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Abstract 

This study investigates how students in England and Shanghai understand linear 

function. Understanding is defined theoretically in terms of five hierarchical levels: 

Dependent Relationship; Connecting Representations; Property Noticing; Object 

Analysis; and Inventising. A pilot study instrument presented a set of problems to 

both cohorts, showing that the English cohort generally operated at the levels of 

Property Noticing and Object Analysis, whereas the Shanghai cohort reached the 

higher level of Inventising. The main study explored understanding levels and 

students’ errors within each cohort in detail, in order to gain insights into reasons 

for apparent differences. The instrument used in the main study included two 

overlapping items, which were the same for both cohorts, while others were pitched 

at levels of understanding revealed in the pilot. Analysis of students’ solutions 

revealed that the English students’ errors were manifested in a lack of basic skills 

including dealing with negative numbers, while the Shanghai students showed 

weaknesses in their ability to use graphs. The discussion highlights different views 

of understanding as a possible background reason for the contrasts observed. Errors 

and apparent difficulties suggest implications for teaching linear function in each 

context.  

Key words: abstraction, linear function, understanding. 

Introduction 

In July 2016, the Schools Minister Nick Gibb announced that £41 million of funding 

would be used to support English primary schools to adopt a ‘mastery approach’ to teaching 

mathematics (Department for Education, 2016). The notion of mastery comes from South 

East Asian countries whose consistent success in the Programme of International Student 

Assessment (PISA) has been attributed to this method of teaching mathematics (Department 
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for Education, 2014b). Mastery teaching is reported to develop a much deeper understanding 

of mathematics, procedural fluency and the use of mathematics language (Boylan et al., 

2016). Implementing the mastery approach has been suggested for all English primary and 

secondary school classrooms by the National Centre for Excellence in Teaching Mathematics 

(NCETM). However, Elliott (2014) argues that attempts to emulate the classroom practices 

of educationally successful areas such as Shanghai are unrealistic, as these so-called effective 

approaches are rooted in their respective cultures, making them hard to integrate into a 

Western context. In order to examine how to adapt rather than simply adopt these 

approaches, it is worth stepping back to examine the existing strengths and weaknesses of 

students’ mathematical understanding in different contexts. There is a lack of research that 

looks at students’ mathematical understanding in the different education contexts of England 

and Far Eastern countries, one recent exception being Li's (2014) analysis of 12-13 year-old 

English and Taiwanese students’ performance in fraction addition, examining conceptual and 

procedural knowledge. This study adds to our understanding by exploring how students in 

Shanghai and England understand linear function and the difficulties that they might face in 

developing their understanding of this concept further.  

Algebra has been regarded as “the most important gatekeeper in mathematics” (Cai, 

Ng, & Moyer, 2011, p. 26). From the late 1980s, the emphasis of algebra research has moved 

towards the study of function (Kieran, 2006), the key topic in secondary school mathematics 

(Brenner et al., 1997; Llinares, 2000; Watson, Jones, & Pratt, 2013). Reviewing curricula in 

England and Shanghai, namely England’s Key Stage 4 (KS4) national curriculum 

(Department for Education, 2014a) and the Shanghai local curriculum (Shanghai City 

Education Committee, 2004), we found that there are four common types of function covered 

in the curricula: reciprocal function, linear function, quadratic function and trigonometric 

function. In this study, we focus on the topic of linear function. 
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Literature review 

Views of understanding in Western and Eastern contexts 

Before looking at linear function specifically, we examine how understanding in 

mathematics is conceptualised in Western and Eastern educational contexts. Learning with 

understanding has become a crucial issue within the mathematics education community, and 

numerous mathematics educators have explored definitions of understanding (Hiebert & 

Carpenter, 1992; Newton, 2000;  Sierpinska, 1990; Skemp, 1976). Skemp (1976) defined 

understanding in terms of two types: instrumental understanding and relational 

understanding. Instrumental understanding means that one can apply rules, but be unaware of 

the reason why the rules work. Relational understanding occurs when an individual knows 

both ‘what’ and ‘why’. Applying these ideas to teaching secondary mathematics, Watson 

(2003) proposed four forms of understanding based on Skemp’s work: instrumental and 

procedural understanding; contextual understanding; relational understanding; and 

transformable, generalised and abstract understanding as a higher level of abstraction.  

Skemp’s work has profoundly influenced Chinese mathematics education (Bao & 

Zhou, 2009). For example, H. Zhang (2006) proposed three types of understanding: 

operational understanding; relational understanding; and migratory understanding. The first 

two are similar to Skemp’s instrumental understanding and relational understanding. 

Migratory understanding refers to the use of existing mathematical methods and ideas in 

novel situations. Among these different types, not only is there overlap between the Western 

and Eastern views, but also important differences emerge as well. For example, D. Zhang and 

Yu (2013) note that in the case of fraction addition, using a visual approach to solve a 

problem is regarded as understanding in the West, while in China this would not be 

considered as demonstrating the required level of understanding, due to the longer time spent 

than using the algebraic approach. D. Zhang and Yu (2013) report an underlying belief 
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among Eastern educationalists that the visual approach facilitates understanding and students 

should demonstrate understanding without this facility, namely by using approaches that are 

more abstract. This implies that what counts as understanding differs somewhat between 

Eastern and Western cultures, advocating visual representations in the West, and abstract 

symbolic approaches in China.  

