
Abstract We consider a two-dimensional model of double-diffusive convec-
tion and its time discretisation using a second-order scheme (based on back-
ward differentiation formula for the time derivative) which treats the non-
linear term explicitly. Uniform bounds on the solutions of both the continuous
and discrete models are derived (under a timestep restriction for the discrete
model), proving the existence of attractors and invariant measures supported
on them. As a consequence, the convergence of the attractors and long time
statistical properties of the discrete model to those of the continuous one in
the limit of vanishing timestep can be obtained following established methods.
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1 Introduction
s:intro

The phenomenon of double-diffusive convection, in which two properties of a
fluid are transported by the same velocity field but diffused at different rates,
often occurs in nature [13]. Perhaps the best known example is the transport
throughout the world’s oceans of heat and salinity, which has been recognised
as an essential part of climate dynamics [18, 24]. In contrast to simple con-
vections (cf. [3]), double-diffusive convections support a richer set of physical
regimes, e.g., a stably stratified initial state rendered unstable by diffusive ef-
fects. Although in this paper we shall be referring to the oceanographic case,
the mathematical theory is essentially identical for astrophysical [16, 19] and
industrial [4] applications.

In this paper, we consider a two-dimensional double-diffusive convection
model, which by now-standard techniques [21] can be proved to have a global
attractor and invariant measures supported on it, and its temporal discreti-
sation. We use a backward differentiation formula for the time derivative and
a fully explicit method for the nonlinearities, resulting in an accurate and
efficient numerical scheme. Of central interest, here and in many practical
applications, is the ability of the discretised model to capture long-time be-
haviours of the underlying PDE. This motivates the main aim of this article:
to obtain bounds necessary for the convergence of the attractor and associ-
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ated invariant measures of the discretised system to those of the continuous
system. We do this using the framework laid down in [22, 23], with necessary
modifications for our more complex model.

For motivational concreteness, one could think of our system as a model
for the zonally-averaged thermohaline circulation in the world’s oceans. Here
the physical axes correspond to latitude and altitude, and the fluid is sea
water whose internal motion is largely driven by density differentials gener-
ated by the temperature T and salinity S, as well as by direct wind forcing
on the surface. Both T and S are also driven from the boundary—by pre-
cipitation/evaporation and ice melting/formation for the salinity, and by the
associated latent heat release and direct heating/cooling for the temperature.
Physically, one expects the boundary forcing for T , S and the momentum to
have zonal (latitude-dependent) structure, so we include these in our model.
Furthermore, one may also wish to impose a quasi-periodic time dependence
on the forcing; although this is eminently possible, we do not do so in this
paper to avoid technicalities arising from time-dependent attractors.

Taking as our domain D∗ = [0, L∗] × [0, H∗] which is periodic in the hor-
izontal direction, we consider a temperature field T∗ and a salinity field S∗,
both transported by a velocity field v∗ = (u∗, w∗) which is incompressible,
∇∗ ·v∗ = 0, and diffused at rates κT and κS , respectively,

∂T∗/∂t∗ + v∗ ·∇∗T∗ = κT∆∗T∗

∂S∗/∂t∗ + v∗ ·∇∗S∗ = κS∆∗S∗.
(1.1)

Here the star∗ denotes dimensional variables. Taking the Boussinesq approxi-
mation and assuming that the density is a linear function of T∗ and S∗, which
is a good approximation for sea water (although not for fresh water near its
freezing point), the velocity field evolves according to

∂v∗/∂t∗ + v∗ ·∇∗v∗ +∇∗p∗ = κv∆∗v∗ + (αTT∗ − αSS∗)ez (1.2)

for some positive constants αT and αS .
Our system is driven from the boundary by the heat and salinity fluxes

(which could be seen to arise from direct contact with air and latent heat
release in the case of heat, and from precipitation, evaporation and ice forma-
tion/melt in the case of salinity),

∂T∗/∂n∗ = QT ∗ and ∂S∗/∂n∗ = QS∗. (1.3)

Here n∗ denotes the outward normal, n∗ = z∗ at the top boundary and n∗ =
−z∗ at the bottom boundary. We also prescribe a wind-stress forcing,

∂u∗/∂n∗ = Qu∗ (1.4)

along with the usual no-flux condition w∗ = 0 on z∗ = 0 and z∗ = H∗.

Largely following standard practice, we cast our system in non-dimensional
form as follows. Using the scales t̃, l̃, T̃ and S̃, we define the non-dimensional
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variables t = t∗/t̃, x = x∗/l̃, v = v∗t̃/l̃, T = T∗/T̃ and S = S∗/S̃, in terms of
which our system reads

p
−1

(

∂tv + v ·∇v

)

= −∇p+∆v + (T − S)ez

∂tT + v ·∇T = ∆T

∂tS + v ·∇S = β∆S.

(1.5) q:dUdt

To arrive at this, we have put l̃ = H∗ and taken the thermal diffusive timescale
for

t̃ = l̃2/κT , (1.6)

as well as scaled the dependent variables as

T̃ = pl̃/(αT t̃
2) and S̃ = pl̃/(αS t̃

2), (1.7)

where the non-dimensional Prandtl number and diffusivity ratio (also known
as the Lewis number in the engineering literature) are

p = κv/κT and β = κT /κS . (1.8)

Another non-dimensional quantity is the domain aspect ratio ξ = L∗/l̃. The
surface fluxes are non-dimensionalised in the natural way: QT = pQT ∗/(αT t̃

2),
QS = pQS∗/(αS t̃

2) and Qu = Qu∗t̃.
For clarity and convenience, keeping in mind the oceanographic applica-

tion, we assume that the fluxes vanish on the bottom boundary z = 0,

Qu(x, 0) = QT (x, 0) = QS(x, 0) = 0. (1.9) q:BC0

For boundedness of the solution in time, the net fluxes must vanish, so (1.9)
then implies that the net fluxes vanish on the top boundary z = 1,

∫ ξ

0

Qu(x, 1) dx =

∫ ξ

0

QT (x, 1) dx =

∫ ξ

0

QS(x, 1) dx = 0. (1.10) q:noflux

These boundary conditions can be seen to imply that the horizontal velocity
flux is constant in time, which we take to be zero, viz.,

∫ 1

0

u(x, z, t) dz =

∫ 1

0

u(x, z, 0) dz ≡ 0 for all x ∈ [0, ξ]. (1.11) q:uflux

For some applications (e.g., the classical Rayleigh–Bénard problem), the fluxes
on the bottom boundary may not vanish, which must then be balanced by the
fluxes on the top boundary,

∫ ξ

0

[QT (x, 1)−QT (x, 0)] dx = 0 (1.12)

and similarly for Qu and QS . With some modifications (by subtracting back-
ground profiles from u, T and S), the analysis of this paper also apply to this
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more general case. This involves minimal conceptual difficulty but adds to the
clutter, so we do not treat this explicitly here.

Defining the vorticity ω := ∂xw − ∂zu, the streamfunction ψ by ∆ψ = ω
with ψ = 0 on ∂D (this is consistent with (1.11)), and the Jacobian determi-
nant ∂(f, g) := ∂xf∂zg − ∂xg∂zf = −∂(g, f), our system reads

p
−1

{

∂tω + ∂(ψ, ω)
}

= ∆ω + ∂xT − ∂xS

∂tT + ∂(ψ, T ) = ∆T

∂tS + ∂(ψ, S) = β∆S.

(1.13) q:dudt

The boundary conditions are,

∂zT = QT , ∂zS = QS , ω = Qu and ψ = 0 on ∂D. (1.14) q:BC

We note that for the solution to be smooth at t = 0, the initial data and
the boundary conditions must satisfy a compatibility condition; cf. e.g., [20,
Thm. 6.1] in the case of Navier–Stokes equations. In the rest of this paper,
we will be working with (1.13)–(1.14) and its discretisation. We assume that
ω, T and S all have zero integral over D at t = 0. Thanks to the no-net-flux
condition (1.10), this persists for all t ≥ 0.

Another dimensionless parameter often considered in studies of (single-
species) convection is the Rayleigh number Ra. When the top and bottom
temperatures are held at fixed values T1 and T0, Ra is proportional to T0−T1.
The relevant parameters in our problem would be RaT ∝ |QT |L2(∂D) and

RaS ∝ |QS |L2(∂D), but we will not consider them explicitly here; see, e.g.,

(2.11) in [2]. For notational conciseness, we denote the variables U := (ω, T, S),
the boundary forcing Q := (Qu, QT , QS) and the parameters π := (p, β, ξ).

