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Abstract. Materials with extreme mechanical anisotropy are designed to work near a material 

instability threshold where they display stress channelling and strain localization, effects that 

can be exploited in several technologies. Extreme couple stress solids are introduced and for 

the first time systematically analyzed in terms of several material instability criteria: positive-

definiteness of the strain energy (implying uniqueness of the mixed b.v.p.), strong ellipticity 

(implying uniqueness of the b.v.p. with prescribed kinematics on the whole boundary), plane 

wave propagation, ellipticity, and the emergence of discontinuity surfaces. Several new and 

unexpected features are highlighted: (i.) Ellipticity is mainly dictated by the ‘Cosserat part’ of 

the elasticity and (ii.) its failure is shown to be related to the emergence of discontinuity 

surfaces; (iii.) Ellipticity and wave propagation are not interdependent conditions (so that it is 

possible for waves not to propagate when the material is still in the elliptic range and, in very 

special cases, for waves to propagate when ellipticity does not hold). The proof that loss of 

ellipticity induces stress channelling, folding and faulting of an elastic Cosserat continuum 

(and the related derivation of the infinite-body Green’s function under antiplane strain 

conditions) is deferred to Part II of this study.  
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1.  Introduction 
A so-called ‘extreme material’ possesses mechanical properties (typically an extreme 

degree of anisotropy) designed in such a way as to keep the material in a state close to an 

1 Corresponding author. Email: bigoni@ing.unitn.it 

1 
 

                                                 

http://dx.doi.org/10.1016/j.jmps.2015.09.006
mailto:p.gourgiotis@unitn.it
mailto:bigoni@ing.unitn.it


Published in Journal of the Mechanics and Physics of Solids, Vol. 88, pp. 150-168. 
doi:10.1016/j.jmps.2015.09.006 

instability threshold (for instance failure of ellipticity), so that ultimate mechanical effects are 

displayed, which can be exploited in different technologies, for instance, in mechanical wave 

guiding, stress wave shielding, and invisibility cloaking. An example of a material with 

extreme properties is the pinscreen, a toy (invented by W. Fleming, Fig. 1) made up of a 

perforated plate with each hole filled with a movable pin. The amazing behavior of the 

pinscreen, which is the key of the commercial success of the toy, is related to the possibility 

of experiencing ‘by hand’ the strange properties of an extreme material, in which the load 

does not diffuse, but remains confined to the load indenter. Technically, the pinscreen is a 

material working at the threshold of loss of ellipticity.  

 

 

 
 

Fig.1: Quasi-static behavior of a material (so-called ‘pinscreen’, invented by W. Fleming) working at the 

boundary of ellipticity loss: a line loading does not diffuse, showing a strong discontinuity. 

 

 

Theoretically, stress channelling was pioneered by Everstine and Pipkin (1971), Pipkin 

(1984), and Spencer (1984), who demonstrated that stress does not diffuse in materials with 

extreme orthotropic stiffness ratios, and was found to occur in masonry models by Bigoni and 

Noselli (2010a;b). In the limit when the stiffness ratio between different material directions 

tends to zero, the equations governing equilibrium reach the elliptic boundary and the stress 

percolates through null-thickness deformation bands. In this situation, the material 

microstructure sets the percolation thickness and becomes a dominant factor.  

The purpose of the present article is to analyze stress channelling and strain 

localization, in extremely anisotropic elastic materials governed by couple-stress elasticity. 
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The theory of couple-stress elasticity, also known as Cosserat theory with constrained 

rotations, is the simplest gradient theory in which couple-stresses make their appearance. In 

particular, couple-stress theory assumes an augmented form of the Euler-Cauchy principle 

with a non-vanishing couple traction, and a strain-energy density that depends upon both the 

strain and the gradient of rotation. Such assumptions are appropriate for materials with 

granular and layered structure, where the interaction between adjacent elements may 

introduce internal moments. In this way, characteristic material lengths appear that can be 

related with the material microstructure (Yang and Lakes, 1982; Zhang and Sharma, 2005; 

Maranganti and Sharma, 2007). The presence of these characteristic lengths implies that the 

couple-stress theory encompasses the analytical possibility of size effects which are absent in 

the classical theory. Therefore, the couple-stress theory and, more in general gradient and 

polar type theories, have been often advocated (Triantafyllidis and Aifantis, 1986; Mühlhaus 

and Vardoulakis, 1987; Gao et al. 1999; Huang et al. 2000; Radi, 2003; Radi and Gei, 2004; 

Dal Corso and Willis, 2011; Fleck et al., 2014) as possible remedies to constitutive 

formulations where ellipticity is lost in the classical sense and so strain localization into 

vanishing narrow bands is predicted to occur (with the related well-known mesh sensitivity in 

finite element formulations, Needleman and Tvergaard, 1984; Petryk, 1997) 

Despite the large number of articles devoted to the analysis of gradient effects in 

localization problems, the condition of failure of ellipticity has neither been obtained for 

constrained Cosserat elasticity, nor has it been linked to the possible emergence of localized 

solutions of boundary value problems or to the condition of planar wave propagation. More 

in general, with the exception of the ‘Kirchhoff-like’ uniqueness statement (which was 

related to loss of positive definiteness of the strain energy by Mindlin and Tiersten, 1962; see 

also Grentzelou and Georgiadis, 2005), material instability thresholds –for instance, strong 

ellipticity – have never been analyzed for constrained Cosserat elasticity. However, mention 

should be made to related works in the context of micropolar (unconstrained Cosserat) 

theory, where the ellipticity and strong ellipticity conditions have been derived, the latter 

providing a criterion for the existence of acceleration waves (Eremeyev, 2005; Altenbach et 

al., 2010; Eremeyev et al., 2013). 

With reference to an anisotropic theory of couple-stress elasticity, the purpose of the 

Part I of the present article is: (i.) to introduce the notion of strong ellipticity and (ii.) to 

motivate this through an extension of the van Hove theorem (van Hove, 1947; Hayes, 1966; 
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Bigoni and Zaccaria, 1992) as the condition of uniqueness for the homogeneous boundary 

value problem with prescribed kinematical conditions; (iii.) to obtain the condition for 

propagation of planar waves; (iv.) to derive the condition of ellipticity related to the structure 

of the differential operator of the governing field equations; (v.) to establish a hierarchy 

between the mentioned material stability criteria; (vi.) to obtain the condition holding at a 

discontinuity plane and to show how these conditions are related to the failure of ellipticity; 

(vii.) to analyze the particular case of antiplane elasticity where a classification into Elliptic-

Imaginary, Elliptic-Complex, Hyperbolic, and Parabolic regimes is introduced; viii.) to 

provide examples of extreme materials where waves can propagate but ellipticity is lost.  

In order to complete the picture of material instabilities in Cosserat anisotropic 

elasticity and to relate this to the design of extreme materials, Part II of this article is devoted 

to the derivation of infinite-body Green’s functions that will be shown to be related to the 

condition of wave propagation. The pertinent Green’s functions will then be used to show, in 

proximity of the border of ellipticity loss, the emergence of folding and faulting of a 

continuum in simple and cross geometries.  

 

2.  Fundamentals of constrained couple-stress anisotropic elasticity 
In this Section, the equations governing the linearized elastic mechanical response are 

introduced for anisotropic couple-stress solids. Detailed presentations of the couple-stress 

theory have been given by Toupin (1962), and Mindlin and Tiersten (1962) (see also Muki 

and Sternberg, 1965; Gourgiotis and Piccolroaz, 2014). An extension of the couple-stress 

theory to finite deformations has been recently given by Srinivasa and Reddy (2013). 

Couple-stress elasticity assumes that: (i.) each material particle has three degrees of 

freedom, (ii.) an augmented form of the Euler-Cauchy principle holds in which a non-

vanishing couple traction prevails, and (iii.) the strain-energy density depends upon both 

strain and the rotation gradient. 

In the absence of inertia and rotary inertia effects, the balance laws for the linear and 

angular momentum read 

 
( ) 0n

q qB B
T dS X dB

∂
+ =∫ ∫ , (1) 

( ) ( )( ) ( ) 0n n
qpk p k q qpk p k qB B

e x T M dS e x X Y dB
∂

+ + + =∫ ∫ , (2) 
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where B  is the region (open set) occupied by the body with bounding surface B∂ , possessing 

a unique outward normal qn . Note that a Cartesian rectangular coordinate system is 

employed along with indicial notation and summation convention on repeated indices. In 

addition, qpke  is the Levi-Civita alternating symbol, ( )n
qT  is the surface force per unit area, 

( )n
qM  the surface moment per unit area, qX  the body force per unit volume, qY  the body 

moment per unit volume, and px  designates the components of the position vector. 

The stress and couple-stress tensors are introduced by considering the equilibrium of 

the elementary material tetrahedron and enforcing Eqs. (1) and (2), respectively (Malvern, 

1969) 

 

( )n
q pq pT nσ= ,    ( )n

q pq pM nµ= , (3) 

 

where pqσ  and pqµ  are the components of the stress tensor and couple-stress tensor (both 

being asymmetric), respectively. In addition, by assuming that the interaction across any 

internal surface consists of equal, opposite, and collinear forces plus equal and opposite 

couples, it can be readily shown that the Newton’s law of action and reaction holds, namely, 
( ) (−= −n n)T T  and ( ) ( )−= −n nM M  (Truesdell and Toupin, 1960; Malvern, 1969). Using Eqs. 