These differences take place within contrasting education cultures. The dominance of 

constructivism in Western countries has laid the foundation for a learner-centred teaching 

approach, in which students construct their knowledge through acculturation and interaction 

with their teachers and each other. In contrast, Chu and Choi (2011, p. 267) suggest that 

Chinese culture tends towards a horizontal collectivism where development “focus[es] on 

close bonding with great influence on attitudes, norms, and behaviours”. This kind of 

bonding has certainly facilitated whole-classroom instruction within large classes, while a 

focus on harmony aims to balance opposing views of mathematics, for example “the 

application of Maths and the formal nature of Maths” (Zheng, 2006, p. 385). A unified 

syllabus and compulsory textbooks pay great attention to the systematic nature of 

mathematics and the rigours of knowledge (Xu, 2013). The first aim of mathematical study is 

to gain the three basics to master the topic: basic knowledge; basic skill; and basic idea and 

method (Shanghai City Education Committee, 2004, p. 32). That is, learning mathematics 

includes three aspects: the concept; the skills involved in grasping that concept; and the idea 

and method linked to other concepts. Thus, while Western mathematics education emphasises 

students’ thinking, communicating, and their individual learning trajectories, Chinese 

mathematics education focuses on how to guide students to explore the whole structure of the 

knowledge. This study probes how these differing views and assumptions of understanding 

are embodied by students through their different stages of understanding development in the 

case of linear function. 
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Views of abstraction  

Abstraction describes the processes of emergence which construct students’ “new 

knowledge, taking into account the social, physical, and historical context in which these 

processes occur” (Dreyfus, 2006, p. 79). Schwarz et al. (2009) proposed the Recognizing, 

Building, and Constructing (RBC) model of abstraction: recognizing previous constructs, 

building the new construction, and consolidating the new constructions to become part of the 

knowledge. This theory takes a sociocultural view, where abstraction is considered in the 

context of mathematical curricula, and their historical and social role. Thus abstraction is not 

a standard process, but would “strongly depend on the personal history of the participants in 

the activity of abstraction and on artefacts available to the participants” (Schwarz et al. 2009, 

p. 20). This suggests that the process of abstraction could involve different approaches 

depending on the context. In this study we drew on this view of abstraction and its 

implications for how a mathematical topic is presented to students in England and Shanghai 

in order to design the instruments used in the study.  

Sfard (1991) argued that the concept of function has two aspects, operational and 

structural, in line with the dual nature of mathematical concepts (process and structural). She 

proposed a three-stage model of concept development: “interiorization, condensation, and 

reification” (Sfard, 1991, p. 18). In terms of function, engaging with the function machine 

enables students to acquire variables and formulae via interiorization. At the second stage, 

students focus on the relationship of input-output rather than actually undertaking the 

operations. This relationship also contains translations between different representations. 

These two stages lead to qualitative changes in the last stage, which allow students to probe 

into certain properties of functions or to solve equations with parameters, referred to as 

reification. 
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The two contexts in this study involve differing views of visual versus algebraic 

understanding. Thus we note here that Breidenbach, Dubinsky, Hawks, and Nichols (1992, p. 

279) pointed out that students normally fail to construct processes in their minds for the 

concept of function and suggested that students should be “de-encapsulating the objects and 

representing these processes”. In terms of process, Schwartz and Yerushalmy (1992, p. 263) 

argued that symbolic representation could effectively lead students to make sense of the 

“process” nature of function, while graphical representation would result in the “entity” 

nature of the function, i.e. the shape. Furthermore, Sfard and Linchevski (1994) argued that 

function tied the arithmetical processes (primary processes) and formal algebraic 

manipulations (secondary processes) together, and that both related to relational 

understanding. Therefore, this study also examines how the different abstract processes 

towards constructing the concept of function influence students’ understanding development.  

A general model of understanding function 

The development of understanding of function has been modelled in a number of 

ways proposed by Western and Eastern researchers. Sajka's (2003) model is concerned with 

the initial conceptualization of function, while models by Hitt (1998), DeMarois and Tall 

(1996), and Zachariades, Christou, and Papageorgiou (2002) mainly examine how to handle 

representations. A further model proposed by Ronda (2009) specifically pays attention to one 

type of representation, the algebraic expression. East Asian researchers Zeng (2002) and Jia 

(2004) have proposed two models depicting Shanghai secondary school students’ cognitive 

processes. In this study we draw on a general model of understanding function based on these 

seven models. The general model categorises the growth of students’ understanding of linear 

function into five levels: Dependent Relationship; Connecting Representations; Property 

Noticing; Object Analysis; and Inventising.  



 

8 

 

Level 1, Dependent Relationship, involves identifying three main representations for 

the concept of linear function, namely algebraic expression/equation, graphic representation, 

and tabular representation. O’Callaghan (1998) provides an example of the development of 

the dependent relationship in terms of tabular representation, shown in Table 1, which gives 

the value (V) in dollars of a car in the years (t) after purchase. Students have to find out the 

dependent relationship between two variables first in order to solve the value of V.  

Table 1 An example of Level 1 taken from O’Callaghan (1998) 

T V 

0 16800 

2 13600 

4 10400 

6 7200 

10 ? 

Level 2, the Connecting Representations level, involves the ability to translate from 

one representation to another. For example, when given the algebraic expression y = 2x + 1, 

students can draw the graph, which is a straight line, and connect it to a table of ordered pairs 

such as (0,1) and (−
1

2
, 0). 

At Level 3, the Property Noticing level, students acquire an understanding of 

properties such as gradient and y-intercept. For example, with the standard form of linear 

function y = ax + b (a ≠ 0), the y-intercept is the point at which the graph meets the y-axis.  

At this level, students are required to identify the gradient or y-intercept by rearranging 

algebraic expressions such as 2𝑥 + 𝑦 + 1 = 0. In terms of transformation of function, Sfard 

(1991, p.4) suggested that the transformation, such as symmetry, can be considered as “a 

static property of geometric form”. Therefore, transformation such as translation and 

symmetry is at this level.  

At Level 4, the Object Analysis level, students achieve a structural view of function 

and regard function as a whole concept. In the case of linear function, students’ 
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understanding will move away from looking at coordinates or individual properties, to 

considering “the entire function”, e.g. period (Slavit, 1997, p. 264). For example, students are 

asked to investigate how the shape of the quadratic graph changes if the values of a, b and c 

within the algebraic expression of 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 change (Rayner, 2006, p. 379). This 

requires students to perceive the changing quadratic graphs as a whole rather than a point-to-

point view.  

At the final Level of Inventising, students have gained a fully structured 

understanding of function and can link this to other areas of mathematical knowledge. This is 

illustrated in Figure 1 by an example from the GCSE Mathematics for AQA Higher Student 

Book (Morrison, Smith, McLean, Horsman, & Asker, 2015, p. 560). Students are asked to 

work out the equation of a line passing through (2, 3), such that the four lines on the graph 

form a trapezium with its base passing through the origin.  