We do not provide details on the convergence of the global attractors and
long time statistical properties. Such kind of convergence can be obtained
following established methods once we have the uniform estimates derived
here. See [10] for the convergence of the global attractors and [23] for the
convergence of long time statistical properties.

The rest of this paper is structured as follows. In section 2 we review
briefly the properties of the continuous system, setting up the scene and the
notation for its discretisation. Next, we describe the time discrete system and
derive uniform bounds for the solution. In the appendix, we present an alter-
nate derivation of the boundedness results in [23], without using Wente-type
estimates but requiring slightly more regular initial data.

2 Properties of the continuous system

s:cts

In this section, we obtain uniform bounds on the solution of our system and use
them to prove the existence of a global attractor A. For the single diffusion
case (of T only, without S), this problem has been treated in [6] which we
follow in spirit, though not in detail in order to be closer to our treatment of
the discrete case.



6 Florentina Tone et al.

We start by noting that the zero-integral conditions on ω, T and S imply
the Poincaré inequalities

|ω|2L2(D) ≤ c0 |∇ω|2L2(D), (2.1) q:cpoi

as well as the equivalence of the norms

|ω|H1(D) ≤ c |∇ω|L2(D), (2.2) q:normeq

with analogous inequalities for T and S. The boundary condition ψ = 0 implies
that (2.1)–(2.2) also hold for ψ, while an elliptic regularity estimate [7, Cor. 8.7]
implies that

|∇ψ|2L2(D) ≤ c0 |ω|2L2(D). (2.3) q:wpoi

Following the argument in [8], this also holds for functions, such as our T and
S, with zero integrals in D.

Let Ω be an H2 extension of Qu to D̄ (further requirements will be im-

posed below) and let ω̂ := ω −Ω; we also define ∆ψ̂ := ω̂ and ∆Ψ := Ω with
homogeneous boundary conditions. Now ω̂ satisfies the homogeneous bound-
ary conditions ω̂ = 0 on ∂D, and thus the Poincaré inequality (2.1)–(2.2).
Furthermore, let TQ ∈ Ḣ2(D) be such that ∂zTQ = QT on ∂D (with other

constraints to be imposed below) and let T̂ := T − TQ; analogously for SQ

and Ŝ := S − SQ. We note that since both T̂ and Ŝ have zero integrals over
D, they satisfy the Poincaré inequality (2.1)–(2.2).

We start with weak solutions of (1.13). For conciseness, unadorned norms
and inner products are understood to be L2(D), | · | := | · |L2(D) and (·, ·) :=
(·, ·)L2(D). With ω̂, T̂ and Ŝ as defined above, we have

∂tω̂ + ∂(Ψ + ψ̂, Ω + ω̂) = p
{

∆ω̂ +∆Ω + ∂xTQ + ∂xT̂ − ∂xSQ − ∂xŜ
}

∂tT̂ + ∂(Ψ + ψ̂, TQ + T̂ ) = ∆TQ +∆T̂

∂tŜ + ∂(Ψ + ψ̂, SQ + Ŝ) = β (∆SQ +∆Ŝ).

(2.4) q:duhdt

On a fixed time interval [0, T∗), a weak solution of (2.4) are

ω̂ ∈ C0(0, T∗;L
2(D)) ∩ L2(0, T∗;H

1
0 (D))

T̂ ∈ C0(0, T∗;L
2(D)) ∩ L2(0, T∗;H

1(D))

Ŝ ∈ C0(0, T∗;L
2(D)) ∩ L2(0, T∗;H

1(D))

(2.5)

such that, for all ω̃ ∈ H1
0 (D), T̃ , S̃ ∈ H1(D), the following holds in the

distributional sense,

d

dt
(ω̂, ω̃) + (∂(Ψ + ψ̂, Ω + ω̂), ω̃)

+ p
{

(∇Ω +∇ω̂,∇ω̃)− (∂xTQ + ∂xT̂ , ω̃) + (∂xSQ + ∂xŜ, ω̃)
}

= 0

d

dt
(T̂ , T̃ ) + (∂(Ψ + ψ̂, TQ + T̂ ), T̃ ) + (∇T̂ ,∇T̃ )− (∆TQ, T̃ ) = 0 (2.6)

d

dt
(Ŝ, S̃) + (∂(Ψ + ψ̂, SQ + Ŝ), S̃) + β (∇Ŝ,∇S̃)− β (∆SQ, S̃) = 0.



2d double-diffusive convection 7

The existence of such solutions can be obtained by Galerkin approximation
together with Aubin-Lions compactness argument [20, §3.3], which we do not
carry out explicitly here.

Next, we derive L2 inequalities for T , S and ω. Multiplying (2.4a) by ω̂ in
L2(D) and noting that (∂(ψ, ω̂), ω̂) = 0, we find

1

2

d

dt
|ω̂|2 + p |∇ω̂|2 = −(∂(Ψ,Ω), ω̂)− (∂(ψ̂, Ω), ω̂)

+ p
{

(∆Ω, ω̂) + (∂xT, ω̂)− (∂xS, ω̂)
}

.
(2.7)

We bound the rhs as
∣

∣(∆Ω, ω̂)
∣

∣ = |∇Ω| |∇ω̂| ≤ 1
8 |∇ω̂|

2 + 2 |∇Ω|2
∣

∣(∂xT, ω̂)
∣

∣ = |∂xω̂| |T | ≤ 1
8 |∇ω̂|

2 + 2 |T |2 ≤ 1
8 |∇ω̂|

2 + 4c0|∇T̂ |2 + 4 |TQ|2
∣

∣(∂xS, ω̂)
∣

∣ = |∂xω̂| |S| ≤ 1
8 |∇ω̂|

2 + 2 |S|2 ≤ 1
8 |∇ω̂|

2 + 4c0|∇Ŝ|2 + 4 |SQ|2,

and the “nonlinear” terms as (this defines c1)

∣

∣(∂(ψ̂, ω̂), Ω)
∣

∣ ≤ c |∇ψ̂|L∞ |∇ω̂|L2 |Ω|L2 ≤ c1
2
|Ω|L2 |∇ω̂|2

∣

∣(∂(Ψ, ω̂), Ω)
∣

∣ ≤ c |∇Ψ |L∞ |∇ω̂|L2 |Ω|L2 ≤ p

8
|∇ω̂|2 + c

p
|∇Ψ |2L∞ |Ω|2.

(2.8)

This brings us to

d

dt
|ω̂|2 + (p− c1|Ω|)|∇ω̂|2 ≤ 4pc0(|∇T̂ |2 + |∇Ŝ|2) (2.9) q:icl2w

+
c

p
|∇Ψ |2L∞ |Ω|2 + 4p (|∇Ω|2 + |TQ|2 + |SQ|2).

As usual, in the above and henceforth, c denotes generic constants which may
take different values each time it appears. Numbered constants such as c0 have
fixed values; they are independent of the parameters p and β unless noted
explicitly.

Now for Ŝ, we multiply (1.13c), or equivalently,

∂tŜ + ∂(ψ, Ŝ + SQ) = β (∆Ŝ +∆SQ), (2.10) q:dshdt

by Ŝ in L2(D) and use (∂(ψ, Ŝ), Ŝ) = 0 to find

1

2

d

dt
|Ŝ|2 + β |∇Ŝ|2 = −(∂(Ψ, SQ), Ŝ)− (∂(ψ̂, SQ), Ŝ) + β (∆SQ, Ŝ). (2.11)

The last term on the rhs requires some care,
∣

∣(∆SQ, Ŝ)
∣

∣ =
∣

∣(QS , Ŝ)L2(∂D) − (∇SQ,∇Ŝ)
∣

∣

≤ c |QS |H−1/2(∂D)|Ŝ|H1/2(∂D) + |∇QS | |∇Ŝ|
≤ 1

8 |∇Ŝ|
2 + c (‖QS‖2 + |∇SQ|2)

(2.12) q:BCst
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where we have used the trace theorem [1, Thm. 4.12] for the last inequality and
denoted ‖QS‖ := |QS |H−1/2(∂D)

. We note that |∇SQ|L2(D) ultimately depends

on |QS |H−1/2(∂D)
plus the constraint (2.16) below. Bounding the “nonlinear”

terms as

∣

∣(∂(Ψ, Ŝ), SQ)
∣

∣ ≤ c |∇Ψ |L∞ |∇Ŝ|L2 |SQ|L2 ≤ β

8
|∇Ŝ|2 + c

β
|∇Ψ |2L∞ |SQ|2

∣

∣(∂(ψ̂, Ŝ), SQ)
∣

∣ ≤ c |∇ψ̂|L∞ |∇Ŝ|L2 |SQ|L2 ≤ β

8
|∇Ŝ|2 + c

β
|∇ω̂|2|SQ|2,

we arrive at (this defines c2)

d

dt
|Ŝ|2 + β |∇Ŝ|2 ≤ c2

8c0β
|∇ω̂|2|SQ|2

+
c

β
|∇Ψ |2L∞ |SQ|2 + cβ (|∇SQ|2 + ‖QS‖2).

