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Abstract

Joint inversion strategies for geophysical data have become increasingly pop-

ular as they allow for the efficient combination of complementary information

from different data sets. The algorithm used for the joint inversion needs to

be flexible in its description of the subsurface so as to be able to handle the

diverse nature of the data. Hence, joint inversion schemes are needed that

1) adequately balance data from the different methods, 2) have stable con-

vergence behavior, 3) consider the different resolution power of the methods

used and 4) link the parameter models in a way that they are suited for a

wide range of applications.

Here, we combine active source seismic P-wave tomography, gravity and

magnetotelluric (MT) data in a petrophysical joint inversion that accounts
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for these issues. Data from the different methods are inverted separately and

are linked through constraints accounting for parameter relationships. An

advantage of performing the inversions separately is that no relative weight-

ing between the data sets is required. To avoid perturbing the convergence

behavior of the inversions by the coupling, the strengths of the constraints

are readjusted at each iteration. The criterion we use to control the adap-

tion of the coupling strengths is based on variations in the objective functions

from the individual inversions. Adaption of the coupling strengths makes the

joint inversion scheme then also applicable to subsurface conditions, where

assumed relationships are not valid everywhere, because the individual in-

versions decouple if it is not possible to reach adequately low data misfits

for the made assumptions. The coupling constraints depend on the relative

resolutions of the methods, which leads to an improved convergence behav-

ior of the joint inversion compared to a setup, where the resolution is not

considered.

Another benefit of the proposed scheme is that structural information

can easily be incorporated in the petrophysical joint inversion (no additional

terms are added in the objective functions) by using mutually controlled

structural weights for the smoothing constraints.

We test our scheme using data generated from a synthetic 2-D sub-basalt

model. We observe that the adaption of the coupling strengths makes the

convergence of the inversions very robust (data misfits of all methods are

close to the target misfits) and that final results are always close to the true

models independent of the parameter choices. Finally, the scheme is applied

on real data sets from the Faroe-Shetland Basin to image a basaltic sequence

2



and underlying structures. The presence of a borehole and a 3-D reflection

seismic survey in this region allows direct comparison and, hence, evaluate

the quality of the joint inversion results. The results from joint inversion

are more consistent with results from other studies than the ones from the

corresponding individual inversions and the shape of the basaltic sequence

is better resolved. However, due to the limited resolution of the individual

methods used it was not possible to resolve structures underneath the basalt

in detail, indicating that additional geophysical information (e.g. CSEM,

reflection onsets) needs to be included.

Keywords: Joint inversion, adaptive coupling, sub-basalt imaging

1. Introduction1

Joint inversions are integrated procedures that simultaneously invert data2

from different geophysical methods. They have become popular in the past3

decade and there are recent publications about joint inversions in many fields4

(see Moorkamp et al. (2016) for an overview). Compared to individual in-5

version of the same datasets resolutions are generally improved and the am-6

biguities reduced, if the parameters are linked with each other during the7

inversion stage. The resultant models from joint inversion typically have8

parameter distributions that are closer to the real distributions of the physi-9

cal properties in the subsurface, which facilitates subsequent interpretation.10

However, there are number of problems in joint inversion algorithms; in par-11

ticular if the involved methods are sensitive to different physical properties12

(e.g. seismic velocity, density and/or resistivity). This is because:13

1. data sets from the individual methods consist of different data types,14
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sensitivity and numbers of measurements, so their influence on the final15

model have to be properly balanced during the joint inversion proce-16

dure. To find such optimum relative scaling can be difficult and im-17

proper scaling results in data from some methods being well-fitted, but18

data from other methods being seriously under-fitted (or over-fitted);19

2. convergence behaviour is often complex and strongly non-linear for20

some methods (e.g. magnetotelluric, control source electromagnetic,21

seismic full-waveform tomography) and the convergence path through22

the model space of each method is typically different. The convergence23

behaviour and path is further complicated by the coupling within joint24

inversion. Hence, the joint inversion may get trapped in local minimum25

far away from an adequate solution where all methods have reasonable26

data misfits;27

3. resolution capabilities of the methods differ and usually vary signifi-28

cantly with location in the model. Like the balance problem in (1)29

above, ignoring these resolution issues in the joint inversion algorithm30

may result in a bad data fit for some of the methods, some bias in the31

models or slow convergence behaviour;32

4. assumptions used to link the different methods (or models), typically33

involve some approximations of the petrophysical or structural rela-34

tionships that are often not valid for the entire subsurface under in-35

vestigation. Too rigid implementation of these links or an improper36

choice of assumptions can result in serious and unpredictable errors in37

the joint inversion results.38
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For deterministic approaches that are suitable for handling large num-39

ber of unknowns and are applicable for problems with time consuming for-40

ward calculations, several strategies exist to deal with these problems. To41

find adequate relative scaling between the data sets (1st problem), most42

joint inversions algorithms consider only weighting that is defined by the43

assumed errors of the individual measurements (expressed by the data co-44

variance matrix). Other approaches are purely data driven (e.g. Xu, 2009)45

or use of multiplicative objective functions to balance the different data sets46

(e.g. Abubakar et al., 2009). Some inversion approaches (e.g. Günther and47

Rücker, 2006; Paasche and Tronicke, 2007; Bouchedda et al., 2012; Zhu and48

Harris, 2015) attempt to overcome this problem by independently inverting49

the data from different methods and share information from the parameter50

models between the different inversion runs to promote a similarity between51

the final models. Such joint inversions are commonly named ”cooperative”52

and have the advantage that no relative weighting between the data sets is53

required.54

To ensure convergence in deterministic inversions (2nd problem), sev-55

eral strategies are proposed that adjust the regularisation strength (Kilmer56

and O’Leary, 2001; Vogel, 2002) by applying e.g. L-curve fitting (Hansen,57

1993), generalized cross-validation (GCV) (Golub and Van Loan, 1996) or58

the discrepancy principle (Morozov, 1966; Vogel, 2002). For joint inversion59

e.g. Lelièvre et al. (2012) use a gradually decreasing regularisation that is60

determined at every iteration from the relationship between the actual data61

misfit and the specified target misfit. Other joint inversion approaches em-62

ploy Lagrange multipliers for balancing the coupling constraints that result63
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in a more stable convergence (e.g. Gallardo and Meju, 2004; Gallardo, 2007).64

The impact of resolution power of the individual methods (3rd problem)65

can be handled by adjusting cell sizes (Lien, 2013) in the parameter models66

or using independent and spatially flexible regularization strengths for each67

parameter model.68

Structural approaches, which assume that spatial variations in the dif-69

ferent parameter models are present at the same locations and are simi-70

larly orientated in space, are considered as valid for many subsurface condi-71

tions (4th problem) and are widely used (e.g. Haber and Oldenburg, 1997;72

Gallardo and Meju, 2004; Günther and Rücker, 2006; Doetsch et al., 2010;73

Molodtsov et al., 2013; Zhu and Harris, 2015). However, there are contri-74

butions (e.g. Lelièvre et al., 2012) that note that structural links provide75

a rather weak coupling resulting only in clear improvements compared to76

individual inversions in regions that are already relatively well-resolved by77

most of the individual methods; although other publications (e.g. Moorkamp78

et al., 2013) show that structural joint inversions can provide superior re-79

sults even in cases when low-resolution methods are involved. In contrast,80

other assumptions that are more rigorous and less generally valid, e.g. petro-81

physical coupling using parameter relationships (Lees and VanDecar, 1991;82

Afnimar et al., 2002; Moorkamp et al., 2011), often impose a strong cou-83

pling and result in significant improvement even for low resolution methods84

or in parts of the investigated subsurface volume that are not sampled by85

all of the methods. Which methods work best for a particular joint inver-86

sion problem needs to be determined on a case by case basis dependent on87

the survey design and the geological settings. Some approaches (Colombo88
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and Stefano, 2007; Lelièvre et al., 2010) have developed options to combine89

both structural and petrophysical information in the joint inversion. Other90

joint inversions either use more generally valid assumptions for petrophysical91

coupling by employing flexible parameter relationships that can be modified92

during the inversion process (Nielsen and Jacobsen, 2000; Lelièvre et al.,93

2012) or use approaches that invert directly for reservoir and rock proper-94

ties (e.g. Hoversten et al., 2006; Dell’Aversana et al., 2011). An alternative95

way of considering structural information is to use sharp-boundaries in joint96

inversions (e.g. Juhojuntti and Kamm, 2015) that allow strong contrasts at97

interfaces, but inherently assume that the subsurface consists of a number of98

distinct layers, an assumption that is not necessarily true. Finally, several99

authors couple data by clustering (e.g. Paasche and Tronicke, 2007; Lelièvre100

et al., 2012; Sun and Li, 2013) that can be considered more appropriate than101

simplified petrophysical assumptions for some geological conditions.102

The objective of this paper is the introduction and test of a new joint in-103

version strategy, in which we try to mitigate the four problems raised above.104

Our scheme JINV2D is a cell-based non-linear 2-D joint inversion that com-105

bines magnetotelluric (MT), seismic P-wave tomography and gravity data106

by using petrophysical information and has been mainly developed to in-107

vestigate sub-basalt structures that are often not well-resolved by reflection108