(2) and applying the divergence theorem, the following force and moment equations of 

equilibrium are obtained 

 

, 0pq p qXσ + = , (4) 

, 0qpk pk pq p qe Yσ µ+ + = . (5) 

 

Further, the stress tensor pqσ  is resolved into its symmetric and anti-symmetric 

components as 

 

pq pq pqσ τ α= + , (6) 
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with pq qpτ τ=  and pq qpα α= − , whereas it is advantageous to decompose pqµ  into its 

deviatoric pqm  and spherical ( )/ 3kk pqµ δ  parts, respectively 

 

1
3pq pq pq kkmµ δ µ= + , (7) 

 

where pqδ  is the Kronecker delta. From the moment equation of equilibrium (5), one may 

further obtain the anti-symmetric part of the stress tensor as 

 

( ),
1
2pq pqk rk r ke Yα µ= − + , (8) 

 

so that the stress tensor becomes symmetric in the absence of body moments and for a 

vanishing divergence of couple-stresses. Moreover, a combination of Eqs. (5)-(8) yields a 

single equation of equilibrium which involves only the symmetric part of the stress tensor and 

the deviatoric part of the couple-stress tensor as 

 

( ), , ,
1 0
2pq p pqk rk rp k p qe m Y Xτ − + + = .  (9) 

 

For the kinematical description of the continuum, the following primary kinematical 

fields are defined within the framework of a geometrically linear theory 

 

( ), ,
1
2pq q p p qu uε = + ,    ,

1
2q qpk k pe uω = ,    ,pq q pκ ω= , (10) 

 

where pqε  is the strain tensor, qω  the rotation vector, and pqκ  is the curvature tensor (i.e. the 

transpose of the gradient of rotation Τ= ∇κ ω  – note that the notation of Mindlin and Tiersten 

(1962) is adopted in the present work) which by definition is traceless, 0ppκ = . Accordingly, 

the compatibility equations for the above kinematical fields are (Naghdi, 1965) 
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, 0pqm mnk pn k qnm mne e eε κ+ = ,    , 0qkm npm qn ke e κ = , (11) 

 

where the elimination of pqκ  from Eqs. (11) leads to the usual Saint Venant’s compatibility 

equations for the strain tensor components. 

Regarding the boundary conditions in the constrained couple-stress theory, it is noted 

that the normal component of the rotation on the boundary B∂  is fully specified by the 

distribution of tangential displacements. This implies that the tangential part of the rotation 

vector, ( )pq p q pn nδ ω− , has to be prescribed independently on the surface when defining 

kinematical boundary conditions. Therefore, the number of the kinematical boundary 

conditions that can be specified on the boundary are five: the three components of the 

displacement qu  and the two tangential components of the rotation qω . Accordingly, the 

traction boundary conditions at any point on a smooth boundary, consist of the following 

three reduced force-tractions and two tangential couple-tractions (Mindlin and Tiersten, 

1962; Koiter, 1964) 

 

( )
( ),

1
2

n
q pq p qpk p nn kP n e n mσ= − ,   ( )

( )
n

q pq p nn qR m n m n= − , (12) 

 

where ( )nn p q pqm n n m=  is the normal component of the deviatoric couple-stress tensor pqm . It 

is worth noting that the spherical part of the couple-stress tensor kkµ  does not appear either 

in the field equations (9) or in the boundary conditions (12). It follows that this quantity 

remains indeterminate in the constrained Cosserat theory. Following Muki and Sternberg 

(1965), and without loss in generality, we shall henceforth adopt the normalization: 0kkµ = . 

For linear constitutive behavior, the strain-energy density assumes the following 

general quadratic form for centrosymmetric materials 

 
1 1
2 2pqmn pq mn pqmn pq mnW ε ε κ κ= +C B , (13) 
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where pqmnC  and pqmnB  are the elasticity tensors with the following symmetries (Mindlin and 

Tiersten, 1962) 

 

pqmn mnpq qpnm= =C C C ,    pqmn mnpq=B B ,    0pqmm mmpq= =B B . (14) 

 

The last equality follows directly from the fact that the curvature tensor is deviatoric  

( 0ppκ = ). Accordingly, tensor C  is defined through 21 independent components, whereas B  

has 36 independent components. The corresponding constitutive equations are 

 

pq pqmn mn
pq

Wτ ε
ε
∂

= =
∂

C ,    pq pqmn mn
pq

Wm κ
κ
∂

= =
∂

B .  (15) 

 

It is remarked that tensor C  defines a Cauchy (or ‘classical’) elastic behavior, which is 

recovered when tensor B , defining a ‘purely Cosserat behavior’, vanishes.  

The necessary and sufficient conditions for the strain energy density W  in Eq. (13) to 

be positive definite (PD) are 

 

0pqmn pq mnε ε >C    { }Sym \ 0pqε∀ ∈ ,    0pqmn pq mnκ κ >B    { }Dev \ 0pqκ∀ ∈ , (16) 

 

where Sym  denotes the set of all symmetric tensors, Dev  is the set of all deviatoric tensors, 

and 0  denotes the null element, which is excluded from the definition of positive 

definiteness. The condition of (PD) is sufficient for unconditional stability and uniqueness of 

the solution of the mixed boundary value problem (Mindlin and Tiersten, 1962; Grentzelou 

and Georgiadis, 2005). However, in classical elasticity lack of positive definiteness of the 

strain energy density is a subject of increasing attention (Lakes and Drugan, 2002; Kochmann 

and Drugan, 2009) as it can model situations in which prestressed solids release energy (and 

thus apparently violate thermodynamic requirements). 

Finally, incorporating the constitutive equations (15) into Eqs. (9) and using the 

geometric relations in (10) yields the equations of equilibrium in terms of the displacement 

components (the counterpart of the Navier-Cauchy equations of the classical theory) 
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, , ,
1 1 0
4 2pqmn n mp pqk smn rkts n mtrp pqk k p qu e e u e Y X− − + =C B . (17) 

 

3.  Strong ellipticity and van Hove uniqueness theorem 
The following definitions of strong ellipticity (SE) for the elasticity tensors C  and B  

are introduced, respectively 

 

( ) [ ] 0⊗ ⋅ ⊗ >q n q nC ,    ( ) [ ] 0⊗ ⋅ ⊗ >q n q nB , (18) 

 

to be satisfied for every unit vector n  and non-null vector q . In view of the properties of the 

elasticity tensors defined by Eqs. (14), the conditions of (SE) for the classical and couple-

stress elasticity tensors can be equivalently written as 

 

( ) ( )Sym Sym 0⊗ ⋅ ⊗ >  q n q nC ,    ( ) ( )Dev Dev 0⊗ ⋅ ⊗ >  q n q nB , (19) 

 

respectively, which, according to Eqs. (16), allow for the conclusion that if the elasticity 

tensors are positive definite (PD) they are also strongly elliptic 

 

( ) ( )PD SE⇒C C
:      and     ( ) ( )PD SE⇒B B

.  (20) 

 

A constrained Cosserat material is defined to be strongly elliptic if both inequalities in Eqs. 

(19) are simultaneously satisfied. Note that by replacing ‘> ’ with ‘≥ ’, the conditions (19)

define the ‘semi-strong ellipticity’ (SSE) conditions for C  and B .  

It will now be proven that: the (SE) conditions (19) are sufficient for uniqueness for a 

problem with prescribed displacement and rotation on the whole boundary (kinematical 

boundary conditions) in a homogeneous constrained Cosserat solid (called ‘van Hove 

conditions’). This statement represents the extension of the van Hove’s theorem (van Hove, 

1947) to the context of the constrained Cosserat theory.  

Following Hayes (1966) and Gurtin, (1972), and invoking superposition, if two 

solutions for displacements and rotations are possible in the van Hove conditions, the solution 

produced by the difference fields would correspond to homogeneous conditions at the 
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boundary (for both displacement and rotations) and would make the strain energy ( ),U ε κ to 

vanish  

 

( ) [ ] [ ]2 ,
B B

U dB dB= ⋅ + ⋅∫ ∫ε κ ε ε κ κBC  

               [ ] 0
B B

dB dBΤ Τ = ∇ ⋅ ∇ + ∇ ⋅ ∇ = ∫ ∫u u ω ωBC . (21) 

 

Therefore, to prove uniqueness it suffices to show that 

 

,    on B≡ ≡X 0 Y 0      and     ( ),    on B= − ⊗ = ∂u 0 I n n ω 0 , (22) 

 

imply that =u 0  (and consequently =ω 0 ) on B . Note that since the surface displacements 

are zero, the normal component of the surface rotation vector is also zero and, thus, the 

condition ( )− ⊗ =I n n ω 0  is equivalent to =ω 0  on B∂ .  

