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built-in resilience to multiple-upset
events
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Abstract
Electronic systems are prone to failures, whether during manufacture or throughout their in-service lifetime. A number
of design and fabrication techniques are presently employed that maintain an economical production yield. However, the
cost of through-life maintenance and fault mitigation operations for complex, high-value systems remains a major chal-
lenge and requires new design methods in order to increase their resilience. In this article, the focus is on applications
that are sensitive to transient random errors caused by single-event upsets and multiple-bit upsets occurring within their
electronic systems and sub-systems, as well as applications that benefit from fault detection and localisation. A novel
self-restoration strategy is proposed based on a two-layer design approach comprising a fault-tolerant coordination layer
with convergent cellular automata and a configurable functional logic layer. This design strategy is able to self-reconstruct
the correct functional logic configuration in the event of transient faults without external intervention. The necessary
convergent cellular automata rule set and state table sizes for 3 3 3 and 4 3 4 binary coded patterns are analysed in
order to estimate the generic resource requirements for larger designs. Additionally, the possibility of exploiting the
design for built-in fault detection and diagnostic reporting is investigated.
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Introduction

The maintenance and repair of high-value systems is
costly and in many cases requires significant investment
at the design phase in order to limit the cost of through-
life support. At the same time, there is a growing need
for increased reliability and availability of mission-
critical electronics for avionics, ground transport
vehicles and robotics for nuclear inspection or space
exploration. While there is a continuing desire within
the electronic systems domain towards the use of com-
mercial off-the-shelf (COTS) electronic components,
even for mission-critical systems such as space and avio-
nics, such components are expected to fail more fre-
quently in future due to the increasing influence of
transient random single error events (SEEs).1 This is
especially true of integrated circuits (ICs) subjected to
high energy radiation particles such as neutrons, where
the conventional solution has been to adopt expensive
radiation-hardened ICs. New design strategies for self-
diagnosis and self-recovery in engineering systems will
open up new opportunities for reducing the overall

through-life cost of complex systems and has therefore
become an area of considerable interest in recent years.2

The related concept of autonomous maintenance also
seeks to reduce the total life cost (TLC) of high-value
systems3 by reducing the need for expensive repair,
overhaul and fault-finding.

In this article, the particular problem of transient
upsets arising from randomly induced faults is consid-
ered, which have the capacity to produce transient fault
events within ICs. This is of particular importance due
to the presence of integrated electronic systems and
sub-systems within most complex engineering systems.
A number of different faults may manifest as a result of
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SEEs due to neutron and proton particle interactions,4

each of which may lead to errors and unexpected beha-
viour. A common occurrence is that of one or more bit-
flips occurring within internal logic gates or memory
cells, leading to a single-event upset (SEU) or multiple-
bit upset (MBU). Such events threaten the integrity and
trustworthiness of the electronic system. These scenar-
ios have been studied extensively for high-altitude flight
and space applications, but SEUs have also been
observed in ground-based computing systems with
large-area memory arrays5 and are of growing concern
for embedded systems due to the ever-diminishing tran-
sistor size.6 Of particular prominence is the use of
COTS components for SEU-sensitive avionics in com-
mercial airliners, military aircraft and autonomous
craft.7 Further relevant applications include biomedical
devices, mission-critical industrial and nuclear process
control systems and safety/security-oriented consumer
products such as automobiles and smart card payment
systems.

A variety of hardware strategies have been proposed
that aim to bring increased resilience against SEE (and
in some cases permanent faults) while attempting to
minimising the resource overhead. Provision for MBU
usually requires far more complex design than for SEU
in order to meet the necessary fault capacity. On-chip
memory is particularly vulnerable to MBU due to its
dense structure,8 but combinatorial logic cells are also
at risk since faults induced by upsets may propagate to
multiple registers. Of particular note are present-day
field programmable gate array (FPGA) devices that
contain large quantities of embedded static RAM
(SRAM) where there is a growing interest in ‘design for
reliability’ strategies that encompass functional

diversity, modular redundancy, fine-grained fault-toler-
ant design and autonomous self-repair.9 New design
approaches are needed for custom logic, for which data
error detection and correction (EDC) strategies such as
two-dimensional hamming codes or fault-tolerant logic
are typically applied. Figure 1 illustrates three examples
of fine-grained logic redundancy strategies that have
been proposed. Future nanoscale logic will require fine-
grained design strategies to improve their manufactur-
ing yield,10 for which quadded logic11 and temporal
redundancy12 architectures have been proposed.