seismic data. To avoid relative scaling (1st problem) we use a cooperative109

joint inversion in which the inversion steps are performed separately for each110

method and the otherwise independent inversions are linked by employing111

constraints that account for parameter relationships. Core element of our112

proposed joint inversion is an automated adaptive coupling scheme, which113

7



allows for flexible inclusion of these constraints. This adaptive scheme en-114

sures a robust convergence (2nd problem) for all methods and allows the115

obtained physical parameter models to deviate from the initial assumed pa-116

rameter relationships, which makes this assumption less rigid (4th problem).117

Different resolutions of the various methods (3rd problem) are handled by118

making the behavior of the coupling constrains dependent on the relative res-119

olution power of the methods. Finally, we include a method that allows the120

exchange of structural information between the parameter models in addition121

to petrophysical information.122

Within the methodology section we first outline our joint inversion strat-123

egy. We then focus on a more detailed description of its implementation.124

The adaptive joint inversion scheme is tested on a synthetic model that is125

associated with settings that are typical for sub-basalt problems. Finally,126

we present joint inversion results from a real data example for sub basalt127

imaging from the Faroe-Shetland Basin, where wide angle streamer seismic,128

marine MT and marine gravity data are combined.129

2. METHODOLOGY - OUTLINE OF JOINT INVERSION STRAT-130

EGY131

2.0.1. Parametrization132

The 2-D grids used for the forward modeling routines are composed of133

rectangles to which constant velocity, density and resistivities are assigned.134

Cell sizes are adapted individually for each method to account for numerical135

accuracy issues and computational efficiency. For the inversion we use a136

coarser grid created by combining several forward modelling cells, since the137
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presented inversions (independent on the methods) do not resolve the model138

at the numerical precision required for the forward problem. We choose139

the same inversion grid for all three methods such that different physical140

parameters can be easily linked to each other in the joint inversion and the141

method with highest resolution defines the cell sizes to avoid data mismatches142

associated with improper discretization.143

2.0.2. Forward modeling144

Because standard forward modelling techniques are implemented for all145

methods we only briefly summarize the routines and refer to the literature for146

further information. For seismic tomography first-arrival times are computed147

by an eikonal solver (Podvin and Lecomte, 1991) and afterwards the associ-148

ated ray-paths are constructed by a steepest descent method (Aldridge and149

Oldenburg, 1993). For gravity modelling the z-component of the attractions150

from all cells are calculated for each gravity station and the resulting grav-151

ity responses are then obtained by summing the contributions from all cells152

(Bear et al., 1995). Border effects for the gravity due to the finite extent of153

the 2-D model are avoided by adding semi-infinite horizontal rods at the left154

and right boundary. For MT we use a 2-D frequency-domain finite-element155

code to calculate both the transverse electric (TE) and transverse magnetic156

(TM) mode impedances for a number of frequencies (Wannamaker et al.,157

1987).158

2.0.3. Inversion procedure159

AHessian-free Gauss-Newton minimization method (Nocedal andWright,160

2006), which has a rapid quadratic convergence as long as the local behavior161
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is not strongly non-linear, is used to iteratively solve the linearized inver-162

sion problems. To solve the associated linear system, the LSQR solver from163

Paige and Saunders (1982) is employed. We use first-arrival times of all164

shot-receiver combinations as seismic data (dseis.), the z-component of the165

gravity field at all measuring locations as gravity data (dgrav.) and real and166

imaginary part of the impedances for a number of frequencies and at all MT167

stations as MT data (dMT ). Model parameters are seismic velocities mvel.,168

densities mdens. and logarithmic values of resistivities mres. of the inversion169

cells. Smoothing constraints based on Laplacian differences (Ammon and170

Vidale, 1993) are employed as regularization to stabilize the inversion. The171

inversion step lengths are adjusted at every iteration through a line search172

procedure (Moré and Thuente, 1994).173

Unlike most other joint inversion schemes, the inversion processes of the174

individual methods are performed separately from each other. The required175

coupling between the individual inversions is provided by an additional con-176

straint in the objective function for each inversion accounting for relation-177

ships between the three model parametersmres., mvel. andmdens.. We choose178

this approach since it avoids the necessity to find an adequate scaling be-179

tween terms related to different methods in a combined objective function180

(i.e. Moorkamp et al., 2011). However, synchronization between the individ-181

ual processes is required to treat all methods equally. This is achieved by182

performing a single inversion step for all three methods and updating the183

associated coupling constraints before the next iteration is started.184

For our joint inversion method the objective functions for the MT, seismic185
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and gravity inversion ΦMT , Φseis. and Φgrav. are:186

ΦMT = ΦMT
(d) (m

res.) + (λMT )2ΦMT
(m) (m

res.) + (μMT )2ΦMT
(c) (mres., m̃res.) −→ min

Φseis. = Φseis.
(d) (mvel.) + (λseis.)2Φseis.

(m) (m
vel.) + (μseis.)2Φseis.

(c) (mvel., m̃vel.) −→ min

Φgrav. = Φgrav.
(d) (mdens.) + (λgrav.)2Φgrav.

(m) (mdens.) + (μgrav.)2Φgrav.
(c) (mdens., m̃dens.) −→ min

where Φ(d) = [g(m) − dobs.]
TDTD[g(m) − dobs.] are the data terms, Φ(m) =187

mTCTCm are the regularization terms, Φ(c) are the terms that account188

for the parameter relationships, dobs. is the vector containing the observed189

data, g(m) is the vector containing the calculated data obtained by forward190

modeling, DTD = C−1
(d) is the inverse of the data covariance matrix and191

C is the roughness matrix (containing discrete first-order derivatives). The192

impact of the individual terms is governed by the regularization and coupling193

parameters λMT , λseis., λgrav. and μMT , μseis., μgrav., respectively.194

While the data terms Φ(d) and regularization terms Φ(m) are commonly195

used in all types of inversions, the coupling terms Φ(c) are particular to joint196

inversion. Φ(c) express the coupling between the individual inversions as197

minimization problems (Φ(c) −→ min) and describe, in our case, how far198

the model parameters mres.,mvel. and mdens. deviate from the proposed rock199

parameter relationships. To determine the constraints of the Φ(c) for all N200

inversion cells, projections m̃ onto the pre-defined relationship curve are cal-201

culated from the physical parameters m. The distances between the model202

parameters m and their projections m̃ are then used to define the minimiza-203

11



tion problems for Φ(c) as:204

ΦMT.
(c) (mres., m̃res.(mres.,mvel.,mdens.)) =

N∑
j=1

(mres.
j − m̃res.

j (mres.,mvel.,mdens.))
2

Φseis.
(c) (mvel., m̃vel.(mres.,mvel.,mdens.)) =

N∑
j=1

(mvel.
j − m̃vel.

j (mres.,mvel.,mdens.))
2

Φgrav.
(c) (mdens., m̃dens.(mres.,mvel.,mdens.)) =

N∑
j=1

(mdens.
j − m̃dens.

j (mres.,mvel.,mdens.))
2

(Note that the all three Φ(c) terms are dependent on all three physical pa-205

rameters.)206

Practical meaning of this implementation is that associated constraints207

pull the model parameters mres., mvel. and mdens. towards the relationship208

curves such that the relative behaviour of the different physical models is209

approximately described by the parameter relationships.210

The projection method proposed here (see Appendix A for a detailed211

description) has the advantage that the impact of all physical parameters212

is equally balanced independent of their parameter ranges. However, it is213

only applicable for parameter relationships that have a strictly monotonic214

behaviour.215

2.0.4. Adjust the projection by using model resolution estimates216

Another advantage of the way the projection is implemented is the pos-217

sibility to take into account the resolving power of different methods at each218

individual cell. In the Appendix B we describe how the projection presented219

in Appendix A is modified such that it has the following behaviour: if method220

1 (e.g. seismic) has a high resolution and the other methods (e.g. MT and221

gravity) have low resolutions in an inversion cell, the resulting parameters222
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from the projection are very similar to the one obtained from the method223