The definitions of u  and ω  can be extended from the closed set B  to the whole 

Euclidean space ℜ  simply by defining: =u 0  and =ω 0  on \ Bℜ . The resulting fields are 

piecewise continuous on ℜ , whereas the gradient of the displacement ∇u  and the gradient 

of the rotation ∇ω  may be discontinuous on B∂ . In particular, in view of Eq. (10)2 and 

bearing in mind that the surface rotation is zero, it can be readily shown that only the part 

( )∇ ⋅ ⊗u n n  of the displacement gradient can be discontinuous on B∂ . The vectors u , ω , 

and their gradients possess the following three-dimensional Fourier representations 

 

( )
( )

( ) 3
3

1 d
2

ie
π

⋅

ℜ
= ∫ k xu k u x x ,   ( )

( )
( ) 3

3
1 d

2
ie

π
⋅

ℜ
= ∇∫ k xU k u x x , (23) 

( )
( )

( ) 3
3

1 d
2

ie
π

⋅

ℜ
= ∫ k xω k ω x x ,   ( )

( )
( ) 3

3
1 d

2
ie

π
⋅

ℜ
= ∇∫ k xΩ k ω x x , (24) 

 

where 3
1 2 3d d d dx x x=x , k  is the Fourier vector in the Fourier space, and ( )1 21i = − . Utilizing 

the kinematical boundary conditions in Eq. (22) and the divergence theorem, it can be readily 

shown that  
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i= − ⊗U u k ,    i= − ⊗Ω ω k . (25) 

 

Moreover, since the body is homogeneous, the generalized Parseval theorem yields (Davies, 

2002) 

 

[ ] 3 3 3 3
, ,d d d dpqmn p q m n pqmn pq mnu u U U

ℜ ℜ ℜ ℜ
 ∇ ⋅ ∇ = = = ⋅  ∫ ∫ ∫ ∫u u x x k U U kC CC C , (26) 

3 3 3 3
, ,d d d dpqmn q p n m pqmn qp nmω ωΤ Τ Τ Τ

ℜ ℜ ℜ ℜ
   ∇ ⋅ ∇ = = Ω Ω = ⋅   ∫ ∫ ∫ ∫ω ω x x k Ω Ω kB BB B ,(27) 

 

with U  and Ω  being the complex conjugates of U  and Ω , respectively. Note that Eq. (25) 

implies 

 

R I= ⊗U u k  ,   I R= − ⊗U u k     and    R I= ⊗Ω ω k ,   I R= − ⊗Ω ω k , (28) 

 

where the indices R  and I  stand for the real and imaginary parts, respectively. A 

substitution of Eqs. (28) into Eqs. (26) and (27) yields 

 

[ ] ( ) [ ] ( ) [ ]3 3 3d d dR R I IB ℜ ℜ
∇ ⋅ ∇ = ⊗ ⋅ ⊗ + ⊗ ⋅ ⊗∫ ∫ ∫u u x u k u k k u k u k k   C C C , (29) 

( ) [ ] ( ) [ ]3 3 3d d dR R I IB

Τ Τ

ℜ ℜ
 ∇ ⋅ ∇ = ⊗ ⋅ ⊗ + ⊗ ⋅ ⊗ ∫ ∫ ∫ω ω x k ω k ω k k ω k ω k   B B B . (30) 

 
Assume now that the fields u  and ω  do not vanish identically in B , then by the 

uniqueness of the Fourier transforms, u  and ω  cannot vanish identically on ℜ . Hence, in 

view of the Eqs. (29) and (30), if the elasticity tensors C  and B  are strongly elliptic then 

( ), 0U >ε κ , which contradicts the original assumption in Eq. (21). Therefore, when (SE) 

holds for a homogeneous Cosserat material, uniqueness of the kinematical b.v.p. follows. The 

importance of the van Hove theorem lies in the fact that it provides conditions to reach the 

limit of stress channelling (or shear banding, in the context of elastoplasticity), without 

encountering prior bifurcations (see Ryzhak, 1987; Bigoni and Zaccaria, 1992). 

In the next Section, the (SE) conditions (19) will be proven to be sufficient but not 

necessary conditions to ensure propagation of plane waves in a couple-stress medium. This is 
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in marked contrast with the classical elasticity case where the (SE) of the Cauchy elasticity 

tensor C  is a necessary and sufficient condition for the positive definiteness of the acoustic 

tensor which, in turn, implies that all waves can travel with real and positive propagation 

speed (Gurtin, 1972).  

 

4.  Wave propagation and acoustic tensor 
The propagation of plane waves in couple-stress elasticity is now considered. In 

particular, a plane harmonic wave is defined through a vector field of the form 

 
( )Re i k ωte− ⋅ − =  

x nu d  , (31) 

 

where t  denotes time, d  the wave amplitude vector, n  the unit propagation vector, and k  

the wavenumber (in general complex). Moreover, the vector x  denotes the position vector, 

kVω =  is the angular frequency assumed to be always real, and V  is the phase velocity. The 

equations of motion in couple-stress elasticity follow from Eqs. (17), augmenting the latter 

with the standard inertia term 

 

, ,
1
4pqmn n mp pqk smn rkts n mtrp qu e e u ur− = C B , (32) 

 

where 0r >  is the constant mass density, a superposed dot denotes time differentiation, and 

null body forces and moments are assumed. Note that for the purposes of the present analysis, 

the micro-rotational inertia effects are neglected.  

A substitution of Eq. (31) into the equations of motion leads to the propagation 

condition 

 

( )( )2,k rω− =A n I d 0 , (33) 

 

where the Cosserat acoustic tensor A  can be decomposed into a classical part ( )A C  and an 

additional couple-stress part ( )A B  in the following way (Toupin, 1962) 
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( ) ( ) ( )2 ( ) 4 ( ),k k k= +A n A n A nC B , (34) 

 

with 

 

( )( )
qn pqmn p mA n n=nC C        and      ( )( ) 1

4qn pqk smn m p t r rktsA e e n n n n=n BB . (35) 

 

Note that the symmetries of the elasticity tensors C  and B  imply also that ( )A C  and ( )A B  are 

symmetric second-order tensors. The symmetry of ( )A B  follows from the fact that 
( ) 0lqn qne A =B . Therefore, the acoustic tensor in couple-stress theory is symmetric, Τ=A A . 

Moreover, it is remarked that the components of the acoustic tensor are non-homogeneous 

polynomials of fourth-degree with respect to the wave number k . Hence, contrary to the 

classical elasticity case, the frequency and the phase velocity depend on the wave number, 

which implies, in general, that waves are dispersive in the context of the couple-stress theory. 

The condition (33) dictates that the amplitude d  must be an eigenvector of the acoustic 

tensor A while its eigenvalues 2ω  (to within a multiplicative constant r ) are always real and 

the respective eigenspaces orthogonal. A non-trivial solution exists for the eigenvalue 

problem (33) when the determinant of the coefficients qd  vanishes, 

 

( )2det 0rω− =A I . (36) 

 

An important property of the acoustic tensor is that its couple-stress part ( )A B  is 

singular, so that the propagation vector n  is always an eigenvector of ( )A B  associated to a 

null eigenvalue 

 
( )det 0=A B ,    ( ) =A n 0B , (37) 

 

and consequently, 

 
2 ( )k=An A nC , (38) 
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which implies that for every couple-stress anisotropy rktsB  at least one direction of 

propagation n  exists such that the wave characteristics are governed only by the Cauchy-

elastic part of the constitutive equations. This direction coincides with the direction of 

propagation of purely longitudinal P -waves in a classical anisotropic medium. In fact, as it 

was shown by Truesdell (1966) (see also Kolodner, 1966) in the context of the classical 

theory, there always exist at least three distinct directions along which longitudinal waves can 

propagate. Therefore: regardless to the degree of anisotropy, a longitudinal P -wave always 

exists propagating in a Cosserat elastic material without dispersion and without displaying 

Cosserat effects (provided this wave can propagate in the underlying Cauchy material). 

A necessary and sufficient condition for plane waves to propagate with positive speed 

and for all real wavenumbers k  is that the acoustic tensor is positive definite, which is now 

defined as the (WP) condition 

 

( ) ( )2 ( ) 2 ( ), 0 0k k k⋅ > ⇔ ⋅ + ⋅ >p A n p p A p p A pC B , (39) 

 

for every unit vector n  and non-null vector p . Thus, if the wave propagation (WP) condition 

holds, the squared speeds (i.e. the eigenvalues of the acoustic tensor) corresponding to each 

real acoustical axis are positive. Accordingly, three linearly independent plane waves always 

exist for a given direction of propagation n  and wavenumber k . It is apparent from Eq. (39), 

that for small wavenumbers 0k →  (low frequencies) the classical part ( )A C  dominates the 

behavior of the acoustic tensor, whereas for large wavenumbers k →∞  (high frequencies) 

the behavior of the acoustic tensor is determined by its couple-stress part ( )A B . Therefore, by 

taking into account that Eq. (39) must hold for all real non-zero wavenumbers, the (WP) 

condition in couple-stress elasticity is equivalent to the following pair of inequalities 

 
( ) 0⋅ ≥p A pC ,    ( ) 0⋅ ≥p A pB ,    0⋅ ≠p Ap ,    ∀ ≠p 0 , (40) 

 

so that both ‘ 0= ’ cannot simultaneously apply in Eqs. (40)1 and (40)2. In fact, the above 

conditions imply that p  cannot be an eigenvector corresponding to a null eigenvalue of both 

the classical part ( )A C  and the couple-stress part ( )A B  of the acoustic tensor. An immediate 
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consequence of this statement is that when p  is parallel to the propagation vector n , Eqs. 

(40) reduce to 

 
( ) 0⋅ >n A nC , (41) 

 

which excludes the possibility that n  be an eigenvector of ( )A C  corresponding to a null 

eigenvalue. 