(2.13) q:icl2s

Analogously, we have for T̂ (with ‖QT ‖ := |QT |H−1/2(∂D)
),

d

dt
|T̂ |2 + |∇T̂ |2 ≤ c2

8c0
|∇ω̂|2|TQ|2

+ c |∇Ψ |2L∞ |TQ|2 + c (|∇TQ|2 + ‖QT ‖2).
(2.14) q:icl2t

Adding 8pc0 times (2.14) and 8pc0/β times (2.13) to (2.9), we find

d

dt

(

|ω̂|2 + 8pc0|T̂ |2 +
8pc0
β

|Ŝ|2
)

+ 4pc0 (|∇T̂ |2 + |∇Ŝ|2)

+
(

p− c1|Ω| − c2p|TQ|2 −
c2p

β2
|SQ|2

)

|∇ω̂|2 (2.15) q:aux00

≤ cp |∇Ψ |2L∞

(

|Ω|2/p2 + |TQ|2 + |SQ|2/β2
)

+ cp (|∇Ω|2 + |∇TQ|2 + |∇SQ|2 + ‖QT ‖2 + ‖QS‖2).

If we now choose Ω, TQ and SQ such that

|Ω|L2 ≤ p/(8c1), |TQ|2L2 ≤ 1/(8c2) and |SQ|2L2 ≤ β2/(8c2), (2.16) q:qc

(given the BC (1.14), this can always be done at the price of making ∇Ω, ∇TQ
and ∇SQ large) we obtain the differential inequality

d

dt

(

|ω̂|2 + 8pc0|T̂ |2 +
8pc0
β

|Ŝ|2
)

+
p

2
|∇ω̂|2 + 4pc0 (|∇T̂ |2 + |∇Ŝ|2) ≤ ‖F‖2,

(2.17) q:icl2

with ‖F‖2 denoting the purely “forcing” terms on the rhs of (2.15). Integrating
this using the Gronwall lemma, we obtain the uniform bounds, with |Û |2 =
|ω̂|2 + 8pc0|T̂ |2 + 8pc0|Ŝ|2/β,

|Û(t)|2 ≤ e−λt|Û(0)|2 + ‖F‖2/λ (2.18) q:bdcl2

c3p

∫ t+1

t

{

|∇ω̂|2 + |∇T̂ |2 + |∇Ŝ|2
}

(t′) dt′ ≤ e−λt|U(0)|2 + (1 + 1/λ) ‖F‖2
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valid for all t ≥ 0, for some λ(π) > 0. It is clear from (2.18a) that we have an
absorbing ball, i.e. |U(t)|2 ≤M0(Q;π) for all t ≥ t0(|U(0)|;π).

On to H1, we multiply (2.4a) by −∆ω̂ in L2 to find

1

2

d

dt
|∇ω̂|2 + p |∆ω̂|2 = −(∂(∇ψ, ω̂),∇ω̂) + (∂(ψ,Ω), ∆ω̂)

− p (∆Ω,∆ω̂)− p (∂xT,∆ω̂) + p (∂xS,∆ω̂).
(2.19)

Bounding the linear terms in the obvious way, and the nonlinear terms as
∣

∣(∂(∇ψ, ω̂),∇ω̂)
∣

∣ ≤ c |∇ω̂|2L4 |∇2ψ|L2 ≤ c |∇ω̂| |∆ω̂| |∆ψ|

≤ p

8
|∆ω̂|2 + c

p
|∇ω̂|2(|ω̂|2 + |Ω|2)

∣

∣(∂(ψ,Ω), ∆ω̂)
∣

∣ ≤ p

8
|∆ω̂|2 + c

p
|∇Ω|2

(

|∇ω̂|2 + |∇Ψ |2L∞

)

,

we find

d

dt
|∇ω̂|2 + p |∆ω̂|2 ≤ c

p
|∇ω̂|2(|ω̂|2 + |Ω|2 + |∇Ω|2) + c

p
|∇Ψ |2L∞ |∇Ω|2

+ 8p
(

|∇T̂ |2 + |∇Ŝ|2 + |∇TQ|2 + |∇SQ|2 + |∆Ω|2
)

. (2.20) q:ich1w

Since ω̂, T̂ and Ŝ have been bounded uniformly in L2
t,1H

1
x in (2.18b), we can

integrate (2.20) using the uniform Gronwall lemma to obtain a uniform bound
for |∇ω̂|2,

|∇ω̂(t)|2 ≤M1(· · · ) and

∫ t+1

t

|∆ω̂(t′)|2 dt′ ≤ M̃1(· · · ). (2.21) q:bdch1w

Similarly, multiplying (2.10) by −∆Ŝ in L2, we find

1

2

d

dt
|∇Ŝ|2 + β |∆Ŝ|2 =− β (∆SQ, ∆Ŝ)

− (∂(∇ψ, Ŝ),∇Ŝ) + (∂(ψ, SQ), ∆Ŝ).

(2.22)

Bounding as we did for ω̂, we arrive at

d

dt
|∇Ŝ|2 + β |∆Ŝ|2 ≤ 8β |∆SQ|2 (2.23)

+
c

β
|∇Ŝ|2(|ω̂|2 + |Ω|2) + c

β
|∇SQ|2

(

|∇ω̂|2 + |∇Ψ |2L∞

)

,

which can be integrated using the uniform Gronwall lemma to obtain

|∇Ŝ(t)|2 ≤M1(· · · ) and

∫ t+1

t

|∆Ŝ(t′)|2 dt′ ≤ M̃1(· · · ). (2.24) q:bdch1s

Obviously one has the analogous bound for T̂ ,

|∇T̂ (t)|2 ≤M1(· · · ) and

∫ t+1

t

|∆T̂ (t′)|2 dt′ ≤ M̃1(· · · ). (2.25) q:bdch1t
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These bounds allow us to conclude [21] the existence of a global attractor
A and of an invariant measure µ supported on A. The convergence of the
global attractors can be deduced following an argument similar to that in
[11], while the convergence of the the invariant measures can be inferred from
an argument similar to that in [23]. In particular, any generalised long-time
average generates an invariant measure in the sense that for any given bounded
continuous functional Φ (whose domain is the phase space H and range R),
we have

lim
t→∞

1

t

∫ t

0

Φ(S(t′)U0) dt
′ =

∫

H

Φ(U) dµ(U) (2.26)

where U(t) = S(t)U0 is the solution of (1.13) with initial data U0. It is known
that A is unique while µ may depend on the initial data U0 and the definition
of the generalised limit lim.

Due to the boundary conditions, one cannot simply multiply by ∆2ω̂, etc.,
to obtain a bound in H2, but following [20, §6.2], one takes time derivative
of (1.13a) and uses the resulting bound on |∂tω| to bound |∆ω|, etc. We shall
not do this explicitly here, although similar ideas are used for the discrete case
below (proof of Theorem 2).

3 Numerical scheme: boundedness
s:disc

Fixing a timestep k > 0, we discretise the system (1.13) in time by the following
two-step explicit–implicit scheme,

3ωn+1 − 4ωn + ωn−1

2k
+ ∂(2ψn − ψn−1, 2ωn − ωn−1)

= p
{

∆ωn+1 + ∂xT
n+1 − ∂xS

n+1
}

3Tn+1 − 4Tn + Tn−1

2k
+ ∂(2ψn − ψn−1, 2Tn − Tn−1) = ∆Tn+1

3Sn+1 − 4Sn + Sn−1

2k
+ ∂(2ψn − ψn−1, 2Sn − Sn−1) = β∆Sn+1,

(3.1) q:ei

plus the boundary conditions (1.14). Writing Un = (ωn, Tn, Sn), we assume
that the second initial data U1 has been obtained from U0 using some rea-
sonable one-step method, but all we shall need for what follows is that U1 ∈
H1(D). The time derivative term is that of the backward differentiation for-
mula (BDF2) and the explicit form of the nonlinear term is chosen to preserve
the order of the scheme. This results in a method that is essentially explicit
yet second order in time, and as we shall see below, preserves the important
invariants of the continuous system.

