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1 Introduction

An interesting property of the effective field theories that emerge from string theory is that

they often possess non-compact shift-symmetries. These are symmetries under which two

fields, B and C say, transform as B → B+ c, C → C− c̄. The Kähler potential of a theory

with such a symmetry, written as a power series expansion in the matter fields, has to take

the form

K = G+
∣

∣B + C̄
∣

∣

2
f + . . . , (1.1)

where the coefficients G and f will generally have some dependence on the Kähler and

complex structure moduli of the compactification. Consequently the orthogonal combina-

tion B−C̄ remains massless. An observation made by [1–8] and discussed further in [9–12],

is that these seemingly ad-hoc continuous symmetries appear naturally at tree-level due to

the underlying discrete modular symmetries of the full string theory. They were initially

suggested as a way of directly protecting Higgs masses. Furthermore it has been observed

that shift symmetries may be linked to the apparent vanishing of the Higgs self-coupling

at intermediate scales [9–12].

It is an unfortunate fact that the shift-symmetries in question are only accidental and

global. One does not expect them to be preserved, even at the string scale, because the full

string theory does not respect them. Nevertheless an interesting question is how quickly

such symmetries are eroded in perturbation theory, and whether there is a parametric way

of controlling them or possibly even restoring them in the string thresholds. Although there

has been some work done on one-loop corrections to the effective µ-term for example [3, 4],

this particular issue has not to our knowledge been explored in any detail.

Although it is a generic expectation that non-compact shift-symmetries afford no more

than a loop’s worth of protection for any would-be Higgs field, the purpose of this paper

is to show that in the limit of certain asymmetric compactifications the symmetries are

preserved. Indeed they can be made parametrically good at the string scale.
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There is a simple general argument supporting the restoration of shift-symmetries in

asymmetric compactifications which is as follows. Consider the class of heterotic string

theories that exhibit N = 1 supergravity as their low energy effective field theories, and

have a T2/Z2 orbifold subfactor in their compactification (although almost certainly the

heuristic argument we are about to present applies more generally). The Kähler and

complex structure moduli of the T2/Z2 are denoted T, U . We will consider our theory

in the presence of two continuous Wilson lines associated with each of the two compact

dimensions of the T 2, a linear combination of which corresponds to the matter fields B

and C. For the untwisted components we are then interested in whether the coefficients

HBC(T, U), ZBB̄(T, U) and ZCC̄(T, U) in

K = G+ ZCC̄CC̄ + ZBB̄BB̄ + (HBCCB + c.c.) + . . . , (1.2)

exhibit the correct relation at one-loop order, so that it can be cast in the form (1.1).

At tree-level, the Kähler potential is well known for such models, and is given by [1–4],

K = − log
[

−(T − T̄ )(U − Ū)− (B + C̄)(B̄ + C)
]

, (1.3)

clearly exhibiting the shift-symmetry in question. To see why we expect the shift-symmetry

to be preserved at higher order in certain limits, we recall the particular linear combination

of complex Wilson lines A1 and A2 (where upstairs indices label two different Cartan

subalgebra U(1)’s) giving rise to B and C:

B = − 1√
2
(iA1 +A2), C = − 1√

2
(iA1 −A2). (1.4)

These are each further related to two real Wilson lines as Aa = UAa
1 − Aa

2, where the

lower indices label the two T2 cycles). The real Wilson lines represent shifts in the internal

momentum/charge lattice (a.k.a. Narain lattice) of the compactification, so they can be

thought of as directly corresponding to the original stringy degrees of freedom. The crucial

point is that in the highly asymmetric (U2 ≫ 1) limit, Aa is dominated by the term iU2Aa
1,

where in our convention U = U1 + iU2. Comparing the expressions for B̄ and C in this

limit, we see that they are both given by,

B̄, C =
U2

2
(A1

1 + iA2
1) +O(1). (1.5)

Not surprisingly at large U2 the two Wilson lines are both dominated by one of the cy-

cles and they become degenerate. The general expectation therefore is that all radiative

corrections to the Kähler potential exhibit degeneracy for B and C in the limit of large

U2. In particular one would naturally expect the coefficients of BB̄ and BC to become

degenerate to all orders.