 

Figure 1. Level 5 example (from Morrison et al., 2015, p. 560)                

To conclude, the understanding of linear function starts with identifying the linear 

relationship between two variables in three ways: algebraic, graphic and tabular. Then, 

connections are built up among them focusing on two representations: the algebraic 

expression 𝑦 = 𝑚𝑥 + 𝑐 and the graph plotted in the Cartesian system. Furthermore, the 

graphic meaning of m and c is regarded as the properties of the linear graph. Once the 

connections between representations are consolidated further by mastering the properties, 
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understanding moves towards a structural view of linear function and later extends to link 

with other mathematical knowledge.  

Research questions 

In this study, we examined the understanding of linear function in English and 

Shanghai contexts by means of tests based on the above general model of understanding. The 

pilot study aimed to test the model and establish students’ levels of understanding in each 

context. In the main study, we explored the development of understanding further in each 

context, probing into the errors shown by each cohort within different levels. Thus our 

research questions were: 

1. Does the general model of understanding function fit with students’ understanding 

development?  

2. How well do students understand linear function in the English and Shanghai 

contexts? 

3. What main errors are evident in the understanding levels for each cohort?  

Methods 

Sample  

We considered two main factors in selecting comparable samples of students: the 

year/grade in which the topic is taught according to the designated regional curriculum, and 

similar mathematics performance among participating schools (relative to their respective 

national cohorts). This means that firstly, sampling is content-based in this study instead of 

grade- or age- focused. Teaching of linear function/graphs takes place in Years 8, 9 and 10 in 

England and in Grade 8 in Shanghai. Therefore, Year 10 students in England (approx. age 

15) were chosen, as they should have learned all of the linear function content required by the 

KS4 national curriculum. In turn, Grade 8 students in Shanghai (approx. age 14) were 
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selected. It is acknowledged, however, that as a result, there is a one-year age difference 

between the two samples.  

Secondly, the English participants came from three state schools based in the 

Northeast of England. According to the National Schools League Table for GCSE (The 

General Certificate of Secondary Education) mathematics in 2012, all three schools were 

performing within the top 30% level in England. Although there is no league table released in 

Shanghai, three similar performing (i.e. around the top 30% level) state schools were chosen 

in accordance with the mathematics league table at district level in the second mock exam 

test for upper secondary school entrance examination (equivalent to GCSE) in 2012 

mathematics. These schools are all located in the Pudong District, the largest district in 

Shanghai.  

In addition, we should note that education systems are influenced by cultural factors 

(Alexander, 2012), and the focus in England is on individual needs and abilities (Osborn, 

Broadfoot, McNess, & Raven, 2003). Hence, students are grouped by ability in many 

subjects; in mathematics, these ability groupings determine whether students are taught at 

Higher Level or Foundation Level. In contrast, classes in Shanghai are mixed-ability.   

Ninety-six English students and 292 Shanghai students from the sample schools 

participated in a pilot study. Among the 96 English students, 45 students were in the top set 

of Higher Level students, while 51 students came from the top set of students taking 

Foundation Level. The sample for the main study included 403 Higher Level students from 

the English sample schools and 907 students from the Shanghai sample schools. Only Higher 

Level students were included in the English sample for the main study, due to concerns from 

the schools involved regarding the difficulty of the tests for the Foundation Level students. It 

should be borne in mind then that the English sample in the main study relates only to Higher 

Level students. These were convenience samples in both cases, thus presenting a further 
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restriction, in terms of generalising the findings to all schools in the two regions. Therefore, 

the intention of this research is to show possible examples of students’ understanding of 

linear function and provide possible suggestions for how the understanding of linear function 

in each country may be enhanced. 

Instrument  

Test design  

The pilot study. The purpose of the pilot study was to identify the levels of 

understanding of linear function displayed by the students in each context. The test consisted 

of nine questions covering all the levels of understanding of linear function from the general 

model. All of the questions were selected either from standardized tests for GCSE or from the 

final examinations for Grade 8 in the Pudong District, Shanghai. Appendix I shows the 

English language version of the nine questions used during the pilot study.  

The main study. Based on the pilot study results, the main study tests were designed 

to probe into the most common errors related to the understanding levels in each context (see 

the results section of the main study for details). Thus the tests were designed to (1) meet the 

requirements of each local curriculum instead of just looking at common areas of knowledge 

as in the pilot study; and (2) fit the format of questions that students are familiar with in each 

context. Thus, apart from two questions that were the same in both contexts, the remaining 

questions were not identical in terms of knowledge background, but corresponded to the 

targeted understanding levels in each context. Furthermore, the curricula and textbooks used 

in England and Shanghai treat linear graphs differently (Y. Wang et al., 2015), and questions 

were presented in ways which matched how students had learnt the topic. Consequently, one 

of the two items which were common to both tests, was presented with a graph in the English 

test (Question 5), and without it in the Shanghai test (Question 2). Thus, with the exception of 

one question which was identical in both regions (Question 3 in English and Question 1 in 
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Shanghai test), different questions were applied to the different cohorts in the main study. 

The aim was to explore in more detail the errors made by each group of students, rather than 

make a direct comparison between the two cohorts. 

For each group, the test featured five questions. Each test used three questions from 

the pilot study. Table 2 summarises the distribution of questions at each understanding level. 

Table 2 Number of questions at each Understanding Level in the main study 

 Level 3 Level 4 Level 5 

English Higher Level test 3 1 1 

Shanghai test 1 2 2 

 

The additional questions (over and above those from the pilot study) came from 

different sources. In terms of the test for English students, the two additional questions in the 

main study came from the Higher level textbooks used by the sample schools. The reason for 

choosing these two new examples was that the types of questions from the corresponding 

exam-board recommended textbook would resemble their daily class activities. Therefore, 

students might be more comfortable with the expression of these questions. Appendix II 

shows the test used for English Higher Level students.  