On the other hand, in view of the inequality (18)1, it can be readily shown that the (SE) 

of the classical Cauchy elasticity tensor is equivalent to the condition that ( )A C  be positive 

definite 

 

( ) ( )SE 0⇔ ⋅ >p A pCC ,    ∀ ≠p 0 . (42) 

 

Further, by setting = ×q n p  and taking into account Eq. (35)2, the (SE) condition of the 

couple-stress elasticity tensor, Eq. (18)2, implies 

 

( ) ( )SE 0⇒ ⋅p A p >B B ,   :∀ × ≠p n p 0 ,  (43) 

 

so that, since ( )A B is symmetric and possesses always one null eigenvalue associated with the 

vector n  (say, 1 0λ ≡ ), the condition ( )SE B
 is equivalent to the fact that the remaining two 

eigenvalues must be strictly positive (i.e. 2 0λ >  and 3 0λ > ). Replacing the strict 

inequalities in Eqs. (42) and (43) with “≥ ”, the above conditions become the semi-strong 

ellipticity (SSE) conditions, holding for every p 

 

( ) ( )SSE 0⇔ ⋅ ≥p A pC C ,        ( ) ( )SSE 0⇔ ⋅ ≥p A pB B . (44) 

 

Note that the inequality in (44)2 has been extended now to include the case where p  is 

parallel to the propagation vector n .  
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The above results show that the (SE) of the elasticity tensors is a sufficient condition to 

guarantee the propagation of plane waves (WP). The necessary and sufficient conditions for 

(WP) are expressed through conditions (40), which are equivalent to the positive definiteness 

of the acoustic tensor A . These conditions are weaker than those implied by (SE). It will be 

shown in Part II that the (WP) plays a major role for the derivation of the infinite body 

Green’s function. 

 

4.1  Wave propagation in an isotropic Cosserat Material  

To illustrate the constraints imposed on the elasticities by the (WP) condition, the 

simple case of an isotropic couple-stress material is analyzed. In this case, the elasticity 

tensors defined in Eqs. (14), assume the following form (Mindlin and Tiersten, 1962; Koiter, 

1964) 

 

( )ijkl ij kl ik jl il jkλδ δ µ δ δ δ δ= + +C    and   ( )4
4 4

3ijkl ik jl il jk ij kl

η η
ηδ δ η δ δ δ δ

′+
′= + −B , (45) 

 

where the moduli λ  and µ  have the same meaning as the Lamé constants of the classical 

elasticity theory, with the dimensions of ‘stress’, and the moduli η  and η′  account for the 

couple-stress effects and are expressed in dimensions of ‘force’. Upon substituting Eq. (45) 

into Eq. (35), the following expressions for the classical and couple-stress parts of the 

acoustic tensor are obtained, respectively 

 

( ) ( ) ( )( ) 2λ µ µ= + ⊗ + − ⊗A n n n I n nC ,    ( ) ( )( ) η= − ⊗A n I n nB , (46) 

 

so that the acoustic tensor can be written as 

 

( ) ( ) ( )( )2 2, 2k k kλ µ µ η = + ⊗ + + − ⊗ A n n n I n n . (47) 

 

Note that µ  and η  are double eigenvalues for the tensors ( )A C  and ( )A B , respectively, so 

that every vector lying in the propagation plane characterized by n  is an eigenvector of these 

tensors and, consequently, of the acoustic tensor A . Thus, ( )A C  and ( )A B  are coaxial in the 

16 
 

http://dx.doi.org/10.1016/j.jmps.2015.09.006


Published in Journal of the Mechanics and Physics of Solids, Vol. 88, pp. 150-168. 
doi:10.1016/j.jmps.2015.09.006 

isotropic case. The (WP) condition (39) requires that all eigenvalues of the acoustic tensor A  

must be positive in order for the disturbance to travel with real propagation speed, a condition 

equivalent to 

 

2 0λ µ+ > ,    2 0kµ η+ > ,     0k∀ > . (48) 

 

The first inequality is the same as in the classical theory and is an immediate consequence of 

Eq. (41). In this case, the propagation vector n  is an eigenvector of the acoustic tensor 

corresponding to a non-dispersive longitudinal P-wave with phase velocity 

( )2PV λ µ r= + . The second inequality involves also the wave number k , so that either 

{ }0,  0µ η> ≥  or { }0,  0µ η≥ >  must hold for (WP). The double eigenvalue of the acoustic 

tensor A  corresponds to horizontally (SH) or vertically (SV) polarized shear waves 

travelling dispersively with speed and frequency 

 
2

S
kV µ η

r
+

= ,   
2

2 2 kk µ ηω
r
+

= . (49) 

 

Therefore, for an isotropic couple-stress material, the (WP) condition requires one of the 

following set of inequalities to hold  

 

(WP)⇔{ }2 0, 0,  0λ µ µ η+ > > ≥    or   { }2 0, 0,  0λ µ µ η+ > ≥ > . (50) 

 

On the other hand, it can be readily shown that the (SE) conditions (19) require that 

 

(SE)⇔{ }2 0, 0, 0, 0λ µ µ η η η′+ > > > + > . (51) 

 

It is evident, thus, that (SE) implies the (WP) condition, but not vice-versa. Moreover, it is 

worth noting that for an extreme isotropic material with 0µ =  and 0η > , shear type waves 

may still propagate. In fact, the phase velocity in Eq. (49)1 becomes a linear function of the 
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wavenumber, thus resembling the propagation of flexural harmonic waves in an Euler-

Bernoulli beam (Graff, 1975)2.  

 

5.  Ellipticity 
The definition of ellipticity (E) is now introduced in a way appropriate for the system of 

partial differential equations (17). Assuming zero body forces and moments, the governing 

equations of equilibrium can be written as 

 

=Lu 0 , (52) 

 

where the fourth-order differential operator L  has the following form 

 

( ) 1L L L
4qn qn qn pqmn p m pqk smn rkts m p r te e∂ ≡ + = ∂ ∂ − ∂ ∂ ∂ ∂C B C B , (53) 

 

with Lqn
C  being the second-order (lower) part and Lqn

B  the fourth-order (higher) part of the 

operator. The associated symbol l  of the differential operator L  is then defined as (Renardy 

and Rogers, 2004) 

 

( ) ( ) ( )
4

2 2 ( ) 4 ( )

4qn pqmn p m pqk smn rkts m p r t qn qn
kl i k n n e e n n n n k A k A+ = +k n nC BC B= , (54) 

 

where k=k n  is an arbitrary real vector. The (total) symbol is thus identified with the 

acoustic tensor, ( ) ( ),i k≡k A nl , where its principal part Pl  is related to the highest (fourth-

2 In the previous discussion regarding the propagation of plane waves and the associated (WP) condition, 
the wavenumber was taken to be a real quantity. However, as Mindlin and Tiersten (1962) pointed out, 
imaginary wavenumbers are also possible in the context of couple-stress elasticity. For instance, in the case of 
an isotropic couple-stress material with 0µ >  and 0η >  , the dispersion equation (49)2 indicates that two 
wavenumbers k , one real and one imaginary, correspond to a given real frequency ω . Accordingly, this 
implies that there are two shear dispersive modes: one progressive and one evanescent. The evanescent mode 
has a wave number cut-off at k i µ η= ±  corresponding to zero frequency. The existence of such evanescent 
modes can cause local effects near boundaries and singularities. 
 

18 
 

                                                 

http://dx.doi.org/10.1016/j.jmps.2015.09.006


Published in Journal of the Mechanics and Physics of Solids, Vol. 88, pp. 150-168. 
doi:10.1016/j.jmps.2015.09.006 

order) derivatives of the operator L , with P 4 ( )k≡ A Bl . An immediate consequence of Eq. 

(37)1 is that 

 
Pdet 0=l , (55) 

 

showing that the principal part of the symbol is degenerate, so that the system of PDEs in 

couple-stress elasticity is not elliptic in the standard sense. To expose the degeneracy of the 

couple-stress operator, the divergence is applied to the governing system (52), yielding 

 

( ) ( )div div 0= =Lu L uC , (56) 

 

where the higher-order operator does not appear, as L uB  is solenoidal. Equation (56) shows 

that the divergence of the fourth-order couple-stress operator degenerates into a scalar third-

order PDE. Moreover, applying the gradient operator to Eq. (56), a fourth-order system of 

PDEs is obtained 

 

( )( )grad div =L u 0C . (57) 

 

It is remarked that Eq. (57) is equivalent to: , 0qn qnτ = , where qnτ  is the symmetric part of the 

stress tensor. The latter observation can also be directly derived from Eq. (9). 