We would like to test this heuristic expectation, and in order to do so we will compute

the relevant corrections to the Kähler potential at one-loop, allowing us to determine and

study the coefficients HBC(T, U), ZBB̄(T, U) and ZCC̄(T, U) appearing in (1.2). It will be

sufficient to find the one-loop corrections to the Kähler potential up to quadratic order in

the untwisted matter fields. Therefore we will proceed by computing the CP even part

– 2 –
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of one-loop two-point functions involving the moduli T and U as the external states but

with the continuous Wilson line moduli in place. We can then focus on the O(k2) piece

of the amplitude, and compare it with the corresponding kinetic terms in the effective

supergravity Lagrangian. Those terms are of the form,

Kij̄∂φ
i∂φj̄ , (1.6)

so essentially it is the Kähler metric Kij̄ that we compute, from which one could then hope

to determine the Kähler potential. This method was utilised in [15] to calculate one-loop

corrections to the Kähler potential for type-II strings compactified on orientifolds, and

a similar procedure was also performed for heterotic strings in [18]. Furthermore, loop

corrections to low-energy effective theories of heterotic strings have also been investigated

in [19, 20].

The bulk of the computation is carried out in the next section: we first introduce

the notation for the moduli and partition function in the presence of Wilson lines, and

then consider the two-point amplitude between moduli T and T̄ , evaluating the relevant

correlation functions. Then we compute the integrals over τ by the unfolding method. In

section 3 we use the results to write a consistent expression for the one-loop corrections

to the Kähler potential up to quadratic order in the Wilson lines, and confirm the general

picture outlined above. Indeed in theories of this kind we find that ε = 1/(T2 + U2) is

a small parameter governing shift-symmetry violation in the limit that U2 ≫ 1, while

conversely when U2 ∼ 1 there is no shift-symmetry at all in the effective theory at the

string scale.1

2 The calculation

2.1 Moduli definitions, vertex operators and partition function

Let us begin by gathering some necessary ingredients. As per the introduction, we will

focus on models where the compactification includes an orbifolded two-torus, and focus on

the contributions that arise due to the presence of the two real non-zero Wilson lines Aa
1

and Aa
2. These are mixed with the Kähler and complex structure moduli in their relation

to the metric and antisymmetric tensor; the required relation is [1, 2, 16]

T = i
√
G+B12 +

1

2

∑

a

AaA
a − Āa

U − Ū
, (2.1)

where, as above, the complex Wilson lines are defined as Aa = UAa
1 −Aa

2. The U modulus

is unchanged by the presence of Wilson lines and so it can simply be defined in the usual

way as,

U =
1

G11

(

i
√
G+G12

)

. (2.2)

1Note that there is no-scale symmetry which sets all the relevant scalar masses zero at tree-level, but

shift-symmetry itself is absent.
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From the above, we can then write the metric GIJ and antisymmetric tensor BIJ for the

torus as follows,

GIJ =

(

T − T̄

U − Ū
− (Aa − Āa)2

2(U − Ū)2

)

(

1 U1

U1 |U |2

)

, (2.3)

BIJ =

(

T + T̄

2
− (Aa − Āa)(Aa + Āa)

4(U − Ū)

)

(

0 1

−1 0

)

. (2.4)

The specific calculation we will perform is the two-point function between the moduli

T and T̄ , so next we need the corresponding vertex operators. In terms of real coordinates,

the vertex operators for the moduli in the zero picture are given by [13, 26],

VT i = v
(T i)
IJ : (∂XI + ik · ψψI)∂̄XJeik·X : , (2.5)

where T i denotes both the moduli T and U , and,

v
(T i)
IJ =

∂

∂T i
(GIJ +BIJ). (2.6)

We find it more convenient to use a similar notation to [15], and to write the vertex

operators in terms of the complex coordinates Z and Ψ defined as,

Z =

√

T2 +
(A−Ā)2

8U2

2U2
(X5 + ŪX6), Z̄ =

√

T2 +
(A−Ā)2

8U2

2U2
(X5 + UX6),

Ψ =

√

T2 +
(A−Ā)2

8U2

2U2
(ψ5 + Ūψ6), Ψ̄ =

√

T2 +
(A−Ā)2

8U2

2U2
(ψ5 + Uψ6).