Subject to some restrictions on the timestep k, we can obtain uniform
bounds and absorbing balls for the solution of the discrete system analogous
to those of the continuous system. Our first result is the following:
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t:h1 Theorem 1 With Q ∈ H3/2(∂D), the scheme (3.1) defines a discrete dynam-
ical system in H1(D)×H1(D). Assuming U0, U1 ∈ H1(D) and the timestep
restriction given in (3.20) below,

k ≤ k1(|U0|H1 , |U1|H1 ; |Q|H1/2(∂D), π), (3.2) q:dt

the following bounds hold

|Un|2L2 ≤ 40 e−νnk/4
(

|U0|2L2 + |U1|2L2

)

+M0(|Q|H1/2(∂D);π)

+ c(|Q|H−1/2(∂D);π)k e
−νnk/4

(

|U0|2H1 + |U1|2H1

)

, (3.3) q:l2

|Un|2H1 ≤ N1(nk; |U0|H1 , |U1|H1 , |Q|H1/2(∂D), π) +M1(|Q|H3/2(∂D);π), (3.4) q:h1

where ν(π) > 0 and N1(t; · · · ) = 0 for t ≥ t1(|U0|H1 , |U1|H1 ;Q, π).

We note that the last term in (3.3) has no analogue in the continuous
case; we believe this is an artefact of our proof, but have not been able to
circumvent it. Here one can choose the bounds M0 and M1 to hold for both
the continuous and discrete cases, although the optimal bounds (likely very
laborious to compute) may be different.

Unlike in [23], H2 bounds do not follow as readily due to the boundary
conditions, so we proceed by first deriving bounds for |Un+1− Un|, using an
approach inspired by [20, §6.2]. We state our result without the transient
terms:

t:h2 Theorem 2 Assume the hypotheses of Theorem 1. Then for sufficiently large
time, nk ≥ t2(U

0, U1;Q, π), one has

|ωn+1− ωn|2 + |Tn+1− Tn|2 + |Sn+1− Sn|2 ≤ k2Mδ(|Q|H3/2(∂D);π). (3.5) q:bddU

Furthermore, for large time nk ≥ t2 the solution is bounded in H2 as

|∆ωn|2 + |∆Tn|2 + |∆Sn|2 ≤M2(|Q|H3/2(∂D);π). (3.6) q:h2

We remark that these difference and H2 bounds require no additional hy-
potheses on Q, suggesting that Theorem 1 may be sub-optimal. We also note
that using the same method (and one more derivative on Q) one could bound
|Un+1 − Un|H1 and |Un|H3 , although we will not need these results here.

Following the approach of [23], these uniform bounds (along with the uni-
form convergence results that follow from them) then give us the convergence
of long-time statistical properties of the discrete dynamical system (3.1) to
those of the continuous system (1.13).

Proof (Proof of Theorem 1) Central to our approach is the idea of G-stability
for multistep methods [9, §V.6]. First, for f , g ∈ L2(D) and νk ∈ [0, 1], we
define the norm

|[f, g]|2νk =
|f |2L2

2
+

5 + νk

2
|g|2L2 − 2(f, g)L2 . (3.7) q:gndef
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Note that our notation is slightly different from that in [11, 23]. Since both
eigenvalues of the quadratic form are finite and positive for all νk ∈ [0, 1], this
norm is equivalent to the L2 norm, i.e. there exist positive constants c+ and
c−, independent of νk ∈ [0, 1], such that

c−(|f |2L2 + |g|2L2) ≤ |[f, g]|2νk ≤ c+(|f |2L2 + |g|2L2) (3.8) q:equivn

for all f , g ∈ L2(D); computing explicitly, we find

c− =
6−

√
32

4
and c+ =

7 +
√
41

4
. (3.9) q:c+-

As in [23], an important tool for our estimates is an identity first introduced
in [9] for νk = 0; the following form can be found in [11, proof of Lemma 6.1]:
for f , g, h ∈ L2(D) and νk ∈ [0, 1],

(3h− 4g + f, h)L2 + νk |h|2L2

= |[g, h]|2νk − 1

1 + νk
|[f, g]|2νk +

|f − 2g + (1 + νk)h|2L2

2(1 + νk)
.

(3.10) q:hs00

The fact that (3.1) forms a discrete dynamical system in H1 ×H1 can be
seen by writing

(3− 2k∆)Tn+1 = 4Tn − Tn−1 − 2k ∂(2ψn − ψn−1, 2Tn − Tn−1) (3.11)

and inverting: given Un−1 and Un ∈ H1(D), the Jacobian is in H−1, which,
with the Neumann BC ∂zT

n+1 = QT ∈ H1/2(∂D), gives Tn+1 ∈ H1. Similarly
for Sn+1 and, since now Tn+1, Sn+1 ∈ H1 and ωn+1 = Qu ∈ H1/2(∂D), for
ωn+1. Therefore (Un−1, Un) ∈ H1 ×H1 maps to (Un, Un+1) ∈ H1 ×H1.

Let ω̂n := ωn −Ω, T̂n := Tn −TQ and Ŝn := Sn −SQ be defined as in the
continuous case, i.e. Ω, TQ, SQ ∈ H2(D) satisfying the boundary conditions
Ω = Qu, ∂zTQ = QT and ∂zSQ = QS , and the constraint (3.29), which is
essentially (2.16). The scheme (3.1) then implies

3ω̂n+1− 4ω̂n+ ω̂n−1

2k
+ ∂(2ψn− ψn−1, 2ω̂n− ω̂n−1+Ω)

= p
{

∆ω̂n+1 +∆Ω + ∂xT
n+1 − ∂xS

n+1
}

3T̂n+1− 4T̂n+ T̂n−1

2k
+ ∂(2ψn− ψn−1, 2T̂n− T̂n−1+ TQ) = ∆T̂n+1 +∆TQ

3Ŝn+1− 4Ŝn+ Ŝn−1

2k
+ ∂(2ψn− ψn−1, 2Ŝn− Ŝn−1+ SQ) = β(∆Ŝn+1+∆SQ)

(3.12) q:eih

where we have kept some ψn, Tn and Sn for now. We start by deriving dif-
ference inequalities for ω̂n, T̂n and Ŝn. In order to bound terms of the form
|∇ψ̂n|2L∞ ≤ c |ω̂n|2

H1/2 , we assume for now the uniform bound

|ω̂n|2H1/2 ≤ k−1/2Mω(· · · ) for all n = 0, 1, 2, · · · (3.13) q:whalf
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where Mω will be fixed in (3.31) below. We also assume for clarity that k ≤ 1.
Multiplying (3.12a) by 2kω̂n+1 in L2(D) and using (3.10), we find

|[ω̂n, ω̂n+1]|2νk − νk |ω̂n+1|2 + 2pk |∇ω̂n+1|2 + |(1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1|2
2 (1 + νk)

=
|[ω̂n−1, ω̂n]|2νk

1+νk
− 2k (∂(2ψn− ψn−1, ω̂n+1), (1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1)

+ 2k (∂(2ψ̂n− ψ̂n−1, ω̂n+1), Ω) + 2k (∂(Ψ, ω̂n+1), Ω)

+ 2pk
{

(∆Ω, ω̂n+1) + (ω̂n+1, ∂xT
n+1)− (ω̂n+1, ∂xS

n+1)
}

.
(3.14) q:c00

where ν > 0 will be set below. We bound the last terms as in the continuous
case,

2 |(∆Ω, ω̂n+1)
∣

∣ ≤ 1
8 |∇ω̂

n+1|2 + 8 |∇Ω|2

2 |(∂xTn+1, ω̂n+1)| ≤ 1
8 |∇ω̂

n+1|2 + 16c0 |∇T̂n+1|2 + 16 |TQ|2

2 |(∂xSn+1, ω̂n+1)| ≤ 1
8 |∇ω̂

n+1|2 + 16c0 |∇Ŝn+1|2 + 16 |SQ|2

2
∣

∣(∂(Ψ, ω̂n+1), Ω)| ≤ p

8
|∇ω̂n+1|2 + c

p
|∇Ψ |2L∞ |Ω|2,

and the previous one as

2 |(∂(2ψ̂n − ψ̂n−1, ω̂n+1), Ω)| ≤ c |2∇ψ̂n −∇ψ̂n−1|L∞ |∇ω̂n+1|L2 |Ω|L2

≤ p

8
|∇ω̂n+1|2 + c

p
(|∇ω̂n−1|2 + |∇ω̂n|2)|Ω|2. (3.15)

Taking ν = p/(8c0) for now, we can bound the second term in (3.14) using the
third. Using (3.13), we then bound the first nonlinear term as

2 |(∂(2ψn− ψn−1, ω̂n+1), (1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1)|

≤ p

8
|∇ω̂n+1|2 + c

p
|2∇ψn −∇ψn−1|2L∞ |(1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1|2

≤ p

8
|∇ω̂n+1|2 + c3 (k

−1/2Mω + |∇Ψ |2L∞)
|(1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1|2

4p
.