1 e.g. velocity of the projection is very similar to the velocity of the seis-224

mic model and resistivity (density) of the projection are very similar to the225

resistivity (density) calculated from the seismic velocity model by means of226

the parameter relationships (see also black dot in Fig. A.18b in Appendix227

A). If the resolution powers of the different methods are in a similar range,228

the parameters from the projections are averages which are similarly affected229

by all model parameters. Such implementation improves the performance of230

the joint inversion and reduces the number of required iterations to reach231

an adequate data misfit, because the projection direction is guided spatially232

flexible by the relative impact of the different data sets.233

A good measure for evaluating the resolution of a method is the diago-234

nal of the model resolution matrix R = ((GTG+ λ2CTC)
−1
GT )G (where235

G = DS and S is the sensitivity matrix). R is normalized to 1.0 and 0.0,236

where 1.0 indicates perfectly and 0.0 not resolved at all parameters, respec-237

tively. Retrieving the diagonal by calculating the complete resolution ma-238

trix, however, is difficult for large inverse problems since it requires computer239

memory of the size N × N . We therefore use instead an efficient stochas-240

tic estimation of the resolution matrix diagonal suggested by MacCarthy241

et al. (2011). They arrange the equation for the model resolution matrix242

such that its diagonal can be solved with the same linear system as used for243

the corresponding linearized inversion problem (see equations 7 to 9 in their244

publication). (As in their equation 9 we consider the regularization terms245

in the calculation of the resolution matrix diagonal; however, we ignore the246

coupling terms.) Their approach is based on the work from Bekas et al.247
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(2007), who developed a statistical procedure to determine the diagonal of248

a large P × P matrix by iteratively applying a sequence of P -length ran-249

dom vectors to this matrix. Although the quality of the diagonal estimates250

depends onto the number of iterations, we restrict them to maximum 5000251

in our runs to keep computation times low. If the diagonal elements are252

assigned to the associated inversion cells, the obtained models showing the253

resolution estimates appears slightly noisy. To remove this noise and smooth254

the resolutions estimates in the spatial directions, the median of resolution255

parameters is determined from all neighbouring cells for each cell and applied256

as the final resolution measures in the parameter projection.257

2.0.5. Adaptive determination of the coupling parameters258

In our experience it is necessary need to keep the coupling parameters259

μ flexible during the inversion process. This can be explained as follows.260

Each method has its natural convergence path through the model space to261

decrease its data misfit. These paths may differ substantially for the different262

methods (e.g. MT and seismic tomography are strongly non-linear methods,263

whereas gravity is a linear method). Since the projection on the parameter264

relationship curve depends on the model parameters of all three methods, it is265

possible that, during the inversion process, the natural convergence direction266

for some of the methods points in a completely different direction in the267

model space to that the associated coupling constraint points. This can even268

occur when the parameter relationships perfectly describe the rock property269

behaviour. If the weight of the coupling parameter μ is chosen too high,270

the associated constraints force the parameter models in wrong directions,271

the convergence of the inversion is slowed down and the individual inversion272
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may then get trapped in local minima where the data misfit is not properly273

minimized. In contrast, coupling strengths which are too weak may lead274

to parameter models which are barely linked and, hence, the potential of275

increasing the resolution through joint inversion is then not utilized.276

To avoid such scenarios we implement a scheme to vary the coupling277

parameters μMT , μseis. and μgrav. for the individual methods adaptively and278

independently from each other during the inversion process. The adaption279

of the coupling parameters is implemented in exactly the same way for all280

three methods and we thus explain the procedure here for one method only.281

The adaptation criterion is based on the idea that the coupling constraint282

should affect the convergence behaviour of the objective function at each283

iteration, k, by the same amount. It states that the incremental change of284

the sum of the data and regularization terms of the objective function285

ΔΦConstr.,k
(d+m) := (ΦConstr.,k

(d) + λ2ΦConstr.,k
(m) )− (ΦConstr.,k−1

(d) + λ2ΦConstr.,k−1
(m) ) (1)

for our constrained inversion should correspond to a specified portionD (with286

1.0 > D > 0.0) of the same terms287

ΔΦRef.,k
(d+m) := (ΦRef.,k

(d) + λ2ΦRef.,k
(m) )− (ΦConstr.,k−1

(d) + λ2ΦConstr.,k−1
(m) ) (2)

for a reference inversion without constraint (μk = 0):288

ΔΦConstr.,k
(d+m) = DΔΦRef.,k

(d+m) (3)

The meaning of the criterion is illustrated in Figure 1.289
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 Iteration k

Ref.

Constr.

            =D (d+m)(d+m)

Iteration
kk-1 k+1

(d+m)
Ref.,k

Ref.,kConstr.,k
(d+m)

Figure 1: Sketch illustrating the adaption criterion for the coupling parameters at iteration.

The parameter μ is chosen such that the change of data term plus regularization term of

the objective function ΔΦConstr.,k
(d+m) of the constrained inversion at iteration k (black line)

is a predetermined factor D smaller than for the change of these terms ΔΦRef.,k
(d+m) for the

unconstrained inversion (red line).
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Figure 2: a) Flowchart illustrating the adaptive inversion scheme. The scheme shows the

procedure for only one of the methods. For the other methods the procedure is equivalent.

Steps where information from the other methods are involved are highlighted in red colors.

Roman numerals mark the different steps that are explained in the body of the text. The

grey box b) shows an inversion loop, which is performed at different stages of the procedure

(see blue letters (B) in a)) and in which the fulfillment of different criteria are tested: At

stage II the step length is varied until the Wolfe conditions (Nocedal and Wright, 2006)

are satisfied and at stages III and IV μk is varied until criteria are reached that consider

the behavior of the objective functions.
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Although this criterion specifies how the terms ΔΦConstr.
(d+m) of our con-290

strained inversion should change at each iteration step, it does not explicitly291

depend on μ. This means that an additional assumption linking the vari-292

ations of ΔΦ(d+m) with the ones of the μ values is required to be able to293

develop an adaptive scheme. Here, we assume that μ is approximately linear294

with the normalized incremental change of the objective function Ψl for a295

number of L successive iterations:296

μl ≈ p
(0)
k + p

(1)
k

ΔΦRef.,l
(d+m) −ΔΦConstr.,l

(d+m)

ΔΦRef.,l
(d+m)︸ ︷︷ ︸

=:Ψl

with l = k − (L− 1), ..., k

(4)

To update μ at every iteration the criterion and the assumption (eq. 4) are297

combined in the scheme shown in Figure 2.298

For iteration k:299

1. the coupling constraint associated with the parameter relationship is300

determined (see I© in Fig. 2)301

2. two model updates (inversion steps) - one with and one without the302

coupling constraint - are performed (see II© and panel (B) in Fig. 2).303

3. forward calculations are conducted for both updated models and the304

associated terms of the objective functions ΦConstr.,k
(d+m) and ΦRef.,k

(d+m) are305

determined. Steps 2 and 3 are repeated with different inversion step306

lengths as long as the step length criteria (Moré and Thuente, 1994)307

are not satisfied (see II© and box (B) in Fig. 2).308

4. the diagonal of the resolution matrix is calculated to adjust the projec-309

tion.310
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5. a linear regression of normalized incremental change of the objective311

functions Ψl̃ and coupling parameters μl̃ from a number of previous312

iterations l̃ = k − (L̃ − 1), ..., k is carried out (see V© in Fig. 2). The313

axis intercept p
(0)
k and slope p

(1)
k from the linear regression are then314

used to calculate the coupling parameter μk+1 for the next iteration by315

means of the formula316

μk+1 = (1−D)p
(1)
k + p

(0)
k , (5)

which is obtained by a combination of eq. 3 and eq. 4.317

6. Steps 1) to 5) are repeated for the other two methods.318

Steps 1) to 6) are repeated at each iteration.319

The convergence speed is controlled by the parameter D and the number320

of previous iterations L̃, from which information is used in the regression. For321

larger values of D it is assumed that the data misfit for the corresponding322

method decreases generally faster during the inversion process (see eq. 3) and323

that the resulting μ are smaller (see eq. 5). This means that the associated324

method is less coupled. For larger values of L̃ the adaptive algorithm reacts325

more inertly if the effect of the relationship constraint onto the convergence326

behaviour changes. On the other hand, regression becomes less sensitive to327

outliers and, hence, the algorithm can be considered as more robust.328

Regression results and consequently updates of μ only depend on the329

distribution of μl̃ and Φl̃ from a small number of previous iterations (typically330

< 6), therefore updated μ’s are only local and not global estimates of the331

best suited values for the coupling at the corresponding iteration. However,332

we tested our scheme on different synthetic examples and observe that the333
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implemented adjustment of coupling parameters is in most cases sufficient334

to obtain stable convergence behaviour for individual inversions. The same335

tests lead us to conclude that D should be in the range of 0.4 - 0.9 and L̃336

should be in the range of 2 - 5 to ensure robust and fast convergence.337

Nonetheless, under some circumstances the assumption of eq. 4 may not338

be appropriate for a specific method and iteration and the determined update339

of μ results in an increase of the remaining objective function ΦConstr.,k
(d+m) ≥340

ΦConstr.,k−1
(d+m) . To guarantee convergence, the value of μk is then recalculated341

in such cases: The inversion loop is repeated for different μ-values (see box342

(B) and IV© in Fig. 2) and by means of interpolation (bisection method)343

an appropriate coupling parameter is found which satisfies the condition344

ΔΦConstr.,k
(d+m) < DΔΦRef.,k

(d+m). We emphasize that the procedure to recalculate μ345

is often significantly more time-consuming than determining μ by adaption,346

because more forward calculations are required (typically a factor 2-4). Even347

if μ values determined from the adaptive procedure provide model updates348

that only roughly satisfy the criterion, it is more useful to take information349

from previous iterations to avoid slowing down the joint inversion process.350

When the data term of the objective function gets smaller than the speci-351

fied target misfit ΦConstr.
(d) ≤ Φ�

(d) (typically associated with an error weighted352

data misfit close to 1.0), in principal a solution is found for the associated353

method. Modification of the associated μ by the adaptive algorithm is then354

no longer required and one option would be to keep μ unchanged in the fol-355

lowing iterations. However, since we are interested in finding the solution356

with the strongest possible coupling, we want to identify instead the largest357

μ that is compatible with the data. For this purpose, we choose a similar358
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procedure as proposed by Constable et al. (1987) and de Groot-Hedlin and359

Constable (1990), who searches for the smoothest model that explains the360

data (Occam’s inversion). However, in contrast to their approach we consider361

μ−1 (and not λ−1) as the Lagrangian multiplier that is adjusted when Φ�
(d) is362

reached for the associated method. The inversion loop is therefore repeated363

for a number of different μ and an interpolation method is employed (bisec-364

tion method) to find the coupling parameter with the largest value which365

satisfies Φ�
(d)− ε ≤ ΦConstr.