A modified couple-stress operator can now be defined by adding to the governing 

operator (53) the additional fourth-order operator defined in Eq. (57) as a sort of null 

Lagrangean 

 

( ) 1L
4qn pqmn p m pqk smn rkts m p r t psmn q s p me e a∂ = ∂ ∂ − ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ C B C , (58) 

 

where a  is a non-zero arbitrary constant. Note that, in view of Eq. (57), the fourth-order 

operators L  and L  are equivalent. The modified principal symbol is defined as  
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( )P 4 ( ) ( )k a= − ⊗A n A n

B Cl , (59) 

 

and its determinant is not trivially zero. The difficulty to classify the original degenerate 

operator can be now circumvented by examining the equivalent modified operator and the 

associated principal symbol in Eq. (59). In particular, taking into account that the principal 

symbol is invariant under coordinate transformations, and that ( ) =A n 0B , the couple-stress 

part of the acoustic tensor admits the following spectral representation 

 

( ) ( ) ( )( )
2 3λ λ= ⊗ + ⊗A n n t t n s sB , (60) 

 

where 2λ  and 3λ  are the non-vanishing eigenvalues of ( )A B)  and ( ), ,n t s  are the respective 

eigenvectors forming an orthonormal basis. The classical part of the acoustic tensor is 

represented in the same orthonormal basis, so that 

 

( )( )
ν τ στ τ τ⊗ = ⊗ + ⊗ + ⊗n A n n n n t n n sC , (61) 

 

where ( )
ντ = ⋅n A nC , ( )

ττ = ⋅n A tC , and ( )
στ = ⋅n A sC . The determinant of the principal 

symbol finally becomes  

 
P 12

2 3det ak ντ λ λ=l . (62) 

 

The condition of ellipticity for a constrained Cosserat material is that Pdet 0≠l , which 

corresponds to 

 

( ) 0ντ ≠n  ,    ( )2 0λ ≠n  ,    ( )3 0λ ≠n  ,    : 1∀ =n n . (63) 

 

Note that two different, but equivalent ways to derive the above conditions of ellipticity are 

given in Appendix B.  
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The fact that only the conditions (63)2 and (63)3  refer to the Cosserat moduli, whereas 

condition (63)1 involves the classical (Cauchy) moduli, is attributed to the degeneracy of the 

principal part of the symbol in couple-stress elasticity, Eq. (55). This degeneracy is directly 

related to the fact that in the constrained Cosserat theory the strain energy depends upon the 

gradient of the rotation (8 independent components) and not upon the complete gradient of 

strain (18 independent components). In strain gradient elasticity, where both rotation and 

stretch gradients are taken into account, the principal symbol is not degenerate, so that the 

ellipticity condition should involve only the strain gradient moduli, a problem that will be 

addressed elsewhere. Finally, in micropolar (unconstrained Cosserat) theory the equilibrium 

equations for the displacement and rotation components are of the second-order. The 

resulting principal symbol of the matrix operator is therefore not degenerate since the rotation 

vector is independent from the displacement field. The condition of ellipticity serves as a 

criterion for the existence of acceleration waves in a micropolar continuum (Altenbach et al., 

2010; Eremeyev et al., 2013). 

It is worth noting that for an isotropic couple-stress material, the (E) condition requires 

 

( ) 2 0ντ λ µ= + ≠n  ,    ( ) ( )2 3 0λ λ η= = ≠n n . (64) 

 

A comparison of the above relations with the respective (WP) conditions (50) shows that: 

when 0η =  (E) is lost in the Cosserat material, but shear waves can still propagate in all 

directions provided that 0µ > , a circumstance in marked contrast with classical elasticity, 

where loss of ellipticity implies that waves cannot propagate. Indeed, for an isotropic Cauchy 

material with 0µ = , ellipticity is lost and accordingly shear waves cannot propagate. 

Finally, as it is apparent from Eqs. (42), (43) and (63), (SE) of the elasticity tensors in a 

Cosserat material implies (E) of the couple-stress equations. Therefore, bearing in mind the 

results derived in Sections 3 and 4, a hierarchy between different criteria for 

stability/uniqueness can be envisaged, as shown in Fig. 2. 
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Fig.2: Hierarchy between the stability/uniqueness conditions: positive definiteness (PD), strong 

ellipticity (SE), semi-strong ellipticity (SSE), ellipticity (E), and wave propagation (WP) in a constrained 
Cosserat continuum. The equivalence (*) holds whenever condition (41) is verified. 

 

 

6.  Maxwell’s compatibility conditions and discontinuity surfaces 

Through a generalization of Thomas (1957) and Hill (1961), the compatibility 

conditions on discontinuity surfaces are now introduced for couple-stress elasticity. Similarly 

to the ‘classical’ context of classical Cauchy elasticity, discontinuity surfaces will be shown 

to be possible at ellipticity loss. 

A smooth surface Σ  is considered with a unit normal n , defining the common 

boundary of two open regions D+  and D−  of a solid body. Moreover, ( )φ x  denotes any 

field which is continuous in the interior of D+  and D− , and approaches definite limit values 
+φ  and −φ  as 0→x x  with 0 ∈Σx . The jump of φ  across Σ  at 0x  is defined as 

 

  ( ) ( )+ + − −= −φ φ x φ x .  (65) 

 

It is assumed that φ  and all of its derivatives exist in D D+ −∪  and have finite limiting 

values on Σ . For simplicity, the surface of discontinuity Σ  is assumed to be a planar surface.  

From equilibrium considerations and imposing continuity of displacements across Σ  

the following conditions are obtained 

 
( ) 0n

qP = 

 
 

 ,    ( ) 0n
qR = 

 
 

 ,    0qu = 

 
 

, (66) 
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where the tractions ( )n
qP  and ( )n

qR  are given by Eqs. (12), respectively. Note that Eqs. (66) do 

not include the condition of continuity of rotations, which are left for generality unprescribed 

across the discontinuity surface.  

Denoting the normal and the surface gradients respectively as 

 

q qD n= ∂ = ∂n  ,      q q qD n D= ∂ − , (67) 

 

and employing the Hadamard lemma (Thomas, 1957; Truesdell and Toupin, 1960; Hill, 

1961), the Maxwell geometrical compatibility relations can be derived for the jumps of the 

first and the higher-order gradients of the displacement field in the form 

 
(1)

,n m m nu n g= 

 

 , (68) 

( )(2) (1)
,n mt m t n t m m t nu n n g n D n D g= + + 

 

 , (69) 

( )(3) (2)
,n mtr r t m n r t m r m t t m r nu n n n g n n D n n D n n D g= + + + 

 

 

                                           ( ) (1)
t r m r m t m t r nn D D n D D n D D g+ + + , (70) 

 

where ( )p p p p
n n≡ ∂ = ∂ ∂g u u   

   
   

 is the discontinuity vector of the p -order normal derivative. 

Taking now into account Eqs. (8), (12) and (15), the expressions for the continuity of 

tractions can be written as 

 

, , ,
1 1 0
4 4pqmn p n m pqk smn p rkts n mtr pqk smn r l p rlts n mtkn u e e n u e e n n n u− + =     

     

C B B , (71) 

,
1 0
4 pqk smn rkts r p n mte e n n u = 

 

B . (72) 

 

A substitution of the Maxwell compatibility conditions (68)-(70) into Eqs. (71) and (72), and 

subsequent use of Eqs. (35), yields a coupled system of differential equations relating the 

discontinuity vectors for a material governed by the couple-stress theory 
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( ) (2) (1) ( ) (3) (1) (2)

( ) (2) (1) (1)

0

0
qn qn n qn n qn n

qn n qn n

A H g A g H g

A g H g

 + − − = 


+ =



C B

B
, (73) 

 

where the surface gradient operators (1)
qjH , (1)

qjH , and (2)
qnH  of the 1st and 2nd order are defined 

as 
 

( )(1) 1
4qn pqk smn r p rkts t m m tH e e n n n D n D= +B , (74) 

( )(1) (1)1
4qn pqk smn p t m rkts r r l rlts k qnH e e n n n D n n D H= − + B B , (75) 

( ) ( )( )(2) 1
4qn pqk smn p rlts r l t k m m k t rkts t r m r m t m t rH e e n n n n D D n D D n D D n D D n D D= + − + +B B , (76) 

 

with (1) (1) (2) 0q qj q qj q qjn H n H n H= = = . The differential system (73) is underdetermined since it 

comprises of 5 equations with 9 unknowns, namely, the components of the discontinuity 

vectors ( )p
jg  (with , 1, 2,3p j = ). It is worth noting that in the classical elasticity case, the 

differential system (73) degenerates into an algebraic system for the jump in the deformation 

gradient, providing the known condition of failure of ellipticity, ( ) (1) 0qn nA g =C  (Hill, 1961). 

To further investigate the discontinuity relations, it is expedient to decompose the 

discontinuity vectors into their normal and tangential parts on the singular surface Σ  as 

 
( ) ( ) ( )p p p
n n ng g g⊥= +  , (77) 

 

with 

 

( )( ) ( )p p
n k k ng g n n⊥ = ,    ( )( ) ( )p p

n nq q n qg n n gδ= − . (78) 

 

Accordingly, by taking into account Eqs. (37)2, (74) and (75), it can be readily shown that the 

following relations hold true for the discontinuity vectors 

 
( ) ( ) 0p
qn nA g⊥ =B ,    ( )(1) ( ) ( ) ( )p p

qn n qn n k kH g A D g n⊥ = −

B , (79) 
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so that the differential system (73) becomes 

 
( ) (2) (1) ( ) (1) (2)

( ) (2) (1) (1)

0

0
qn qn n qn n qn n

qn n qn n

A H g A t H g

A g H g

  − − = 


+ =

+  





C B

B
 , (80) 

 

where ( )(3) (2)
n n n k kt g D g n= −   is a tangential vector on the surface Σ . 

 

The case of loss of ellipticity 

An interesting situation occurs at failure of (E) in the couple-stress medium. Consider 

for simplicity an intrinsic Cartesian coordinate system where the normal n  at a given point 

on Σ  coincides with the local 1x -axis, so that ( )( ) ( ) ( )
2 30, ,p p pg g=g  and ( )2 30, ,t t=t . Assume 

further that (2)g  is an eigenvector of ( )( )A nB  corresponding to a null eigenvalue (say 

2 0λ =  and 3 0λ ≠ ), so that according to Eq. (63), (E) is lost and 

 
( ) (2) =A g 0B ,  (81) 

 

with ( )(2) (2)
20, ,0g=g  being the pertinent eigenvector. Note that in the particular coordinate 

system chosen here, ( )
33 3A λ≡B  is the only non-vanishing component of ( )A B , whereas, 

according to Eq. (81), (2)
3 0g = .  