(3.16) q:c01

Recalling that the validity of (3.8) and (3.9) demands k ≤ 1/ν, which we
henceforth assume, we have 2(1 + νk) ≤ 4. This then implies that k times the
last term in (3.16) can be majorised by the fourth term in (3.14) if k is small
enough that

c3k
1/2Mω ≤ p/2 and c3k |∇Ψ |2L∞ ≤ p/2. (3.17)

All this brings us to [cf. (2.9)]

|[ω̂n, ω̂n+1]|2νk + pk |∇ω̂n+1|2 ≤ |[ω̂n−1, ω̂n]|2νk
1 + νk

+
ck

p
(|∇ω̂n−1|2 + |∇ω̂n|2)|Ω|2 + 16c0pk (|∇T̂n+1|2 + |∇Ŝn+1|2)

+ ck (|∇Ψ |2L∞ |Ω|2/p+ p |TQ|2 + p |SQ|2 + p |∇Ω|2). (3.18) q:idl2w
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For Ŝn, we multiply (3.12c) by 2kŜn+1 in L2(D) and use (3.10) to find

|[Ŝn, Ŝn+1]|2νk − νk |Ŝn+1|2 + 2βk |∇Ŝn+1|2 + |(1 + νk)Ŝn+1− 2Ŝn+ Ŝn−1|2
2 (1 + νk)

=
|[Ŝn−1, Ŝn]|2νk

1 + νk
− 2k (∂(2ψn− ψn−1, Ŝn+1), (1 + νk) Ŝn+1− 2Ŝn+ Ŝn−1)

+ 2k (∂(2ψ̂n− ψ̂n−1, Ŝn+1), SQ) + 2k (∂(Ψ, Ŝn+1), SQ) + 2βk (∆SQ, Ŝ
n+1).

Bounding the last term as in (2.12) and everything else as with ω̂n, and taking
(this also takes care of T̂n below)

ν = min{p, β, 1}/(8c0) (3.19) q:nu

k ≤ min
{min{p2, β2, 1}

(2c3Mω)2
,
min{p, β, 1}
2c3|∇Ψ |2L∞

,
1

ν

}

, (3.20) q:k1

we arrive at

|[Ŝn, Ŝn+1]|2νk + βk |∇Ŝn+1|2 ≤ |[Ŝn−1, Ŝn]|2νk
1 + νk

+
ck

β
(|∇ω̂n−1|2+ |∇ω̂n|2)|SQ|2

+
ck

β
|∇Ψ |2L∞ |SQ|2 + cβk (|∇SQ|2 + ‖QS‖2). (3.21) q:idl2s

Similarly, for T̂n we have

|[T̂n, T̂n+1]|2νk + k |∇T̂n+1|2 ≤ |[T̂n−1, T̂n]|2νk
1 + νk

+ ck (|∇ω̂n−1|2 + |∇ω̂n|2)|TQ|2

+ ck |∇Ψ |2L∞ |TQ|2 + ck (|∇TQ|2 + ‖QT ‖2). (3.22) q:idl2t

Adding 16pc0 times (3.22) and 16pc0/β times (3.21) to (3.18), and writing

|[Ûn, Ûn+1]|2νk
:= |[ω̂n, ω̂n+1]|2νk + 16pc0|[T̂n, T̂n+1]|2νk + 16pc0|[Ŝn, Ŝn+1]|2νk/β,

(3.23)

we have

|[Ûn, Ûn+1]|2νk + pk
(

|∇ω̂n+1|2 + 8c0|∇T̂n+1|2 + 8c0|∇Ŝn+1|2/β
)

(3.24) q:idl2

≤ |[Ûn−1, Ûn]|2νk
1 + νk

+ k ‖F1‖2(|∇ω̂n−1|2 + |∇ω̂n|2) + k ‖F2‖2

where

‖F1‖2 := c4p
(

|Ω|2/p2 + |TQ|2 + |SQ|2/β2
)

(3.25)

‖F2‖2 := |∇Ψ |2L∞‖F1‖2 + cp
(

|∇TQ|2 + |∇SQ|2 + |∇Ω|2 + |QT ‖2 + ‖QS‖2
)

.

In order to integrate this difference inequality, we consider a three-term
recursion of the form

xn+1 + µyn+1 ≤ (1 + δ)−1xn + εyn + εyn−1 + rn. (3.26) q:3tr
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For µ > 0, δ ∈ (0, 1] and ε ∈ (0, µ/8], we have

xn + µyn ≤ xn−m + µyn−m

(1 + δ)m
+

ε yn−m−1

(1 + δ)m−1
+
∑m

j=1

rn−j

(1 + δ)j−1
(3.27)

(which follows readily by induction) and in particular

xn+1 + µyn+1 ≤ x1 + µy1
(1 + δ)n

+
ε y0

(1 + δ)n−1
+
∑n

j=1

rj
(1 + δ)n−j

. (3.28) q:3tb

In order to apply the bound (3.28) of (3.26) to (3.24), we demand that Ω, TQ
and SQ be small enough that

|Ω|2L2 ≤ p
2/(32c4), |TQ|2L2 ≤ 1/(32c4) and |SQ|2L2 ≤ β2/(32c4). (3.29) q:qd

We note that, up to parameter-independent constants, these conditions are
identical to those in the continuous case (2.16). Using the fact that (1+x)−1 ≤
exp(−x/2) for x ∈ (0, 1], we integrate (3.24) to find a bound uniform in nk,

|[Ûn, Ûn+1]|2νk + pk |∇ω̂n+1|2 (3.30) q:bdl2

≤ e−νnk/2
{

|[Û0, Û1]|2νk + pk (|∇ω̂0|2 + |∇ω̂1|2)
}

+
2

ν
‖F2‖2.

Using (3.8)–(3.9), (3.3) follows.
The hypothesis (3.13) can now be recovered by interpolation,

|ω̂n|2H1/2 ≤ c |ω̂n| |∇ω̂n| ≤ c |[Ûn−1, Ûn]|νk|∇ω̂n| (3.31) q:whalf1

≤ c (pk)−1/2
{

|[Û0, Û1]|2νk + p (|∇ω̂0|2 + |∇ω̂1|2) + 2 ‖F2‖2/ν
}

and replacing |[Û0, Û1]|2νk by its sup over νk ∈ (0, 1]. Summing (3.24) and using
(3.29), we find (discarding terms on the lhs)

k
∑n+m

j=n+1

{

p

2
|∇ω̂j |2 + 8c0 |∇T̂ j |2 + 8c0

β
|∇Ŝj |2

}

(3.32) q:bdl2h1

≤ |[Ûn−1, Ûn]|2νk + 2k ‖F1‖2(|∇ω̂n−1|2 + |∇ω̂n|2) +mk ‖F2‖2.

