
 Procedia CIRP 38 (2015) 265 – 270

Available online at www.sciencedirect.com

2212-8271 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Programme Chair of the Fourth International Conference on Through-life Engineering Services.
doi: 10.1016/j.procir.2015.08.027

ScienceDirect

The Fourth International Conference on Through-life Engineering Services

Experimental validation of a resilient electronic logic design with
autonomous fault discrimination/masking

 Richard McWilliam*, Philipp Schiefer and Alan Purvis
School of Engineering and Computing Sciences, Durham University, South Road, Durham, DH1 3LE, UK

* Corresponding author. Tel.: +44 (0)191 3342539; fax: +44 (0)191 3342408. E-mail address: r.p.mcwilliam@durham.ac.uk

Abstract

This paper presents the experimental validation of a novel fault-tolerant electronic logic design conducted by an automated
mixed-signal fault injection procedure. The design under evaluation relies upon a novel redundant design strategy intended to
provide fault discrimination and selective fault masking embedded within a functional CMOS NAND gate. The traditional logic
layout is modified to include fault detection and reporting at an extremely fine-grained design level with 2x overhead as opposed
to the traditional 4x overhead. The fault injection test bench procedure requires automated fault injection, programmable fault
load conditions and combined analogue/digital domain verification. The device under test is implemented using discrete n- and
p-FETs arranged as a modular test board together with automated fault injection and test lines. The fault response is measured
and confirms the predicted intrinsic fault rate of 25% with a successful 100% masking of suck low-faults and precise
identification of stuck-high via IDDQ trigger. The test procedure is shown to be extensible towards more complex logic unit
designs and for evaluation of multiple simultaneous faults.

© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Programme Chair of the Fourth International Conference on Through-life Engineering Services.

 Keywords: Self-healing technologies; FPGA; hardware-in-loop; fault injection; fault-tolerance

1. Introduction

Future electronics technologies based on nanoscale
transistors or printed organic materials will become
increasingly vulnerable to process variation and single event
upset in harsh environments than present-day technologies. As
more and more Commercial Off-the-Shelf (COTS)
components are integrated into state of the art high value and
mission critical systems, there is also growing concern over the
economy of manufacture (i.e. yield) [1] and the in-service
robustness of such systems. This is prompting new studies into
fault tolerant designs [2] at the extremely fine-grained level that
are based in part by the pioneering work of Von Neumann on
the theory of massively redundant design [3]. This represents a
distinct departure from design strategies that are prevalent
today, such as component screening and high-level modular
redundancy, and therefore is new design paradigm for future
electronics.

Faults that occur in electronics are best categorised into a
number of fault domains including: process variation, ageing,
current thermal stress, soft errors, hard errors and extreme
environmental events that are unforeseen [4]. Within each of
these domains, there are many root-causes that illicit faults.

In this paper we present an experimental fault testing
platform for verifying novel fault-tolerant design strategies in
electronics with both analogue and digital diagnosis. The
particular design strategy evaluated in this paper is relevant to
low voltage CMOS circuits within ASICs and in power circuits
that use discrete transistors such as IGBTs. Here we adopt an
abstract model of switching elements based on field-effect
transistors (FET) of some kind, and assume that the resource
requirements depend upon two factors: the number of
switching elements and the number of interconnects. Specific
fault conditions are then injected into the hardware and the
response recorded.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Programme Chair of the Fourth International Conference on Through-life Engineering Services.

266 Richard McWilliam et al. / Procedia CIRP 38 (2015) 265 – 270

Besides the goal of achieving fault tolerance by fine-grained
redundancy, a further opportunity exists to consider at the same
time fault detection and reporting. Most fine-grained methods
are based on the fault masking property i.e., where faults events
are made non-critical so that they cannot cause an error in the
output. Therefore the circuit is able to continue to function
correctly in the presence of the fault. An example of this is the
quadded logic strategy [5] where gate and intereonnect
redundancy guarantee error-free operation for any single fault
event. An example is illustrated in Figure 1a. Like most
masking strategies, this approach is limited to single faults such
as those caused by single event upset (SEU) though in some
cases certain combinations of two simultaneous faults can also
be tolerated. When SEU occur they cause a momentary charge
event to occur within one or more switching elements (i.e.,
charge is generated in the semiconductor gate of the FET) that
may cause a stuck-on or stuck-off fault. Although the fault
mechanism is short-lived, it may cause a persistent effect in the
circuit that remains until power-off. Hence SEU-induced faults
may remain in the circuit for some time, and may potentially
accumulate in several locations as is often observed in the
SRAM of FPGA chips [6]. If the circuit is configurable (as is
the case with FPGA chips) then scrubbing is often combined
with masking strategies in order to maximise resilience to SEU.