In view of the above, the differential system (73) assumes the following explicit form 

 
( ) (1)
1

( ) (2) (1) (1) (2)
2 2 22 2

( ) (2) (1) (1) (2)
3 3 3 3 32 2

(1) (1)
2

(1) (1)
3

0

0

0

0

0

j j

j j j

j j j

j j

j j

A g

A H g H g

A H g t H g

H g

H g

λ

 =

  − =   − − = 


=
 =

+

+





C

C

C ,     1, 2,3j = , (82) 
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with (3) (2)
3 3 3 1t g g= −∂ . The differential system comprises now of 5 unknowns, namely (1)

1g , 

(1)
2g , (1)

3g , (2)
2g , 3t , and 5 equations.  

Therefore: at loss of ellipticity the differential system becomes determinate. The fact 

that the system becomes determinate proves that discontinuous solutions can be possible at 

loss of ellipticity. This statement will be validated with precise examples in Part II of this 

study, where it will be shown that at ellipticity loss folding of a continuum (in which the 

displacement gradient becomes discontinuous but remains finite) occurs under a concentrated 

force, and faulting (in which the displacement exhibits a finite discontinuity) occurs under a 

concentrated moment. 

 

7.  Antiplane strain 
The general equations for an anisotropic couple-stress material and the relevant notions 

of ellipticity (E) and strong ellipticity (SE) are particularized in the present Section to the 

case of an orthotropic material under antiplane strain conditions. The case of antiplane strain 

is chosen for its comparative simplicity and since localization phenomena can be captured 

such as stress channelling, but also folding, and faulting. 

 
7.1  Basic equations for an orthotropic material 

For a body occupying a region in the ( ),x y -plane, when antiplane strain conditions 

prevail, the displacement field reduces to 

 

1 0u ≡ ,    2 0u ≡ ,    ( )3 , 0u w x y≡ ≠ . (83) 

 

Note that in Eq. (83) and henceforth, the coordinates ( )1 2 3, ,x x x  are replaced by ( ), ,x y z , 

respectively, so that z  denotes the axis corresponding to the out-of-plane direction. By virtue 

of Eq. (10), the non-vanishing components of strain, rotation, and curvature are given in the 

form 

 

1
2xz

w
x

ε ∂
=

∂
,     

1
2yz

w
y

ε ∂
=

∂
,    

1
2x

w
y

ω ∂
=

∂
,    1

2y
w
x

ω ∂
= −

∂
, 
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yx
wκκ yyxx ∂∂

∂
=−=

2

2
1 ,    2

2

2
1

x
wκ xy ∂

∂
−= ,    2

2

2
1

y
wκ yx ∂

∂
= . (84) 

 

Further, considering an orthotropic centrosymmetric material, the constitutive equations (15) 

reduce to (for details refer to Appendix A) 

 

55xz
wc
x

τ ∂
=

∂
,  44yz

wc
y

τ ∂
=

∂
, (85) 

2
1

1 2xx xx
b wm b

x y
κ ∂

= =
∂ ∂

,    
2

1
1 2yy yy

b wm b
x y

κ ∂
= = −

∂ ∂
,  

2 2
32

2 3 2 22 2xy xy yx
bb w wm b b

x y
κ κ ∂ ∂

= + = − +
∂ ∂

,  

2 2
3 4

3 4 2 22 2yx xy yx
b bw wm b b

x y
κ κ ∂ ∂

= + = − +
∂ ∂

, (86) 

 

while, taking into account Eqs. (6) and (8), the (asymmetric) shear stresses become 

 

( )
3 3

55 2 1 33 2

1
4xz

w w wc b b b
x x x y

σ
 ∂ ∂ ∂

= − + − ∂ ∂ ∂ ∂ 
, (87)  

( )
3 3

44 4 1 33 2

1
4yz

w w wc b b b
y y x y

σ
 ∂ ∂ ∂

= − + − ∂ ∂ ∂ ∂ 
, (88) 

 

where 44c  and 55c  are the classical shear moduli characterizing an orthotropic Cauchy 

material subject to antiplane conditions, and ib  ( 1,..., 4i = ) are the couple-stress orthotropic 

moduli, with the dimension of a ‘force’. In analogy with the theory of orthotropic Kirchhoff 

plates, the couple stress components xym  and yxm  may be identified with the bending 

moments, while xxm  and yym  with the twisting moments, applied on an element of a plate. In 

this context, the couple-stress parameters 2 2b  and 4 2b  represent the bending stiffnesses in 

the principal y - and x - directions, 1 2b  the principal twisting stiffness, and 3 2b  the 

stiffness associated with the effects of secondary bending (Lekhnitskii, 1963). Moreover, 
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assuming the strain energy density W  to be positive definite (PD), the material moduli must 

satisfy the following inequalities 

 

( )PD ⇔C
 55 0c > ,   44 0c > , (89) 

( )PD ⇔B
 1 0b > ,  2 0b > ,  4 0b > ,  2

2 4 3 0b b b− > . (90) 

 

Enforcing equilibrium yields a single PDE of the fourth-order for the out-of-plane 

displacement component 

 

1 0
2

y x
z

Y YLw X
x y

∂ ∂
+ + − = ∂ ∂ 

, (91) 

 

where the differential operator L is defined as 

 

( )2 2 4 2 2 4
55 44 2 0 4

lower (classical) part principal part

1 2
4

cl cs

x y x x y y

L L

L c c b b b
≡ ≡

≡ ∂ + ∂ − ∂ + ∂ ∂ + ∂
((

((((((((

, (92) 

 

and 0 1 3b b b= −  is a material parameter that accounts for both torsion and secondary bending 

effects. Note that neglecting the body forces and body moments, the equilibrium equation 

(91) is of the same form as the equation of bending of thin orthotropic plates with prestress 

(Lekhnitskii, 1963). In particular, the principal part csL w  is associated with the deflection of 

the plate, whereas the classical (lower) part clL w  plays the role of the prestress.  

Finally, it is remarked that when 44 55c c µ= = , 1 4 4b η η′= + , 2 4 4b b η= = , and 

3 4b η′= , the above equations transform to those governing isotropic couple-stress elasticity 

for antiplane strain deformations (Lubarda, 2003). In that case, the scalar equation of 

equilibrium (91) reduces to 

 

2 4 1 0
2

y x
z

Y Yw w X
x y

µ η
∂ ∂

∇ − ∇ + + − = ∂ ∂ 
. (93) 
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7.2  Ellipticity 

It is well-known for classical Cauchy materials that loss of ellipticity may result in the 

emergence of various kinds of discontinuities. Therefore, since conditions of stress 

channelling and associated localized solutions are addressed in the present study, it is 

expedient to classify the governing PDE in Eq. (91) with respect to its elliptic regime. For the 

antiplane strain case considered here, and in the light of the results obtained in Section 5, the 

(E) condition becomes 

 

( ) 4 2 2 4
3 2 0 42 0x x y yb n b n n b nλ = + + ≠n ,    : 1∀ =n n , (94) 

 

where ( )3λ n  is the relevant eigenvalue in antiplane strain of the couple-stress part ( )A B)  of 

the acoustic tensor, Eq. (63)3. 

To investigate the restrictions that condition (94) imposes on the couple-stress moduli, 

the principal operator csL  of the governing PDE (91) is examined (Renardy and Rogers, 

2004). In particular, a solution to the equation 0csL w =  is assumed in the form (Bigoni, 2012) 

 

( )w F x y= +Ψ , (95) 

 

where F  is an analytical function and Ψ  is a complex constant satisfying the following bi-

quadratic equation, obtained by inserting representation (95) in the principal part of Eq. (91) 

 
4 22 0γ βΨ + Ψ + = , (96) 

 

with 2 4b bβ =  being the ratio between the principal bending moduli, and 0 4b bγ = . The 

four-roots qΨ  ( 1,..., 4q = ) of Eq. (96) satisfy 

 

( )2 21 q
q γ γ βΨ = − + − − , (97) 
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which are real or complex depending on the values of 2b , 4b  and 0b , or equivalently the 

dimensionless parameters β  and γ . In what follows, unless otherwise stated, it is assumed 

that 4 0b > . 

The roots qΨ  defined by Eq. (97) change their nature according to the values taken by 

parameters β  and γ , so that they can be classified as follows. 

 
Elliptic imaginary regime (EI) 

If 0β >  and γ β≥  (or equivalently 2 0b >  and 0 2 4b b b≥ ), Eq. (96) admits four 

purely imaginary roots 

 

1 1icΨ = ,   2 2icΨ = ,   3 1Ψ = Ψ ,   4 2Ψ = Ψ , (98) 

 

with  

 

1 2

2

0
c
c

γ γ β

= ± − >


. (99) 

 

Elliptic complex regime (EC) 

If 0β >  and β γ β− < <  (or equivalently 2 0b >  and 2 4 0 2 4b b b b b− < < ), Eq. 