From (3.30) and (3.32), it is clear that there exists a t0(|∇U0|, |∇U1|, Q;π)
such that, whenever nk ≥ t0,

|Ûn|2 ≤M0(Q;π) and k
∑n+⌊1/k⌋

j=n
|∇Û j |2 ≤ M̃0(Q;π). (3.33) q:bdl2u

We redefine M0 and M̃0 to bound |Un|2 and
∑

j |∇U j |2 as well.
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On to H1, we multiply (3.12a) by −2k∆ω̂n+1 in L2 to get

|[∇ω̂n,∇ω̂n+1]|2νk − νk |∇ω̂n+1|2 + |(1 + νk)∇ω̂n+1 − 2∇ω̂n +∇ω̂n−1|2
2 (1 + νk)

=
|[∇ω̂n−1,∇ω̂n]|2νk

1 + νk
− 2pk |∆ω̂n+1|2

+ 2pk (∂xS
n+1 − ∂xT

n+1 −∆Ω,∆ω̂n+1) (3.34)

− 2k (∂(2ψn − ψn−1,∇ω̂n+1), (1 + νk)∇ω̂n+1 − 2∇ω̂n +∇ω̂n−1)

− 2k (∂(2∇ψ̂n −∇ψ̂n−1, 2ω̂n − ω̂n−1),∇ω̂n+1)

− 2k (∂(∇Ψ, 2ω̂n − ω̂n−1),∇ω̂n+1) + 2k (∂(2ψn − ψn−1, Ω), ∆ω̂n+1).

Labelling the last four “nonlinear” terms by 1©, · · · , 4©, we bound them as

1© ≤ ck |2∇ψn−∇ψn−1|L∞ |∇2ω̂n+1|L2 |(1 + νk)∇ω̂n+1− 2∇ω̂n+∇ω̂n−1|L2

≤ pk

8
|∆ω̂n+1|2 + c3k

1/2

4p

(

Mω + |∇Ψ |2L∞

)

|∇((1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1)|2

2© ≤ ck |2ω̂n − ω̂n−1|L4 |∇2ω̂n+1|L2 |2ω̂n − ω̂n−1|L4

≤ pk

8
|∆ω̂n+1|2 + ck

p
|2ω̂n − ω̂n−1|2|2∇ω̂n −∇ω̂n−1|2

3© ≤ ck |Ω|L∞ |∇2ω̂n+1|L2 |2ω̂n − ω̂n−1|L2

≤ pk

8
|∆ω̂n+1|2 + ck

p
|Ω|2L∞ |2ω̂n − ω̂n−1|2

4© ≤ ck |2∇ψn −∇ψn−1|L∞ |∇Ω|L2 |∆ω̂n+1|L2

≤ pk

8
|∆ω̂n+1|2 + ck

p
|∇Ω|2

(

|∇Ψ |2L∞ + |2∇ω̂n −∇ω̂n−1|2
)

.

Bounding the linear term in the obvious fashion and again using (3.19)–(3.20),
we arrive at

|[∇ω̂n,∇ω̂n+1]|2νk + pk |∆ω̂n+1|2 (3.35) q:idh1w

≤ |[∇ω̂n−1,∇ω̂n]|2νk
[

1+ cp−1k (M0+ |∇Ω|2)
]

+ 8pk
(

|∇T̂n+1|2+ |∇Ŝn+1|2
)

+ cp−1k
(

M0|Ω|2L∞ + |∇Ω|2|∇Ψ |2L∞

)

+ 8pk
(

|∆Ω|2 + |∇TQ|2 + |∇SQ|2
)

valid for large times nk ≥ t0.
Noting that, for xn ≥ 0, rn ≥ 0 and b > 0,

xn+1 ≤ (1 + b)xn + rn ⇒ xn+m ≤ (1 + b)m
(

xn +
∑n+m−1

j=n rj
)

, (3.36) q:gw1

we can obtain a uniformH1 bound from (3.33) and (3.35) as follows. Borrowing
an argument from [5], we conclude from (3.33) that there exists an n∗ ∈
{n+ ⌊1/k⌋, · · · , n+ ⌊2/k⌋ − 1} such that

|∇ω̂n∗ |2 + |∇ω̂n∗+1|2 ≤ 1
4 M̃0(Q;π) ⇒ |[∇ω̂n∗ ,∇ω̂n∗+1]|2νk ≤ c5 M̃0. (3.37) q:ah100
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(In other words, in any sequence of non-negative numbers, one can find two
consecutive terms whose sum is no greater than four times the average.) Taking
n∗ ∈ {⌈t0/k⌉, · · · , ⌈(t0 + 1)/k⌉ − 1} and integrating (3.35) using (3.36) with
m = ⌊2/k⌋ and (3.33) to bound the |∇T̂n|2 and |∇Ŝn|2 on the rhs, we find

|[∇ω̂n,∇ω̂n+1]|2νk ≤M1(Q;π) (3.38) q:bdh1w

for all n ∈ {n∗, · · · , n∗+⌊2/k⌋−1}. We then find a n∗∗ ∈ {n∗+⌊1/k⌋, · · · , n∗+
⌊2/k⌋ − 1} that satisfies (3.37) and repeat the argument to find that (3.38)
also holds for all n ∈ {n∗∗, · · · , n∗∗+ ⌊2/k⌋− 1}. Since n∗∗ ≥ n∗+ ⌊1/k⌋, with
each iteration we increase the time of validity of (3.38) by at least 1 using
no further assumptions, implying that (3.38) in fact holds for all n ≥ n∗, i.e.
whenever nk ≥ t0 + 1.

Similarly for Ŝn, we multiply (3.12c) by −2k∆Ŝn+1 in L2 to find after a
similar computation

|[∇Ŝn,∇Ŝn+1]|2νk + βk |∆Ŝn+1|2 ≤ |[∇Ŝn−1, Ŝn]|2νk
(

1 + ckβ−1M0

)

+
ck

β
(M0 + |∇SQ|2)

(

|∇Ψ |2L∞ + |∇ω̂n−1|2 + |∇ω̂n|2
)

+
ck

β
M0|Ω|2L∞ + 8βk |∆SQ|2. (3.39) q:idh1s

Arguing as we did with ω̂n, we conclude that (redefining M1 as needed) one
has

|[∇Ŝn,∇Ŝn+1]|2νk ≤M1(Q;π) whenever nk ≥ t0 + 1. (3.40)

Obviously the same bound applies to T̂n,

|[∇T̂n,∇T̂n+1]|2νk ≤M1(Q;π) whenever nk ≥ t0 + 1. (3.41)

As we did with M0, we redefine M1 to bound |[∇ωn,∇ωn+1]|2νk, etc., as well
as |[∇ω̂n,∇ω̂n+1]|2νk. ⊓⊔

Proof (Proof of Theorem 2) Let δUn := Un − Un−1 = Ûn − Ûn−1. We first
prove that |δUn|2 ≤ kM for all large n, and then use this result to prove (3.5).

Writing 3ωn+1 − 4ωn + ωn−1 = 3δωn+1 − δωn and using the identity

2 (3δωn+1 − δωn, δωn+1) = 3 |δωn+1|2 − 1
3 |δω

n|2 + 1
3 |3δω

n+1 − δωn|2, (3.42) q:idd1

we multiply (3.1a) by 4kδωn+1,

3 |δωn+1|2 + 1
3 |3δω

n+1 − δωn|2 = 1
3 |δω

n|2

+ 4pk (∆ωn+1, δωn+1) + 4pk (∂xT
n+1 − ∂xS

n+1, δωn+1)

− 4k (∂(2ψn − ψn−1, 2ωn − ωn−1), δωn+1).

(3.43)
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For the dissipative term, we integrate by parts using the fact that δωn+1 = 0
on the boundary to write it as

−2 (∆ωn+1, δωn+1) = |∇ωn+1|2 − |∇ωn|2 + |∇δωn+1|2. (3.44) q:idd2

We bound the nonlinear term as

4
∣

∣(∂(2ψn − ψn−1, 2ωn − ωn−1), δωn+1)
∣

∣

≤ c |2∇ψn −∇ψn−1|L∞ |2∇ωn −∇ωn−1|L2 |δωn+1|L2

≤ 1
8 |δω

n+1|2 + c |2∇ωn −∇ωn−1|4. (3.45)

Bounding the buoyancy terms by Cauchy–Schwarz, we arrive at

2 |δωn+1|2 + 1
3 |3δω

n+1 − δωn|2 + 2pk |∇ωn+1|2 + 2pk |∇δωn+1|2

≤ 1
3 |δω

n|2 + 2pk |∇ωn|2 + ck2 |2∇ωn −∇ωn−1|4

+ cp2k2
(

|∂xTn+1|2 + |∂xSn+1|2
)

≤ 1
3 |δω

n|2 + c(π)
(

kM1 + k2M2
1

)

.