(2.7)

The vertex operator for the T modulus can then be written in the zero picture as,

VT = − i

T2 +
(A−Ā)2

8U2

(∂Z − ik · ψΨ)∂̄Z̄eik·X , (2.8)

while for the U modulus we have,

VU = − i(A− Ā)2

8U2
2

(

T2 +
(A−Ā)2

8U2

)(∂Z − ik · ψΨ)∂̄Z̄eik·X +
i

U2
(∂Z − ik · ψΨ)∂̄Zeik·X . (2.9)

We shall also need the internal partition function associated with the torus. With the

inclusion of the Wilson lines, the relevant contribution can be written as [16],

Z~m,~n(T, U, ~Aa) =
T2+

(A−Ā)2

8U2

τ2

∑

~m,~n∈Z

e−S(~m,~n)
∑

Qa

q(Q
a+ ~Aa·~n)2/2e−2πi ~Aa·~m(Qa+ ~Aa·~n/2), (2.10)

where,

S(~m,~n) =
π

τ2
(GIJ +BIJ)(mI + nIτ)(mJ + nJ τ̄) , (2.11)

and Qa are the elements of the charge/momentum lattice on the gauge side that are shifted

by the Wilson lines. Hence only q appears here: the full partition function includes an

additional factor we shall refer to as Zrest(q, q̄) that is unshifted by the Wilson lines,

which incorporates the remaining degrees of freedom (for example those coming from the

remaining K3 factor in the compactification).
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2.2 Two-point amplitudes

As previously mentioned, we will obtain the one-loop corrections to the Kähler potential

by computing one-loop amplitudes between the various modulus and anti-modulus pairs,

specifically those corresponding to corrections to KTiT̄j
. This will then allow us to de-

termine the form of the Kähler potential itself. The amplitudes we need are therefore of

the form,
∫

F

d2τ

τ22

∫

d2z〈VTi
(k, z)VT̄j

(−k, 0)〉Z~m,~nZrest. (2.12)

The correlation function between the vertex operators is

〈VTVT̄ 〉 = − 1
(

T2 +
(A−Ā)2

8U2

)2 〈(∂Z − ik · ψΨ)∂̄Z̄eik·X(∂Z̄ + ik · ψΨ̄)∂̄Ze−ik·X〉. (2.13)

In a supersymmetric theory, the only non-zero contribution to the amplitude arises when

all four of the fermionic coordinates are contracted, because the remaining pieces are spin

independent and will therefore vanish by the non-renormalisation theorem (i.e. they get

multiplied by the partition function which is zero). Even in non-supersymmetric theories,

as in [14], the remaining pieces would be proportional to the cosmological constant and

hence suppressed if the latter is suppressed. Of course the vanishing of the cosmological

constant beyond one-loop in such theories is very much still under investigation and so

the stability of such models can not be guaranteed. Nevertheless, for the models under

consideration we need only consider the spin dependent term,

− 1

4
(

T2 +
(A−Ā)2

8U2

)2k
2〈ψ · ψ〉〈ΨΨ̄〉〈∂̄Z̄∂̄Z〉. (2.14)

For the bosonic correlation function we will only need to consider the contributions arising

from the zero-modes, for which we have,

〈∂̄Z(z)∂̄Z̄(0)〉 =
∑

~m,~n

π2
(

T2+
(A−Ā)2

8U2

)

τ22U2
[m1 +n1τ̄ +U(m2 +n2τ̄)][m1 +n1τ̄ + Ū(m2 +n2τ̄)].

(2.15)

Given the lack of z-dependence in the above, in order to compute the integral over z we

need only take into account the contributions from the fermionic correlation functions. The

integral is calculated as in [14]:

I =

∫

d2z〈ψρψσ〉〈ΨΨ̄〉

=

∫

d2z
(

℘+ 4πi∂τ log
√

ϑab(0)ϑcd(0)/η(τ)
)

=

∫

d2z
(

−∂2
z log ϑ1(z) + 4πi∂τ log

√

ϑab(0)ϑcd(0)
)

= π + 4πiτ2∂τ log
√

ϑab(0)ϑcd(0) ,

(2.16)
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where a, b and c, d refer to the spin structures of ψ and Ψ respectively, which is being

summed over. Note that, analogously to the usual beta function calculation, the second

term can also be written as 2πi∂τ (ZψZΨ). Here, we can now take note of the fact that

our amplitude includes a sum over all of the spin structures. The spin independent con-

tribution therefore vanishes after the sum is taken, and so we are left only with the term

proportional to τ2.