(d) ≤ Φ�
(d)+ ε (with ε being a small positive quantity)366

for the next iteration (see box (B) and III© in Fig. 2).367

The complete inversion procedure stops, when all methods reach their368

specified target misfits and no increase in the coupling parameters can be369

achieved in the next iteration.370

2.0.6. Adjustment of smoothing parameter371

We have tested different methods to adjust the smoothing during the372

inversion process (including the adaptive scheme used to modify μ). They373

show that the convergence behavior is less influenced by the regularisation374

than by the coupling parameters. Several of the conventional techniques to375

modify λ demonstrate that they are well suited to reach the target misfits and376

we use a simple technique with a cooling-schedule-type behaviour proposed377

by Lelièvre et al. (2012). An initially large value for λ is chosen that is378

reduced with increasing number of iterations. In this way progressively more379

detailed structures are introduced into the models. The factor of reduction380

1/νk from one iteration to the next:381

1

νk
=

λk+1

λk

(6)
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is determined by382

νk = 1 + τ | Φk
(d)/Φ

�
(d) − 1 | if Φk

(d) > Φ�
(d)

νk = 1 if Φk
(d) ≤ Φ�

(d).

Typical values used for the parameter τ are in the range of 0.02 - 0.2. The383

rate of reduction depends on the actual target misfit Φ�
(d) and νk remains384

constant if the target misfit is reached. To avoid overly fast reduction of the385

regularization, ν is limited to values between 1 and 2. If a regularization386

parameter becomes smaller than a specific threshold value λ�, the procedure387

stops and the regularization remains unchanged (λ = λ�) for further itera-388

tions to avoid instabilities in the inversions. Values for λ� used in this study389

range from 0.7 to 1.0 depending on the methods.390

2.0.7. Implementation of structural cross-coupling391

The adaptive method can be extended to include structural information392

at the same time. We have implemented an approach suggested by Günther393

and Rücker (2006), where cross-coupling is achieved through mutually con-394

trolling smoothing constraints of a given parameter model by the roughness395

distribution from other parameter models. Thus a strong spatial parameter396

contrast existing in at least one of the parameter models can be transferred397

to the other parameter models.398

This cross-coupling scheme is implemented as follows. Firstly, at the k-th399

iteration the roughness vectors r are calculated for all models using:400
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rres. = Cmres.

rvel. = Cmvel.

rdens. = Cmdens.

where C ∈ R
B×N is the roughness matrix (where B is the number of cell401

boundaries and N the number of inversion cells). Secondly, weights w1, ..., wB402

are determined for each method by means of the associated roughness vectors:403

wj = min(hj, 1.0) with hj =
(

α
|rj |
‖r‖+α

+ α
)β

where the constants α and β have typical values of 0.1 and 1.0.

(7)

Finally, the weights for the model of one method are used to modify the404

regularisation terms for the other models:405

ΦMT
(m) =

∥∥√Wvel.Wdens.Cmres.
∥∥2

2

Φseis.
(m) =

∥∥√Wres.Wdens.Cmvel.
∥∥2

2

Φgrav.
(m) =

∥∥√Wres.Wvel.Cmdens.
∥∥2

2

with W = diag (w1, ..., wB) (weighting matrix)

The procedure of this structural cross-coupling strategy is illustrated for406

one iteration and two methods in Figure 3. In our inversion scheme the407

structural-cross coupling is performed immediately at the beginning of each408

iteration (before the coupling constraints for the petrophysical relationships409

are calculated; see I© in flowchart in Fig. 2).410
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Figure 3: Sketch illustrating the structural cross-coupling strategy proposed by Günther

and Rücker (2006). In the upper panel we show a velocity and resistivity model derived

at the k-th iteration for the inversion of seismic tomography and MT data for a synthetic

sub-basalt model (see next section for a more detailed discussion). The roughnesses of one

model is used to calculate the weights for the smoothing constraints of the other model

(see bottom panels); and vice versa.
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3. SYNTHETIC TEST ON A SUB-BASALT MODEL411

We test our adaptive inversion scheme on a 2-D synthetic basalt model.412

The model was proposed by Martini et al. (2005) to simulate realistic seismic413

and non-seismic data and to develop strategies for geophysical data integra-414

tion for sub-basalt problems. It is known that imaging of sub-basalt sed-415

iments with reflection seismic techniques is complicated due to absorption,416

scattering and transmission effects and the presence of peg-leg multiples (e.g.417

Purnell, 1992). Although many of the difficulties facing conventional seismic418

profiles can be overcome by recording long offset data (e.g. Fliedner and419

White, 2003), resolution of sub-basalt structures in seismic sections is still420

largely limited. Therefore multi-parametric approaches (Hautot et al., 2007;421

Panzner et al., 2014; Hoversten et al., 2015) and joint inversion strategies422

(Heincke et al., 2006; Colombo et al., 2008; Manglik et al., 2009; Jegen et al.,423

2009) have been developed to gain additional information from sub-basalt424

structures. Our simplified model contains two mostly horizontal layers that425

have high velocity, resistivity and density (Fig. 4, upper panels). The up-426

per layer is associated with a sequence of basalt flows and the lower layer is427

considered to be basement. Above the basalt and between the basalt and428

the basement there are layers with lower physical property values, which rep-429

resent sediments over and under the basalt layer, respectively. Everywhere430

in the synthetic model the three physical parameters resistivities ρ (in Ωm),431

velocities vp (in m/s) and densities d (in g/cm3) are linked by the density-432

velocity and resistivity-velocity relationships433
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d = 0.0002 vp + 1.7 (8a)

and

log10(ρ) = 1.20 log10(vp)− 3.86 for vp < 3600

log10(ρ) = 6.46 log10(vp)− 22.57 for vp > 3600 (8b)

that are derived from commercial and ODP borehole data collected on434

the north west European margin (Jegen et al., 2009). At the top of the model435

a 400 m thick layer is added representing seawater. Physical properties of the436

water layer remain unchanged during the inversion (ρ = 0.3 Ωm, vp = 1560437

m/s, d = 1.0 g/cm3). The model is discretized for inversion into 85×71 cells438

with sizes of 400×100 m in the horizontal and vertical directions, respectively.439

The seismic and gravity data sets for the synthetic tests are generated440

using the same forward modeling routines as in the joint inversion. However,441

to reduce the impact of modelling effects that are associated with using the442

same forward codes, discretisations of the model for data generation are443

significantly finer than the ones used in the forward modeling routines during444

inversion. For MT we employ a different modelling program (2-D MT code445

from Tarits, 1984) to calculate the impedance estimates from the synthetic446

model to the one (2-D MT code from Wannamaker et al., 1987) we use in447

the joint inversion.448

For seismics we consider an OBS data set with 6018 first arrivals from449

177 shot and 34 receiver positions, respectively. Both shot positions at the450

surface and receivers at the seafloor are equally spaced (Δxshots = 200 m451

and Δxreceivers = 1000 m). The gravity data set is composed of 60 stations452
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located on the sea surface (Δxgrav. station = 500 m). The MT data set consists453

of 33 stations that are equally spaced along the seafloor (ΔxMT station = 1000454

m). Such short station intervals are still uncommon for MT field surveys.455

However, the objective of this exercise is to evaluate the general performance456

of our joint inversion scheme and at this stage we prefer to use models, where457

the individual methods show a dense and uniform coverage. We use as input458

for the inversions both TE and TM mode data with 15 frequencies over a459

range of 2.5 · 10−5 to 1 Hz. Gaussian noise is added to all data sets with460

standard deviations σseis. = 10 ms, σgrav. = 0.05 mgal and σMT = 2% of the461

abs. values, respectively.462

To obtain a qualitative understanding about the resolution power of the463

individual methods we plot estimates of the diagonal elements of the reso-464

lution matrix (Fig. 4, lower panels) for the synthetic model. Based on this465

measure, seismic rays from first arrivals only provide information about the466

top of basalt and the overlying sediments. Resolution of gravity data varies467

smoothly and decreases with depth, as is typical for potential field methods.468

MT is sensitive to the conductive sediments, but not to the highly resistive469

basalt layer and basement. At the left and right border high resolution values470

in the (gravity and) MT are related to a background layer model required471

for both methods (gravity: semi-infinite horizontal sheets; MT: cells at the472

border, whose size increasing with the distance from the model boundary).473

The resolution estimate shows that all three methods are sensitive to differ-474

ent subsets of structural elements of the model and thus contain common but475

also complementary information about the entire structure. It is the com-476

plementary information content in the data sets which allows the derivation477
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Figure 4: Upper panels: a) Velocities, b) densities and c) resistivity distributions rep-

resenting the synthetic sub-basalt model. Circles denote locations of OBS stations and

crosses highlight positions of shots in a), gravity stations in b) and MT stations in c).