The two additional questions for the Shanghai students were selected from previous 

assessments instead of textbooks, because the Chinese classroom was normally based on 

textbooks whose examples or exercises students would be very familiar with. These previous 

final examinations of Grade 8 pupils were compulsorily used by all state schools in the 

Pudong District to monitor the progress in the whole district. Question selection was based on 

two criteria: (1) questions requiring higher levels of understanding (Level 4 and Level 5), and 

(2) having different mathematics knowledge linked with linear function in terms of Level 5. 

The reliability and validity of the questions from these previous formal examinations had 
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been previously checked during the usual standardisation process. These examinations, 

designed by experts, were well regarded by the education authority and schools and 

considered suitable for meeting the requirements of the curriculum. Appendix III shows the 

test for Shanghai students in the bilingual language version. We re-emphasise here that the 

aim in this second stage of the study was not to compare the two cohorts (although on the 

common questions this was done), but rather to interrogate in more depth the challenges 

faced by the two different cohorts at different levels of understanding. Thus, different 

questions were needed for the two cohorts in this second part of the study. 

Validity of the tests 

Validity is defined as “the extent to which measures and research findings provide 

accurate representation of the things they are supposed to be describing” (Easterby-Smith, 

Thorpe, & Jackson, 2012, p. 347). In this study, two types of validity are addressed: construct 

validity and cultural validity.  

Firstly, the theoretical model based on previous research is used to establish levels of 

students’ understanding. The instruments not only match the curricula in both countries (Y. 

Wang, 2015), but are also designed to assess particular levels of understanding. Key words 

were used to establish question levels in a process similar to the corresponding textbook 

analysis carried out in the larger study of which this is a part  (see Y. Wang et al., 2015): 

Table 3 Key words at each level 

Key words Understanding Level 

Draw Level 2 Connecting Representations 

Intercept, Gradient Level 3 Property Noticing 

Parallel Level 4 Object Analysis 

Linking to other Mathematics areas, e.g. 

area of triangle 

Level 5 Inventising 

 



 

15 

 

Cultural validity is a particular concern in cross-cultural research in order to ensure 

sensitivity to different cultural contexts. Here, cultural factors are embedded in how the 

instrument fits with both the levels of understanding in each context and their respective 

curriculum requirements. Firstly, the model of function understanding used to classify 

students’ understanding was developed from models proposed by both Western and Chinese 

educators. Secondly, the presentation of the topic in the tests was based on worked examples 

in textbooks studied in the larger project of which the current study is a part. Thirdly, the tests 

in both the pilot and main study were modified in response to discussion with Heads of 

Mathematics at the six participant schools, mainly in order to align question wording with 

normal expressions in each given context. 

Test reliability 

The pilot study was conducted one academic year before the main study, with the 

intention of covering the full range of levels of understanding of linear function as modelled 

above. Cronbach α values for the pilot test (see Appendix I) were 0.85 for the English sample 

and 0.89 for the Shanghai sample, meeting the criterion of values greater than 0.8 as 

indicative of reliability (Pallant, 2010). Analysis of the pilot tests indicated what changes 

were necessary for the main study. As described above, we designed different tests for the 

English cohort (see Appendix II) and the Shanghai cohort (see Appendix III), with reliability 

indicated by Cronbach α values of  0.84 and 0.81 for the English Shanghai tests respectively.  

Response analysis 

Analysis of student performance involved two stages. At the first stage, answers were 

coded either correct (mark 1) or incorrect (mark 0). Each question including sub-questions in 

all the tests had a unique correct answer. To receive a score of 1, the answer and the solution 

process needed to be exactly right. Otherwise, the response was scored as 0 including leaving 

the answer blank.  Thus, students were able to score a maximum of 17 in the pilot test. The 
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main study had a full score of 6 for England and 9 for Shanghai. This generated a percentage 

correct score for each student in both the pilot and main study tests.  

A second stage of analysis in the main study involved categorising the errors in 

incorrect answers qualitatively. Initially, the incorrect answers were categorised in terms of 

the similar errors identified. The blank answer was noted as an ‘unclear (why no answer)’ 

category. The emerging categories were then reexamined and recombined if deemed 

reasonable. The analysis finally arrived at 5 categories comprising all of the answers: (1) 

Correct; (2) Unclear (why no answer); (3) Non-conceptual understanding shown; (4) Partly 

conceptual understanding, to indicate that students got the part of the understanding right, for 

example in terms of gradient, students applied 
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑛 𝑥

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑦
 instead of 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑦

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥
; and (5) Wrong calculation, to indicate that students understood the 

concept but due to the incorrect calculation so that they cannot get the right answer. These 

final categories were then used to calculate the percentages of students making each type of 

error, thus identifying common categories of errors made by each cohort. In our findings, we 

present one dominant error in each cohort.   

Results  

The pilot study 

General quantitative results 

In general, the Shanghai cohort of students far outperformed the English cohort in the 

pilot study. Figures 2 and 3 show the distribution of scores for English and Shanghai 

students. On each graph, the horizontal scale shows the students’ scores in the test, and the 

vertical scale shows the frequency of each score. In the English cohort, the scores were 

between 1 and 16, while in Shanghai the scores were between 0 and 17. Comparing Figure 2 
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with Figure 3 reveals that a large percentage of the Shanghai students (41%) achieved full 

marks of 17.  

                  

Figure 2. The English students’ performance in the pilot test    

 

Figure 3. The Shanghai students’ performance in the pilot test 

The mean score for the Shanghai students (M=14.8, SD=3.3) was much higher than 

their counterparts in England (M=7.1, SD=3.4). Before checking whether the difference in 

means was statistically significant, statistical analysis for normality was assessed through the 

examination of the values of the Kolmogorov-Smirnov (K-S) statistic. For the K-S test a 
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significant result (ρ < .001) indicated non-normality. Therefore, the Mann-Whitney U test 

was used for independent samples. Results revealed that there was a significant difference 

between England and Shanghai (z (388) = -12.867, p=0.000, two-tailed). The effect size was 

calculated as γ = 0.65 which showed a large effect, using Cohen (1988)’s criteria of “0.5 = 

large effect” (Pallant, 2010, p. 230). 

