and representative soil type.  Daily water balance was calculated for 4 catchment-

220 specific crop transitions (crop-pair rotations) using the IRRIGUIDE model (Bailey and 

221 Spackman, 1996) for 10 years from 1985/6 to 1993/411. Four water balance classes 

222 appropriately approximated reality without excessively complicating the aggregation of 

223 estimates at the catchment scale. Each crop-pair was assigned to the most appropriate 

224 water balance class. 

225

226 Daily time series of water balance and nitrate loss from soils units via rapid (shallow) and 

227 slow (deep) drainage pathways were routed using the EveNFlow (Anthony et al., 2009) 

228 model. EveNFlow is a semi-distributed, catchment scale, conceptual model of effective 

229 rainfall delivery to a river system by building on: SLIMMER (Anthony et al., 1996), an elution 

230 model; a crop water use/drainage model based on elements of the MORECS (Field, 1983) 

231 and IRRIGUIDE (Bailey and Spackman, 1996) models, and crop-soil specific leaching 

232 functions from NITCAT. This framework simulates a daily time‐series of river flow and 

233 nitrate‐N concentrations and was validated by the EUROHARP project (DEFRA, 2005). Soil 

234 retention, transfer delays and mixing of base flow helped reproduce the river hydrograph and 

235 concentrations resulting from mixing the two drainage pathways. Although sewage inputs 

236 were not considered emissions from FRU were factored.  This framework12 estimated daily 

10 Hydrology of Soil Types classification of the soils of the UK, assigns soils to classes on the basis of their physical properties and their 

effects on the storage and transmission of soil water (Boorman et al., 1995).
11 This time period afforded the best river flow, river N sampling and continuous weather data in both catchments. 
12 Further details of the modeling framework can be found in the online appendix at WEB ADDRESS.



          10

237 average nonpoint N pollution in the river for 10 years of continuous weather in each 

238 catchment.

239

240 4.4 Water quality calibration 

241 Infrequent spot ambient water quality sampling by SEPA reveals that the EU nitrate standard 

242 is breached around 49% of the time in the Motray (Figure 1). However, since this includes 

243 contribution from sewage treatment works and other sources not captured by our modelling 

244 this figure is likely to overestimate agricultural NP. Moreover, in-stream measurements may 

245 also overestimate actual pollution because there is a bias towards sampling in winter months 

246 that are more prone to diffuse N peaks. Brothock sampling revealed the standard is violated 

247 approximately 11% of the time. Generally, the simulated baseline provides a reasonable fit to 

248 the actual data, especially the winter patterns, which are more likely to violate the nitrate 

249 standard. Comparing SEPA’s actual river concentration data with the distribution of modelled 

250 river concentration (Figure 2 with Figure 1) suggests the modelled data reproduces key 

251 features of the river’s actual N concentration distribution. Moreover, simulated hydrograph 

252 peaks and troughs reasonably matched actual in-stream flow patterns. Overall considerable 

253 effort was made to improve the realism of the biophysical catchment processes relative to 

254 previous studies. 

255

256 4.5 Underlying pollutant distribution assumption

257 We do not assume any underlying distribution and instead empirically estimate the 

258 distribution of daily river N concentration using 10 years’ continuous weather data. 

259 Generating a large sample of river concentration under different regulatory policies provides 

260 a more realistic approximation of the natural variability in the stochastic diffuse pollution 

261 process (formation, transport and fate) in each catchment. This way we avoid any bias in the 

262 ranking of regulatory instruments from imposing distributional assumptions about the 

263 pollutant. We also compared the nonparametric kernel density of the empirical (modelled) 
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264 river concentration with an assumed normal, truncated normal and log-normal distribution13 

265 and report the results in section 5.5. Moreover, our methodology is also superior to imposing 

266 a standard on the leachate in or below the root zone - a common assumption in the literature 

267 due to the difficulty of modelling pollutant fate and transport to the receiving water body. It 

268 also avoids having to convert the EU WFD nitrate standard (concentration - mg/L) into a 

269 mass equivalent which requires making simplifying and distorting assumptions (Kampas and 

270 White, 2004). Nor do we assume that the distribution of the pollution load (mass - mg) in the 

271 root zone approximates the distribution of N concentration in the river, which is likely to 

272 distort instrument cost-effectiveness and policy ranking. Also, since our approach does not 

273 involve approximating the deterministic equivalent of a probabilistic constraint in a chance 

274 constrained programming framework, therefore we don’t have to estimate the correlation 

275 coefficient between emissions (Kampas and White, 2003).

276

277 4.6 Economic modelling 

278  (1) Minimise  

279 f
f

  YfrcsPc  wnNfrcsLfrcs   afbPb
b


r ,c,s







f
 wn ufrtsmfrts

r ,t,s








 CfcLfc

c
  AfkRk

k
 Tf






280 Catchment farms are modelled as economic decision makers , who are assumed to f 

281 maximise individual farm profits , by endogenously determining land and fertiliser (NPK) f 
282 allocation to productive activities14 on each soil type, in response to different regulatory 

283 controls.  The regulator’s policy objective is to minimise the catchment abatement cost of 

284 achieving a particular RT (probability of exceeding the EU 11.3 mg N/l ambient nitrate 

285 concentration regulatory standard), i.e. the difference between the unrestricted catchment 

286 profit and the catchment profit different pollution control policies. Thus, (1) f
f







13 The parameters for the normal and lognormal distributions were estimated from the data’s mean and the mean of the log, respectively, 

whereas those of the truncated normal over the interval of concentration greater that 2 mg/L (arbitrarily chosen) were obtained by 

maximum likelihood. The nonparametric density, which closely follows the data, was obtained using a normal kernel with a bandwidth of 