Figure 1 Two examples of fault tolerant design. (a) quadded interleaved logic.
(b) TMR with modules M1…M3 and voter logic. The fault detection signal is

generated by the XOR gate.

Other fault tolerant strategies apply the concept of triple
modular redundancy (TMR) to fine-grained logic in
electronics. This has become commonplace in FPGAs for
mission-critical situations such as Space exploration where
existing designs are augmented by TMR structures using HDL
extensions. Several strategies have been developed for FPGA
chips that involve various forms of fine-grained modular
redundancy, including the capacity for online reconfiguration
in response to permanent fault conditions [7,8]. However they
are highly confined to the available FPGA resources and
architecture while reconfiguration requires a great deal of
processing capability or else pre-storage of multiple alternative
configurations. The TMR approach has also been applied in
multi-processor core design [9]. Despite the presence of built-
in checking via the TMR voting logic this is not generally used
for reporting at higher system levels.

Error detection and correction (EDC) is also used for self-
checking by using information redundancy [10]. This approach
is most effective for protecting data registers and memory
blocks. Early computer systems used combined EDC and
modular redundancy [11] but EDC is far more common in state
of the art computers. Again however, EDC is usually
performed internally with little or no record of fault events.
Custom logic, such as the arithmetic logic unit (ALU), are more
difficult to modify for fault tolerance since they must be
designed with speed and minimal component layout.

At the power electronics scale, discrete IGBTs used in
renewable energy power conversion systems are becoming a
source of concern. Although their intrinsic reliability is high,
modern energy conversion sub-systems may rely upon a large
number of such devices, increasing the likelihood of failures
occurring. This causes serious disruption for critical energy
systems such as offshore wind farms where maintenance and
repair is difficult and expensive. Mitigation strategies then
become one of further improving component reliability or else
introducing efficient fault tolerance with the smallest possible
overhead.

As a result of the above context, our fault tolerant design
aims to combine the following properties within the confines
of custom logic gate design:

 Scalability: the redundancy structure is applicable to low
and high level electronic design

 Strategic masking: only stuck-off events are masked
 Strategic fault detection: stuck-on events trigger a built-in

fault detection mechanism
 Low overhead: the redundancy overhead is minimised.

Resource overhead represents a balance of cost/benefit
where, in this case, the benefits gained are fault selectivity and
detection. Goal of this work is to therefore to design and test a
hardware prototype that demonstrates the above features of the
fault tolerant design.

2. Proposed design

The basis of this design is the NAND logic gate, which is
central to electronic ALUs and many other circuits. The
reference NAND gate is illustrated in Figure 2a as a
complimentary metal-oxide-semiconductor (CMOS) design.
This gate uses 2x p-type FET and 2x n-type FET. The
equivlanet fault tolerant gate design is illustrated in Figure 2b
where additional FETs and interconnects have been added. The
interconnect topology shown is one of several variations under
investigation [12]. The design is intended to bring the
capabilities of stuck-off fault masking and detection of stuck-
high faults.

267 Richard McWilliam et al. / Procedia CIRP 38 (2015) 265 – 270

Figure 2 (a) traditional NAND gate design. (b) NAND gate design with fault
discrimination and masking capability.

For simplicity it is assumed that each FET is fabricated
separately i.e, that there is no overlapping of resources in the
layout. For CMOS circuits this may not be the case because
combined structures are commonly used. However the degree
of resource overlap depends on the technology library used
hence we adopt a simple model that can be later refined using
a specific technology library. The predicted fault rate of the
NAND gate design is shown in Figure 3 alongside other
variations. The basic NAND gate is shown leftmost on the
horizontal axis and each redundant design “NAND+n” contains
n redundant FETs. The full quad-transistor (QT) design
(NAND+12) achieves complete fault tolerance against and
stuck-on and stuck-off fault [13], but with a 4x resource
overhead requirement in comparison to the non-redundant
design (NAND). The design presented here is represented by
the NAND+4 variation with a fault rate of 12.5%.