Detailed results 

Table 4 summarises the percentage of students who answered each question correctly 

focusing on a certain level of understanding linear function. In each item, the Shanghai 

students outperformed the English students. The results also indicated that a majority of the 

English students were struggling to understand properties such as gradient and intercept 

(Level 3), while few if any Shanghai students had difficulty with questions at Level 4 or 

below.  

Table 4 Results from the pilot study 
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Levels of the 

model 
The basic knowledge assessed in each question 

Percentage of 

students answering 

correctly 

England Shanghai 

Level 2 

Connecting 

Representations 

Question 1a From an algebraic expression to a 

table 
91.7% 96.9% 

Question 1b From tabular to graphic 

representation 
47.9% 79.5% 

 Question 2 To generate algebraic expression 

using two pairs of coordinate (presented by 

word question) 

51% 88.7% 

Average 63.5% 88.4% 

Level 3 Property 

Noticing 

Question 3 Intercept from the algebraic 

expression 
20.8% 83.9% 

Question 4a Gradient in a graph (positive) 28.1% 77.7% 

Question 4b Gradient in a graph (negative) 15.6% 76.7% 

Question . 7 Transformation of the graph 34.4% 91.4% 

Average 24.7% 82.4% 

Level 4 Object 

Analysis 

Question 5 Parallel and intercept presented in a 

graphic approach 
5.2% 84.2% 

Question 6 Parallel and intercept in an algebraic 

form  
31.3% 91.9% 

Question 8 Parallel and intercept presented in 

an algebraic form, as intercept has been pointed 

out 

28.1% 94.5% 

Average 21.5% 89.9% 



 

20 

 

 

 

 

 

  

 

 

At Level 4 in particular, Question 5 and Question 6 used different representations to 

present the same concepts. The results illustrated that the English students performed very 

differently when the parallel was presented graphically (No. 5), as opposed to a word 

problem (No.6). Shanghai students did not show this preference.  

Level 3 included two properties, the intercept and gradient. Within the intercept 

question, only 20.8% of English students could correctly simplify the linear function 𝑦 =

2(𝑥 − 1) + 5 into 𝑦 = 2𝑥 + 3, and then identify the intercept as 3. Their primary error was 

classifying 5 as the intercept. The reason might either stem from the students’ lack of 

numeracy skills which would have enabled them to reduce the linear function to the standard 

form, or that they did not understand the meaning of this property.  

In terms of the concept of gradient, the English students performed better with a 

positive value of gradient than a negative one. The typical English student solution was to 

draw a right-angle triangle in the graph and then calculate the ratio of the two right-angle 

sides. This approach conformed to the graphical presentation of gradient in the English 

textbooks. This solution process, however, differed from their counterparts’ method in 

Shanghai. The Shanghai sample showed that the students achieved far more correct answers 

Level 5 

Inventising 

Question 9 Relating linear function with 

geometry knowledge 
1% 58.2% 



 

21 

 

for the positive and negative values of gradient using an algebraic method. All of the 

Shanghai students solved the problem by constructing simultaneous equations, although some 

of them made a few computing mistakes. 

Based on the findings from the pilot study, some modifications to the tests were made 

to ensure appropriate coverage in terms of levels of difficulty for the students in the main 

study test. That is, both cohorts would be challenged with questions from Level 3 to Level 5. 

In terms of the English instrument, the question in Level 5 was modified in line with the type 

of question and presentation they might be more familiar with. In terms of the Shanghai 

instrument, Level 4 questions were used to examine the property of increasing and 

decreasing, which is required by the Shanghai curriculum but not by the English one. The 

selection of these different questions for the two cohorts considered the width of the 

curriculum at these understanding levels.  

Finally, the validity of the theoretical model of understanding and the questions used 

were assessed in both contexts. The results shown in Table 4 show a general progression in 

the levels in terms of difficulty (i.e. percentages of students correctly answering the questions 

within the levels), except that Level 3 and 4 were difficult to separate for both cohorts with 

students scoring slightly higher on the Level 4 questions compared to Level 3. This illustrates 

a potential difficulty with the validity of the questions for these levels, and is an issue that 

needs to be examined in future research. However, this difficulty did not affect the 

conclusions drawn for each cohort in the pilot study, as most of the English students’ 

understanding was at Level 2, and almost all the Shanghai students answered the Levels 2, 3 

and 4 questions correctly. This issue also did not affect our subsequent focus in the main 

study on students’ errors.  
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The main study 

A related comparative study of textbooks (Y. Wang et al., 2015) showed that English 

textbooks present more graphs to help students understand the topic, suggesting that English 

students would be more comfortable dealing with questions aided by graphs. Therefore, in 

the main part of the present study, the questions in the English tests all included a graph, 

while word problems dominated the Shanghai test. We present the main study results for 

English Higher Level students (see Table 5) and Shanghai students (see Table 6) separately.  

 

English Higher Level students’ understanding  

Table 5 shows the percentage distributions of the English Higher Level students’ 

understanding. The English Higher level student test started with the translation from a 

graphic representation to an algebraic expression. The method used by the English students, 

however, involved the graphical meaning of gradient rather than the algebraic method to find 

the value of the gradient. This question was located at Level 3 for the English sample.  

Table 5 The English students’ performance compared with the pilot study 

The model of 

understanding 

function 

The basic knowledge requirement 
Percentage of students 

answering correctly 

Level 3 

 

Question 1 From a graphic representation 

to an algebraic expression (New question) 
44.4% 

Question 2a Gradient (positive) 36.7% (28.1% in pilot) 

Question 2b Gradient(negative) 16.4% (15.6% in pilot) 

Question 5. Transformation 40.4% (34.4% in pilot) 

Average 34.5%  

Level 4 
Question 3 Parallel and intercept in a word 

problem 
32% (31.3% in pilot) 
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Average 32% 