The most prolific strategies for error tolerance in
reconfigurable platforms are based on configuration
scrubbing. This involves reloading a ‘golden’ configura-
tion bitstream, either upon detection of an error or else
performed periodically.13 Periodic scrubbing is also
combined with other fault-tolerant strategies,14 but
their use is energy-intensive and leads to unnecessary
reconfigurations when no upsets have occurred.
Explicit fault detection is challenging due to the transi-
ent nature of many types of SEU-induced errors, and
in some cases, the error state may be present for some
time before being detected. A number of existing self-
repair strategies are capable of detecting and eliminat-
ing faults that accumulate sequentially over time,15 but
a major compromise is the need for explicit fault detec-
tion and repair logic that requires considerable resource
overhead. These strategies also rely on effective dis-
crimination between transient and permanent faults in
order to avoid triggering unnecessary reconfigurations
in the event of transient upsets (and thus potentially
wasting valuable resources).

This article presents an alternative design strategy
that is based on a self-recovering algorithm able to

Figure 1. Existing fault-tolerant hardware logic designs. From left to right: triple modulo redundancy with voter,10 quadded logic11

and series/parallel redundancy in CMOS logic.12
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protect data patterns and logic configurations from
SEU and MBU by continually refreshing the correct
pattern at a fine-grained level. Redundancy is applied
in the form of information stored within the elements
of a cellular automaton (CA), which, in turn, creates a
stable logic configuration that is highly resilient. This
work is therefore distinct from previous work in that
external error detection is not required: any deviations
from the correct configuration pattern are immediately
addressed by the internal cellular architecture and its
regenerative behaviour. This strategy is further able to
recover in the extreme case of an upset occurring simul-
taneously within every bit of the configuration pattern,
provided permanent damage does not occur.

Design framework

In order to achieve resilience at the logic design level, a
simple CA layer is utilised whose purpose is to protect
the critical configuration of the functional logic.
Functional logic is arranged as a functional component
layer and is represented here by a regular array of con-
figurable logic cells whose configuration is dictated by
the CA pattern. This is analogous to the concept of
configuring FPGA chips via data bitstreams. However,
caution is needed when drawing this analogy because
the architecture of current FPGA chips is not optimised
for fine-grained online reconfiguration, and indeed,
self-repair strategies that seek to achieve online config-
uration are highly complex and reply on sophisticated
coordination. An example of this is the STAR algo-
rithm,16 in which a reconfiguration process continu-
ously searches for and isolates faulty logic. Another
example is the SABRE project17 that utilises a custom
application-specific integrated circuit (ASIC) design
manufactured specifically for fine-grained reconfigura-
tion. The architecture allows configurations to be
implemented that are derived from complex evolution-
ary algorithms that seek to generate alternative config-
urations in the event of faults occurring within the
hardware. The SABRE architecture uses parity EDC to
protect against soft errors occurring within cells, with
‘gene’ code being reloaded when necessary. This is simi-
lar in principle to data scrubbing in FPGAs but at a
fine-grained level. Reloading is done in two parts: hard
errors are dealt with by the reconfiguration scheme
where cells are shifted, while error codes are applied to
the hard-fault tolerance architecture via parity distribu-
ted within processor cells. Thus, data EDC occurs inde-
pendently within each ‘cell’ or control logic unit rather
than being combined between neighbouring cells.
Furthermore, the sMOVE processor may be regarded
as a governing process that monitors the status of all
cells. In this article, a decentralised approach is pro-
posed for detecting errors within the configuration
using a self-restoring cellular array that is continually
driven towards a pre-defined pattern. If this pattern can
be arranged to represent the configuration of the

functional components (and can be re-generated should
the pattern configuration become altered), then the
logic configuration is repeatedly protected against tran-
sient upset events. In order to achieve the necessary
regenerative property, rule sets are deterministically
pre-computed by an algorithm rather than via evolu-
tion/mutation. The resulting convergent cellular auto-
mata (CCA) is considered to be a highly resilient
pattern generator that protects the logic configuration
by continuously enforcing its rule set. This design layer
is referred to as the fault-tolerant coordination layer.
CAs have also been proposed for protecting against
node failures in multi-processor arrays including exten-
sion to two-dimensional topologies.18 In this case,
entire processing units are disabled in the event of a
fault being detected and a reconfiguration of process
scheduling occurs that is coordinated by the CA. A
comparison of similar strategies was provided by
Kamiura et al.19 where, again, the subjects were proces-
sors and permanent faults were handled by
reconfiguration.