0.5. Empirical frequency refers to the number of observations that exceed the standard.
14 Productive activity refers to crops, livestock production (grassland) and LR. 
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287 determines the social cost of regulation (Baumol and Oates, 1988; Beavis and Walker, 

288 1983). If a policy achieves a particular RT at lower social cost than another policy, then it is 

289 more cost-effective and in a second best world more efficient (Ribaudo et al., 1999).  is f

290 the outcome of an unrestricted run of the model without any regulation, other than existing 

291 mandatory restrictions (NVZ etc.), on farm . Catchment profit in the objective function is the f

292 sum of the return to each producer’s management and allocation of resources minus the cost 

293 of total farm nitrogen consumption ( (arable crops), (silage and wnNfrcsLfrcs
r ,c,s
 wn ufrtsmfrts

r ,t ,s


294 grazing grass)), cost of land retirement ( ) and all other crop specific secondary AfkRk
k


295 farming costs including the cost of potato crop irrigation, sprays, K and P fertiliser Cfc

296 application, etc. Land retirement area  and the per hectare cost of land retirement,  are Afk Rk

297 indexed over land retirement type  (permanent, temporary good and temporary bad). k

298

299 Exogenous terms in (1) include  the market price of arable crop , and  the market Pc c Pb

300 return from livestock unit15 (LU) type . Agricultural prices were set to the 2009/10 price b

301 level (SAC, 2009). The number of livestock on each farm is represented by .  is the afb
wn

302 market price of nitrogen fertiliser, and is respectively the nitrogen applied and land Nfrcs Lfrcs

303 allocated to arable crop (excluding grasslands) on soil type  in crop pair rotation . c s r

304 Likewise,  is the yield for each crop, soil, rotation combination on each farm.  Whereas  Yfrcs

305  and  refer respectively to land and nitrogen allocated to grassland type  mfrts ufrts t

306 (permanent, temporary, and hay).  refers to all transfer payments (positive for IT). Such Tf

307 transfer payments are not included in estimates of abatement costs. The non-linear 

308 optimization model was written in GAMS (Brooke et al., 1998) and solved using the 

15 A livestock unit is defined in terms of the metabolised energy requirement. With one unit being the maintenance of a mature 625 kg 

Friesian cow and the production of a 40–45 kg calf, and 4500 l of milk at 36 g/kg of butterfat and 86 g/kg s.n.f. Based on this the LU unit 

values of all livestock are calculated, e.g.: suckler cow (1 LU), ewe (0.15 LU), male cattle < 2 years (0.6 LU), male cattle > 2 years (1 LU).
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309 CONOPT 3 solver16 (Stolbjerg-Drud, 1993). Overall the model estimates the cost-

310 effectiveness of policy control instruments to attain RTs. The 10% RT means the NP 

311 standard must be met at least 90% of the time etc. The social (resource) cost of policy 

312 controls are reported as percentage reductions from the baseline profitability. Figure 3 

313 provides a diagrammatic representation of the biophysical economic modelling.

314

315 We simulated the following policies: 1) nitrogen input taxation (IT); 2) farm livestock stocking 

316 density reduction (SDR), and; 3) a minimum percentage farm permanent land retirement 

317 (LR) requirement. Three types of MI policy packages that combine economic incentives with 

318 managerial controls (regulation), were simulated: a) LR with IT, b) SDR and IT and c) LR, 

319 SDR with IT. All of the control instruments were uniformly applied and simulated as iterative 

320 runs of the model. Impractical high transaction cost policies such as emission taxation (Aftab, 

321 2010) and nitrogen input quotas were also simulated but their results are not reported. 

322

323 4.7 Land use and livestock calibration 

324 The model’s baseline allocation was calibrated to farm level survey data on cropping and 

325 livestock intensities. Both catchment models’ baseline simulations reflected actual farm 

326 practice in each catchment. The Motray’s baseline percentage deviation from actual average 

327 catchment data was: -0.38% for arable crops and 2.99% for catchment livestock units (LU). 

328 The Brothock’s baseline percentage deviation from actual average catchment data was: -

329 11.79% for arable crops and -7.94% for catchment livestock units. The Motray’s baseline 

330 arable to grassland ratio is 2.6 to Brothock’s 4.45.

331

332 5. Results 

333 Figures 4 and 5 illustrate the social cost of regulation as a percentage reduction from 

334 baseline catchment profit, £3.26m and £2.59m, under different pollution control policies for 

335 the Motray and Brothock respectively. The strictness of nitrate RT increases when moving 

336 from left to right along the x-axis in both figures. The probability of the standard being 

16 Robustness checks were undertaken and results were verified by using the MINOS 5 solver.
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337 exceeded is the number of days in the 3650 days of simulation that violate the standard. MI 

338 are represented by discontinuous lines. The highest pollution level for each simulated control 

339 policy is represented by top left-most starting point of its line. The control policies deliver 

340 different minimum levels of compliance, e.g. the MI: [SDR (1.98) + IT] over achieves the 10% 

341 RT by ensuring at least 8% compliance at all times. Table 2 ranks each policy’s relative cost-

342 effectiveness and associated reduction in catchment profit relative to the catchment baseline. 

343 The 10%, 5%, 3% and 1% RTs were arbitrarily chosen to illustrate the effect of progressively 

344 stricter enforcement, with the 1% RT being the tightest. 

345

346 5.1 Motray results

347 In figure 4, among single instrument stand-alone policies IT is clearly most efficient while LR 

348 is the least cost-effective at mitigating pollution. Both stand-alone SDR and LR are inefficient 

349 at achieving the 10% and 5% targets and incapable of achieving stricter RTs unless essential 

350 crop rotation constrains are relaxed - unfeasible given the role of crop rotations in minimising 

351 crop disease. The efficiency difference between economic and managerial policies as well as 

352 between SDR and LR increases as the RT is tightened. 