Level 5 
Question 4 connect to other mathematics 

knowledge, midpoint (New question) 
29% 

Looking further at the understanding of gradient, the English students were more 

successful in identifying a positive gradient in line with the findings of the pilot study. The 

correct percentage for finding the positive gradient (36.7%, Category 1 Correct) was over 

double than those discerning the negative one (16.4%). These students who correctly got the 

positive gradient knew how to calculate the gradient, but were less successful in 

understanding how to deal with the two conditions: the positive and the negative. In the case 

of the positive gradient question, four categories of response were found but not the ‘Wrong 

correction’ Category. 28.6% of students left it blank (Category 2) including one student who 

commented that they ‘cannot remember how to do it’. The rest of the pupils (34.7%) showed 

non-conceptual understanding (Category 3) of gradient, with Figure 4 revealing a typical 

answer. The process and correct answer for gradient BC should be got as 
6−1

6−4
= 2.5. In Figure 

4, the answer ‘3’ cannot match with operation of the listed coordinates, (4,1), (5, 3.5), (6,6), 

and the answer of the gradient of AC was left blank. It suggested that the student knew the 

gradient linked with coordinates, but did not have conceptual understanding of how to. In 

terms of Category 4 Partly conceptual understanding, 3% of students put the equation for the 

gradient the opposite way round ( 
∆𝑥

∆𝑦
 instead of  

Δ𝑦

Δ𝑥
).  

 

Figure 4. An example showing difficulties in the understanding of gradient  
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At understanding Level 3, the English students showed their ability to deal with non-

routine problems (Question 5). They had not tackled the transformation topic in their school 

studies yet according to their Heads of Mathematics, but nearly half of the students correctly 

answered this question. It shows that the students have the ability to reach Level 3 

understanding, while they do not master the concept of gradient.  

The question at Level 5 (Question 4) required students to make sense of the meaning 

of midpoint and perpendicular to form the algebraic expression of a new straight line; this 

question came from their textbook. The results showed that the percentage of students 

answering correctly rate was 29%, considerably higher than the 1% scoring for the equivalent 

question in the pilot study, even though it accessed the same level of understanding. It 

suggests that using students’ familiar expressions to design the instrument can get results that 

are more realistic. Meanwhile, it verified the cultural validity in this study.  

In conclusion, one third of the Higher Level students dealt successfully with complex 

problems and achieved the more abstract levels. The dominant errors shown in the English 

case was the concept of gradient at Level 3, which was also an important step for successfully 

solving complex problems at the higher levels of understanding. Once again, as in the pilot 

study, the students’ progression at Level 3 (average 34.5%) and Level 4 (average 32%) could 

not be clearly distinguished from each other. 

Shanghai students’ understanding  

The Shanghai students demonstrated higher performance in all the common questions. 

A question related to the global property of monotonicity required by the Shanghai 

curriculum (Shanghai City Education Committee, 2004) was added to the Shanghai test, and 

most of the students solved it successfully in the test. Generally speaking the Shanghai 

students showed few errors in linear function, consistent with the results from the pilot study.  
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Table 6 reveals their performance in each question. The majority of the Shanghai 

students could achieve at least an understanding of Level 4 Object Analysis. Almost all of the 

Shanghai students showed a solid basic understanding in the case of linear function. 

Table 6 The Shanghai students’ performance compared with the pilot study 

The model of 

understanding 

function 

The basic knowledge required 
Percentage of students 

answering correctly 

Level 3 Question.2 Transformation 95.8% (91.4% in pilot) 

Level 4 

 

Question 1 Parallel and intercept in 

word problem 

93.2% 

(84.2% in pilot) 

Question 3 Monotonicity (new 

question) 
88.8% 

 Average 91% 

Level 5 

 

Question 4 Related with geometry 

knowledge 

60.2% 

(58.2% in pilot) 

Question 5 Related with algebraic 

knowledge (new question) 
45.4% 

 Average 52.8% 

 

Two questions related to Level 5, one linking to the area of a triangle using geometry 

knowledge, and another linking to the reciprocal function as algebraic knowledge. The 

students’ performance indicated that they had mastered knowledge of linear function itself, 

but did show some difficulties in linking linear function with other mathematical knowledge, 

for example the meaning of quadrant and area of triangle in Cartesian system. 

In terms of the second question at Level 5, linking with the reciprocal function, the 

students were not given an existing graph. Most of the students (73.5%) were able to form the 

correct simultaneous equations in order to calculate points of intersection of the reciprocal 

function and the linear function. The answer led to two potential coordinates, but with the 
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requirement that the point must be in the third quadrant. Almost all of students who got the 

wrong answer were unsuccessful only at the last step – picking out the right one between 

these two points. It is reasonable to assume that none of the students attempted to draw the 

graph in solving this question, since if they did, they might have been better able to discern 

the particular coordinates required in the third quadrant. The main errors in their 

understanding were, therefore, seldom related to the concept of linear function or finding out 

the intersection for two types of functions. Instead, their primary obstacle was their failure to 

read the requirements of the question carefully enough, and/or an over-reliance on the 

algebraic method. This implies that they separated the graphic and symbolic representations, 

by looking at the coordinates in different quadrants, which were relevant to the Cartesian 

plane. It also indicated that while the strength of the Shanghai students was their consolidated 

basic knowledge and procedural understanding, a weakness was a failure to use visual 

representation or actually draw the graph to help them connect the other knowledge with 

linear function.  

Discussion 

In this study, we looked at students’ understanding of a particular topic, linear 

function, in two different educational contexts. Firstly, with respect to Research Question 1, 

findings from the pilot and main study for both cohorts have shown that the percentages of 

correct solutions at Level 3 and Level 4 were very close. This may call into question the 

validity of categorising these two levels, due to the difficulty in separating them. The 

progress of understanding does not move linearly when it occurs (Newton, 2000), but is 

spiral (Sierpinska, 1990), or even folding back (Pirie & Kieren, 1994) when building internal 

representations. Levels of understanding are determined by the quantity of connections from 

one idea to another, and whether connections are weak or strong (Hiebert & Carpenter, 

1992). To verify how separate these two levels needs further research. In the following 
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discussion, we deal with Level 3 and Level 4 together when considering the second and third 

research questions for the study.  

Secondly, with respect to Research Question 2 of how well the Year 10 English 

Higher Level students and the Grade 8 Shanghai students understood linear function, findings 

from the pilot study revealed that in general, the English students showed a more varying 

distribution of understanding levels, while the Shanghai students’ performance was more 

unified at the highest levels of understanding.  