Continuing the analogy with COTS FPGA technol-
ogy, a CCA design can be regarded as a two-
dimensional bitstream generator that is protected by
the rule and state mapping solutions, which, in turn,
maintains the FPGA’s configurable logic block (CLB)
configuration. There are many ways in which to
arrange the functional component layer that is coordi-
nated (and protected) by the fault-tolerant coordina-
tion layer: here a two-dimensional grid geometry is
chosen. Figure 2 illustrates the arrangement between
functional and fault-tolerant layers, where a direct cor-
respondence between each CCA cell and associated
configurable functional block is established. The size of
the required CCA is dependent on the granularity of
the functional design, that is, how it is broken down at
the logic design stage. A related concept has been pro-
posed in the form of the plastic cell architecture20 that
also operates at fine-grained cellular logic design level.

Figure 2. Illustration of resilient logic as a two-layer logic
design incorporating a fault-tolerant coordination layer
(comprising the CCA) and functional component layer above.
Each functional component may adopt various configurations
controlled by the state of the coordination layer. Three
examples of functional logic component configurations are
illustrated on the right.
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Indeed, this approach is similarly built upon a two-
plane architecture using a coordinator layer (referred
to as built-in logic) and configurable layer (referred to
as plastic logic), although the actual governing mechan-
ism is somewhat different to that proposed here.

Properties of the functional logic layer

The functional component layer forms an actual logic
unit that becomes part of the active electronics. A
design is shown in Figure 3 that implements a full-
adder logic unit design that can be cascaded.21 In order
to configure the functional component layer, each cell
is coordinated by the value of a CCA cell that directly
asserts the correct logic function from a set of available
configurations. Previous designs have focused on feed-
forward circuits, whose interconnect structure ensures
that data paths do not cross and feed in from left to
right or top to bottom, ensuring that the data flow

between logic blocks mimics that of the CCA itself. In
the example shown, the associated CCA states are indi-
cated in square brackets within each logic cell.

Properties of the fault-tolerant coordination layer

The concept of self-configuring patterns arises from the
CCA design and is composed of an array of cells, each
capable of performing simple computational tasks.
Interactions occur between neighbouring cells that are
governed by a common rule set. The resulting beha-
viour displayed by the CCA is dependent on the rules
used, boundary values and the allowable flow of
nearest-neighbour signals. Fault detection is not expli-
cit; individual cells continually update their state
depending on the state of their immediate neighbours,
effecting a continuous replenishment of the global
pattern.

Considering a generalised two-dimensional CA, such
as that illustrated in Figure 4, each cell obeys the same
rule set stored in look-up table (LUT) form, which
determines the next state of the cell in response to the
values of neighbouring cells. In some limited cases, the
rule set may create patterns that become static, that is,
they no longer change after a certain number of time
steps have elapsed. This particular situation can be
exploited for robust design since the CA continually
replenishes the static pattern even when one or more
cells are disturbed. In previous work,22 a set of condi-
tions were proposed that achieve this behaviour for any
target pattern and example rule sets were derived. An
analysis of classical two-dimensional cellular automata
showed that by restricting the flow of inter-cell commu-
nications to that of unidirectional signal flow and
between neighbours from the north and west or from
the south and east, a rule set may be derived that pro-
duces a stable steady-state pattern that is independent
of the initial state of the CA. This restriction is illu-
strated in Figure 4 by the indicated directions of signal
inputs and outputs. The resulting CCA is able to

Figure 3. Example configuration of functional logic layer that
forms a single-bit full-adder logic unit. Each cell has been
configured from one of a set of available pre-defined logic
configurations. CCA numerical states for this design are
indicated in square brackets. For reference, the equivalent
standard logic design is also shown.

Figure 4. Structure of two-dimensional cellular automata,
showing boundary cells, pattern cells, signal flow of intra-cell
inputs (I1, I2) and outputs (O) and basic structure of rule look-
up table.
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reassert the pattern in the event that it is forced to devi-
ate from its intended state. Reconstruction occurs
within a predictable number of discrete-time steps.

