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Abstract 

This paper presents the experimental validation of a novel fault-tolerant electronic logic design conducted by an automated 
mixed-signal fault injection procedure. The design under evaluation relies upon a novel redundant design strategy intended to 
provide fault discrimination and selective fault masking embedded within a functional CMOS NAND gate. The traditional logic 
layout is modified to include fault detection and reporting at an extremely fine-grained design level with 2x overhead as opposed 
to the traditional 4x overhead. The fault injection test bench procedure requires automated fault injection, programmable fault 
load conditions and combined analogue/digital domain verification. The device under test is implemented using discrete n- and 
p-FETs arranged as a modular test board together with automated fault injection and test lines. The fault response is measured 
and confirms the predicted intrinsic fault rate of 25% with a successful 100% masking of suck low-faults and precise 
identification of stuck-high via IDDQ trigger. The test procedure is shown to be extensible towards more complex logic unit 
designs and for evaluation of multiple simultaneous faults. 
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1. Introduction 

Future electronics technologies based on nanoscale 
transistors or printed organic materials will become 
increasingly vulnerable to process variation and single event 
upset in harsh environments than present-day technologies. As 
more and more Commercial Off-the-Shelf (COTS) 
components are integrated into state of the art high value and 
mission critical systems, there is also growing concern over the 
economy of manufacture (i.e. yield) [1] and the in-service 
robustness of such systems. This is prompting new studies into 
fault tolerant designs [2] at the extremely fine-grained level that 
are based in part by the pioneering work of Von Neumann on 
the theory of massively redundant design [3]. This represents a 
distinct departure from design strategies that are prevalent 
today, such as component screening and high-level modular 
redundancy, and therefore is new design paradigm for future 
electronics. 

Faults that occur in electronics are best categorised into a 
number of fault domains including: process variation, ageing, 
current thermal stress, soft errors, hard errors and extreme 
environmental events that are unforeseen [4]. Within each of 
these domains, there are many root-causes that illicit faults.  

In this paper we present an experimental fault testing 
platform for verifying novel fault-tolerant design strategies in 
electronics with both analogue and digital diagnosis. The 
particular design strategy evaluated in this paper is relevant to 
low voltage CMOS circuits within ASICs and in power circuits 
that use discrete transistors such as IGBTs. Here we adopt an 
abstract model of switching elements based on field-effect 
transistors (FET) of some kind, and assume that the resource 
requirements depend upon two factors: the number of 
switching elements and the number of interconnects. Specific 
fault conditions are then injected into the hardware and the 
response recorded. 
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Besides the goal of achieving fault tolerance by fine-grained 
redundancy, a further opportunity exists to consider at the same 
time fault detection and reporting. Most fine-grained methods 
are based on the fault masking property i.e., where faults events 
are made non-critical so that they cannot cause an error in the 
output. Therefore the circuit is able to continue to function 
correctly in the presence of the fault. An example of this is the 
quadded logic strategy [5] where gate and intereonnect 
redundancy guarantee error-free operation for any single fault 
event. An example is illustrated in Figure 1a. Like most 
masking strategies, this approach is limited to single faults such 
as those caused by single event upset (SEU) though in some 
cases certain combinations of two simultaneous faults can also 
be tolerated. When SEU occur they cause a momentary charge 
event to occur within one or more switching elements (i.e., 
charge is generated in the semiconductor gate of the FET) that 
may cause a stuck-on  or stuck-off fault. Although the fault 
mechanism is short-lived, it may cause a persistent effect in the 
circuit that remains until power-off. Hence SEU-induced faults 
may remain in the circuit for some time, and may potentially 
accumulate in several locations as is often observed in the 
SRAM of FPGA chips [6]. If the circuit is configurable (as is 
the case with FPGA chips) then scrubbing is often combined 
with masking strategies in order to maximise resilience to SEU. 

 

 

Figure 1 Two examples of fault tolerant design. (a) quadded interleaved logic. 
(b) TMR with modules M1…M3 and voter logic. The fault detection signal is 

generated by the XOR gate. 