Figure 3 Fault rate versus NAND gate redundancy.

The concept of augmenting resilience with fault event
intelligence has been suggested by others. For example, a
radiation sensor is incorporated into an FPGA-based sub-
system in [14] to create environmental awareness that enhances
the basic TMR/scrubbing procedures. By comparison our
strategy is implemented using an analgoue trigger flag referred
to as IDDQ. This is an attractive approach because detection is
confined to the electronic circuit domain rathern than relying
upon external sensory input. Furthermore, active responses
triggered by IDDQ events are controlled by local circuitry and
hence become extremely rapid and potentially autonomous.

The concept is illustrated in Figure 4, where a stuck-on fault
has been asserted at FET T7. In this case IDDQ current flows
when the inputs are set to ‘01’. When IDDQ current flows the
output logic state is difficult to predict as it depends upon the
analogue conditions of drain-source impedance of each FET.
Therefore, the output is not considered trustworthy and should
be ignored. However the ocurrence of IDDQ can be used to
identify the stuck-on fault condition.

3. Test strategy

To confirm the properties of the fault tolerant design we
implemented the NAND gate using discrete FETs mounted on
a test PCB. Fault-tolerant designs are typically evaluated using
either software simulation or else using FPGA boards in order
to predict their usefulness. A discussion of the different test
approaches can be found in [15]. Examples of model-based
approaches are seen in [1,2,5] wherein behavioural predictions
of the fault response are formed. Alternatively, hardware fault
injection within FPGA boards has been carried out taking the
form of random bit-flips injected into the configuration
bitstream. Examples of this are seen in [16] for evaluation of
FPGA fault-tolerant design techniques. The faults injected are
emulated, that is, artificially inserted into the active hardware
by a separate hardware controller. Some modern FPGA chips
benefit from a built-in fault injection interface [17]. Finally,
accelerated radiation testing constitutes the ultimate form of
fault testing whereby faults are induced by the actual physics
of failure mechanism involving high energy particles
interacting with semi-conductor materials.

For the purposes of this study we have chosen to adopt fault
emulation by hardware injection due to the high repeatability
of the approach and lower cost in comparison to accelerated
testing. For the fault tolerant design under consideration,
hardware fault injection offers the possibility to monitor both
analogue and digital domain behaviour. This is essential when
observing the stuck-high behaviour for the case when rail to rail
current flows. This condition is conventionally ignored in fault
analysis of logic circuits (see for example [18]) because the
logic output level becomes ill-defined. However our fault
detection strategy relies only upon the presence of (analogue)
IDDQ current flow rather than determination of the specific
(digital) logic level.

Detailed information about IDDQ is not available using
FPGA chips due to their architecture, hence a custom circuit
implementation was created. This also created the possibility
of asserting different fault conditions for each FET. The FETs
used are low-power MOSFETs (types IRFD020 and
IDRF9024) rated at 1 Watt, hence the circuit could also be used
to demonstrate a small-scale power application. The test PCB
(Figure 5) is fitted with fault injection points that allow
insertion of stuck-on / stuck-off conditions for any FET. In
addition are also fault injection points for gate signals that are
not used in this experiment. The PCB is wired to a National
Instruments PXI test system.

0.0
5.0

10.0
15.0
20.0
25.0
30.0

N
AN

D
N

AN
D+

1
N

AN
D+

2
N

AN
D+

3
N

AN
D+

4
N

AN
D+

5
N

AN
D+

6
N

AN
D+

7
N

AN
D+

8
N

AN
D+

9
N

AN
D+

10
N

AN
D+

11
N

AN
D+

12

Fa
ul

t r
at

e
(%

)

268 Richard McWilliam et al. / Procedia CIRP 38 (2015) 265 – 270

Figure 4 Example of IDDQ triggered by stuck-on fault occurring at T7.

Figure 5 Photo of test PCB showing key features of NAND gate composed of
FETs and configurable connection points for fault injection.