(3.46)

It is now clear that, since δω1 is bounded in L2, we have for large nk

|δωn|2 ≤ k c(π)(M1 + kM2
1 ). (3.47)

Similarly for Ŝn, we multiply (3.12c) by 4kδŜn+1 to find

3 |δŜn+1|2 + 1
3 |3δŜ

n+1 − δŜn|2 = 1
3 |δŜ

n|2 + 4kβ (∆Ŝn+1+∆SQ, δŜ
n+1)

− 4k (∂(2ψn− ψn−1, 2Ŝn− Ŝn−1+ SQ), δŜ
n+1). (3.48)

Bounding the nonlinear term as we did for ωn,

4
∣

∣(∂(2ψn− ψn−1, 2Ŝn− Ŝn−1+ SQ), δŜ
n+1)

∣

∣ (3.49)

≤ 1
8 |δŜ

n+1|2 + c |2∇ωn−∇ωn−1|2(|2∇Ŝn−∇Ŝn−1|2 + |∇SQ|2),

and the linear terms as we did with ωn, we arrive at

2 |δŜn+1|2 + 1
3 |3δŜ

n+1 − δŜn|2 + 2βk |∇Ŝn+1|2 + 2βk |∇δŜn+1|2

≤ 1
3 |δŜ

n|2 + 2βk |∇Ŝn|2 + ck2|2∇Un−∇Un−1|4

+ c(β)k2(|∇SQ|4 + |∆SQ|2),
(3.50)

whence
|δŜn|2 ≤ k c(π)(M1 + kM2

1 ) for large nk. (3.51)

Obviously a similar bound holds for δT̂n, so we conclude that

|δUn|2 ≤ k c(π)(M1 + kM2
1 ) =: kM̃δ for large nk. (3.52) q:delU
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By taking difference of (3.1a), we find

3δωn+1 − 4δωn + δωn−1

2k
+ ∂(2ψn−1 − ψn−2, 2δωn − δωn−1) (3.53) q:del0

+ ∂(2δψn − δψn−1, 2ωn − ωn−1) = p
{

∆δωn+1 + ∂xδT
n+1 − ∂xδS

n+1
}

.

Multiplying this by 2kδωn+1 and using (3.10), we have

|[δωn, δωn+1]|2νk − νk |δωn+1|2 + |(1 + νk)δωn+1− 2δωn + δωn−1|2
2(1 + νk)

+ kI

=
|[δωn−1, δωn]|2νk

1 + νk
− 2pk |∇δωn+1|2 + 2pk (∂xδT

n+1− ∂xδS
n+1, δωn+1).

(3.54)
Here I = I1 + I2 denotes the nonlinear terms, which we bound as

|I1| ≤ c |2∇ψn−1−∇ψn−2|L∞ |∇δωn+1|L2 |2δωn− δωn−1|L2

≤ p

8
|∇δωn+1|2 + c

p
|2∇ωn−1 −∇ωn−2|2|2δωn − δωn−1|2

|I2| ≤ c |2∇δψn −∇δψn−1|L4 |2ωn − ωn−1|L4 |∇δωn+1|L2

≤ p

8
|∇δωn+1|2 + c

p
|2δωn − δωn−1|2|2∇ωn −∇ωn−1|2.

(3.55)

Bounding the linear terms as
∣

∣(∂xδT
n+1−∂xδSn+1, δωn+1)

∣

∣ ≤ 1
4 |∇δω

n+1|2+2 |δTn+1|2+2 |δSn+1|2 (3.56)

and using (3.52), we obtain

|[δωn, δωn+1]|2νk + pk |∇δωn+1|2

≤ 1

1 + νk
|[δωn−1, δωn]|2νk + k2c(π)M̃δ(1 +M1).

(3.57) q:del1

Integrating this and the analogous expressions for δTn and δSn, we obtain
(3.5) for nk large.

To prove (3.6), we note that (3.1b) implies

|∆Tn+1| ≤ |∂(2ψn − ψn−1, 2Tn − Tn−1)|+ |3δTn+1 − δTn|
2k

≤ c |2∇ωn −∇ωn−1| |2∇Tn −∇Tn−1|+ 3|δTn+1|+ |δTn|
2k

.

(3.58)

Since the right-hand side has been bounded (independently of k for the first
term and by Mk for the second) on the attractor Ak, it follows that |∆Tn| is
uniformly bounded on Ak as well. Clearly similar H2 bounds also hold for Sn

and ωn, proving (3.6) and the Theorem. ⊓⊔
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For convenience, we recap our main notations:

c0 Poincaré constant

π = (p, β, ξ) Prandtl, Froude numbers, aspect ratio

U = (ω, T, S) non-dimensional variables; see (1.13)

Q = (Qu, QT , QS) BC for U in (1.14), with norm

‖QT ‖ = |QT |H−1/2(∂D)
‖QS‖ = |QS |H−1/2(∂D)

(Ω, TQ, SQ) H2 extension of Q into D̄: (2.3), (2.16)

(ω̂, T̂ , Ŝ) = U − (Ω, TQ, SQ) homogeneous variables, cf. (2.4)

M0,M1, M̃0, M̃1,Mω bounds: (2.18), (2.21)–(2.25), (3.13)

|[·, ·]|νk G-norm: (3.7)

Also, ∆ψ := ω, ∆ψ̂ := ω̂ and ∆Ψ := Ω, all with homogeneous BC.

A 2d Navier–Stokes equations

In this appendix we present an alternate derivation of the boundedness results in [23],
without using the Wente-type estimate of [15] but requiring slightly more regular initial
data. In principle these could be obtained following the proofs of Theorems 1 and 2 above,
but the computation is much cleaner in this case (mostly due to the periodic boundary
conditions) so we present it separately.

The system is the 2d Navier–Stokes equations

3ωn+1 − 4ωn + ωn−1

2k
+ ∂(2ψn − ψn−1, 2ωn − ωn−1) = µ∆ωn+1 + fn (A.1) q:adwdt

with periodic boundary conditions. It is clear that ωn has zero integral over D, and we
define ψn uniquely by the zero-integral condition. These imply (2.1)–(2.2), which we will
use below without further mention. Assuming that the initial data ω0, ω1 ∈ H1/2 (in fact,
we only need Hǫ for any ǫ > 0, but will write H1/2 for concreteness), we derive uniform
bounds for ωn in L2, H1 and H2.

Assuming for now the uniform bound

|ωn|2
H1/2 ≤ k−1/2Mω(· · · ) for n ∈ {2, 3, · · · }, (A.2) q:ahalf

we multiply (A.1) by 2kωn+1 in L2, use (3.10) and estimate as before,

|[ωn, ωn+1]|2νk − νk |ωn+1|2 + 2µk |∇ωn+1|2 +
|(1 + νk)ωn+1− 2ωn+ ωn−1|2

2(1 + νk)

=
|[ωn−1, ωn]|2νk

1 + νk
+ 2k (fn, ωn+1)

− 2k (∂(2ψn − ψn−1, ωn+1), (1 + νk)ωn+1 − 2ωn + ωn−1)

≤
|[ωn−1, ωn]|2νk

1 + νk
+
µk

2
|∇ωn+1|2 +

ck

µ
|fn|2

H−1

+
ck

µ
|2∇ψn −∇ψn−1|2L∞ |(1 + νk)ωn+1 − 2ωn + ωn−1|2,

(A.3)

giving (as before, we require k ≤ 1/ν)

|[ωn, ωn+1]|2νk − νk |ωn+1|2 +
3µk

2
|∇ωn+1|2 ≤

|[ωn−1, ωn]|2νk
1 + νk

+
ck

µ
|fn|2

H−1

+ |(1 + νk)ωn+1− 2ωn+ ωn−1|2
(

c3k
1/2Mω/µ− 1

4

)

.

(A.4)
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Setting ν = µ/(2c
0
) and imposing the timestep restriction

k ≤ k0 := min{µ2/(4c3Mω)
2, 1/ν}, (A.5) q:adt

this gives

|[ωn, ωn+1]|2νk + µk |∇ωn+1|2 ≤
|[ωn−1, ωn]|2νk

1 + νk
+
ck

µ
|fn|2

H−1 . (A.6) q:aidl2

Integrating using the Gronwall lemma, we arrive at the L2 bound

|[ωn+1, ωn+2]|2νk + µk |∇ωn+2|2 ≤ e−νnk/2|[ω0, ω1]|2νk +
c

µ2
supj |f

j |2
H−1

≤ |[ω0, ω1]|2νk +
c

µ2
supj |f

j |2
H−1 =:M0.