Lower panels: Approximations of the diagonal elements of the resolution matrices for each

method (see section 2.0.4 for further details about their calculation). High values of reso-

lution are found at the very right and left border of the gravity and MT data (see panels

e,f) due to necessity to include a background gravity and MT model.

of an improved model through a joint inversion process.478

3.1. Results from the individual inversions479

Before presenting the results of the joint inversion we show results of in-480

verting each of the datasets separately. For seismic inversion we use a starting481

model that consists of horizontal velocity layers, but for gravity and MT in-482

versions starting models are homogenous half-space models. Cell sizes are483

the same as in the joint inversion. In contrast to the joint inversions, a con-484

ventional Occam’s type inversion is performed for the individual inversions;485
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i.e. if the target misfit is reached in the inversion procedure, λ is adjusted to486

find the smoothest model that explains the data.487

Results of these individual inversions (Fig. 5, Row 1) show that none of488

the three methods is able to resolve the basalt layer, the underlying sediments489

and the basement at the same time, which confirms our prediction based on490

the resolution analysis. Refraction seismic tomography only resolves the ve-491

locity distribution down to the top of basalt. The gravity inversion does not492

resolve any structure. The MT inversion identifies high and low resistive493

structures that can be associated with the basement and conductive sedi-494

ments, respectively, however the resistive basalt layer is not well resolved495

(too low resistivities and inaccurate shape).496
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Figure 5: First row: Final results from individual Occam seismic, gravity and MT inver-

sions. Second row: Final results from a petrophysical joint inversion, in which the strengths

of coupling is kept constant (μMT = μseis. = μgrav. = 0.25) during the inversion process.

Third row: Final results from a petrophysical joint inversion, in which the coupling con-

straints are adapted at each inversion step (rate of adaption DMT = Dseis. = Dgrav. is 0.7

and 3 previous iterations L̃ are considered in the regression). Unlike in the tests presented

in Fig. 6 the projection is not modified by a resolution measure. Locations of the basalt

layer and the basement are outlined with white lines.
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3.2. Starting models for the joint inversions497

To determine the starting models for the joint inversions, first, individual498

seismic tomography inversion is performed. We then use the parameter rela-499

tionship (eq. 8a) to transfer the initial velocity model to a density model. For500

this model an individual gravity inversion is performed. During this gravity501

inversion, density values of cells covered by seismic rays are kept fixed. Model502

densities from the inversion results are finally transferred back to velocities503

and also resistivities (eqs. 8a and 8b). This procedure determines starting504

models that are already relatively close the actual subsurface; a strategy505

commonly used in joint inversion applications. We demonstrate later in this506

section that we obtain similarly good final joint inversion results by using507

starting models that are not linked to each other and are further away from508

the true model.509

3.3. Results from petrophysically linked joint inversions510

First, we test our joint inversion scheme with coupling parameters that511

remain constant during the inversion process (μseis. = μgrav. = μMT = 0.25).512

All methods are equally weighted for projections onto the parameter rela-513

tionships, which means the resolution of each of the methods is not taken514

into account. We also do not include structural cross coupling, however, we515

gradually reduce the smoothing parameters (from starting values of λseis. =516

λgrav. = λMT = 0.25) as described in the section 2.0.6. The final results for517

this test are not satisfying (Fig. 5, Row 2); the shape of high velocity, resis-518

tivity and density anomalies does not coincide with the shape of the basalt519

in our synthetic model and there are no low velocity, resistivity nor density520

anomalies can be associated with sub-basalt sediments. Error weighted data521
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misfits dRMS =
√

1
M

∑M
i=0(

g(m)i−di
σi

)2 do not reach the target misfit of 1.0 for522

seismic (dseis.RMS = 4.38) and MT (dMT
RMS = 2.41), respectively. It is likely that523

the inversion processes get trapped in local minima relatively close to the524

actual starting models. (In contrast, the error weighted data misfit for the525

gravity dgrav.RMS = 0.56 remains clearly smaller than the target misfit of 1.0, al-526

though λ is increased, when the target misfit is reached (Occam’s inversion).527

This indicates that the amount of smoothing has little impact onto the data528

misfit of the gravity.)529

In the next step the joint inversion is repeated using the same starting530

model and initial coupling values, however, now we adaptively modify our531

coupling parameters. D is set to relatively high values of Dseis. = Dgrav. =532

DMT = 0.7 to control the convergence rate. The number of previous itera-533

tions L̃ used to predict the μ-value for the next iteration is 3 for all methods.534

Otherwise, the starting models and other settings are the same as for the535

previous test.536

The resulting models (Fig. 5, Row 3) are now significantly closer to the537

synthetic model (Fig. 4, Row 1). Two high-velocity (high-density, high-538

resistivity) anomalies are present in the middle and the bottom of the model.539

Their positions (and the shape of the upper anomaly) fit well with the two540

layers representing the basalt and the basement. The region between the541

two layers has lower values of the physical properties and can be associated542

with the sub-basalt sediments. However, the presence of some artificial ”egg-543

shaped” anomalies in this part of the model indicates the limits in resolution544

of the joint inversion. In addition, the objective functions of all three meth-545

ods decrease at each individual iteration until the associated target misfit546
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is reached (Fig. 7d)) and final error weighted data fit from all three meth-547

ods largely match the target misfit of 1.0 indicating a proper convergence548

behaviour. Only few iterations (2 and 4) are required to reach the target549

misfits for the gravity and seismic data, respectively, however many itera-550

tions (101) are required for MT. To some extent this slow convergence be-551

haviour seems to be inherent to the synthetic model as already the individual552

MT inversion requires 45 iterations to reach the target misfit. Furthermore553

the criterion used in the joint inversion (i.e. Φ(d+m) of the joint inversion554

with coupling constraint decreases only by a portion of the one of the uncon-555

strained inversion) reduces the convergence speed compared to the individual556

MT inversions and for a value of DMT = 0.7 one would expect that about557

45/0.7 ≈ 64 iterations to be needed to reach the target misfit. One reason558

why almost double as many iterations are needed could be that the projec-559

tion linking the individual physical models is far from an optimum and this560

slows down the overall inversion convergence.561

In section 2.0.4 we discuss that the convergence behaviour may improve if562

the projection is controlled by the relative resolution power of the individual563

methods. Therefore we repeat the joint inversion test, but in this case the564

diagonal of the resolution matrix is used to weight the individual methods in565

the projection calculation (see section 2.0.4). Final results (compare Fig. 6,566

Row 1, with Fig. 5, Row 3) are very similar, however, the convergence for the567

MT method is 20% faster (compare Fig. 7d) and Fig. 7e)). In addition, the568

updates of μMT that are determined from the linear regression are now more569

reasonable (i.e. ΦMT,Constr.
(d+m) decreases) for most iterations and a readjustment570

of μMT by using the loop IV© (see Fig. 2) is only required for 2 iterations571
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(Fig. 7b)). In contrast, if the resolutions estimates are not considered in the572

projection (Fig. 7a), μMT has to be readjusted for at approx. 30 iterations.573

Based on these observations (and other synthetic examples not shown here),574

convergence seems faster and more stable, if resolution is incorporated in the575

calculation of the parameter projections.576
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Figure 6: Final results from joint inversions, for which the strengths of coupling vary

adaptively during the inversion process. For all tests shown here physical parameter

projections are determined by considering relative resolution power of each method (see

section 2.0.5). First and second row: Results from two tests, where different rates of

adaption Dseis. = Dgrav. = DMT of 0.7 and 0.4 are employed. Third row: Results

from a test with other starting models (layered velocity model and homogenous half-space

model for density 2.4g/cm3 and resistivity of 10Ωm). Otherwise the same parameters are

employed as for the run, whose results are shown in the first row.
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Figure 7: Behavior of the adaptive joint inversions from Figs. 5g)-i), Figs. 6a)-c) and

Figs. 6d)-f) are shown in columns 1, 2 and 3, respectively. In all graphs blue refers to

seismic, green to gravity and red to MT inversion parameters, shown as a function of

iteration number. First row: Coupling parameters μMT , μseis. and μgrav.. The symbols

(	) and (◦) indicate iterations, where the procedures III and IV (see Fig. 2) are active,

respectively. Second row: Values of total objective functions (continuous lines) and their

data terms (dashed lines). Third row: Ratio D̃MT of the incremental changes of the total

objective functions for inversions without and with coupling constraints. This ratio is here

only shown for the MT data, because the target misfits for the other methods are reached

after very few iterations (< 5). Black dashed lines mark the associated pre-defined rate

of adaption DMT . Vertical red dashed lines indicate the iterations for which the target

misfits are reached for all three methods.
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For all adaptive joint inversions tests presented here, the inversion run is577

not terminated immediately after target misfits are reached for all methods,578

but continued for some additional iterations. As described in section 2.0.6,579

this strategy is adopted from Occam’s inversion (see also loop IV© in Fig. 2).580