353

354 Interestingly, as the RT is increased MI outperform. IT is the most cost-effective control 

355 instrument until the 16% RT after which there is a ‘cross-over’ and [LR (0.99%) + IT] 

356 becomes more efficient. From the 15% target onwards various MI optimise social cost. Both 

357 two instrument mixed instruments (2MI), [SDR + IT] and [LR + IT], are more cost-effective at 

358 delivering the 15% RT and higher RTs. In fact, even though [SDR (1.98) + IT] over achieves 

359 and actually meets the 5% RT, it is still more efficient than IT at the 10% target. This 

360 efficiency difference between the two instruments extends from 0.46% at the 10% RT to 

361 16.03% at the 1% RT. At the extreme, 2% RT and 1% RT, the three instrument mixed 

362 instrument (3MI) [LR + SDR + IT] policy packages excels. E.g. at the strictest 1% RT the 

363 efficiency gain between IT and [LR (0.96%) + SDR (1.97) + IT]17 is 17.95%. Thus adding a 

17 [LR (0.96%) +SDR (1.97) + IT] refers to a MI comprising of the requirement to retire 0.96% of farmland, a maximum stocking density of 

1.97 GLU/ha on grassland and an N input tax.
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364 further control instrument to the MI policy package improves efficiency as regulatory 

365 stringency is increased. Additionally, this efficiency gap widens considerably as the RT 

366 increases (figure 4 and table 2). Overall, across the RT considered in table 2, [SDR (1.98) + 

367 IT] is clearly the most efficient overall. Overall, the ‘crossovers’ are insignificant and policies 

368 tend to outperform in very distinct RT ranges. Such distinct cost-effectiveness frontiers make 

369 it easier to set RT specific policies. 

370

371 5.2 Brothock results

372 The Brothock exhibits greater clustering of instruments in a narrower efficiency range, i.e. the 

373 difference in cost-effectiveness of policies is not as well defined (figure 5). LR is the least and 

374 IT is the most efficient single instrument. IT is marginally the most efficient control policy until 

375 the 10% RT after which various MIs maintain a small efficiency advantage. In table 2, [SDR 

376 (1.98) + IT] is marginally more efficient at the 5%, 3% and 1% level. The 3MI [LR (0.2%) + 

377 SDR (2.1) + IT] is clearly the most cost-effective policy at the strictest 1% level, delivering a 

378 cost saving of 0.82% over IT. Thus overall, within the considered RT range the [SDR + IT] MI 

379 is the most efficient. Two additional MI were simulated in the Brothock catchment: [SDR (2.1) 

380 + IT] and [LR (0.2%) + SDR (2.1) + IT]. These additional MI were set at SDR and LR levels 

381 that were “optimal” for the Brothock - illustrating that efficiency gains from tailoring instrument 

382 levels to each catchment. SDR is considerably more efficient in the Brothock and even 

383 outperforms IT from the 2% RT onwards.

384

385 Intriguingly, a pattern of instrument efficiency frontiers emerges which is entirely consistent 

386 with the Motray frontier. IT is the most cost-effective control instrument for small reductions in 

387 diffuse pollution from the baseline (14%-9% RT), whereas 2MI [SDR (2.1) + IT and SDR 

388 (1.98) + IT] outperform in achieving mid-range abatement (8%-2% RT), and 3MI [LR (0.2%) 

389 + SDR (2.1) + IT] is most cost-effective at the strictest regulatory target (1% RT). Such 

390 efficiency frontiers are catchment specific and depend on catchment characteristics.

391

392 5.3 Cross catchment comparison
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393 In both catchments MIs outperform IT, SDR and LR at stricter RTs and their efficiency gain 

394 increases at higher RT. The efficiency gain MIs provide is relatively greater in the Motray, but 

395 instrument ranking remains largely, but not convincingly, consistent in both catchments. 

396 Unfortunately, this consistency is not as robust as policy makers would like. Intriguingly, for 

397 approximately the first 40% of pollution reduction in both catchments IT remains the most 

398 efficient instrument – reflecting the superiority of IT in making small reductions from baseline 

399 level of pollution in both catchments. Significantly, in table 2, MI policies, especially 3MIs, 

400 display the least variation in social cost across the RTs (e.g. from the 10% to the 1% RT in 

401 the Motray IT’s resource cost increases from -3.77% to -23.42%, whereas with [LR (0.96%) 

402 +SDR (1.97) + IT] it rises from -4.05% to -5.47%). Suggesting it may be easier and more 

403 politically acceptable for regulators to raise the RT with MI than with single instruments like IT 

404 or LR18, due to the relative smaller reduction in catchment profit.  

405

406 5.4 Comparative control instrument levels 

407 Table 3 compares the instrument levels required to induce compliance with the same RT in 

408 each catchment. The result that higher probabilities of achieving  (stricter RT) require E *

409 higher instruments levels and that they are relatively greater in the Motray is self-explanatory 

410 - given its higher baseline pollution. E.g. a 332.62% higher IT achieves the 10% RT, rising to 

411 572.16% at the 1% target, in the Motray than in the Brothock. This difference between 

412 catchments instrument levels is less apparent with managerial controls - particularly, LR at 

413 the 5% RT where the Motray’s 18.66% LR requirement is comparable to the Brothock’s 

414 17.95% LR requirement.