Thirdly, with respect to Research Question 3, results from the main study suggested 

that predominant errors concerned the meaning of gradient, especially involving dealing with 

negative number for English students, and linking the algebraic method with the graphic 

representation for Shanghai students (also called the combination of symbolic and graphic, 

discussed below concerning the holistic view of understanding in China). The essence of 

Chinese mathematics education emphasises a solid foundation of basic knowledge with 

proficient numeracy skills before and while learning a new topic (Xu, 2010). The findings 

from the Shanghai students confirmed their consolidated basic knowledge and skills. 

Understanding gradient 

In the case of understanding gradient, the Shanghai students showed a more complete 

understanding of calculating gradients while the English students struggled with it. The 

underlying reason can be traced back to how students might be taught, since the two cohorts 

showed contrasting approaches, namely the algebraic approach being used in Shanghai and 

the graphic approach in England.  

The meaning of gradient, especially in the negative case, seemed to be difficult for the 

English Higher Level students. This may be partly derived from the textbook definition 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑦

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑥
,  explained as ‘along the corridor, and up the stairs’. The meaning of 

‘differences’ does not indicate in which circumstance the gradient would be negative. It was 
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also observed in the broader study from classroom observations in English schools that most 

of the students went astray due to the meaning of ‘differences’ as interpreted in the rule. For 

example, two points (-2, 2) and (1, 4) were provided by the teacher to calculate the gradient. 

The most common incorrect solution for the pupils in the class was 
4−2

−2−1
 instead of the 

correct solution of  
4−2

1−(−2)
. The underlying reason may be that students avoid the subtraction 

of negative numbers.  

Algebraic approach and graphic approach in understanding 

The particular approaches used at each level suggest that the algebraic method may 

aid the development of higher levels of understanding in the Shanghai context. The Shanghai 

students mastered the symbolic method with the generation of simultaneous linear equations 

to find gradient. This resonates with Li (2014)’s comparative research between Taiwan and 

England, whose results confirmed the advantages of the symbolic approach used by 

Taiwanese students in terms of understanding fractions. Preference for the symbolic approach 

shown in the Shanghai tests helps the Shanghai students achieve the better performance. 

However, at Level 5, the Shanghai students still relied heavily on the algebraic method in 

manipulating algebraic expressions, which also turned out to be one of their weaknesses.  

In relation to these ideas, it is also worth exploring further the prevailing views 

towards approaches to understanding mathematics in the two regions. In England, the first 

overall aim of KS1 to KS4 is to “become fluent in the fundamentals of mathematics, 

including through varied and frequent practice with increasingly complex problems over 

time, so that pupils develop conceptual understanding and the ability to recall and apply 

knowledge rapidly and accurately” (Department for Education, 2013, p. 3). It essentially 

indicates the importance of conceptual understanding in mathematics. Conceptual 

understanding refers to “an integrated and functional grasp” of isolated mathematical ideas 

and methods (Kilpatrick, Swafford, & Findell, 2001, p. 118). Within the English curriculum, 
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the development of understanding mathematics is built on the use of graphical 

representations. For example, in terms of linear function, both the KS3 and KS4 curricula 

require students to “find approximate solutions of simultaneous linear equations” by using 

the graphical representation of linear function (Department for Education, 2013, p. 7; 2014, 

p. 8). That is, the graphical representation extends the knowledge of linear equation to the 

new knowledge, such as solving simultaneous linear equations. England’s curricula advocate 

that using visual representations (through the use of graphs) aids the understanding of 

mathematics knowledge. 

Conversely, in the Shanghai case, the different types of equations are the foundations 

of learning function, developed through algebraic expressions. Here, basic skills, as one of 

the three basics highlighted in the literature review, consist of (1) calculation, (2) plotting, (3) 

reasoning; (4) communication including speaking, listening and writing; and (5) data 

handling including using calculators for the lower secondary school stages (Shanghai City 

Education Committee, 2004, p. 35). The development of mathematical knowledge means not 

only the connection of related mathematical concepts, for example between concepts of linear 

equations 𝑎𝑥 + 𝑏 = 0 (𝑎 ≠ 0) and linear function 𝑦 = 𝑎𝑥 + 𝑏 (𝑎 ≠ 0) through symbolic 

ways of representation, but also the consistent methods or strategies used among the topics. 

The development of mathematics understanding towards proficiency or mastery approach is 

therefore detailed in the Shanghai context.  

The argue of mastery or proficiency has been already discussed in the Western 

context. According to Kilpatrick (2001), Mathematical proficiency has five strands: (1) 

conceptual understanding; (2) procedural fluency; (3) strategic competence; (4) adaptive 

reasoning; and (5) productive disposition. The first strand is in line with the views of the 

English curricula while these five strands also match with the basics in Shanghai. Procedural 

fluency corresponds to basic skills. Strategic competence and adaptive reasoning are relevant 
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to basic methods, as students have the capability to evaluate the question first, then to identify 

the appropriate strategy, and finally to defend their solution. The last strand, productive 

disposition, which describes students’ attitudes and beliefs towards and regarding 

mathematics emphasises individual students’ previous experiences in order to shape their 

own values. The common factor between mathematics proficiency and the basics is that they 

can be developed together. From this perspective, the view of understanding has broader and 

deeper elements in Shanghai. It suggests that the Eastern view of understanding, with the 

explicit emphasis on procedural understanding, might help students attain better 

mathematical performance, for example in the present case with linear function.  