CCA design strategy

In this section, a brief description of the design
approach for generating CCA rule sets is described. For
full details of the approach, the reader is referred to pre-
vious literature.23 Referring once again to Figure 4,
derivation of an efficient rule set for a given target
pattern proceeds by direct inspection of the pattern
and boundary cell values. It is also important that
all derived rules must be unique. Referring again to
Figure 4, each rule is composed of the tuple [I1, I2, O],
noting that the present value of each cell is not included
within the rule itself.

Mitigation strategy for rule conflicts

Each rule stored within the LUT must contain a unique
mapping. A many-to-one rule conflict occurs when
different next-state values arise from the same input val-
ues. For example, the rules (0,0,1) and (0,0,0) are non-
unique. State conflicts are common, especially when the
CCA pattern is encoded with a restricted number base.

The above example rule conflict could be settled by
incrementing the state value of one of the neighbouring
state cells, for example, (0,2,1), (0,0,0), assuming the
state ‘2’ is the next available unallocated state. The correct
output value is retrieved by an additional state mapping
LUT. Care is needed with this approach because state
substitutions may generate further rule conflicts, and
hence an iterative algorithm is needed.

A procedure for eliminating state conflicts is pre-
sented in Figure 5 using a state increment strategy
based on a modified version of that described in Jones
et al.23 The algorithm is designed to detect the presence
of boundary cells, which are assumed to be fixed, and
hence, either north or west cell states may be incremen-
ted. In the rare case of a rule conflict being attributed
to the top-left cell (where neither west nor north cell
can be altered), the cell attributed to the second rule
conflict is instead incremented.

LUT resource requirements

In order to quantify the LUT resource overhead, a
detailed study of the rule size for a large number of dif-
ferent binary target patterns was carried out. Beginning
with 3 3 3 CCA patterns, every possible combination
was examined (i.e. 29 patterns) and a minimal rule set

Figure 5. Flow diagram of algorithm used to resolve rule conflicts.
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generated according to the method is described in sec-
tion ‘CCA design strategy’. To better understand the
influence of the boundary cell values on the resource
overhead, the design requirements for each CCA pat-
tern were assessed using three sample boundary sets as
detailed in Table 1. Boundary set 1 is a simple zero
boundary pattern requiring the simplest logic in order
to assert logic ‘0’ at boundary cells. Boundary set 2
increases the information contained in the boundary set
to base 4, requiring two bit lines to encode the values
{0,1,2,3}. Boundary set 3 further increases the informa-
tion to base 6, requiring three bit lines. This final set is
arranged such that the values in the boundary cells
become decoupled from CCA cell values with the aim
of decreasing the number of rule conflicts and addi-
tional states required to solve the CCA rule set.

Analysis of 3 3 3 patterns

The number of additional states introduced in order to
resolve rule conflicts is an important measure of the
necessary design complexity. A large number of addi-
tional states will require more bit lines to encode state
information between neighbouring cells, leading to
higher interconnect density. For each of the boundary
sets, every 3 3 3 CCA pattern was solved, rule con-
flicts were resolved and the necessary number of states
was aggregated. Figure 6 shows the resulting histogram
distribution for each boundary set. For boundary sets 1
and 2, certain patterns require three intra-cell bit lines

to handle up to eight states. In contrast, the values used
in boundary set 3 are sufficiently decoupled from the
pattern state values that the number of states is con-
tained between the range (1,., 4), enabling the use of
two intra-cell bit lines.

The number of rule conflicts encountered for each
target pattern is summarised in Figure 7, which pro-
vides a measure of the effectiveness of each boundary
cell set. Both boundary sets 2 and 3 result in two or
more conflicts for some patterns; however, conflicts are
resolved more efficiently for boundary set 3.

Figure 8 shows the number of rules required for
each pattern, which dictates the size of the LUT in each
cell. In contrast to the number of states, the choice of
boundary set does not greatly influence the number of
rules required to resolve conflicts suggesting that the
rule set is not easily compressible.

Figure 9 illustrates the variation in state mappings
for each boundary set, which determines the size of the
state map LUT. In contrast to the rule set, the number
of state mappings is highly dependent on the pattern
and boundary conditions. It is seen that the size of this
LUT varies between zero and six entries and for bound-
ary set 3 does not exceed two entries.