What remains is to calculate is the following integral,

−π2k2

4
(

T2 +
(A−Ā)2

8U2

)

U2

∫

F

d2τ

τ32

∑

~m,~n

[m1+n1τ̄+U(m2+n2τ̄)][m1+n1τ̄+Ū(m2+n2τ̄)]Z~m,~nZ̃rest.

(2.17)

where now Z̃rest is given by Zrest with the inclusion of the extra spin dependent piece from

the fermion correlators as given by (2.16). Note that the factor of τ2 has already been

extracted from this additional piece, and Z̃rest also contains the sum over spin structures.

We now proceed to expand this expression in terms of the Wilson lines. We can then focus

on the quadratic terms, and subsequently evaluate the corresponding integrals.

2.3 Modular integrals

In order to compute the modular integrals arising from the two-point functions, we can use

the unfolding technique of [17] (also utilised in [18, 24, 28]), in which the integral is split

into representative orbits of SL(2,Z). This decomposes the integral over the fundamental

domain into simpler integration regions, depending on the type of orbit. There are three

types of orbits, the zero orbit, degenerate orbits and non-degenerate orbits. We begin by

writing the partition function in terms of complex Wilson lines in the form [16, 22]

Z~m,~n(T, U, ~Aa) =
T2 +

(A−Ā)2

8U2

τ2

∑

Qa

qQ·Q/2eG(M,τ), (2.18)

where

G(M, τ) =
−π

(

T2 +
(A−Ā)2

8U2

)

τ2U2
|M|2 − 2πiT detM +

π

U2

(

Q ·AM̃ −Q · ĀM
)

− πn2

2U2

(

A ·AM̃ − Ā · ĀM
)

− iπ(A− Ā)2

4U2
2

(n1 + n2Ū)M,

(2.19)

and

M =

(

n1 m1

n2 m2

)

, M =
(

1 U
)

M

(

τ

1

)

, M̃ =
(

1 Ū
)

M

(

τ

1

)

. (2.20)

The orbits of SL(2,Z) are then defined in terms of the matrix M .

Zero orbit. This orbit consists only of the matrix M = 0, with the integration being

performed over the fundamental domain. However its contribution trivially vanishes due

to the presence of the overall factor from the bosonic zero modes.

– 6 –



J
H
E
P
0
2
(
2
0
1
6
)
1
8
2

Degenerate orbits. These consist of matrices of the form,

M =

(

0 j

0 p

)

,

where the sum is over all integer values (j, p) 6= (0, 0) and the integration is extended from

the fundamental domain to the half-strip, E = {−1
2 < τ1 < 1

2 , τ2 > 0}. The integral we

need to evaluate is of the form,

I1 =
−π2

4
(

T2 +
(A−Ā)2

8U2

)

U2

∫

E

d2τ

τ32

∑

(j,p) 6=(0,0)

|j + pU |2Z(j,p),(0,0)Z̃rest, (2.21)

where the partition function becomes,

Z(j,p),(0,0) =
T2 +

(A−Ā)2

8U2

τ2
exp

[

− π

τ2U2

(

T2 +
(A− Ā)2

8U2

)

|j + pU |2
]

×
∑

Qa

qQ·Q/2 exp

[

π

U2

[

Q ·A(j + pŪ)−Q · Ā(j + pU)
]

]

.

(2.22)

As mentioned, we are primarily interested in calculating the Kähler potential only up to

quadratic order in the Wilson lines. Therefore, we can write the above as an expansion in

Aa and Āa, and focus only on the relevant terms.

To begin, we can evaluate the Wilson line independent part of (2.21):

−π2

4U2

∫

E

d2τ

τ42

∑

(j,p) 6=(0,0)
Qa

|j + pU |2e−
πT2
τ2U2

|j+pU |2
qQ·Q/2Z̃rest = c1

4i

π(T − T̄ )3
E(U, 2) + . . . ,

(2.23)

where we have written only the most dominant contribution, and c1 is some constant of

order one that we do not calculate. It is dependent on the coefficients of the power series

in q and q̄ in qQ·Q/2Z̃rest, the sum over spin structures, and also on a restricted sum over

the lattice vectors Qa. In the above, the real analytic Eisenstein series are defined as,

E(U, s) =
∑′

l,m

U s
2

|l +mU |2s , (2.24)

where the prime means we do not include the case when l1 = l2 = 0 in the sum.