Other fault tolerant strategies apply the concept of triple 
modular redundancy (TMR) to fine-grained logic in 
electronics. This has become commonplace in FPGAs for 
mission-critical situations such as Space exploration where 
existing designs are augmented by TMR structures using HDL 
extensions.  Several strategies have been developed for FPGA 
chips that involve various forms of fine-grained modular 
redundancy, including the capacity for online reconfiguration 
in response to permanent fault conditions [7,8]. However they 
are highly confined to the available FPGA resources and 
architecture while reconfiguration requires a great deal of 
processing capability or else pre-storage of multiple alternative 
configurations. The TMR approach has also been applied in 
multi-processor core design [9]. Despite the presence of built-
in checking via the TMR voting logic this is not generally used 
for reporting at higher system levels.  

Error detection and correction (EDC) is also used for self-
checking by using information redundancy [10]. This approach 
is most effective for protecting data registers and memory 
blocks. Early computer systems used combined EDC and 
modular redundancy [11] but EDC is far more common in state 
of the art computers. Again however, EDC is usually 
performed internally with little or no record of fault events. 
Custom logic, such as the arithmetic logic unit (ALU), are more 
difficult to modify for fault tolerance since they must be 
designed with speed and minimal component layout.  

At the power electronics scale, discrete IGBTs used in 
renewable energy power conversion systems are becoming a 
source of concern. Although their intrinsic reliability is high, 
modern energy conversion sub-systems may rely upon a large 
number of such devices, increasing the likelihood of failures 
occurring. This causes serious disruption for critical energy 
systems such as offshore wind farms where maintenance and 
repair is difficult and expensive. Mitigation strategies then 
become one of further improving component reliability or else 
introducing efficient fault tolerance with the smallest possible 
overhead.  

As a result of the above context, our fault tolerant design 
aims to combine the following properties within the confines 
of custom logic gate design: 

 Scalability: the redundancy structure is applicable to low 
and high level electronic design 

 Strategic masking: only stuck-off events are masked 
 Strategic fault detection: stuck-on events trigger a built-in 

fault detection mechanism 
 Low overhead: the redundancy overhead is minimised. 

Resource overhead represents a balance of cost/benefit 
where, in this case, the benefits gained are fault selectivity and 
detection. Goal of this work is to therefore to design and test a 
hardware prototype that demonstrates the above features of the 
fault tolerant design. 

2. Proposed design 

The basis of this design is the NAND logic gate, which is 
central to electronic ALUs and many other circuits. The 
reference NAND gate is illustrated in Figure 2a as a 
complimentary metal-oxide-semiconductor (CMOS) design. 
This gate uses 2x p-type FET and 2x n-type FET. The 
equivlanet fault tolerant gate design is illustrated in Figure 2b 
where additional FETs and interconnects have been added. The 
interconnect topology shown is one of several variations under 
investigation [12]. The design is intended to bring the 
capabilities of stuck-off fault masking and detection of stuck-
high faults. 
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Figure 2 (a) traditional NAND gate design. (b) NAND gate design with fault 
discrimination and masking capability. 

For simplicity it is assumed that each FET is fabricated 
separately i.e, that there is no overlapping of resources in the 
layout. For CMOS circuits this may not be the case because 
combined structures are commonly used. However the degree 
of resource overlap depends on the technology library used 
hence we adopt a simple model that can be later refined using 
a specific technology library. The predicted fault rate of the 
NAND gate design is shown in Figure 3 alongside other 
variations. The basic NAND gate is shown leftmost on the 
horizontal axis and each redundant design “NAND+n” contains 
n redundant FETs. The full quad-transistor (QT) design 
(NAND+12) achieves complete fault tolerance against and 
stuck-on and stuck-off fault [13], but with a 4x resource 
overhead requirement in comparison to the non-redundant 
design (NAND). The design presented here is represented by 
the NAND+4 variation with a fault rate of 12.5%. 

 

 

Figure 3 Fault rate versus NAND gate redundancy. 