Analysis of 4 3 4 patterns

To further investigate how the above parameters scale
with CCA pattern size, the procedure described above
was repeated for all 4 3 4 patterns (i.e. 216 combina-
tions). For this case, two boundary sets were used as
detailed in Table 2. The resulting mean number of
rules, states and state mappings are summarised in
Table 3 along with their standard deviation. Significant
reductions result from using the more complex boundary
set 5 with similar standard deviation. Histogram data are
again presented for this boundary set (Figure 10), where
once more it is seen that the number of rules is biased
towards the right-hand side of the distribution. For this

Table 1. Boundary cell values used.

Top border
cells

Right border
cells

Number
of bits

Boundary set 1 [0 0 0] [0 0 0] 1
Boundary set 2 [3 2 1] [1 2 3] 2
Boundary set 3 [6 5 4] [4 5 6] 3

Figure 6. Number of CCA states for 3 3 3 target patterns. Left: histogram distributions of number of states required for CCA
encoding for 3 3 3 binary patterns (including rule conflict resolution) and using different boundary cell values. Right: mean number of
states needed to encode 3 3 3 patterns for each boundary set.
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larger sample set, both the number of rules and state
mappings appear to acquire a Gaussian-shaped pro-
file. It can also been seen from the graphical results

that at least three bit lines are needed for intra-cell
communications and in many cases four bit lines are
required – less than that required for the boundary

Figure 7. Number of conflicts resulting from each pattern.

Figure 8. Number of rules required to resolve rule conflicts.

Figure 9. Number of state mappings required to resolve rule conflicts.

Table 2. Boundary sets used for 4 3 4 CCA patterns.

Top border cells Right border cells Number of bits

Boundary set 4 [0 0 0 0] [0 0 0 0] 1
Boundary set 5 [4 5 6 7] [7 6 5 4] 3

McWilliam et al. 7
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cell values. A trade-off does, however, exist in terms
of the size of the rule/state mapping LUTs: referring
again to Figure 10, it is evident that for some patterns
there are no additional state mappings required.
However, these particular patterns require the highest
number of rules and therefore a largest LUTs.

Conditions for self-configuration and recovery

Self-recovery requires that rule set is correct (and can
be relied upon) and that the boundary values are

correct. An example of the self-restoring property is
illustrated in Figure 11, where the initially correct pat-
tern is disturbed and rebuilds by reasserting the correct
cell state.

Clearly, the LUT contents within each cell must be
valid in order for the correct pattern to emerge. In the
event of SEU/MBU occurring within an LUT, the
error condition may clear by itself, in which case the
correct pattern will re-emerge. If the error does not
clear, then reassertion of the correct LUT contents
becomes necessary. Strategies based on either mutual
self-checking between neighbouring cells or else the use
of global LUTs with redundancy would likely form
effective protection. In the former case, each cell peri-
odically checks the contents of its own rule and state
LUTs for consistency with those of its nearest neigh-
bours, thus retaining the cellular design concept. In the
latter case, the rule and state LUTs are instead stored
centrally and protected by standard triple modular
redundancy (TMR) or similar approach. Central LUT
storage requires fewer LUT memory cells but signifi-
cantly higher interconnect density between cells. A key
design consideration here is the effective radiation cross
section presented by either localised or global rule stor-
age and is the subject of future work. One possible
CCA design for this pattern is shown in Figure 12
where the boundary cell values have been chosen such
that 15 rules are required with no rule conflicts. Note
that this design requires three bit lines between each cell
in order to encode the states [0 . 6].

Table 3. Statistical results for 4 3 4 patterns.

Boundary set 4 Boundary set 5

Number of rules Mean 15.3 14.83
SD 1.05 1.27

Number of states Mean 8.01 4.52
SD 0.99 1.41

Number of state mappings Mean 7.01 3.48
SD 0.99 1.38

SD: standard deviation.

Figure 10. Distributions of results calculated for 4 3 4 patterns and boundary set 5.

Figure 11. Example of self-restoring of pattern following
multiple upset. Cells affected by upsets are shown shaded. This
particular pattern requires 15 rules.
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Example design

For the purposes of demonstration, the full-adder logic
design example detailed in Figure 3 may be implemen-
ted in hardware description language (HDL) and used
to create the architecture shown in Figure 13. In this
example, each design cell contains both the fault-
tolerant coordination and respective functional compo-
nent logic cell along with the necessary LUTs. Hence,
each cell contains the superimposed equivalent of the
two-layer design illustrated in Figure 2. While COTS
FPGAs are not optimised for efficient implementations
of such designs, they serve as a useful platform for
functional verification and hardware fault emulation.