We now extract the terms proportional to AaĀa and AaAa. The former term is given by,

IA,Ā
1 =

−π3

4U3
2

∫

E

d2τ

τ42

∑

(j,p) 6=(0,0)
Qa

F (A, Ā)|j + pU |2e−
πT2
τ2U2

|j+pU |2
qQ·Q/2Z̃rest, (2.25)

where

F (A, Ā) =

(

1

4τ2
AaĀa − π(Q ·A)(Q · Ā)

)

|j + pU |2. (2.26)
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The integral over τ can be performed with the result

ĨA,Ā
1 =

−12ic1E(U, 2)

π(T − T̄ )4(U − Ū)
+

4π2c2
(T − T̄ )3(U − Ū)

[

3− 2 log(−e−2γπ(T−T̄ )(U−Ū)|η(U)|4)
]

,

(2.27)

where γ is the Euler-Mascheroni constant and IA,Ā
1 = ĨA,Ā

1 AĀ. Note that in order to

arrive at the above result it is necessary to regulate the divergent parts of the integral

(proportional to τ−4
2 in the integrand) that have arisen because we have exchanged the order

of summation and integration. These can be dealt with by including an additional factor of

τ−ǫ
2 , performing the integration, evaluating the sum and extracting the ǫ independent piece

as described in [21, 25]. Alternatively, one finds the same result using the regularisation

procedure of [17]. As before, the constants c1 and c2 come from the coefficients of the

power series in q and q̄ in Zrest, the sum over spin structures, and from the sum over lattice

vectors Qa; they are completely independent of moduli.

Similarly, the expression we need for the term proportional to AaAa is,

IA,A
1 =

−π3

4U3
2

∫

E

d2τ

τ42

∑

(j,p) 6=(0,0)
Qa

F (A,A)|j + pU |2e−
πT2
τ2U2

|j+pU |2
qQ·Q/2Z̃rest, (2.28)

F (A,A) =

(

− 1

8τ2
|j + pU |2AaAa +

π

2
(j + pŪ)2(Q ·A)2

)

, (2.29)

where again the integral over τ can be performed with suitable regularisation and we obtain

the result,

ĨA,A
1 =

6ic1E(U, 2)

π(T − T̄ )4(U − Ū)
+

4π2c2
(T − T̄ )3

[

2∂U log η(U) +
1

(U − Ū)

]

. (2.30)

Finally, the result for the term proportional to ĀaĀa is just given by the complex conjugate

of ĨA,A
1 .

Non-degenerate orbits. These consist of matrices of the form,

M = ±
(

k j

0 p

)

,

where the sum is over 0 ≤ j < k, p 6= 0 and the integration is over the upper half plane H.

The expression to evaluate is of the form,

I2 =
−π2

4
(

T2 +
(A−Ā)2

8U2

)

U2

∫

H

d2τ

τ42

∑

0≤j<k
p 6=0

Q̃U Q̃ŪZ(j,p),(k,0)Z̃rest, (2.31)

where the torus partition function is,

Z(j,p),(k,0) =
T2+

(A−Ā)2

8U2

τ2
exp

[

− πT2

U2τ2
|QU |2−2πiTkp− π(A−Ā)2

8U2
2 τ2

|QU |2 −
πi(A−Ā)2

4U2
2

kQU

]

×
∑

Qa

qQ·Q/2 exp

[

π

U2

(

Q ·AQŪ −Q · ĀQU

)

]

(2.32)
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and where,

QU = (j + kτ + pU),

QŪ = (j + kτ + pŪ),

Q̃U = (j + kτ̄ + pU),

Q̃Ū = (j + kτ̄ + pŪ).