Conclusion 

The findings from this study not only provide a better understanding of how students 

in different educational contexts understand mathematics, but also suggest implications for 

future practice and studies. Firstly, further research is necessary for how to distinguish Level  

4 from Level 3. Secondly, the purely algebraic approach appears to restrict Shanghai 

students’ understanding of the graph, while graphic approach towards gradient did not help 

students’ conceptual understanding. This suggests that teachers could provide both 

approaches for students to explain the meaning of gradient to enhance their relational 

understanding with the combination of instrumental understanding. Thirdly, the design of 

international assessments should consider the cultural validity. In this study, the expression of 

questions for each cohort heavily influenced the students’ performance. The English higher 

level students demonstrated more understanding at the highest level if the expression of the 

question was familiar for them. In terms of any assessment of cohorts of students from quite 

different contexts, the construction of questions should therefore consider ways which are 

familiar to students using “a wide array of mathematical tasks” as proposed by Cai (1995, p. 
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106). The further study can be done by exploring other key ideas in Mathematics at 

secondary level.   
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Appendix I The pilot study test  

Name:                    D.O.B. (DD/MM/YY):                        Circle a or b: a. Male     b. Female        

1. Complete this table for  𝑦 = 𝑥 + 1 

X -2  3 6 

Y  1   

                                                                                                                                    (4) 

 On the grid, draw the graph of 𝑦 = 𝑥 + 1 for x from -2 to 6. 

                                                                                            (1) 

(Total 5 marks) 

2. A straight line passes through the point (0, 2) and (-2, 0). Find the equation of this line.  

(Total 1 mark) 

3. Find the intercept of the straight line 𝑦 = 2(𝑥 − 1) + 5. 

(Total 1 mark) 

4. Find the gradients of BC and AC. 

 
(1 for each gradient, Total 2 marks) 

5. The diagram shows lines A and B. The equation of the line A is 𝑦 = 3𝑥 + 5. The straight line B is 

parallel to A. Find the value of p. 
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(Total 1 mark) 

6. A straight line passes through the point (0, 3) and is parallel to 𝑦 = −2𝑥 + 1. Find the equation of this 

straight line.  

(Total 1 mark) 

7. A straight line  (as seen below) will be translated upward 4 units. Find the equation of the new line． 

       

(Total 1 mark) 

8. A straight line is parallel to another straight line 𝑦 = 3𝑥 + 4. The intercept of this straight line is 3. Find 

the equation of this straight line.  

(Total 1 mark) 

9. A straight line 𝑦 = −𝑥 + 𝑏 passes through the point C (2, 4) and meets the x-axis at point A. Another 

straight line DE meets the x-axis at point D (18, 0). The straight lines DE and AC have the point of 

intersection E. Point E is located at the second quadrant.  

1) Find b.                                                                                                                                            (1) 

2) Find the coordinate of point A.                                                                                                      (1) 

3) Find the length of segment DA.                                                                                                     (1) 

4) If the area of triangle DAE is 72, find the coordinate of point E.                                                  (1) 

 

 

 

 

 

 

(Total 4 marks) 

 

 

 

O 

E 

C 

A D 
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Appendix II The main study test in England  

Birthday (DD/MM/YY):                  Circle a or b:  a  Male  b  Female   

1. Find the equation of the line shown in diagram. Show how you found your answer. 

 
(Total 1 mark) 

2. Find the gradients of BC and AC. 

 

(1 for each gradient, Total 2 marks) 
3. A straight line passes through the point (0, 3) and is parallel to 𝑦 = −2𝑥 + 1. Find the equation of this 

straight line.  

(Total 1 mark) 

4. A is the point (1, 5). B is the point (3, 3). Find the equation of the line perpendicular to AB and passing 

through the midpoint of AB.  

 
(Total 1 mark) 

5. A straight line  (as seen below) will be translated upward 4 units. Find the equation of the new line． 

 

(Total 1 mark) 
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Appendix III The main study test in Shanghai 

姓名(name):                                 班级(class)：                                  学号(Enrolled No.)： 

性别(Gender)：                                 出生年月日(Birth: YY/MM/DD): 

1. 一条直线经过点 (0,3) 并且平行于直线 𝑦 = −2𝑥 + 1. 求这条直线的表达式. 

(A straight line passes through the point (0, 3) and is parallel to 𝑦 = −2𝑥 + 1. Find the equation of this 

straight line.)  

(Total 1 mark) 

2. 直线 𝑦 = 2𝑥 + 1向上平移 4 个单位. 求平移后的直线表达式. 

(A straight line 𝑦 = 2𝑥 + 1 will be translated upward 4 units. Find the equation of the new line.)  

(Total 1 mark) 

3. 一次函数𝑦 = (𝑘 − 1)𝑥 + 𝑘中，y随着 x的增大而减小，求 k的取值范围. 

(Linear function 𝑦 = (𝑘 − 1)𝑥 + 𝑘, when the value of x increase, the value of y increases as well. Find out 

the range of k.) 

(Total 1 mark) 

4. 如图，在平面直角坐标系中，直线 AC: 𝑦 = −𝑥 + 𝑏 经过点 C（2,4），与 x轴相交于点 A，直线 DE

与 x轴交于点 D（18,0），直线 DE与直线 AC都经过点 E，且点 E在第二象限． 

（1）求 b;                                                             (1) 

（2）求点 A坐标；                                           (1) 
（3）求线段 DA长度；                                    (1) 

（4）若△DAE的面积为 72，求点 E坐标.  (1) 

 

 

 

(Total 4 marks) 

(A straight line 𝑦 = −𝑥 + 𝑏 , passes through the point C (2, 4) and meets the x-axis at point A. Another 

straight line DE meets the x-axis at point D (18, 0). The straight lines DE and AC have the point of 

intersection E. Point E is located at the second quadrant. 

1) Find b.       

2) Find the coordinate of point A. 

3) Find the length of segment DA. 

4) If the area of triangle DAE is 72, find the coordinate of point E.) 

O 

E 

C 

A D 
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5. 已知一次函数 𝑦 = 𝑥 + 2与反比例函数 𝑦 =
𝑘

𝑥
，其中一次函数 𝑦 = 𝑥 + 2的图象经过点 P ． 

(1) 试确定反比例函数的表达式；(1) 

(2) 若点 Q是上述一次函数与反比例函数图象在第三象限的交点，求点 Q的坐标．(1) 

(Total 2 marks) 

(The linear function 𝑦 = 𝑥 + 2, and the reciprocal function 𝑦 =
𝑘

𝑥
, the graph of linear function 𝑦 = 𝑥 + 2 

passes by the point P.  

(1) Find out the algebraic expression for this reciprocal function; 

(2) If the point Q is the intersection of the linear function and reciprocal function at the third 

quadrant, find out the coordinate of point Q.) 