415

416 Also, the instrument level difference between catchments is considerably less for MI. The 

417 difference in the IT component of the instruments 2MI [SDR + IT] and 3MI [LR + SDR + IT] is 

418 44.23% and only 13.45% respectively at the 3% target. Intriguingly, the difference between 

419 instrument levels required to achieve the same RT in both catchments is the smallest with 

18 Compare the increased percentage reduction in the Brothock’s resource profit using LR in moving from the 10% RT (-6.5) to the 1% RT (-

36.94). 
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420 3MI, i.e. an IT difference of 19.23%, 13.45% and 28.84% at the 5%, 3% and 1% RT 

421 respectively. Thus, the evidence suggests MIs are more suited to being applied uniformly as 

422 blanket policies across different catchments than IT. Uniform policies have lower transaction 

423 costs than spatially targeted ones, are arguably more enforceable in practice and perceived 

424 to be fairer. This may explain the reluctance of policy makers to adopt economic controls in 

425 isolation. Our results suggest it may be easier to impose a uniform MI policy than a uniform 

426 IT policy across different catchments. Detailed water quality metrics and their interpretation 

427 can be found in the supporting supplementary material. 

428

429 5.5 Estimated pollutant distribution bias

430 Figure 1 compares the modelled daily baseline river concentration histograms of both 

431 catchments. By comparing the nonparametric kernel density of the empirical (modelled) river 

432 concentration with an assumed normal, truncated normal and log-normal distribution we 

433 found that in the Motray all three assumed distributions underestimate the probability of 

434 exceeding the 11.3 mg/L standard, whereas in the Brothock they overestimate the 

435 probability. This illustrates the bias from assuming an incorrect underlying distribution. This 

436 bias is as much as -19.15% with the normal in Motray and 31.88% when assuming a 

437 lognormal distribution in the Brothock. Such substantial errors are likely to be economically 

438 and environmentally costly. Real data seldom follows standard distributions; excessive 

439 peakedness (with many outliers) and multimodality are more common - as shown in the 

440 actual data (Figure 2). Multimodality occurs naturally in meteorological data (Mardia and 

441 Jupp, 2000; Zoccatelli et al., 2011), and is a key driver of river pollution. Furthermore, using a 

442 crude one−sided Chebyshev inequality produces very large upper bounds on the probability 

443 of exceeding the threshold. The inequality provides very limited information and appears 

444 excessively conservative when contrasted with real data. 

445

446 5.6 Associated P and K consumption

447 Farmers tend to apply fertilisers in fixed ratios or purchase fertiliser mixes containing N, P 

448 and K in recommended ratios. Assuming this, the models estimate the application or load of 
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449 P and K to each crop/soil combination (including grassland) based on the optimal application 

450 of N19. Thus allowing an estimate of the impact of NP control policies on catchment 

451 consumption of P and K at both the intensive and extensive margin inclusive of the P and K 

452 content of livestock waste. This is important as regulatory policies, may affect the intensity of 

453 production and land allocation (proportion of arable to livestock activity) in catchments and 

454 thus the relative use of N, P and K. The purpose of this analysis is not to identify cost-

455 effective ways to control P and K emissions, but to simply consider the possible 

456 consequences of policies to control NP on P and K losses (pollution swapping). 

457

458 The Motray’s baseline N load was 751.22t with a P:N ratio of 0.42 and a K:N ratio of 0.47; 

459 whereas the Brothock’s baseline N load was 624.82t with a P:N ratio of 0.41 and a K:N ratio 

460 of 0.49. As expected, in the Motray, achieving higher nitrate RT also reduces catchment P 

461 consumption (table 4). The greatest reduction in catchment P consumption is associated with 

462 IT, whereas LR and in particular SDR do not reduce P utilization as much. Therefore, the LR 

463 and SDR components in MIs explain the slightly greater P consumption when compared to 

464 stand alone IT. The fact that IT primarily reduces catchment pollution by decreasing the 

465 intensive margin whereas LR affects the extensive margin may explain the results. SDR 

466 works by either reducing livestock numbers or increasing the farmland that that sustains 

467 livestock or both depending on which is most profitable. Thus at lower N regulatory targets 

468 SDR may only lower P consumption loads on grassland and not affect arable land P 

469 consumption, thereby achieving less P reduction. 

470

471 Similarly, in the Brothock the P load falls as the N regulatory target is tightened. However, 

472 interestingly, in the Brothock results produce two differences. Firstly, LR produces greater P 

473 reduction than IT. This can be explained by the considerably high levels of LR, mostly at the 

474 expense of winter wheat, which are required to meet the nitrate RT. Secondly, using [SDR + 

475 IT] and in particular stand-alone IT produces a sharp increase in catchment P consumption 

476 at the strictest 1% regulatory target - even exceeding the baseline P load in the case of IT. 

19 In practice substitution between N, P and K is limited.
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477 3MI, which has a smaller IT component, does not produce a spike in P consumption. This is 

478 because at high N input prices it is more profitable to substitute away from winter wheat to 

479 seed potatoes. Therefore, an unintended consequence of IT is that, while it reduces 

480 catchment N consumption, it unfortunately provides a perverse incentive to shift from winter 

481 wheat (NPK/ha ratio 200:70:70) to seed potatoes (NPK/ha ratio 90:200:150) - which requires 

482 relatively less N but more P. Both P and N are nutrients that contribute to eutrophication and 

483 achieving GECS. This highlights the risk of pollution swapping and the need to consider the 

484 broader impact of policies as they may paradoxically provide perverse incentives that 

485 produce detrimental water quality consequences from pollution swapping. 

486

487 The results for K are similar but not as pronounced as the P results. They are similar in that 

488 Motray’s K consumption decreases at higher N regulatory targets; this reduction is greatest 

489 with IT and less so with LR. Among the single instruments considered SDR produces the 

490 least reduction in K consumption.  2MI and especially 3MI display much lower catchment K 

491 application.  Again the Brothock displays a similar increase in K consumption at the highest 

492 1% RT – although not as significant as the P increase. Overall, this is evidence of the need 

493 to coordinate environmental regulation and consider the complementary regulation of other 

494 polluting nutrients. As clearly, controlling N may inadvertently change P and K consumption 

495 and prevent attaining the intended ecological outcome. 