(96) admits four complex conjugate roots 

 

1 f icΨ = − + ,    2 f icΨ = + ,    3 1Ψ = Ψ ,    4 2Ψ = Ψ , (100) 

 

with 

 

0
2

f
c

β γ
= >





. (101) 
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Hyperbolic regime (H) 

If 0β >  and γ β≤ −  (or equivalently 2 0b >  and 0 2 4b b b≤ − ), Eq. (96) admits four 

real roots 

 

1,3 1eΨ = ± ,   2,4 2eΨ = ± , (102) 

 

with 

 

1 2

2

0
e
e

γ γ β

= − ± − >


. (103) 

 

 

Parabolic regime (P)  

If 0β ≤ , Eq. (96), admits two real and two imaginary roots, namely 

 

1 fΨ = ,    2 icΨ = ,    3 1Ψ = −Ψ ,    4 2Ψ = −Ψ , (104) 

 

with 

 

2 0
f
c

γ γ β

= + − >




. (105) 

 

As a conclusion, the (E) condition in a couple-stress material under antiplane strain 

deformation assumes the following form 

 

( )E ⇔ 2 0b >   and  0 2 4b b b> − , (106) 

 

holding for 4 0b > . Equivalently, the ellipticity conditions can be written as 0β >  and 

γ β> −  (Fig. 3). Therefore, ellipticity (E) can be lost in two ways: either (i.) at the (EI/P) 

boundary (red line in Fig. 3), where 0β =  and 0γ >  (i.e. 2 0b =  and 0 0b > ), or (ii.) at the 
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(EC/H) boundary (blue line in Fig. 3), where 0β >  and γ β= −  (i.e. 2 4 0b b >  and 

0 2 4b b b= − ). In particular, at the (EI/P) boundary only one possible discontinuity surface 

emerges which is aligned parallel to the y -axis. On the other hand, at the (EC/H) boundary 

two discontinuity surfaces are possible. The inclination angle ϕ  (with the x -axis) of the 

normal to the discontinuity surfaces depends solely upon the ratio β , and can be calculated at 

the (EC/H) boundary using Eq. (94), as 

 

2 2

4

tan b
b

ϕ β= = , (107) 

 

corresponding to the following components of the unit vector n  normal to the discontinuity 

surfaces 

 

4

2 4
x

b
n

b b
= ±

+
,   2

2 4
y

b
n

b b
= ±

+
. (108) 

 

 
 

Fig. 3: Regime classification in the 2 4b bβ =  versus 
0 4b bγ =  parameter space for 

an orthotropic couple-stress material under antiplane strain conditions. The (EI/P) and (EC/H) ellipticity 
boundaries are depicted with red and blue lines, respectively. 
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The implications of both cases of ellipticity loss on the behavior of the solution and the 

emergence of the associated discontinuities in the components of the displacement and its 

gradient will be examined in Part II. As a conclusion from the above-discussion, note that 

loss of uniqueness, as related to failure of (PD), for a problem of antiplane deformation can 

be lost simultaneously with (E). Therefore, a material can be designed to work in antiplane 

conditions and display extreme behaviors (such as stress channelling and emergence of 

localized folding and faulting), but still preserving uniqueness of the solution and wave 

propagation.  

 

7.3  SH waves and the (WP) condition 

Antiplane shear (i.e. horizontally polarized or SH) motions are now examined in a 

homogeneous orthotropic constrained Cosserat medium. To this purpose, the governing 

equation (91) is augmented with the classical inertia term wr  . Assuming zero body forces 

and moments, the equation of motion for the out-of-plane displacement becomes 

 

Lw wr=  . (109) 

 

Substituting into the equation of motion a plane wave harmonic solution of the form 

 

( ) ( )
3, Sik V tw x y d e− ⋅ −= x n , (110) 

 

the dispersion equation is obtained relating the phase velocity SV  of SH waves to the 

wavenumber k  

 

( )
2

2 1 2 2 4 2 2 4
55 44 2 0 42

4S x y x x y y
kV c n c n b n b n n b nr−  

= + + + + 
 

. (111) 

 

For an orthotropic material under antiplane motions, the only non-vanishing out-of-plane 

component of the acoustic tensor is 
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( ) 2 2
33 , SA k k Vr=n . (112) 

 

The (WP) condition requires that SH waves propagate with real non-zero velocities for all 

real wavenumbers k  in every direction n , which, in turn, implies that ( )33 , 0A k >n . In view 

of the inequalities stated in Eq. (40), the (WP) condition can be defined for antiplane 

deformations as 

 

( )WP ⇔ 2 2
55 44 0x yc n c n+ ≥  ,   4 2 2 4

2 0 42 0x x y yb n b n n b n+ + ≥ ,   and   33 0A ≠ . (113) 

 

The conditions for the first inequality in Eq. (113) to hold require that 55 0c ≥  and 44 0c ≥ , 

whereas from the second inequality it can be deduced (c.f. Eqs. (106), Section 7.2) that 

2 0b ≥ , and 0 2 4b b b≥ − . It is worth noting that when 55 44 0c c= = , the propagation velocity 

of SH waves depends only upon the Cosserat moduli. Consequently, the propagation velocity 

becomes a linear function of the wave number k , a situation analogous to the classical plate 

theory (Graff, 1975). Moreover, it is remarked that in the special case in which 

 

( ) 4 2 2 4
3 2 0 42 0x x y yb n b n n b nλ = + + =n , (114) 

 

ellipticity is lost, but waves may still propagate. For example, assuming that 2 0b = , 0 0b > , 

and 4 0b > , the condition of (E) fails since in the direction ( )1,0= ±n , ( )3λ n  becomes zero. 

However, for 55 0c >  and 44 0c ≥ , SH waves can still propagate for all wavenumbers and 

directions of propagation n . This shows that (WP) does not imply (E). 

Finally, the (SE) conditions for the elasticity tensors in the antiplane strain case are 

obtained from the general inequalities in Eqs. (18), with q  parallel to the z - axis and n  

orthogonal. In particular, it can be shown that (SE) requires that 

 

( ) 55 44SE 0, 0c c⇔ > >C
, (115) 

( ) 1 2 4 3 1 2 4SE 0, 0, 0,b b b b b b b⇔ > > > < +B
. (116) 
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It follows, as expected, that (SE) implies both the (WP) and (E) conditions. In the classical 

elasticity case, the notions of (SE) and (WP) coalesce and the pertinent conditions become 

55 0c >  and 44 0c > . 

 

8.  Extreme Cosserat materials 
An extreme Cosserat material is defined in a way that its mechanical properties are 

close to ellipticity loss. An interesting case occurs when both the response of the Cosserat 

material and of the underlying Cauchy solid (obtained setting the Cosserat stiffness to zero) 

are simultaneously close to a failure of ellipticity. In all these cases, the extreme material is 

on the verge of a material instability, but still within the elliptic range. Although these 

extreme materials will be chosen so that waves can still propagate –the (WP) condition−, it 

will be shown through specific antiplane strain examples (deferred to Part II of this study) 

that stress channelling is related to the ‘distance’ to failure of ellipticity. In this context, 

localized folding and faulting will also emerge. 

In addition to the above-mentioned cases, it is possible to figure out the existence of 

extreme Cosserat materials, in which some Cauchy elasticity stiffness vanishes. Examples of 

these materials are sketched in Fig. 4 where: (i.) a ‘frictionless telescopic tube’ is a structure 

having null longitudinal elastic modulus, but still able to carry a variable bending moment 

and a shear force and (ii.) a jointed beam (in which all segments are connected with 

frictionless joints) has null transversal shear modulus, but is still able to carry a longitudinal 

force and a constant bending moment. Examples of these kinds of materials are specified 

below.  

 

 
 

Fig. 4  Examples of ‘extreme materials’ in which a Cauchy elastic stiffness is null, but Cosserat effects exist. 
Left: a frictionless telescopic tube is an element with null longitudinal elasticity, but able to carry a variable 

moment and related shear force. Right: a jointed beam (with perfectly smooth joints) has null transversal shear 
modulus, but can carry a longitudinal force and a constant moment. 
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8.1 A purely Cosserat solid 

A purely Cosserat solid is defined as a material with null Cauchy stiffness, = 0C= . For this 

material the stress is only antisymmetric, so that couples and shear stresses are generated 

(even if the shear stiffness is null) 

 

0pqτ = ,       pq pqmn mnm κ= B  ,     ,
1
2pq pqk rk re mα = − .  (117) 

 

This material is not elliptic in a 3D framework, but ellipticity can be restored in a framework 

allowing only for antiplane deformation. In this framework, (PD) is lost (as related to the 

Cauchy part of the constitutive equation), but SH-waves still propagate with finite speed.  

 

 

 

8.2 A shear-defective Cauchy material cured with a strongly elliptic Cosserat part 

A shear-defective Cauchy material ‘cured’ with a strongly elliptic Cosserat part is defined as 

a material with isotropic Cauchy elasticity with null shear stiffness, augmented with an 

elliptic Cosserat part. 

 

pq kk pqτ λε δ= ,       pq pqmn mnm κ= B  ,     ,
1
2pq pqk rk re mα = − .  (118) 

 

For this material (PD) is lost (as related to the loss of shear stiffness), but ellipticity is 

preserved and waves can propagate with positive speed. For instance, assuming that B  is 

isotropic, the phase velocities of a longitudinal and shear waves become, respectively 

 

PV λ r= ,   SV k η r=  , (119) 

 

where SV  coincides with the speed of flexural waves in a beam (Graff, 1975). Note, however, 

that if the shear modulus is negative (µ < 0), waves cannot propagate, but for η > 0 the 
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material is still in the elliptic range, Eq. (64)2. This proves that (E) does not imply (WP), so 

that recalling an observation made in the previous Section, we conclude that: ellipticity (E) 

and wave propagation (WP) are not interdependent conditions.  