(2.33)

As for the degenerate orbits, we will evaluate the first few terms in a series expansion

of (2.31) in the Wilson lines. The result for the Wilson line independent part (after

summing over j and p) is,

−π2

4U2

∫

H

d2τ

τ42

∑

0≤j<k
p 6=0, Qa

Q̃U Q̃Ūe
−2πiTkpe

−
πT2
τ2U2

|j+kτ+pU |2
qQ·Q/2Z̃rest (2.34)

=
−4c1

(T − T̄ )3(U − Ū)

∑

k>0

{

2kπT2

[

Li2

(

qkT

)

+ Li2

(

q̄kT

)]

+
[

Li3

(

qkT

)

+ Li3

(

q̄kT

)]}

+ . . . ,

where qT ≡ exp(2πiT ) and the polylogarithms Lin(z) are defined as,

Lin(z) =
∑

k>0

zk

kn
. (2.35)

In the above we are again only writing the dominant contributions. A more complete

expression could be obtained along the lines of [18], but taking only these terms is sufficient

for the comparison between the terms Z and H in the Kähler potential.

Now, as in the case for the degenerate orbits, we can look at the terms proportional

to AaĀa. These are given by,

IA,Ā
2 =

−π3

8U3
2

∫

H

d2τ

τ42

∑

0≤j<k
p 6=0, Qa

F (A, Ā)Q̃U Q̃Ūe
−2πiTkpe

−
πT2
τ2U2

|j+kτ+pU |2
qQ·Q/2Z̃rest, (2.36)

where,

F (A, Ā) =

[

−2πQUQŪ (Q ·A)(Q · Ā) +

(

ikQU +
1

2τ2
|QU |2

)

AaĀa

]

. (2.37)

Performing the integration over τ and summing over j and p we obtain the result,

ĨA,Ā
2 =

4

(T − T̄ )4(U − Ū)2

{

c1
∑

k>0

[

π2(T − T̄ )2k2
[

log
(

1− qkT

)

+ log
(

1− q̄kT

)]

− 3πik(T − T̄ )
[

Li2

(

qkT

)

+ Li2

(

q̄kT

)]

+ 3
[

Li3

(

qkT

)

+ Li3

(

q̄kT

)]

]

.+ π2ic2(T − T̄ )2(U − Ū)
[

∂T log η(T )− ∂T̄ log η(T̄ )
]

− π2c2(T − T̄ )(U − Ū) log|η(T )|4
}

.

(2.38)
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Moving on to the terms proportional to AaAa, we wish to calculate,

IA,A
2 =

−π3

16U2
2

∫

H

d2τ

τ42

∑

0≤j<k
p 6=0 ,Qa

F (A,A)Q̃U Q̃Ūe
−2πiTkpe

−
πT2
τ2U2

|j+kτ+pU |2
qQ·Q/2Z̃rest, (2.39)

where,

F (A,A) =

[

2πQ2
Ū (Q ·A)(Q ·A)−

(

ikQU +
1

2τ2
|QU |2

)

AaAa

]

. (2.40)

Again, computing the integration over τ and summing over j and p, we have the result,

ĨA,A
2 =

−2c1
(T − T̄ )4(U − Ū)2

∑

k>0

{

π2(T − T̄ )2k2
[

log
(

1− qkT

)

+ log
(

1− q̄kT

)]

−3πik(T − T̄ )
[

Li2

(

qkT

)

+ Li2

(

q̄kT

)]

+ 3
[

Li3

(

qkT

)

+ Li3

(

q̄kT

)]}

.

(2.41)

3 One-loop Kähler potential

From the results of the previous section it is possible to establish the form of the one-loop

corrections to the Kähler potential. In order to compare them to the corresponding kinetic

terms in the supergravity Lagrangian, we Weyl rescale to the Einstein frame giving an

additional factor

e2Φ =
2i

S − S̄
. (3.1)

We wish to express the Kähler potential in the form in (1.2),with the Wilson lines and

their complex conjugates defined as in (1.4). Taking the sum over the index a we find,
∑

aA
aĀa = BB̄+CC̄, and the one-loop corrections to the coefficients ZBB̄ and ZCC̄ both

then satisfy,

∂T∂T̄Z
(1) =

2i

S − S̄

(

ĨA,Ā
1 + ĨA,Ā

2

)

, (3.2)

where ĨA,Ā
1 and ĨA,Ā

2 are the contributions from the degenerate and non-degenerate orbits

respectively, as computed in the previous section.