496

497 6. Discussion 

498 Regulation will simpler if consistently cost-effectives policies across a range of water bodies 

499 with similar characteristics can be identified. In this paper, we investigate the consistency of 

500 policy cost-effectiveness across two relatively similar catchments. We account for the 

501 stochastic nature of NP by empirically estimating the distribution of daily ambient river nitrate 

502 concentration using 10 years of continuous weather data, without making distorting a priori 

503 distributional assumptions.  This provides a more realistic assessment of the uncertainty 

504 associated with regulatory controls. Additionally, we estimate instrument cost-effectiveness 

505 based on the distribution of river concentration as opposed to pollution loads (mass) in the 
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506 root zone. We contend that modelling the entire biophysical processes realistically and 

507 imposing environmental standards at the point of environmental impact (river) is critical to 

508 policy analysis. The significance of our results are in the detail, i.e., policy ranking is only just 

509 broadly consistent, even in two relatively similar catchments. That is, the cost-effectiveness 

510 ranking of policies is may not be as robust as policy makers would like.

511 Interestingly, policies tend to outperform in very distinct RT ranges - even though the 

512 instrument levels required to meet RTs differ in catchments. Initial pollution reduction is most 

513 cost-effectively achieved by IT, higher RTs required 2 instrument MIs, whereas the strictest 

514 RTs require 3 instrument MIs. Thus indicating that cost-effective rankings are probably RT 

515 dependent. Such distinct cost-effectiveness frontiers should make it easier to determine 

516 optimal control policies for specific RTs. The presence of crossovers did not significantly alter 

517 the ranking of policies or the identification of efficiency frontiers. Results confirm the previous 

518 literature in that single instruments display efficient abatement fatigue at higher RTs and that 

519 the relative cost-effectiveness of MIs improves as the RT is tightened.

520

521 A key result is that the difference between instrument levels required to achieve the same RT 

522 in both catchments is the smallest with 3MI. Thus MIs are arguably more suited to being 

523 applied as uniform policies across different catchments than IT. Interestingly, MIs also 

524 display the least variation in catchment resource cost across RTs, implying it might easier to 

525 raise environmental quality (higher RT) with a MI policy. The standard deviation of river 

526 pollution under MIs is also less than IT in both catchments. In considering the impact of 

527 policies to control diffuse N pollution on farm P and K consumption our results suggest that 

528 IT does significantly reduce P and K consumption, but LR and SDR do not. However, at the 

529 strictest RT, IT produced perverse land allocation incentives that may produce spikes in the 

530 consumption of P and K. Another benefit of MIs was the absence of such spikes. It is 

531 apparent that there are trade-offs between policies to control NP and the consumption of P 

532 and K, which in turn can paradoxically prevent meeting GECS – providing another reason to 

533 coordinate policy across pollutants. Admittedly consumption of P & K is a proxy for pollutant 

534 loads entering the river and future research would benefit from modelling P and K river 
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535 concentrations or better yet ecological impact. Whilst in a sense a favourable case has been 

536 considered here (i.e. relatively comparable catchments in geographical proximity), the results 

537 suggest that an overall consistent ranking is found across policy instruments. Unfortunately, 

538 it may not be as as robust as regulators and stakeholders would like or assume. Differences 

539 in the absolute level of instruments across catchments are considerable but intuitively 

540 correct. Ideally policy packages should be tailored to specific catchments, as the efficiency 

541 gains are theoretically considerable – however real world transaction costs may render this 

542 infeasible at present.  

543

544 The advantages of MI are reinforced when you consider a) the secondary environmental 

545 benefits from the managerial component of MIs, and b) the political sensitivity of 

546 implementing economic instruments in isolation. Properly managed LR can help mitigate NP 

547 pollution while promoting farmland biodiversity (Burt and Haycock, 1993; Ribaudo et al., 

548 1994). CAP has imposed minimum LR and SDR conditions in the past and LR maybe return 

549 under recent ‘greening’ of CAP. Unfortunately, reliable transaction cost estimates of 

550 implementing and enforcing such regulatory policies are not available and thus not 

551 considered. Nor have we factored the stochastic nature of crop yields or the transition period 

552 between policy implementation and its impact. Our analysis would benefit from improved 

553 modelling of farming heterogeneity and groundwater hydrology. More research is required to 

554 analyse the consistency of our results across catchments of differing similarity and to identify 

555 the defining catchment characteristics that determine the transferability of policy cost-

556 effectiveness. 

557

558 7. Conclusion

559 The paper investigates the transferability of instruments to control NP by comparing the cost-

560 effective ranking of regulation in two relatively similar agricultural catchments. We use an 

561 approach, which does not necessitate making a priori assumptions about the underlying 

562 distribution of daily stochastic pollutant concentration in rivers. Our results suggest that policy 

563 instrument ranking is broadly but not convincingly consistent across relatively similar 
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564 catchments but that policies outperform in distinct regulatory target ranges. Notably we find 

565 that MI policies display characteristics more suitable to wider application across catchments 

566 (especially at higher RTs), the enforcement of stricter RTs over time and where there are 

567 ecological concerns about pollution swapping and the consumption of other polluting 

568 nutrients.
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Table 1: Catchment characteristics

Catchment Motray Brothock
Size (km2) 58.3 44.3
Arable area* (ha)  4743 3580
Average annual rainfall 
(mm) 720 708