Because three parameters (μMT , μseis., μgrav.) are adjusted simultaneously, it581

is difficult to find uniquely defined stopping criteria that reliably work for all582

types of models, methods and data sets. We therefore stop the joint inversion583

manually, when one of the coupling parameters shows a significant decrease584

for a few subsequent iterations. We generally observe that the model results585

are slightly better (i.e. in particular the physical properties of the basalt layer586

are higher and closer to the ones of the synthetic model) if the procedure is587

not terminated immediately after all target misfits are reached.588

3.3.1. Impact of the parameters D onto the joint inversion behaviour589

As discussed in section 2.0.5, the parameters D have in theory a large590

impact on the convergence speed for the associated methods. To investigate591

this in more detail, the previous joint inversion test is repeated with the592

same settings as before except for a lower value for Dseis.,Dgrav. and DMT
593

of 0.4. Obtained final models are very similar to the ones from the previous594

inversion run where D = 0.7 is used (Rows 1 and 2 in Fig. 6). However, as595

expected for decreased D values we require now significantly more iterations596

(120 compared to 81 iterations with higherD values) to reach the given target597

misfit (Fig. 7e) and f)). We also observe that the coupling parameter μMT
598

has generally slightly higher values for a lower DMT than for a larger DMT
599

values (Fig. 7b) and c)). This can be explained by the general behaviour of600

inversions that slower convergence correlates with stronger constraints.601
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3.3.2. Validation of the linear assumption of μ and Ψ602

The linear assumption between the coupling parameters μ and the nor-603

malized changes in the objective functions Ψ in eq. 4 is intuitively made.604

Therefore we now test if it is appropriate and evaluate its effect on the ef-605

ficiency of the joint inversion. The assumption can be considered as appro-606

priate as long as the modified μ from the regression provide a convergent607

behaviour (i.e. a decrease of ΦConstr.
(d+m) ). For our joint inversion runs, the MT608

part shows a convergent behaviour for most iterations (see small red dots609

in the Figs. 7a)-c)). Particularly the run, where we use large D-values of610

0.7 and employ a resolution measure in the projection calculation, exhibits611

convergent behaviour for all but two iterations (see Fig. 7b and section 3.3).612

To obtain a more quantitative measure to evaluate the validity of our613

assumption, we calculate for each method and for each iteration k:614

D̃ =
ΔΦConstr.,k

(d+m)

ΔΦRef.,k
(d+m)

. (9)

If the assumption is perfectly valid, D̃ would equal D. For the test run615

with DMT = 0.4 we obtain a similar median of the D̃MT values of 0.378 and616

relatively low scatter of the D̃MT values with a σ2 = 0.042 (Fig. 7i)), if we617

only consider D-values from iterations in which μ values are not modified by618

loop IV©. It indicates that the linear regressions provide updates of coupling619

parameters which seem to satisfy the assumption. For a larger DMT -value of620

0.7, a larger discrepancy of the median value (0.508) and a larger variance621

of σ2 = 0.42 suggest that the assumption is less appropriate (Fig. 7h). We622

have made several further tests with other D-values that confirm that a lower623

D-value results in a better controlled convergence behaviour.624
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At first glance, the better controlled convergence for lowD-values appears625

to contradict the previous observation that convergence failed for fewer itera-626

tions when higher D-values are used. However, one has to consider that lower627

D-values (eq. 3) result in a slower convergence such that already a small scat-628

ter of the D̃-values can result in an increase of ΦConstr.
(d+m) at any iteration. In629

summary, it is not easy to draw any general conclusions, for which D-values630

the assumption provides a convergent behaviour for most iterations. This631

is probably highly dependent on the methods involved and other settings of632

the actual inversion.633

3.3.3. Dependence of the starting model634

We repeat the joint inversion test with Dseis. = Dgrav. = DMT = 0.7 with635

different starting models, which are not linked by the parameter relationships636

and are further away from the synthetic model. Homogenous half-space mod-637

els with 2.4g/cm3 and 10Ωm are chosen for the gravity and MT inversions,638

respectively, and a layered velocity model is taken for the seismic inversion.639

Final results are similar to the ones from the joint inversion having the same640

parameter settings, but starting models that are linked by parameter rela-641

tionships (see section 3.3) (compare the Rows 1 and 3 in Fig. 6). Convergence642

speed of gravity and seismic inversion is similar, but MT inversion reaches643

the target misfit even faster after 67 iterations compared to 81 iterations.644

The choice of the starting model seems not critical for conditions, where645

the total resolution of the joint inversion is rather high and all models explain-646

ing the data are similar. We attribute this to the observation that adaption647

of the coupling strengths reduces the risk that the inversions get stuck in a648

local minima.649
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3.4. Results from joint inversions using both petrophysical and structural in-650

formation651

To further improve the results from the petrophysical inversion we now652

add structural information. First, we test a purely structural joint inversion653

using the mutual cross-coupling strategy described in the methodological654

section 2.0.7. The weights applied to the discrete derivative matrix C are655

calculated using values of 0.1 and 1.0 for the parameters α and β in eq. 7,656

respectively. As starting models the same linked parameter models are used657

as described before.658

This joint inversion run gets stuck in some local minima and misfits for659

seismic (minimum dseis.RMS = 4.72) and MT (minimum dMT
RMS = 2.64) and660

do not reach the target misfits. We conclude that starting models close to661

the synthetic models are required to such that this approach is successful.662

And although our starting models are derived from the final results of the663

individual inversions they are still too inaccurate to provide conditions for664

the structural joint inversion to converge. We note that other studies using665

this coupling strategy successfully combine geophysical methods with higher666

resolutions (e.g. seismic tomographic and electrical resistance tomography,667

Günther and Rücker, 2006), where the starting models obtained from indi-668

vidual inversions are close enough to the true subsurface conditions to ensure669

convergence of the joint inversion.670

Based on this observation, we choose as starting models for the combined671

structural and petrophysical joint inversion the models from the 72th itera-672

tion of the adaptive joint inversion with Dseis. = Dgrav. = DMT = 0.7 and673

a resolution measure in the projection calculation. In all three parameter674
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models locations of main anomalies are overlapping such that it can be as-675

sumed that these starting models are close enough to the synthetic model for676

the inversion to converge. Target misfits for all methods are reached after677

few iterations (< 6 for all methods). The coupling parameters are generally678

slightly higher than for the corresponding purely petrophysical joint inversion679

(see black symbols in Fig. 7b), probably due to the fact that overall smooth-680

ing is reduced by cross-coupling such that more coupling is required to obtain681

the same data misfits as for the inversion without structural linkage.682

Final results (Fig. 8) show that this combined structural and petrophys-683

ical joint inversion resolves the main structures as well as the purely petro-684

physically coupled joint inversion. However, the boundary between the up-685

per sediments and the basalt is now sharpened in all three parameter models686

(compare with results in Fig. 6) and its location coincides well with upper687

sediments-basalt interface in the synthetic model. This demonstrates that688

a combination of both structural and petrophysical linkage further improves689

joint inversion results.690

4. Real data example691

We apply our joint inversion scheme to data recorded about 150 km south-692

east of the Faroe Islands (Fig. 9). This area is characterized by thick se-693

quences of basalt flows that are associated with magmatic activity during694

the continental break-up of the North Atlantic in the Tertiary (e.g. White695

et al., 2003; Gallagher and Dromgoole, 2007). The basalt flows overlie sed-696

iments accumulated in basins during earlier episodes of stretching of the697

continental lithosphere from the late Carboniferous to the early Paleocene.698
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Figure 8: Final results for a joint inversion, which combines the adaptive coupling strat-

egy considering petrophysical information with mutual cross-coupling strategy considering

structural information. Starting models for this run are the intermediate results (72 it-

eration) of the petrophysical inversion, whose results are shown in Figure 6. For this

inversion D values are set to 0.7 and resolution estimated are incorporated in the calcula-

tion of physical parameter projections.

Traps in these Mesozoic sub-basalt sediments are considered as potential699

hydrocarbon-bearing structures. Underneath the sediments a pre-rifted base-700

ment is present which probably consists of gneissic rocks and formed during701

the Caledonian Orogeny.702

In this area comprehensive geophysical data sets are available for a wide-703

range of methods. Statoil, who manages License L006 (red outline in Fig. 9)704

in this region, provided us with geophysical data presented here. The data705

include a pattern of wide-angle seismic lines, a marine 3-D Full Tensor Grav-706

ity (FTG) survey and a number of MT sites distributed on a 3-D grid. While707

the data provide 3-D coverage, we limit our investigation to 2-D lines, since708

JINV2D cannot handle 3-D MT data. We therefore focus on the FLA6709

profile, which crosses the northern part of the license area in WNW-ESE710

direction (green line in Fig. 9). Hence in the joint inversion presented here711

we only use seismic data from FLA6 (49093 seismic first arrival times from712

shot gathers that have offset ranges of 3 to 18km) and gravity (425 locations713
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from a 3-D shipborne survey) and MT data (11 stations with periods from714