Fault injection is controlled by a fault insertion unit (FIU)
type PXI-2510 capable of coordinating up to 64 fault channels
across two fault buses. The basic topology is illustrated in
Figure 6. To inject a fault, relays are opened/closed such that
relevant FET is connected in parallel with different fault loads.
The test PCB includes connection points for up to four different
fault loads for each fault bus. In this experiment, the fault loads
comprise a short circuit track and a 500 kΩ resistor. Gate-level
testing includes digital response test and analogue IDDQ
measurement. A high-speed digital I/O module was
programmed to test the NAND gate response during each fault
event. IDDQ was recorded using a PXI-DMM module
connected in-line with the power rail.

Figure 6 Fault injection schematic showing two fault points, fault buses and
fault loads.

Testing is coordinated using a LabVIEW test panel that
allows users control of the test configuration and output data
(Figure 7). The associated virtual instrument (VI) panel
controls the test sequence and data retrieval. Each test sequence
comprises the following operations:

 Initialise hardware
 Load scan list(s) from file(s)
 Set fault condition
 Execute digital I/O test
 Measure IDDQ
 Add data to results matrix

Analogue/digital measurement is coordinated by a separate

VI. Fault injection is controlled by a scan list, which contains a
sequence of ASCII commands that initiate each fault
connection. An example scan list is:

~dut0->ch0 && dut0->busA & a1->busA;
~a1->busA && a0->busA;
~a0->busA && ~busA->dut0 & ch0->dut0;

In this example fault location “dut0” is connected to fault

Bus A, then fault load “a0” (stuck-on fault) and load “a1”
(stuck-open) are connected. The fault location is then returned
to normal operation. Many such scan list files are read and
executed by the VI. Results are organised into matrices and
saved in csv format for analysis.

Finally the experimental test system components are shown
in Figure 8.

269 Richard McWilliam et al. / Procedia CIRP 38 (2015) 265 – 270

Figure 7 LabVIEW control panel for fault injection experiments.

Figure 8 Photo showing experimental set up. A: fault injection unit; B: digital
and analogue test electronics; C: ancillary test electronics; D: test NAND gate

PCB; E: additional test PCB.

4. Results

After testing is complete the results are easily analysed using
Excel macros. A key result is that all stuck-off faults were
successfully masked by the NAND gate design. Stuck-on
results are shown in Figure 9, where the circuit response has
been recorded for a single stuck-on fault asserted at each FET
T1…T8. The green indicators show where an IDDQ event has
been detected and hence where stuck-on fault can be detected.
The data shows that an IDDQ event occurs once for every fault
location and hence the stuck-at fault is always detectable. The
fault rate is therefore 25% for stuck-high faults and 12.5%
considering both stuck-high/low faults.

Figure 9 Results from sample experimental fault injection campaign.

IDDQ occurs for different input states depending upon the
fault location, hence a digital response test is required to trigger
IDDQ detection. Although this is a potentially time-intensive
operation there is the possibility of built-in fault localisation.
For example, if IDDQ occurs for the input pattern ‘10’ then a
stuck-at high fault must be located at either T5 or T6.

Another feature is that output errors only occur during
IDDQ events. Hence the circuit output could still be considered
trustworthy except when IDDQ events occur and therefore the
gate’s output could still be used in 75% of stuck-high fault
conditions and discarded whenever a IDDQ event occurs.

5. Conclusions

An experimental test bench has been used to demonstrate a
novel fault tolerant design of a NAND gate. Three key features
have been confirmed via fault injection and analogue
measurement: 1) masking of all stuck-off faults; 2) IDDQ event
for all stuck-on faults; 3) fault localisation by combing IDDQ
event and logic input pattern. Further tests have shown that the
NAND gate also tolerates a limited number of double stuck-off
faults. In some situations current flow between VDD and VSS
would risk damage to the active FETs and should be avoided.
In these cases the IDDQ event could be used to trigger an auto-
switchover mechanism whereby a standby NAND gate takes
the place of the faulty gate. An important benefit here would be
that switch-over becomes selective and only occurs upon
detection of a damaging stuck-high fault condition rather than
stuck-off faults or dormant stuck-high faults.