The concept of augmenting resilience with fault event 
intelligence has been suggested by others. For example, a 
radiation sensor is incorporated into an FPGA-based sub-
system in [14] to create environmental awareness that enhances 
the basic TMR/scrubbing procedures. By comparison our 
strategy is implemented using an analgoue trigger flag referred 
to as IDDQ. This is an attractive approach because detection is 
confined to the electronic circuit domain rathern than relying 
upon external sensory input. Furthermore, active responses 
triggered by IDDQ events are controlled by local circuitry and 
hence become extremely rapid and potentially autonomous.  

The concept is illustrated in Figure 4, where a stuck-on fault 
has been asserted at FET T7. In this case IDDQ current flows 
when the inputs are set to ‘01’. When IDDQ current flows the 
output logic state is difficult to predict as it depends upon the 
analogue conditions of drain-source impedance of each FET. 
Therefore, the output is not considered trustworthy and should 
be ignored. However the ocurrence of IDDQ can be used to 
identify the stuck-on fault condition. 

3. Test strategy 

To confirm the properties of the fault tolerant design we 
implemented the NAND gate using discrete FETs mounted on 
a test PCB. Fault-tolerant designs are typically evaluated using 
either software simulation or else using FPGA boards in order 
to predict their usefulness. A discussion of the different test 
approaches can be found in [15]. Examples of model-based 
approaches are seen in [1,2,5] wherein behavioural predictions 
of the fault response are formed. Alternatively, hardware fault 
injection within FPGA boards has been carried out taking the 
form of random bit-flips injected into the configuration 
bitstream. Examples of this are seen in [16] for evaluation of 
FPGA fault-tolerant design techniques. The faults injected are 
emulated, that is, artificially inserted into the active hardware 
by a separate hardware controller. Some modern FPGA chips 
benefit from a built-in fault injection interface [17]. Finally, 
accelerated radiation testing constitutes the ultimate form of 
fault testing whereby faults are induced by the actual physics 
of failure mechanism involving high energy particles 
interacting with semi-conductor materials. 

For the purposes of this study we have chosen to adopt fault 
emulation by hardware injection due to the high repeatability 
of the approach and lower cost in comparison to accelerated 
testing. For the fault tolerant design under consideration, 
hardware fault injection offers the possibility to monitor both 
analogue and digital domain behaviour. This is essential when 
observing the stuck-high behaviour for the case when rail to rail 
current flows. This condition is conventionally ignored in fault 
analysis of logic circuits (see for example [18]) because the 
logic output level becomes ill-defined. However our fault 
detection strategy relies only upon the presence of (analogue) 
IDDQ current flow rather than determination of the specific 
(digital) logic level.  

Detailed information about IDDQ is not available using 
FPGA chips due to their architecture, hence a custom circuit 
implementation was created. This also created the possibility 
of asserting different fault conditions for each FET. The FETs 
used are low-power MOSFETs (types IRFD020 and 
IDRF9024) rated at 1 Watt, hence the circuit could also be used 
to demonstrate a small-scale power application. The test PCB 
(Figure 5) is fitted with fault injection points that allow 
insertion of stuck-on / stuck-off conditions for any FET. In 
addition are also fault injection points for gate signals that are 
not used in this experiment. The PCB is wired to a National 
Instruments PXI test system. 
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Figure 4 Example of IDDQ triggered by stuck-on fault occurring at T7. 

 
 

 

Figure 5 Photo of test PCB showing key features of NAND gate composed of 
FETs and configurable connection points for fault injection. 

Fault injection is controlled by a fault insertion unit (FIU) 
type PXI-2510 capable of coordinating up to 64 fault channels 
across two fault buses. The basic topology is illustrated in 
Figure 6. To inject a fault, relays are opened/closed such that 
relevant FET is connected in parallel with different fault loads. 
The test PCB includes connection points for up to four different 
fault loads for each fault bus. In this experiment, the fault loads 
comprise a short circuit track and a 500 kΩ resistor. Gate-level 
testing includes digital response test and analogue IDDQ 
measurement. A high-speed digital I/O module was 
programmed to test the NAND gate response during each fault 
event. IDDQ was recorded using a PXI-DMM module 
connected in-line with the power rail. 

 

  

Figure 6 Fault injection schematic showing two fault points, fault buses and 
fault loads. 