 

9.  Conclusions 

The definition of anisotropic extreme Cosserat materials and their material stability analysis 

has led to several results defining the behavior of these materials, which can be listed as 

follows. 

i.) Positive definiteness of the strain energy (PD) is related to both (PD)C of the Cauchy 

and (PD)B of the Cosserat parts of the elasticity, so that loss of (PD) for a Cauchy material 

cannot be restored by augmenting the constitutive equation with a Cosserat part.  

ii.) A notion of strong ellipticity (SE) has been introduced (reducing to the ‘usual’ notion 

for classical Cauchy elasticity), which implies uniqueness for a problem with kinematics 

prescribed on the whole boundary of a homogeneous solid, that has been proven through 

an extension of the van Hove theorem.  

iii.) Strong ellipticity (SE) implies that planar waves can propagate with real speed (WP) 

and that the partial differential operator governing equilibrium is elliptic (E). A necessary 

condition for (WP) is that the Cauchy part of elasticity allows propagation of pressure 

waves. 

iv.) Ellipticity (E) and wave propagation (WP) condition are not interdependent 

conditions, so that it can happen that a wave cannot propagate when the material is still in 

the elliptic range, or vice versa that waves propagate when the material is at the boundary 

of ellipticity loss.  

v.) Investigation of emergence of discontinuity surfaces in Cosserat materials showed that 

failure of (E) is expected to give rise to the emergency of localized deformations (as will 

be demonstrated with specific examples of localized folding and faulting of a continuum 

in Part II of this study). 
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Appendix A. Elastic moduli for orthotropic couple-stress materials 

For an orthotropic material the couple-stress elasticity tensor ijklB , possessing the major 

symmetry and subject to the restriction ijkk kkij= = 0B B , transforms according to the relation 

 

ijkl ip jq kr ls pqrsR R R R=B B   (A1) 

 
where ipR  are the orthogonal tensors that characterize the three mutually perpendicular 

planes of reflective symmetry (Cowin, 2013). In particular, it can be shown that the couple-

stress elasticity tensor B  has 12 independent components in the orthotropic case and can be 

represented in a matrix form in the following way  

 
*

1111 1122 1133

1212 1221

1313 1331

2121
*

2222 2233

2323 2332

3131

3232
*
3333

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0

0 0

0

SYM

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

B B B

B B

B B

B

B B

B B

B

B

B

B
 ,  (A2) 

 

when curvatures and couple stresses are represented as the following vectors 

 

{ }11 12 13 21 22 23 31 32 33, , , , , , , ,κ κ κ κ κ κ κ κ κ=κ , (A3) 

{ }11 12 13 21 22 23 31 32 33, , , , , , , ,m m m m m m m m m=m . (A4) 

 

Note that some components in Eq. (A2) are not independent, so that  
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( )*
1133 1111 1122= − +B B B ,  ( )*

2233 1122 2222= − +B B B ,  ( )* * *
3333 1133 2233= − +B B B .  (A5) 

 

The constitutive equations follow from Eq. (15)2, where it can be easily verified that 0ppm = . 

Note that for micropolar elasticity (the so-called ‘unconstrained Cosserat theory’), not 

considered here, an orthotropic material is characterized by 15 independent components since 

0ijkk ≠B  (Ilcewicz et al., 1986).  

In the special case of antiplane strain, all the in-plane degrees of freedom are zero, and 

thus: 0x y zu u ω= = = . According to Eq. (84), the non-vanishing components of the curvature 

tensor are ( ), , ,xx xy yx yyκ κ κ κ . Note, that 0ppκ =  and 0zzκ = , so that xx yyκ κ= − , in this 

particular case. Accordingly, the constitutive equations for an orthotropic couple-stress 

material under antiplane conditions become 

 

1111 1122xx xx yym κ κ= +B B ,   1212 1221xy xy yxm κ κ= +B B , 

1221 2121yx xy yxm κ κ= +B B ,   1122 2222yy xx yym κ κ= +B B . (A6) 

 

Therefore, a couple-stress material in antiplane strain is governed by 6 microstructural 

constants, additional to the 2 classical shear moduli 44c  and 55c . By noting that xx yyκ κ= − , 

and assuming, for simplicity that the couple-stress material possess the same principal 

torsional stiffness in the x - and y - directions and null secondary torsional stiffness  

1122 0=B , the constitutive equations reduce to (Section 7.1) 

 

1xx xxm b κ= ,   1yy yym b κ= ,   2 3xy xy yxm b bκ κ= + ,   3 4yx xy yxm b bκ κ= + , (A7) 

 

with 1 1111 2222b ≡ =B B , 2 1212b ≡ B , 3 1221b ≡ B , and 4 2121b ≡ B . 
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Appendix B. Two alternative derivations of the ellipticity condition 
An alternative way to obtain the ellipticity condition for the degenerate couple-stress 

operator in Eq. (53) is to examine the behavior of the determinant of the total symbol (54) at 

large k . In general, if the principal operator is not degenerate, the behavior of the total 

symbol matrix at large k  provides the same condition obtained by examining the principal 

symbol. However, when the principal operator is degenerate, the determinant of the total 

symbol at large k  involves also terms associated with the lower-order operator. In the 

present case, the determinant of the total symbol l  degenerates to a polynomial of the tenth-

degree with respect to the modulus k , exhibiting the following asymptotic behavior as 

k →∞  

 

( ) 10
2 3det det kντ λ λ= =Al   as  k →∞ ,  (B1)  

 

where ( ) ( )
ντ = ⋅n n A nC , and ( )2 2λ λ≡ n , ( )3 3λ λ≡ n  are the non-vanishing eigenvalues of 

( )A B) . Requiring that det 0≠l , the conditions of ellipticity stated in Eqs. (63) are recovered. 

A second, more rigorous, approach to derive the condition of ellipticity is now 

developed. The approach is based on the Douglis-Nirenberg definition of ellipticity (Douglis 

and Nirenberg, 1955; Agmon et al., 1959), which is more general than the standard 

definition.  

First, the governing system is transformed into an equivalent higher-order system by 

taking the divergence and the curl of Eqs. (52), respectively  

 

( )( )div 0=L uC ,    ( )=n × Lu 0∇ , (B2) 

 
where n D= n∇ , q qD n= ∂  is the directional derivative taken in the direction of the unit 

vector n , and Eq. (56) has been used. 

The scalar Eq. (B2)1 is a third-order PDE and the vectorial equation (B1)2 is a system 

of PDEs of the fifth-order. Employing an orthonormal basis ( ), ,n t s , and noting that 

( ) 0n⋅∇ × ≡n Lu , the projections of ( )n∇ × Lu  in the plane spanned by the vectors t  and s  

assume the form 
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( ) 0n⋅ ∇ × =  t Lu ,   ( ) 0n⋅ ∇ × =  s Lu . (B3) 

 
Further, by noting that 

 

L Lijq i j qn n q qn ne t n Du s Du= − ,    L Lijq i j qn n q qn ne s n Du t Du= , (B4) 

 

equations (B3) become  

 

( ) 0D⋅ =t L u ,   ( ) 0D⋅ =s L u ,  (B5) 

 

so that the original governing system of equations (52) assumes the equivalent form 

 

( )
( ) ( )
( ) ( )

( )

( ) ( )

( ) ( )

div 0

0

0

D D

D D

 =
 ⋅ + ⋅ =
 ⋅ + ⋅ =

L u

t L u t L u

s L u s L u

C

C B

C B

, (B6) 

 

The above system comprises of elements which have different orders, in such cases, 

ellipticity can be defined in the general Douglis-Nirenberg sense, where terms of different 

orders may be included in the principal part. Note that such an approach could not be 

employed in the original system (52), since all elements of the original operator qnL  were of 

the fourth-order.  

According to the Douglis-Nirenberg definition of ellipticity, a system is elliptic if 

there exist integer weights µξ  and νζ  for which ( )deg qnL µ νξ ζ≤ +  and ( )( )Pdet 0qnl i ≠k  for 

all 3∈k   with 0≠k . The principal part P
qnl  consists of all those terms which have order 

equal to µ νξ ζ+ . Note that this definition is equivalent to the standard one only when all µξ  

are equal.  

For the system at hand in Eq. (B6), the weights 1 3ξ = , 2 3 5ξ ξ= = , 1 2 3 0ζ ζ ζ= = =  

are assigned. The principal operator becomes 
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( )
( )
( )

( )

( )

( )

div 0

0

0

D

D

 =
 ⋅ =
 ⋅ =

L u

t L u

s L u

C

B

B

 . (B7) 

 

Further, the displacement vector is represented as u u uν τ σ= + +u n t s  in the orthonormal basis 

( ), ,n t s . The principal symbol matrix assumes now the following explicit form 

 

( )

( ) ( ) ( )

P 3 2 ( ) 2 ( )

2 ( ) 2 ( )

0
0

i ik k k
k k

 ⋅ ⋅ ⋅
 = − ⋅ − ⋅ 
 − ⋅ − ⋅ 

n A n n A t n A s
k t A t t A s

s A t s A s

C C C

B B

B B

l , (B8) 

 

where k=k n . Moreover, taking into account that ( ) =A n 0B , the minor determinant 11M  of 

the above matrix can be equivalently written as 4
11 2 3M k λ λ= . Therefore, the determinant of 

the principal symbol finally becomes 

 
P 13

2 3det ik ντ λ λ= −l . (B9) 

 

The condition of ellipticity (E) for a constrained Cosserat material is that the determinant of 

the principal symbol is different from zero, which reduces to the same conditions provided by 

Eqs. (63) and Eqs. (B1). It can be therefore stated that the couple-stress operator is elliptic in 

the more general Douglis-Nirenberg sense. 
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