The demonstrated test bench implementation is extensible
to 64 fault locations, with further extension possible using a
multiplexing switch unit. Complex fault patterns are easily
programmed via scan list files. Hence the approach is capable
of scaling to evaluation of fault discrimination/masking in logic
units composed of multiple NAND gates such as basic
arithmetic logic units. By generalising the fault injection
patterns to include multiple simultaneous faults (along with
IDDQ measurement) important fault rates data may then be
measured and accumulated for reliability calculations
according to the procedure described in [2]. This will lead to a
better understanding of the resource/performance trade-offs
incurred in the design of fault tolerant electronics.

270 Richard McWilliam et al. / Procedia CIRP 38 (2015) 265 – 270

Acknowledgements

This work was carried out with the support of the EPSRC
Innovative Centre for Through-life Engineering Services
[EP/I033246/1].

References

[1] Breuer MA, Gupta SK, Mak TM. Defect and error tolerance in the
presence of massive numbers of defects. IEEE Des Test Comput.
2004;21(3):216–27.

[2] El-Maleh AH, Al-Hashimi BM, Melouki A, Khan F. Defect-tolerant n2-
transistor structure for reliable nanoelectronic designs. IET Comput
Digit Tech. 2009;3(6):570–80.

[3] Von Neumann J. Probabilistic logics and the synthesis of reliable
organisms from unreliable components. Autom Stud. 1956;34:43–98.

[4] Henkel J, Bauer L, Dutt N, Gupta P, Nassif S, Shafique M, et al.
Reliable On-chip Systems in the Nano-era: Lessons Learnt and Future
Trends. Proceedings of the 50th Annual Design Automation Conference.
New York, NY, USA: ACM; 2013;Article No. 99. Available from:
http://doi.acm.org/10.1145/2463209.2488857

[5] Jensen PA. Quadded NOR Logic. IEEE Trans Reliab. 1963 Sep;R-
12(3):22–31.

[6] Kastensmidt FL, Reis R, Carro L. Fault-Tolerance Techniques for
SRAM-Based FPGAs. Springer; 2007.

[7] Parris MG, Sharma CA, Demara RF. Progress in Autonomous Fault
Recovery of Field Programmable Gate Arrays. ACM Comput Surv.
2011;43(4):31:1–31:30.

[8] Cheatham JA, Emmert JM, Baumgart S. A survey of fault tolerant
methodologies for FPGAs. ACM Trans Autom Electron Syst.
2006;11(2):501–33.

[9] Sandi Habnic. Functional triple modular redundancy (FTMR) [Internet].
Gaisler Research; 2002. Available from:
http://www.gaisler.com/doc/fpga_003_01-0-2.pdf

[10] Abramovici M, Breuer MA, Friedman EG. Digital Systems Testing and
Testable Design. Wiley-IEEE Press; 1990.

[11] Maxion RA, Siewiorek DP, Elkind SA. Techniques and Architectures
for Fault-Tolerant Computing. Annu Rev Comput Sci. 1987;2(1):469–
520.

[12] Schiefer P, McWilliam R, Purvis A. Fault Tolerant Quadded Logic Cell
Structure with Built-in Adaptive Time Redundancy. Procedia CIRP.
2014;22:127–31.

[13] Han J, Leung E, Liu L, Lombardi F. A Fault-Tolerant Technique Using
Quadded Logic and Quadded Transistors. IEEE Trans Very Large Scale
Integr VLSI Syst. 2015;23(8):1562-1566.

[14] Hane JS, LaMeres BJ, Kaiser T, Weber R, Buerkle T. Increasing
Radiation Tolerance of Field-Programmable-Gate-Array-Based
Computers Through Redundancy and Environmental Awareness. J
Aerosp Inf Syst. 2014;11(2):68–81.

[15] Battezzati N, Sterpone L, Violante M. Reconfigurable field
programmable gate arrays for mission-critical applications. Springer
Science & Business Media; 2010.

[16] Sterpone L. Electronics System Design Techniques for Safety Critical
Applications. 1st ed. Springer; 2008.

[17] Xilinx Application Note. Demonstration of soft error mitigation IP and
partial reconfiguration capability on monolithic devices [Internet]. 2015
[cited 2015 Aug 3]. Available from:
http://www.xilinx.com/support/documentation/application_notes/xapp12
61-demo-sem-pr.pdf

[18] Wadsack RL. Fault Modeling and Logic Simulation of CMOS and M08
Integrated Circuits. Bell Syst Tech J. 1978.