0.0061 to 0.15 s) that are measured in the vicinity of this profile.715

Data from the individual methods were collected in separate surveys from716

1995 to 2002 and the acquisition strategies are not optimized for such data717

integration. MT stations used in our 2-D joint inversion are not located718

immediately on the seismic profile but lie up to 7 km on either side of it.719

MT and gravity data only overlap with seismic data in the western and720

eastern part of the profile (Fig. 9), respectively. In addition to the geophysical721

data used for the inversion, we received data from a 3-D reflection seismic722

survey, which has a large overlap with the FLA6 profile in the northern723

part of the licence, and logging data from the 4200 m deep BRUGDAN well724

located in the immediate vicinity of the FLA6 profile (red star in Fig. 9).725

The reflection seismic data allow a direct comparison of the joint inversion726

results with structures derived independently. We use the logging data (sonic,727

resistivity and gamma-gamma log) to derive parameter relationships for our728

joint inversion, which are depth independent.729

The nearly vertical BRUGDAN borehole penetrates the top basalt and730

the underlying sediments at 1154m and 3719m below sealevel, respectively731

(Schuler et al., 2012). Logging data show a distinct increase in P-wave veloc-732

ities and resistvities across the upper sediment-basalt interface (see Fig. 10).733

(Although no density data from logging are available above the basalt, it is734

likely that densities of the basalt are significantly higher than of the shallow735

sediments.) The possible base of the basalt sequence is however character-736

ized by a more gradual change in physical parameters. Figures 11a) and b)737

show cross-plots and we observe that there are positive correlations between738
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Figure 9: Map of our investigation area in the Faroe-Shetland Basin. A FTG survey

(dashed yellow rectangle), several wide angle seismic profiles (grey lines) and MT sites

(circles) are present in the region. Data used in our 2-D joint inversion along the seismic

profile FLA6 are highlighted (small yellow rectangle, green line and light blue circles

correspond to the gravity, seismic and MT data, respectively). Red star indicates the

position of the BRUGDAN borehole, red line outline the license area L006.

seismic P-wave velocity and resistivity and between P-wave velocity and bulk739

density. Such positive vp-d correlations are present for many subsurface con-740

ditions, but positive vp-ρ correlations are less common and are reported for741

fewer geological conditions e.g. for sub-basalt regions due to the effect of the742

pore space on both vp and ρ (e.g. Jegen et al., 2009).743

To estimate adequate parameter relationships for the joint inversion,744

curve-fitting in a least-square sense was performed between the physical prop-745
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erties of the borehole logging data (Fig. 11a)-b)). The analytic expressions746

are747

log10 ρ = 7.876 · 10−8 · (vp)2 − 0.1512748

d = 0.0001737 · vp + 1.868749

for the velocity (in m/s) - resistivity (in Ωm) and velocity (in m/s) - density750

(in g/cm3) relationships, respectively.751
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Figure 10: Comparison of the logging data from the BRUGDAN borehole and the joint

inversion results along the prole FLA6. Blues lines show measured borehole logs and

red lines the same data after applying a moving average (filter length = 100 m). Green

dots indicate the physical properties obtained from the joint inversion along the borehole

drilling (see Fig. 17). Horizontal grey dashed lines indicate top and base basalt as proposed

by Schuler et al. (2012).
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The logging data generally show a large variation of the physical proper-752

ties on a sub-metre scale. Cross plots of the physical parameters (Fig. 11)753

show that this results in a larger scatter around the fitted relationships and754

reveal that for some geological structures rock property links are systemati-755

cally shifted (e.g. depth range 2500-3150 m in Fig. 11a-b) such that the fits756

are not good representations for these depths ranges. However, if the logging757

data are averaged over depths intervals of 100m, which corresponds to the758

cells widths in the inversion, the relationships are adequate estimates for the759

scale resolvable by the inversions (Fig. 11c-d)).760

4.1. Estimation of data errors761

It is crucial for our adaptive joint inversion scheme to use realistic data er-762

ror estimates, as the coupling strength of a method is strongly dependent on763

the level of the associated target misfit (at later iterations when the loop III© in764

Fig. 2 becomes relevant). For seismic and gravity we estimated errors directly765

from the available data. For a number of seismic shot gathers first-arrivals766

were picked independently by three experienced persons. A meaningful offset767

dependent error estimates for all seismic data is derived by considering the768

time variations of the three picked onsets for the same traces. For the grav-769

ity the data spacing of measurement points in the in-line direction is small770

(≈ 15m) and the ocean is several hundred meters deep such that variations771

with short wavelength can be associated with uncorrelated noise. We there-772

fore obtain a proper error estimate (σ2 = 0.1mgal) through experimental773

variograms at very small distances (”nugget” effect; see e.g. Dubrule, 2003).774

For MT we only received processed data as frequency dependent impedance775

estimates together with some error estimates (determined by a robust pro-776
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cessing scheme), but not the original time series of the electromagnetic field777

components. Hence, we cannot determine any error estimates ourselves or778

to evaluate the reliability of the error estimates provided. When we perform779

the inversions (both a single MT inversion and the adaptive joint inversion),780

it is not possible to reach the proposed target misfits for MT even with fine781

gridding. Dimensionality analysis indicates that the resistivity distribution782

are either 1-D or 2-D (with the strike oriented perpendicular to the profile783

direction), so 3-D effects can be largely excluded as the cause for high mis-784

fits, which leads us to conclude that errors are generally underestimated.785

We therefore choose for the joint inversion target misfits that are similar to786

the minimum misfits we obtain from single MT inversions. During the joint787

inversion we observe (see discussion below) that coupling parameters of the788

MT are not extremely low for the chosen target misfit and that the results are789

generally meaningful indicating that the chosen target misfit is appropriate.790

4.2. Parameters used for the joint inversion791

The model consists of 68 and 71 inversions cells in x- and z-direction,792

respectively, with a constant cell size of 0.5 × 0.1 km. Starting models793

for the gravity and MT inversion have constant densities and resistivities794

of d = 2.5g/cm3 and ρ = 10Ωm below a high conductive and low-density795

layer associated with the seawater column of the ocean. The velocities of796

the seismic starting model gradually increase with depth from 1500m/s at797

the sea-bottom to 6000m/s at 4000 m depth. As for the synthetic tests,798

the coupling strengths vary adaptively during the joint inversion procedure.799

To control the convergence speed Dseis., Dgrav. and DMT of 0.4 are cho-800

sen and L̃ = 3 iterations are used for each method to modify the μ-value801
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for a subsequent iteration. The coupling parameters at the first iterations802

are set to μseis. = μgrav. = μMT = 0.25. The calculation of the projec-803

tion is governed by resolution estimates as already described above and the804

regularisation parameters λ are gradually reduced from starting values of805

λseis. = λgrav. = λMT = 0.25 by using the method proposed by Lelièvre et al.806

(2012). Structural cross-coupling is only used for the last iterations (> 60).807

4.3. Joint inversion results808

The convergence behaviour for all three methods (see Fig. 12) is stable809

and target misfits for gravity, seismic and MT are reached after 3, 13 and 60810

iterations, respectively. Similar observed data and calculated data from the811

joint inversion (see Figures 13, 14 and 15) indicate that the data are well-812

fitted for all methods. The final parameter models from this joint inversion813

run are shown in Fig. 16, Row 2. To evaluate the improvements obtained814

by using our joint inversion strategy, we perform corresponding separate815

inversion with similar parameters as for the joint inversion (same starting816

models, same inversion grid, similar regularization strength). It is obvious817

that the joint inversion results are more consistent with each other than818

the results from the individual inversions (compare Row 1 and Row 2 of819

Fig. 16). In the joint inversion models low vp, d and ρ values at shallow820

depths are separated by a sharp boundary from quasi horizontal high velocity,821

high density and high resistivity anomalies present in a depth range from822

about 2000 to 4000 m. Below 4000 m the physical parameters gradually823

decrease again with depth. These anomaly distributions are associated with824

a basaltic sequence enclosed by sediments above and below. In contrast,825

the single seismic inversion resolves only well the upper sediments and top826
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basalt, but no structures underneath. The single MT inversion creates a827

mostly horizontal high-resistive layer in the western and central part of the828

profile that is covered by MT stations. The anomaly is, however, too thick to829

realistically represent the basaltic sequence. The horizontal density anomaly830

from the single gravity inversion results is not well resolved and is largely831

dependent on the chosen starting model.832
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a) b)

c) d)

e) f )

Figure 11: a) and b): Cross plots of the logging data from the borehole BRUGDAN.

Color-coding of the dots is associated with the actual depths. c) and d): Mean values of

physical properties calculated for 100 meter intervals and presented in the same form as

for a) and b). e) and f): Cross plots for the final results of the adaptive joint inversion.