(A.7) q:abdl2

The hypothesis (A.2) is now recovered by interpolation as before,

|ωn|2
H1/2 ≤ c |ωn| |∇ωn| ≤ c |[ωn−1, ωn]|νk|∇ω

n|

≤ c (µk)−1/2
(

|[ω0, ω1]|2νk + (1/µ+ 1/µ2) supj |f
j |2

H−1

)

.
(A.8)

Summing (A.6), we find

µk
∑n+⌊1/k⌋

j=n+1
|∇ωj |2 ≤ |[ωn−1, ωn]|2νk + cµ supj |f

j |2
H−1 . (A.9) q:abdl2h1

It is clear that both bounds (A.7) and (A.9) can be made independent of the initial data
for sufficiently large time, nk ≥ t0(ω0, ω1; f, µ).

For the H1 estimate, we multiply (A.1) by −2k∆ωn+1 in L2 and use (3.10). Writing
the nonlinear term as

N1 := (∂(2ψn − ψn−1, 2ωn − ωn−1), ∆ωn+1)

= (∂(2∇ψn −∇ψn−1,∇ωn+1), 2ωn − ωn−1)

− (∂(2ψn − ψn−1,∇ωn+1),∇((1 + νk)ωn+1 − 2ωn + ωn−1))

(A.10)

and bounding the terms as

|N1| ≤ c |2ωn − ωn−1|
L4 |∇

2ωn+1|
L2 |2ω

n − ωn−1|
L4

+ c |2∇ψn−∇ψn−1|L∞ |∇2ωn+1|
L2 |∇((1 + νk)ωn+1− 2ωn+ ωn−1)|

L2

≤
µ

2
|∆ωn+1|2 +

c

µ
|2ωn − ωn−1|2|2∇ωn −∇ωn−1|2

+
ck−1/2

µ
Mω |∇((1 + νk)ωn+1− 2ωn+ ωn−1)|2,

(A.11)

we find the differential inequality, using the bound (A.7),

|[∇ωn,∇ωn+1]|2νk + µk |∆ωn+1|2 ≤ |[∇ωn−1,∇ωn]|2νk
(

1 + ckM0/µ
)

+ |∇((1 + νk)ωn+1− 2ωn+ ωn−1)|2
(

c3k
1/2Mω/µ− 1

4

)

+ ck |fn|2/µ.
(A.12) q:aidh1

Using the earlier timestep restriction (A.5), we can suppress the second term on the r.h.s.
Thanks to (A.9), for any n ∈ {0, 1, · · · } we can find n∗ ∈ {n, · · · , n + ⌊1/k⌋} such that
|[∇ωn∗ ,∇ωn∗+1]|2νk ≤ c(µ)

(

|[ω0, ω1]|2νk + supj |f
j |2

H−1

)

. Arguing as before, we can use this

to integrate (A.12) to give us a uniform H1 bound

|[∇ωn,∇ωn+1]|2νk ≤M1(|∇ω
0|, |∇ω1|;µ, supj |f

j |) (A.13) q:abdh1

valid for all n ∈ {0, 1, · · · }. Moreover,M1 can be made independent of the initial data |∇ω0|,
|∇ω1| for sufficiently large n; in fact, we do not even need ω0, ω1 ∈ H1, although we still
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need them to be in Hǫ for the timestep restriction (A.5). Summing (A.12) and using (A.13),
we find

µk
∑n+⌊1/k⌋

j=n+1
|∆ωj |2 ≤ M̃1(supj |f

j |;µ) for all nk ≥ t1(ω
0, ω1, f ;µ). (A.14)

Similarly, for the H2 estimate, we multiply (A.1) by 2k∆2ωn+1 in L2 and write the
nonlinear term as

N2 := (∂(2ψn − ψn−1, 2ωn − ωn−1), ∆2ωn+1)

= −(∂(2∇ψn −∇ψn−1, 2ωn − ωn−1),∇∆ωn+1)

− (∂(2ψn − ψn−1, 2∇ωn −∇ωn−1),∇∆ωn+1).

(A.15)

Bounding this as

|N2| ≤ c |2ωn − ωn−1|L∞ |2∇ωn −∇ωn−1|
L2 |∇∆ω

n+1|
L2

+ c |2∇ψn −∇ψn−1|L∞ |2∇2ωn −∇2ωn−1|
L2 |∇∆ω

n+1|
L2

≤
µ

2
|∇∆ωn+1|2 +

c

µ
|2∇ωn −∇ωn−1|2|[∆ωn−1, ∆ωn]|2νk,

(A.16)

we arrive at the differential inequality

|[∆ωn, ∆ωn+1]|2νk + µk |∇∆ωn+1|2

≤ |[∆ωn−1, ∆ωn]|2νk
(

1 + ckM1/µ
)

+ ck|∇fn|2/µ.
(A.17)

As with (A.12), this can be integrated to obtain the uniform bound

|[∆ωn, ∆ωn+1]|2νk ≤M2(supj |∇f
j |;µ) (A.18) q:aidh2

valid whenever nk ≥ t2(ω0, ω1, f ;µ).
To bound the difference δωn := ωn − ωn−1, we write (A.1) as

3δωn+1 − δωn

2k
+ ∂(2ψn − ψn−1, 2ωn − ωn−1) = µ∆ωn+1 + fn. (A.19)

Multiplying by 4kδωn+1 and using (3.42) and (3.44), we find

3|δωn+1|2 + 1

3
|δωn+1 − δωn|2 = 1

3
|δωn|2

+ 2µk|∇ωn|2 − 2µk|∇ωn+1|2 − 2µk|∇δωn+1|2

− 4k(∂(2ψn − ψn−1, 2ωn − ωn−1), δωn+1) + 4k(fn, δωn+1).

(A.20)

Bounding the nonlinear term and suppressing harmless terms, we arrive at

2|δωn+1|2 ≤ 1

3
|δωn|2 + 2µk|∇ωn|2

+ ck2|2∇ψn −∇ψn−1|2L∞ |2∇ωn −∇ωn−1|2 +
ck2

µ
|fn|2

H−1 .
(A.21)

Since the r.h.s. has been bounded uniformly for large nk, we conclude that

|δωn|2 ≤ kM̂0(f, µ) (A.22)

for nk sufficiently large. Arguing as in (3.53)–(3.57), we can improve the bound on |δωn| to
O(k).

Acknowledgements Wang’s work is supported in part by grants from the National Science
Foundation and a planning grant from Florida State University. We thank the referee for a
careful reading of the manuscript and for constructive comments.



2d double-diffusive convection 23

References

adams-fournier:ss 1. R. A. Adams and J. J. F. Fournier, Sobolev spaces, Elsevier, 2002.
balmforth-al:06 2. N. J. Balmforth, S. A. Ghadge, A. Kettapun, and S. D. Mandre, Bounds on

double-diffusive convection, J. Fluid Mech., 569 (2006), pp. 29–50.
chandrasekhar:hdhms 3. S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Dover, 1961.

chen-johnson:84 4. C. F. Chen and D. H. Johnson, Double-diffusive convection: a report on an Engineer-
ing Foundation Conference, J. Fluid Mech., 138 (1984), pp. 405–416.

coti-tone:12 5. M. Coti Zelati and F. Tone, Multivalued attractors and their approximation: ap-
plications to the Navier–Stokes equations, Numer. Math., 122 (2012), p. 421–441.
arXiv:1111:4368.

foias-manley-temam:87b 6. C. Foias, O. P. Manley, and R. M. Temam, Attractors for the Bénard problem:
existence and physical bounds on their fractal dimension, Nonlin. Anal., 11 (1987),
pp. 939–967.

gilbarg-trudinger:epde 7. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second
order, Springer-Verlag, 1977.

gtw3:dodu 8. S. Gottlieb, F. Tone, C. Wang, X. Wang, and D. Wirosoetisno, Long time stability
of a classical efficient scheme for two dimensional Navier–Stokes equations, SIAM J.
Numer. Anal., 50 (2012), pp. 126–150. arXiv:1105.4349.

hairer-wanner:sode2 9. E. Hairer and G. Wanner, Solving ordinary differential equations II: stiff and
differential-algebraic problems, Springer-Verlag, 2 ed., 1996.
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