Representative soil 
classes Mountboy Sourhope Auchenblae Balrownie Vinny Corby

Profile water column 
(mm) 353 337 219 344 316 193

HOST class 18 22 5 18 16 5
Agricultural area (%) 38 39 23 68 28 4
* Excluding rough grazing and forestry



Table 2: Comparative Catchment Ranking of Control Instruments and Associated Percentage Reduction in Catchment Resource Profit

Catchment Motray Brothock
Regulatory Target 

Percentage of time 10 5 3 1 10 5 3 1
Input Tax (IT) 2

(-3.77)
4

(-7.56)
4

(-10.50)
4

(-23.42)
1

(-0.10)
3

(-0.57)
3

(-0.82)
6

(-2.44)
Land Retirement (LR) 4

(-15.98)
6

(-24.58) NA NA 8
(-6.50)

8
(-18.85)

8
(-26.81)

8
(-36.94)

Stocking Density Reduction 
(SDR)

3
(-9.88)

5
(-17.04) NA NA 3

(-0.21)
4

(-0.60)
5

(-1.01)
2

(-1.80)
LR (0.99%) +IT 1

(-1.53)
3

(-4.36)
3

(-7.29)
3

(-13.58)
5

(-1.06)
7

(-1.55)
7

(-1.01)
4

(-1.80)
SDR (1.98) + IT OA 1

(-3.31)
1

(-3.72)
2

(-7.39) OA 1
(-0.57)

1
(-0.72)

7
(-2.45)

SDR (2.1) + IT 2
(-0.18)

2
(-0.57)

2
(-0.77)

5
(-2.40)

LR (0.2%) +SDR (2.1) + IT 4
(-0.33)

5
(-0.72)

4
(-0.92)

1
(-1.62)

LR (0.96%) +SDR (1.97) + IT OA 2
(-4.05)

2
(-4.18)

1
(-5.47) OA 6

(-1.53)
6

(-1.62)
3

(-2.33)
(): Associated percentage reduction in catchment resource cost

OA: over achieves regulatory target; NA: does not achieve regulatory target

Note: in the case of SDR and LR not achieving regulatory target does not mean that the two control instruments are incapable of achieving the regulatory 

target, but only at a very significant cost farming. In terms of the optimisation it means relaxing numerous constraints that are probably not practical (e.g. 

pest control) or acceptable (high cost) to farmers. 



Table 3: Comparative Control Instrument Levels in Motray and Brothock

Catchment Motray Brothock
Regulatory Target (percentage of time)

Percentage of time 10 5 3 1 10 5 3 1
Input Tax (IT) 373 500 573 726 40.38 76.92 90.38 153.84
Land Retirement (LR) 14.05 18.66 NA NA 6.40 17.95 22.4 26.9
Stocking Density Reduction 
(SDR)

24.5 33.18 NA NA 3.42 8.96 13.58 20.52

LR (0.99%) + IT 103.84 369.23 469.23 626.92 42.30 70.84 90.38 117.30
SDR (1.98) + IT OA 56.84 96.15 442.30 OA 5.76 51.92 105.77
SDR (2.1) + IT 1.92 75 82.69 117.30

LR (0.2%) +SDR (2.1) + IT 1.92 75 82.69 117.30
LR (0.96%) +SDR (1.97) + IT OA 19.23 53.84 134.61 OA 0 40.39 105.77

All values are percentage increases relative to baseline levels in each catchment, except SDR for which actual values are presented.



Table 4: Changes in Phosphorus (P) Consumption Load Associated with Policies to Control Diffuse N Pollution 

Catchment Motray Brothock
RT (percentage of time) 10 5 3 1 10 5 3 1

PHOSPHORUS
Input Tax (IT) -19.03 -23.20 -24.69 -31.68 -4.11 -8.29 -9.76 1.34
Land Retirement (LR) -14.76 -21.51 NA NA -4.90 -14.09 -20.25 -28.18
Stocking Density Reduction 
(SDR)

-9.61 -14.61 NA NA -0.74 -1.94 -3.02 -4.48

LR (0.99%) +IT -12.16 -19.26 -23.26 -27.61 -4.96 -9.13 -10.36 -13.20
SDR (1.98) + IT OA -9.45 -12.89 -22.17  -2.44 -6.90 0.93
SDR (2.1) + IT    -0.85 -8.13 -9.20 1.44

LR (0.2%) +SDR (2.1) + IT    -0.96 -8.22 -9.29 -12.76
LR (0.96%) +SDR (1.97) + IT OA -6.95 -10.07 -16.54  OA -2.64 -6.58 -12.54

POTASSIUM
Input Tax (IT) -24.75 -30.28 -31.88 -39.33 -4.46 -8.81 -10.34 -7.28
Land Retirement (LR) -13.48 -22.48 NA NA -4.10 -12.12 -19.99 -31.06
Stocking Density Reduction 
(SDR)

-9.09 -15.42 NA NA -0.68 -1.74 -2.69 -4.02

LR (0.99%) +IT -12.58 -24.90 -29.74 -34.10 -5.21 -9.55 -10.85 -13.84
SDR (1.98) + IT OA -9.56 -13.53 -28.72  -2.29 -7.13 -7.52
SDR (2.1) + IT    -0.82 -8.63 -9.71 -7.15

LR (0.2%) +SDR (2.1) + IT    -0.91 -8.71 -9.79 -13.47
LR (0.96%) +SDR (1.97) + IT OA -6.51 -10.15 -17.43 OA -2.32 -6.60 -13.06

Phosphorus and Potassium load reductions are presented as percentage reductions from catchment specific baseline phosphorus and potassium loads 

respectively. Motray’s phosphorus (P) baseline load was 313.516 tonnes; Brothock’s load was 256.135. Motray’s potassium (K) baseline load was 352.608 

tonnes; Brothock’s load was 306.016 tonnes.