Black lines show parameter relationships determined by fitting of logging data, which are

used in our joint inversions.
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Figure 16: Inversion results and resolution estimates for the seismic, gravity and MT data

used for the real data example. First and second row show the results from separate in-

versions and adaptive joint inversion. Black lines above the velocity model and density

model indicate areas, where seismic and gravity data were acquired. Triangles above the

resistivity model mark the positions of the marine MT sites. Third row shows approxima-

tions of the diagonal elements of the resolution matrices for the final models of the joint

inversion (second row).
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Although the results from joint inversion are consistent, the total reso-833

lution below the top basalt is relatively low for all methods (see diagonal834

estimates of the resolution matrices in Fig, 16, Row 3). Lack of measure-835

ment sites for gravity and MT at the west and east side of the profile result836

in a strongly reduced resolution in these areas. This indicates that a more837

complete coverage and the use of other data; e.g. seismic reflection onsets838

in the seismic (Fliedner and White, 2003) or CSEM (Panzner et al., 2014;839

Hoversten et al., 2015) could further improve the results particularly at larger840

depths.841

As mentioned above the physical parameter relationships are only es-842

timates which are not valid everywhere and we indeed observe decoupling843

in some parts. Coupling parameters are with μseis. = 0.0010 - 0.0227 and844

μMT = 0.045 - 0.212 low for seismic and MT at the late iterations (60 to 65)845

- only μgrav. has higher values ranging from 0.33 to 0.45, and cross-plots of846

the physical parameters of the final joint inversion results (Fig. 11e-f) show847

distinct deviations from the relationships for a number of inversion cells.848

To verify our joint inversion results we compare the joint inversion mod-849

els with 3-D reflection seismic data and borehole data. Since the z-axis of850

the reflection seismic data set is given in time and not in depth, the final851

joint inversion models are converted to two-way travel-times by using the852

velocity model obtained from the joint inversion. In Figure 17 the resultant853

resistivity model is shown together with the cross-section of the 3-D seis-854

mic data cube along the FLA6 profile. Although both, resistivity and the855

seismic model, have some uncertainty, the top basalt reflection in the seis-856

mic data coincides well with the sharp boundary between low resistivities857
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associated with the shallow sediments and high resistivities associated with858

the basalt. It demonstrates that joint inversion provides accurate results859

in the well-resolved shallow part. Comparison in the deeper part is much860

more difficult because both reflection seismic and joint inversion give less861

clear results. A distinct seismic reflection associated with the base basalt862

is absent, but instead there is a pattern of discontinuous reflections that is863

interpreted as the base basalt (see dashed line in Fig. 17). The data from the864

bottom of the BRUGDAN borehole (Schuler et al., 2012) and results from865

wide-angle seismic studies (Fliedner and White, 2003; Spitzer et al., 2003)866

support this interpretation. Resolution of the joint inversion is significantly867

reduced at this depth range resulting in smooth changes in the parameter868

models. To evaluate if the thickness and, hence, the lower bound of the hor-869

izontal anomalies with large physical properties representing the basalt layer870

(vp > 4500m/s and ρ > 30Ωm) are reliable, we repeat the joint inversion871

with different starting models. Results show that thicknesses of anomalies872

are generally stable for most of the western and the central part, but not in873

the eastern part which is not covered by MT sites. Comparison of the joint874

inversion models with the logging data as a function from depth shows that875

the modelled physical parameters are in the same range as the logging data876

for both the upper sediments and the basalt, however, variations within the877

basaltic sequence are not resolved (Fig. 10).878

Other studies based on seismic data note that a NE-SW striking structural879

high of the pre-rifted basement - the East Faroe High - rises in the vicinity880

of the BRUGDAN borehole and the white arrows in Figure 17 may indicate881

reflections associated with this structure. However, in the joint inversion882
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model no such structure is observed, which we attribute to the fact that the883

resolution of the methods combined in the joint inversion is not high enough884

to resolve the deep basement.885
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Figure 17: The transparent resistivity image from the joint inversion superimposes the

cross-section from the 3-D reflection seismic dataset along the FLA6 profile (see Fig. 9).

To transfer the depth axis of the resistivity image to two-way-travel times, the final velocity

model from the joint inversion is used. Triangles indicate the locations of MT stations

and dashed lines show the basalt as proposed by reflections seismic and logging data from

the BRUGDAN borehole. Arrows highlight some reflectors associated with the pre-rifted

basement.
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5. Conclusion and Outlook886

We have demonstrated that critical issues associated with joint inversion887

algorithms are handled in our joint inversion scheme: 1)a petrophysical joint888

inversion, in which parameter relationships are considered as constraints, re-889

quires no relative weighting of the data sets; 2) both for the synthetic tests890

and in the real data example, we observe that the implemented adaption891

of the coupling parameters makes the convergence of the individual meth-892

ods robust and independent of the choice of parameters controlling the joint893

inversion as the adaption rates D. For all runs with the adaptive joint inver-894

sion, the target misfits are reached for all methods and results are close to895

the true models; 3) by considering the spatially dependent resolution power896

of the individual methods in the coupling constraints, the convergence be-897

haviour is improved compared to the same joint inversion where resolution898

estimates are not incorporated; 4) results from the real data example show899

that the obtained rock property behaviour can deviate from the assumed pa-900

rameter relationships used as constraints. This happens when the true rock901

properties are, in parts, not adequately represented by the relationships and902

a too strong coupling is in disagreement with low data misfits.903

In addition to these critical issues, we have shown that also structural in-904

formation can be easily incorporated in this otherwise petrophysically linked905

joint inversion scheme by adjusting the smoothing constraints by mutual906

cross-coupling. Such added structural information sharpens parameter bound-907

aries in parts of the models that are well resolved for some of the geophysical908

methods used.909

Application of the adaptive joint inversion scheme on a combined wide-910
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angle seismic, MT and gravity data set that was acquired offshore the Faroe911

Islands, a region that is characterized by large-scaled flood basalt, demon-912

strates that this joint inversion works reliably also for real data and provides913

more consistent results than individual inversions. However, the same results914

indicate that even the combination of these methods is unable to adequately915

resolve deep structures such as thickness of the sub-basalt sediments and the916

pre-rifted basement. This is not directly related to our joint inversion strat-917

egy but to the low resolution power of the methods in the deeper subsurface.918

To resolve sub-basalt structures more complete coverage and possibly other919

geophysical data are required. For example we recommend to use reflection920

events in the seismic tomography and to add CSEM as another electromag-921

netic method (Panzner et al., 2014; Hoversten et al., 2015) in the future.922
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Appendix A. Projection method931

Given a point P , consisting of the n physical parameters m(1), ...,m(n), we932

use an iterative method to determine a projection P̃ = (m̃(1), ..., m̃(n)) onto a933
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pre-defined relationship curve. Convergence of this method is assured as long934

as the relationship curve is strictly monotonic. Although only two physical935

parameters are used in the following example (Fig. A.18), we emphasize that936

the method is in general not limited by the number of considered physical937

parameters.938

In the first iteration of the procedure, lines parallel to the x- and y-axis939

that pass through the point P = (m(1),m(2)) are determined (Fig. A.18a).940

For these lines, the points of intersectionA = (m
(1)
A,1,m

(2)
A,1) andB = (m

(1)
B,1,m

(2)
B,1)941

with the relationship curve are determined and the mean values m
(1)
AB,1 =942

m
(1)
A,1+m

(1)
B,1

2
and m

(2)
AB,1 =

m
(2)
A,1+m

(2)
B,1

2
are calculated. For the next iteration943

axis parallel lines passing through m
(1)
AB,1 and m

(2)
AB,1 are then used to de-944

termine new points of intersection with the relationship curve (m
(1)
A,2,m

(2)
A,2)945

and (m
(1)
B,2,m

(2)
B,2) (Fig. A.18b). From these points again the mean values946

m
(1)
AB,2 =

m
(1)
A,2+m

(1)
B,2

2
and m

(2)
AB,2 =

m
(2)
A,2+m

(2)
B,2

2
are determined.947

At every iteration the two points of intersection converge against each948

other. If the distance between the intersections points becomes smaller than949

a pre-defined threshold value at the t-th iteration the procedure is stopped.950

The mean values of the points of intersection (
m

(1)
A,t+m

(1)
B,t

2
,
m

(2)
A,t+m

(2)
B,t

2
) is then951

considered as the projection point P̃ = (m̃(1), m̃(2)).952

Because m
(1)
AB and m

(2)
AB depend on variations of the first and second phys-953

ical parameter, respectively, the influence of the different parameters is in-954

herently balanced and, hence, more or less independent of employed units955

and slope of the relationship curve.956
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Figure A.18: Sketch illustrating the iterative procedure to determine for a point of two

physical parameters m(1) and m(2) a projection (m̃(1), m̃(2)) onto a relationship curve. (a)

and (b) show the 1st and 2nd iteration step of the procedure assuming that both param-

eters are equally weighted. The white and black dot in b) show the obtained projection

point if the same weights and different weights of ψ = 1.0 and φ = 0.5 are considered for

the two parameters (see Appendix B), respectively.

Appendix B. Modification of the projection to account for the957

model resolutions958

The general procedure is the same as already described as in the Appendix959

A. However, the sums m
(1)
AB,t and m

(2)
AB,t are now calculated by some weighted960

mean values. In the case of having two parameters and using the diagonal961

elements d(1) and d(2) of the resolution matrix as measures, they are obtained962

as:963
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m
(1)
AB,t =

ψm
(1)
A,t + φm

(1)
B,t

|ψ|+ |φ|

m
(2)
AB,t =

ψm
(2)
A,t + φm

(2)
B,t

|ψ|+ |φ|
with ψ = 1.0− |1.0− d(1)| if γ ≤ d(1) ≤ 2.0

ψ = γ otherwise

with φ = 1.0− |1.0− d(2)| if γ ≤ d(2) ≤ 2.0

φ = γ otherwise

γ is a small positive value (we use in all test γ = 0.002) that is intro-964

duced to make the determination of the projection direction less sensitive965

to inaccurate calculation of the diagonal element estimates of the resolution966

matrix.967

The black dot in Figure A.18b shows the projection point for weights of968

ψ = 1.0 and φ = 0.5.969
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