In this example, a Xilinx Vertex 5 was used and a
VHSIC Hardware Description Language (VHDL)
description of each cell containing rule and state map-
ping LUTs was synthesised/mapped to a configuration
bitstream. A hardware-in-loop interface can then be
used to verify the logic configuration and functionality
under SEU/MBU fault conditions. An example of a
fault test is illustrated in Figure 14, in which an injected
fault produces error states that are removed by the
regenerative action of the CCA.

Fault detection

An interesting prospect of this implementation is that
fault monitoring is possible within certain design com-
binations by monitoring the behaviour of output
boundary cells disposed along the bottom-most row
and right-most column of the CCA. These are referred
as output cells. When an incorrect state occurs, fault
information is propagated to the output cells via devia-
tions from their intended states. This property may be
exploited to produce signals that indicate the occur-
rences of SEUs within the main body of the CCA and
that may be exploited as an additional feature beyond
self-restoration. Note that the absolute state of the out-
put boundary cells need not be known a priori – only
the knowledge that their state has been altered is

Figure 12. CCA pattern for full-adder logic design requiring
15 rules.

Figure 13. Schematic cellular design concept. This example shows a 4 3 4 cell array in which each cell contains both a CCA and
respective functional logic cell.
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required. This is may be useful in situations where self-
recovery is not by itself sufficient, and where a logging
of upset events is useful for long-term monitoring.

An example of a fault-sensitive design is illustrated
in Figure 15 for a 4 3 4 target pattern. In this design,
the input boundary cells are all set to the value 0, thus
forcing the creation of additional states within the pat-
tern matrix during rule generation. The design requires
15 rules and 7 state mappings. Although the rule and

state mapping resource requirement could be reduced
by increasing the complexity of the input boundary cell
values, this would reduce sensitivity to faults. The intro-
duction of additional rules and state values increases
the likelihood that a fault will change one or more out-
put cell. In this example, a fault is assumed to create
the stuck-at value of ‘2’ and the CCA exhibits a change
in its output cells as a result. A sensitivity analysis was
conducted by changing the location of the stuck-at fault
and checking for a change in the output boundary cells.
The results, summarised in Table 4, show that with one
exception, at least one output cell event manifests for
every fault location. An exception is when the fault is
located at cell (4,2) where stuck-at value is equal to the
correct cell value.

The above result is somewhat restricted to specific
design cases because sensitivity is not guaranteed for all
the stuck-at values nor for all CCA patterns. However,
the likelihood of fault detection is increased by imple-
menting a larger state LUT (at the cost of higher
resource overhead).

Design and manufacturing considerations

Referring again to Figure 3, the number of state LUT
entries determines the number of logic cell configura-
tions and hence the resource overhead of the functional
component layer. The size of the respective rule LUT is
determined by the efficiency of the rule and state map-
ping algorithm. Hence, efficient coding of the CCA
rule/state LUTs is critical to minimise logic overhead
since each LUT is stored within every cell.

It is worth pointing out that the central goal of our
approach is that, provided the CCA rule LUTs are

Figure 14. Example of recovery from fault injection in a 4 3 4
CCA. Incorrect internal state is injected into a single cell as
indicated, followed by pattern restoration after five successive
iterations of the rule set. Boundary cells (=0) are shaded and
incorrect output cells are hatched.

Figure 15. Example of stuck-at fault occurring at cell (2,2) and the resulting alteration of output boundary cell values. Stuck-at fault
creates the cell value ‘2’.

Table 4. Fault analysis for stuck-at fault value of ‘2’.

Fault location No fault 2,2 2,3 2,4 2,5 3,2 3,3 3,4 3,5 4,2 4,3 4,4 4,5 5,2 5,3 5,4 5,5

Sum 8 24 11 17 10 12 17 9 10 8 15 6 10 7 11 5 10
Diff 0 16 3 8 2 4 9 1 2 0 7 2 2 1 3 3 2

‘Sum’ = sum of output cell values; ‘Diff’ = difference non-faulty condition, that is, when ‘Sum’ = 8. Fault recognition occurs when the condition

‘Diff’ . 0 is met.
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preserved, the design is made highly resilient to transi-
ent faults occurring within the CCA cell states (i.e. the
state of the coordination layer) and therefore within
the functional component configuration. However, the
hardware memory LUT and sequential logic associated
with each cell of the CCA may also be sensitive to SEU
and/or MBU. For the purposes of this study, it has
been assumed that the CCA rule LUTs are fixed and
do not contain errors and, for example, may be imple-
mented as ROM tables that are relatively insensitive to
SEE. Programmable designs do, however, require
RAM blocks, in which case it is clear that further pro-
tection by EDC would be advisable to protect against
corruption of the LUTs. Since each CCA cell uses iden-
tical rule and state LUTs, an efficient design variation
would involve clustering of LUTs shared among multi-
ple cells each protected by EDC as discussed in section
‘Conditions for self-configuration and recovery’.