Glossary 

DEFRA Dept. of Environment 
Food and Rural Affairs

LR Land Retirement P Phosphorus

EA Environment Agency LU Catchment 
Livestock Units

RT Regulatory Target

FRU Forestry, Rough grazing 
and Urban areas

MI Mixed Instruments SDR Stocking Density 
Reduction

GECS Good Ecological and good 
Chemical Status

N Nitrogen SEPA Scottish Environmental 
Protection Agency

IT Input Taxation NP Nonpoint nitrate 
pollution

2MI Two instrument mixed 
instrument

K Potassium NVZ Nitrate Vulnerable 
Zone

3MI Three instrument 
mixed instrument
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SUPPLEMENTARY	MATERIAL:	Motray	and	Brothock	Modelling	Methodology	

	

The	modelling	of	river	flow	and	nitrate	concentrations	was	done	using	a	version	of	the	

EveNFlow	model,	developed	by	ADAS.	

	

Daily	 time	 series	 of	water	 and	nitrate	 exiting	 soil	 units	 via	 rapid	 (shallow)	 and	 slow	

(deep)	drainage	pathways	were	routed	by	the	EveNFlow	model,	 introducing	transfer	

delays,	to	reproduce	the	river	hydrograph	and	concentrations	resulting	from	the	mixing	

of	waters	from	the	two	drainage	pathways.	EveNFlow	is	a	semi-distributed,	catchment	

scale,	conceptual	model	of	the	delivery	of	effective	rainfall	to	a	river	system.	The	model	

is	constructed	so	that	it	may	be	parameterised	in	catchments	where	observed	flow	data	

limited	or	unavailable.	Parameterisation	of	the	model	requires	information	on	the	areas	

of	soils	of	each	HOST	class	within	a	catchment	or	long-term	estimates	of	the	BFI	from	

observed	 flows	 (Boorman	et	al.,	1995;	NERC,	1998).	 	 The	BFI	 is	 conceptualised	as	a	

measure	of	the	proportion	of	flow	that	travels	via	the	deeper,	slower	routes	to	the	river	

system.		

	

The	 flow	 routing	methodology	 is	based	upon	an	exponential	model	of	 the	drainage	

from	a	non-linear	catchment	soil	water	store	or	reservoir,	as	derived	by	Kirkby	(1975),	

in	which	the	instantaneous	rate	of	discharge	from	the	store	is	calculated	as:	

÷
ø
ö

ç
è
æ

×= M
S

t

t

eQQ 0 		 (1)	

	

where	Qt	 is	the	rate	of	discharge	at	time	t,	Q0	 is	the	rate	of	discharge	when	the	soil	

store	 is	 saturated,	 St	 is	 the	 catchment	 soil	 moisture	 store,	 and	 M 	 is	 the	 master	

recession	constant,	representing	the	rate	at	which	the	soil	store	empties	and	hence	the	

recession	of	the	river	hydrograph.		

	

The	store	is	representative	of	an	exponential	decline	in	lateral	transmissivity	of	the	soil	

with	depth	(Beven	et	al.,	1994).		Thus,	the	change	of	the	rate	of	discharge	is	nonlinear	

with	respect	to	the	rate	of	change	of	the	catchment	store.		This	nonlinear	description	
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enables	the	model	to	represent	the	delivery	of	water	to	a	river	channel	via	rapid	flow	

routes	such	as	macropores.	

	

In	the	EveNFlow	model,	the	discharge	equation	(1)	has	been	simplified	to	give:	

÷
ø

ö
ç
è

æ

= M
S

t

t

eQ 	 (2)	

In	this	form	there	is	no	explicit	identification	of	the	state	of	saturation,	and	rapid	run-

off	 associated	 with	 saturation	 excess	 overland	 flow	 is	 assumed	 to	 be	 adequately	

represented	 by	 the	 extension	 of	 the	 soil	 transmissivity	 profile	 above	 a	 virtual	 soil	

surface.		

	

The	instantaneous	volume	of	water	in	the	catchment	soil	store	is	calculated	as:	

	

tet QMS log×= 	 (3)	

	

and	the	mass	balance	of	the	catchment	soil	store	is	calculated	as:	

	

tQH
dt
dS

-= 	 	 (4)	

	

where	effective	rainfall	H	is	the	soil	drainage,	and	represents	a	constant	intensity	inflow	

of	water	from	the	root	zone	to	the	store.		

	

Kirkby	(1975)	showed	that	the	instantaneous	discharge	at	time	t+Dt	is	equal	to:	

	

M
t

Q

Q

t

tt D
+

=D+ 1
1

	where	H	=	0													(5)	

	

and	
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M
tH

Q
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M
tH
HQ

t

tt D×-
×+

D×-
-

=D+

expexp1
	where	H	>	0	 (6)	

	

The	volume	of	water	discharged	to	the	river	system	during	the	time	step	Dt	is	calculated	

by	use	of	equation	(13)	to	determine	the	net	change	in	the	catchment	soil	water	store,	

taking	into	account	of	effective	rainfall:	

	

ò
D+

D+
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ø

ö
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è
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tt

t tt

t
et tH
Q
Q

MQ log 	 	 (7)	

	

In	this	modified	form,	the	parameter	M	is	used	to	represent	the	effect	of	the	combined	

time	delay	associated	with	the	lateral	movement	of	water	from	hillslopes	to	the	river	

channel	and	the	in-river	routing	to	the	mouth	of	the	catchment.		The	greater	the	value	

of	M,	the	greater	the	apparent	residence	time	of	the	water	associated	with	a	particular	

drainage	event.		