Similarly, using
∑

aA
aAa = −2BC, the one-loop correction to the coefficient HBC

in (1.2) (where again we perform a Weyl rescaling) satisfies,

∂T∂T̄H
(1)
BC =

−4i

S − S̄

(

ĨA,A
1 + ĨA,A

2

)

. (3.3)

An additional constraint for the Kähler potential that gives the above Kähler metric

terms is of course that it is required to be invariant under modular transformations of the

moduli, up to Kähler transformations. Taking all of this into account, we find,

Z(1) =
−2c1

π(S − S̄)(T − T̄ )(U − Ū)

{(

E(U, 2)

(T − T̄ )
+

P(T )

(U − Ū)

)}

− 4π2c2
(S − S̄)(T − T̄ )(U − Ū)

log
[

−e−2γπ(T − T̄ )(U − Ū)|η(T )η(U)|4
]

,

(3.4)

H
(1)
BC =

−2c1
π(S − S̄)(T − T̄ )(U − Ū)

{(

E(U, 2)

(T − T̄ )
+

P(T )

(U − Ū)

)}

− 4π2c2
(S − S̄)

{

π2

36
+

[

2∂U log η(U) +
1

(U − Ū)

] [

2∂T log η(T ) +
1

(T − T̄ )

]}

,

(3.5)
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where

P(T ) = 2π2
∑

m>0

m [Li2(q
m
T ) + Li2(q̄

m
T )] +

π

T2

∑

m>0

[Li3(q
m
T ) + Li3(q̄

m
T )] . (3.6)

The above expressions for Z(1) and H
(1)
BC can also be shown to be consistent with the other

two point amplitudes involving U and Ū or T and Ū .

4 Restoration of shift-symmetry

Let us now return to our goal, which is to compare the coefficients Z(1) and H
(1)
BC in order

to determine whether the shift-symmetry holds at one loop. Were this symmetry to be

exact at this order, one would find equal Z(1) and H
(1)
BC . However, only the first lines

of (3.4) and (3.5) are explicitly equal. Note also that at large T2 these terms are actually

sub-leading. Therefore further examination of the remaining terms is required to determine

the extent of the breaking of shift-symmetry. These terms can be expressed respectively as,

Z̃ =
−4π2c2

(S − S̄)(T − T̄ )(U − Ū)

{

log[−e−2γπ(T − T̄ )(U − Ū)]

+ 2
∑

k>0

[

log(1− qkU ) + log(1− q̄kU )
]

+ 2
∑

k>0

[

log(1− qkT ) + log(1− q̄kT )
]

}

− 4π2c2
(S − S̄)

{

π

12U2
+

π

12T2

}

,

(4.1)

H̃ =
−4π2c2
(S − S̄)

{

2π2

3

∑

k>0

[

kqkT
1− qkT

+
kqkU

1− qkU

]

− 16π2
∑

k>0

kqkT
1− qkT

∑

m>0

mqmU
1− qmU

+ 2π
∑

k>0

[

1

U2

kqkT
1− qkT

+
1

T2

kqkU
1− qkU

]

− 1

4T2U2

}

− 4π2c2
(S − S̄)

{

π

12U2
+

π

12T2

}

.

(4.2)

Aside from the final terms appearing in each of the above expressions, Z̃ and H̃ are not

equivalent in general, and so the shift-symmetry will not generically hold. Nevertheless,

we are interested in the possibility that in the large U2 limit the shift-symmetry is restored

as discussed in the introduction. Any breaking of shift symmetry translates directly into

shifts in the typical induced soft-terms of the form

δm2

m2
=

Re(H̃ − Z̃)

Z(1)
, (4.3)

where m2 is the mass-squared of the heavy Wilson line scalar. Note that in writing this

expression we are using the fact that the tree-level masses of all the scalars are zero in

these theories due to their no-scale structure. Therefore the expression above incorporates

the leading one-loop contribution proportional to the gravitino mass m3/2. We should also

remark that additional contributions to masses come from other one-loop effects such as

the Green-Schwarz mechanism, if there is one operating in the theory. Moreover what

we are calculating here are stringy thresholds and there will be contributions from lighter

modes such as stops in a complete model. Of course if one could construct a completely
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phenomenologically accurate broken MSSM within the string theory one would be able to

compute such effects within the string theory as well; so we are focussing on the violations

of shift-symmetry that are certain to exist in the string thresholds of any theory of this type.