Testing is coordinated using a LabVIEW test panel that  
allows users control of the test configuration and output data 
(Figure 7). The associated virtual instrument (VI) panel 
controls the test sequence and data retrieval. Each test sequence 
comprises the following operations: 

 
 Initialise hardware 
 Load scan list(s) from file(s) 
 Set fault condition 
 Execute digital I/O test 
 Measure IDDQ 
 Add data to results matrix 

 
Analogue/digital measurement is coordinated by a separate 

VI. Fault injection is controlled by a scan list, which contains a 
sequence of ASCII commands that initiate each fault 
connection. An example scan list is: 

 
~dut0->ch0 && dut0->busA & a1->busA; 
~a1->busA && a0->busA;    
~a0->busA && ~busA->dut0 & ch0->dut0; 
 
In this example fault location “dut0” is connected to fault 

Bus A, then fault load “a0” (stuck-on fault) and load “a1” 
(stuck-open) are connected. The fault location is then returned 
to normal operation. Many such scan list files are read and 
executed by the VI. Results are organised into matrices and 
saved in csv format for analysis. 

Finally the experimental test system components are shown 
in Figure 8. 
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Figure 7 LabVIEW control panel for fault injection experiments. 

 

 

Figure 8 Photo showing experimental set up. A: fault injection unit; B: digital 
and analogue test electronics; C: ancillary test electronics; D: test NAND gate 

PCB; E: additional test PCB. 

4. Results 

After testing is complete the results are easily analysed using 
Excel macros. A key result is that all stuck-off faults were 
successfully masked by the NAND gate design. Stuck-on 
results are shown in Figure 9, where the circuit response has 
been recorded for a single stuck-on fault asserted at each FET 
T1…T8. The green indicators show where an IDDQ event has 
been detected and hence where stuck-on fault can be detected. 
The data shows that an IDDQ event occurs once for every fault 
location and hence the stuck-at fault is always detectable. The 
fault rate is therefore 25% for stuck-high faults and 12.5% 
considering both stuck-high/low faults. 

 

 

Figure 9 Results from sample experimental fault injection campaign. 

IDDQ occurs for different input states depending upon the 
fault location, hence a digital response test is required to trigger 
IDDQ detection. Although this is a potentially time-intensive 
operation there is the possibility of built-in fault localisation. 
For example, if IDDQ occurs for the input pattern ‘10’ then a 
stuck-at high fault must be located at either T5 or T6. 

Another feature is that output errors only occur during 
IDDQ events. Hence the circuit output could still be considered 
trustworthy except when IDDQ events occur and therefore the 
gate’s output could still be used in 75% of stuck-high fault 
conditions and discarded whenever a IDDQ event occurs.  

5. Conclusions 

An experimental test bench has been used to demonstrate a 
novel fault tolerant design of a NAND gate. Three key features 
have been confirmed via fault injection and analogue 
measurement: 1) masking of all stuck-off faults; 2) IDDQ event 
for all stuck-on faults; 3) fault localisation by combing IDDQ 
event and logic input pattern. Further tests have shown that the 
NAND gate also tolerates a limited number of double stuck-off 
faults. In some situations current flow between VDD and VSS 
would risk damage to the active FETs and should be avoided. 
In these cases the IDDQ event could be used to trigger an auto-
switchover mechanism whereby a standby NAND gate takes 
the place of the faulty gate. An important benefit here would be 
that switch-over becomes selective and only occurs upon 
detection of a damaging stuck-high fault condition rather than 
stuck-off faults or dormant stuck-high faults. 

The demonstrated test bench implementation is extensible 
to 64 fault locations, with further extension possible using a 
multiplexing switch unit. Complex fault patterns are easily 
programmed via scan list files. Hence the approach is capable 
of scaling to evaluation of fault discrimination/masking in logic 
units composed of multiple NAND gates such as basic 
arithmetic logic units. By generalising the fault injection 
patterns to include multiple simultaneous faults (along with 
IDDQ measurement) important fault rates data may then be 
measured and accumulated for reliability calculations 
according to the procedure described in [2]. This will lead to a 
better understanding of the resource/performance trade-offs 
incurred in the design of fault tolerant electronics. 
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