	

In	the	modified	version	of	the	EveNFlow	model	used	here,	each	area	of	a	given	soil	type	

within	a	catchment	was	represented	by	two	EveNFlow	soil	water	stores.	The	first	was	

driven	by	additions	of	both	the	rapid	and	slow	drainage	from	the	soil	profile,	and	the	

second	by	additions	of	only	the	slow	soil	drainage.	Total	routed	flow	from	the	soil	area	

is	the	output	from	the	first	store.	The	contribution	from	only	rapid	flow	is	the	difference	

in	 the	outputs	between	the	 two	stores.	The	contribution	 from	only	slow	flow	 is	 the	

output	from	the	second	store.	

	

Each	catchment	store	 S 	must	be	initialised.		Each	simulation	begins	on	September	1st,	

when	the	initial	value	of	the	soil	moisture	store	can	be	estimated	from	the	low	flow	

index	Q95	as	follows:	

	

)(log 950 HQMS et ××== 	 									(8)	

	

where	H 	is	the	daily	mean		effective	rainfall	over	the	simulation	period.		
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The	rate	parameter	M 	for	the	stores	may	be	determined	from	iterative	optimisation	

of	the	fit	between	the	modelled	and	observed	hydrograph.		In	EveNFlow	however,	the	

rate	parameter	is	not	reliant	on	an	observed	flow	time	series	for	calibration,	but	from	

catchment	scale	observations	of	hydrograph	shape.	

	

The	BFI	 is	a	numerical	separation	of	the	river	hydrograph	into	a	rapid	flow	and	base	

flow	component.		The	BFI	is	the	volume	of	base	flow,	expressed	as	a	proportion	of	total	

flow.		This	published	statistic	(NERC,	1998),	is	determined	from	long-term	records	of	

observed	flow.		The	EveNFlow	model	is	based	on	the	observation	that	the	annual	BFI	

and	Q95	of	hydrographs	simulated	using	the	modified	flow	model	are	uniquely	related	

to	the	value	of	the	rate	parameter	M ,	for	a	given	effective	rainfall	time-series.	Flow	is	

simulated	on	a	daily	time-step	using	a	given	input	rainfall	time-series	and	first	estimates	

of	M and	the	BFI	of	the	hydrograph	are	calculated.		An	iterative	procedure	in	the	form	

of	a	simple	bisection	method	(Press	et	al.,	1992)	is	invoked	that	successively	modifies	

the	estimate	ofM until	the	BFI	of	the	simulated	hydrograph	equals	the	target	BFI	for	

the	response	group	HOST	class.	 	Parameterisation	ofM 	 is	based	only	on	the	match	

between	the	BFI	of	the	simulated	hydrograph	and	the	BFI	predicted	for	the	soil	water	

store	by	the	HOST	database,	not	by	reference	to	standard	model	fit	criteria.	The	target	

BFI	of	the	infiltration	excess	surface	runoff	store	is	set	at	0.10,	and	a	separate	recession	

parameter	M	 is	calculated	for	this	store.	This	value	is	based	upon	information	in	the	

Flood	 Studies	 Report	 (NERC,	 1975)	 for	 the	 response	 of	 rivers	 to	 storm	 runoff	 from	

urban	areas.		

	

The	 BFI	 is	 used	 to	 parameterise	 M 	 in	 the	 EveNFlow	 system,	 following	 studies	 of	

hydrograph	index	variability	that	have	demonstrated	that	BFI	is	more	stable	than	Q95,	

and	that	the	BFI	for	individual	years	are	consistently	close	to	the	long-term	value	except	

in	years	of	extreme	drought	(Gustard	et	al.,	1987).		

	

The	total	flow	from	a	catchment	is	calculated	by	area	weighting	of	the	sum	of	rapid	and	

slow	soil	drainage	derived	flows	for	each	soil	area	within	the	catchment.		
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The	methodology	described	above	separates	 the	 river	hydrograph	 into	components	

derived	from	rapid	and	slow	drainage.	To	simulate	mixed	nitrate	concentrations,	the	

EveNFlow	stores	were	then	paired	with	nitrogen	stores.	For	each	store,	the	nitrogen	in	

storage	 was	 increased	 daily	 by	 the	 quantities	 in	 the	 rapid	 or	 slow	 drainage,	 as	

appropriate.	 The	 nitrogen	 in	 the	 stores	 was	 assumed	 to	 be	mixed	 perfectly	 in	 the	

volumes	of	water	held	by	the	EveNFlow	stores.	Hence,	nitrogen	was	removed	from	the	

stores	 and	 input	 to	 the	modelled	 rivers	 each	 day,	 in	 proportion	 to	 the	 ratio	 of	 the	

predicted	total	discharge	from	and	current	volume	of	water	in	the	stores.	

	

Finally,	 a	 proportion	 of	 nitrate	 was	 calculated	 retained	 by	 plant	 uptake	 and	 bio-

chemical	 processes	 including	 denitrification.	 The	 proportion	 of	 nitrate	 in	 the	 river	

system	remaining	after	retention	was	calculated	as:	

	

[ ]
V

K T

eP
××××-

=
0293.01026.01

		 (9)	

	

where	K	is	an	empirical	retention	parameter,	T	is	the	daily	average	air	temperature,	and	

V	is	the	river	velocity,	calculated	according	to	the	methodology	of	Round	et	al.	(1998).	

	

For	further	details	of	the	EveNflow	methodology,	underlying	modelling	and	validation	

please	refer	to:	Anthony,	S.,	M.	Silgram,	et	al.	(2009).	"Modelling	nitrate	river	water	

quality	for	policy	support."	International	Journal	of	River	Basin	Management	7(3):	

259-275.		
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