Let us now test our expectation that this ratio tends to zero in asymmetric compacti-

fication; as this implies T2 ≫ 1, the terms in the Kähler potential with any dependence on

qkT are exponentially suppressed, and we can write,

H̃ − Z̃ = − 4π2c2
(S − S̄)

{

2π2

3

∑

k>0

kqkU
1− qkU

+ 2π
∑

k>0

1

T2

kqkU
1− qkU

+
log[4πe−2γT2U2]

4T2U2

+
1

T2U2

∑

k>0

[

log(1− qkU ) + log(1− q̄kU )
]

− 1

4T2U2

}

,

(4.4)

while for Z(1) we have,

Z(1) = − ic1E(U, 2)

4π(S − S̄)T 2
2U2

− 4π2c2
(S − S̄)

{

log[4πe−2γT2U2]

4T2U2
+

π

12T2
+

π

12U2

+
1

T2U2

∑

k>0

[

log(1− qkU ) + log(1− q̄kU )
]

}

.
(4.5)

In the limit U2 ≫ 1, recalling that we also have the condition T2 > U2, we find the dominant

contribution to be
δm2

m2
∼ 3 log[4πe−2γT2U2]

π(T2 + U2)
, (4.6)

which clearly vanishes in the T2 > U2 → ∞ limit as expected, with 1/(T2 + U2) being the

small parameter. Conversely, when T2 ≫ 1 but U2 ≪ 1, we find

δm2

m2
∼ 4πU2

3

∑

k>0

kqkU
1− qkU

, (4.7)

which grows as U2 decreases and moreover it is not small.

We should point out that in taking the limits T2 → ∞ and U2 → ∞, one needs to be

sure that a perturbative computation is still a sensible thing to do. These limits correspond

to a large volume theory where the modified loop counting parameter remains small for

sufficiently large S2 = Im(S), in which case a perturbative expansion may still be valid

at all energies. One-loop threshold corrections imply an upper bound on T2 and U2 [29];

indeed the loop expansion parameter (essentially the ‘t Hooft coupling) is order T2/S2,

implying that large volumes can be achieved with weak string coupling.

We conclude that ideas such as those presented in refs. [9–12] can be extremely effective

in highly asymmetric configurations for the general reasons outlined in the Introduction.

Indeed for the class of compactifications considered here, the heavy Higgs is already one-

loop suppressed with respect to the gravitino mass (gaining a mass through RG running

as usual in no-scale models), while the light Higgs is further parametrically suppressed by

the asymmetry. A more model dependent question is of course if and how shift-symmetries

are violated by the RG effects of the low energy theory, which may be computed in the
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effective field-theory as in refs. [9–12]. In a complete picture, such violations of shift-

symmetry would arise from spontaneous breaking due to for example flavon fields, leading

to light pseudo-Nambu-Goldstone modes, which may or may not mix with the Higgs. In

principle the techniques presented could be applied to those more complete cases in an

entirely stringy setting. Here we have seen that even if shift symmetries appear to be

a strong feature of the classical field theory, asymmetric compactification is required to

protect them in the threshold corrections as well.

It would of course be useful to consider these questions in more general settings such as

constructions involving D-branes in type II, or smooth Calabi-Yaus. Whilst radiative vio-

lations of shift-symmetries in the former would almost certainly be calculable (as per [15])

if the backgrounds are sufficiently flat, the latter is notoriously difficult to treat pertur-

batively. One could hope to develop heuristic arguments along the lines of those in the

introduction, and indeed there may be interesting overlaps with shift-symmetry restoration

in certain limits of the type II systems in [30]. We should remark that shift-symmetries

have also come to the fore because of their central role in schemes that try to explain the

weak-Planck hierarchy by means of cosmological relaxation [31, 32], a subject which has

recently received much attention [33–46]. Although these often feature axionic (i.e. com-

pact) symmetries, non-compact shift-symmetries may be of more utility given the need for

trans-Planckian field excursions. Moreover in supersymmetric theories the two are in any

case related by complexification of the Goldstone manifold. Therefore it may be of interest

to revisit this question in the present context.

Acknowledgments

We thank Marcus Berg for useful discussions. RJS is funded by an EPSRC studentship.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References
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