Design flexibility may be traded for reduced
resource overhead in some cases by relaxing restrictions
on signal flow direction, thus permitting the use of
combined logic blocks that include overlapping signal
routing. This would afford a greater compression of
the design through abstraction between coordination
and logic layers at the expense of more complex intra-
cell routing. A similar effect is observed in current
FPGA chips, where interconnect accounts for a high
proportion of chip area and power consumption. An
example of this approach is illustrated in Figure 16, in
which a full-adder design is arranged as two cascaded
half adders, an OR block and a routing block. Clearly,
this approach delegates more complex logic cell config-
urations than the example shown in Figure 3 and there-
fore has reduced the scope for both design reuse and
fault detection. However, both interconnect density
and CCA size are greatly reduced.

Summary and conclusion

A self-configuring strategy was presented that increases
the resilience of electronic systems against SEU and
MBU. The approach taken protects functional logic

configurations and is thus considered to be complemen-
tary to the existing hardware design techniques already
employed for cost reduction of through-life mainte-
nance of complex systems. From the exhaustive target
pattern investigation presented in section ‘LUT
resource requirements’, the number of required CCA
states, rules and state mappings is strongly dependent
on the chosen boundary conditions. This study is
restricted to binary target patterns since all digital logic
implementations are ultimately implemented as binary-
encoded designs. Although reductions in the size of the
rule and state LUTs are possible by judicious choice of
boundary cell values, there are limitations: first, the
rule set is not readily compressible since it reflects the
complexity of the pattern and its encoding in the form
of rules. Second, a reduction in the number of cell
states does not immediately result in fewer intra-cell
interconnects. This is due to the fact that those pattern
cells abutting boundary cells must be able to address at
least one boundary value in their LUT, requiring addi-
tional data lines. Further work is needed to determine
the most effective method for self-checking of rule and
state LUTs, either at the cellular level or else using clus-
tered LUTs. The hardware test bench test system
described in section ‘Example design’ confirms that
functional operation of the approach, but further eva-
luation requires custom logic design.

The strategy is well-suited to the protection of data
patterns stored in memory for finite state machine logic
and configuration bitstreams for configurable logic.
The distributions observed in the 4 3 4 pattern analy-
sis showed Gaussian-type properties for the numbers of
states and state mappings, and a biased trend for the
number of rules, which may be useful for predicting the
resource requirements for larger data patterns that can-
not be studied by the same exhaustive procedure. It
should be noted that a further trade-off exists between
LUT size and fault detection capability. Furthermore,
for some applications, a more favourable compromise
may be found using standard EDC deployed in regions
that are vulnerable to SEU. However, the self-restoring
strategy presented here is beneficial for cases where
application is sensitive to MBU, where fault detection/
localisation is advantageous and when self-initiated
restoration is compatible with the application.

The handling of permanent errors (e.g. transistor
burnout or latch up) caused by degradation or extreme
environmental conditions is beyond the scope of this
article. However, assuming that a faulty cell may be
uniquely identified, possible mitigation strategies
include diverting inter-cell input/output (I/O) lines to a
spare cell (incurring a high interconnect resource over-
head) or implementing entire rows or columns of spare
cells used to replace any row or column containing
faulty cells. These techniques pose a major challenge
because dynamic CA rules are then needed in order to
alter the CA reconfiguration. Genetic algorithms are
capable of adapting to permanent faults occurring in
configurable logic but require global computing

Figure 16. Simplified adder design using (a) half-adder blocks
and (b) requiring three rules.
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resources and may exhibit unbounded repair time. In
contrast, CCA rule sets are computed deterministically
and their recovery time is bounded. The through-life
care of future engineering systems will depend on a
combination of both permanent and transient fault
mitigation strategies.
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