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Abstract 9 

Quantifying the topography of rivers and their associated bedforms has been a 10 

fundamental concern of fluvial geomorphology for decades. Such data, acquired at 11 

high temporal and spatial resolutions, are increasingly in demand for process-12 

oriented investigations of flow hydraulics, sediment dynamics and in-stream habitat. 13 

In these riverine environments, the most challenging region for topographic 14 

measurement is the wetted, submerged channel.  Generally, dry bed topography and 15 

submerged bathymetry are measured using different methods and technology. This 16 

adds to the costs, logistical challenges and data processing requirements of 17 

comprehensive river surveys. However, some technologies are capable of 18 

measuring the submerged topography. Through-water photogrammetry and 19 

bathymetric LiDAR are capable of reasonably accurate measurements of channel 20 

beds in clear water. Whilst the cost of bathymetric LiDAR remains high and its 21 

resolution relatively coarse, the recent developments in photogrammetry using 22 

Structure from Motion (SfM) algorithms promise a fundamental shift in the 23 
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accessibility of topographic data for a wide range of settings. Here we present results 1 

demonstrating the potential of so called SfM-photogrammetry for quantifying both 2 

exposed and submerged fluvial topography at the mesohabitat scale. We show that 3 

imagery acquired from a rotary-winged Unmanned Aerial System (UAS) can be 4 

processed in order to produce digital elevation models (DEMs) with hyperspatial 5 

resolutions (c. 0.02m) for two different river systems over channel lengths of 40-6 

100m. Errors in submerged areas range from 0.016m to 0.089m, which can be 7 

reduced to 0.008m to 0.053m with the application of a simple refraction correction. 8 

This work therefore demonstrates the potential of UAS platforms and SfM-9 

photogrammetry as a single technique for surveying fluvial topography at the 10 

mesoscale.  11 

1. Introduction 12 

1.1 Importance of quantifying fluvial topography 13 

Topography is the most basic descriptor of geomorphology and one of the most 14 

often used predictors of geomorphic process. The quantification of exposed and 15 

submerged fluvial topography at high spatial and temporal resolutions is increasingly 16 

in demand for a wide range of science and management applications, including 17 

geomorphic change detection, hydraulic modelling, physical habitat assessment, 18 

river restorations and sediment budgeting (Maddock, 1999; Hicks, 2012; Marcus et 19 

al., 2012; Bangen et al., 2013, Legleiter, 2014a; Legleiter, 2014b).  20 

These applications require a technique for quantifying fluvial topography which is 21 

objective, repeatable and spatially explicit. The data should be high resolution and 22 

spatially continuous in three dimensions, rather than simple point or line sampling 23 

(Fausch et al., 2002; Mertes, 2002; Wiens, 2002; Orr et al., 2008; Fernandez et al., 24 
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2011; Carbonneau et al., 2012; Nestler et al., 2013). The practicality of data 1 

collection and cost are also important. An approach which meets these needs has 2 

potential for characterising fluvial topography and therefore also physical habitat in 3 

accordance with the ideals of the ‘riverscape’ concept (see Fausch et al., 2002; 4 

Ward et al., 2002; Wiens, 2002; Carbonneau et al., 2012). This paradigm advocates 5 

a shift from understanding rivers as gradually changing longitudinal elements of a 6 

wider terrestrial landscape (as per Vannote et al., 1980’s River Continuum Concept) 7 

to those characterised by high spatial and temporal heterogeneity (Ward, 1998; 8 

Lapointe, 2012), and makes this heterogeneity the focus of assessment (Ward, 9 

1998; Fausch et al., 2002; Legleiter et al., 2014b).  10 

Within this paper, we briefly review existing approaches for quantifying the spatial 11 

heterogeneity of fluvial topography. We then introduce and quantitatively assess an 12 

alternative approach, using high resolution UAS imagery and Structure-from-Motion 13 

(SfM) photogrammetry. Our approach considers both exposed and submerged parts 14 

of the channel and is focussed on obtaining data at the mesoscale. We define the 15 

mesoscale as covering lengths of channel from c.10m to a few hundred metres. This 16 

is generally acknowledged as an ecologically meaningful scale for physical habitat 17 

assessments (Frissell et al., 1986, Newson and Newson 2000, Fausch et al., 2002, 18 

Frothingham et al., 2002, Nestler et al., 2013). 19 

1.2 Existing approaches 20 

Traditional approaches to quantifying fluvial topography typically use tape measures, 21 

depth poles, levelling equipment, total stations or GNSS (Global Navigation Satellite 22 

Systems). Such surveys offer a single technique for quantifying both exposed and 23 

(shallow) submerged topography at set intervals. However, it is well acknowledged 24 
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that they are time consuming, labour intensive, provide limited spatial extent 1 

(Winterbottom and Gilvear 1997; Feurer et al., 2008, Bangen et al., 2013) and do not 2 

provide the continuous spatial coverage needed to characterise the spatial 3 

heterogeneity of the ‘riverscape’ (Westaway et al., 2001; Marcus, 2012). This 4 

‘riverscape’ perspective is gaining increasing support within river science and 5 

management (Fernandez et al., 2011; Bergeron and Carbonneau 2012; Carbonneau 6 

et al., 2012) and precipitates a need for different ways of quantifying fluvial 7 

topography. 8 

In recent years, remote sensing approaches have emerged as alternatives to 9 

traditional methods of quantifying fluvial topography. Remote sensing offers an 10 

efficient approach to cover large areas with continuous data coverage, which cannot 11 

be achieved by point or line sampling. Here we briefly review well established 12 

passive techniques including (1) the spectral-depth relationship approach and (2) 13 

digital photogrammetry, and the more recent, active remote sensing methods of (3) 14 

airborne, bathymetric and terrestrial laser scanning. 15 

Spectral-Depth Approach 16 

The spectral-depth approach is perhaps the most widely used method for quantifying 17 

flow depth within submerged areas. An empirical correlation is established between 18 

flow depth data acquired in the field and corresponding image spectral properties. 19 

The correlation is applied to the remainder of the image to provide spatially 20 

continuous water depth datasets without great expense (which can then be 21 

converted to topographic data). This approach is capable of producing topographic 22 

outputs at spatial resolutions of c. 0.05m and mean errors of c. 0.10m (Lejot et al., 23 

2007) (Table 1), and thus is well suited to studies at the mesoscale. However, 24 
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significant field efforts are still required for the collection of empirical depth data, 1 

which must represent the range of depths present within the area of interest. As a 2 

consequence, data collection is time-consuming and labour intensive and results are 3 

site and image specific. Results are also known to be adversely affected by 4 

variations in scene illumination, substrate, turbidity and water surface roughness 5 

(Winterbottom and Gilvear 1997; Westaway et al., 2003; Legleiter et al., 2004; 6 

Carbonneau et al., 2006; Lejot et al., 2007; Legleiter et al., 2009; Bergeron and 7 

Carbonneau 2012, Legleiter, 2012). The maximum water depth limit achieved using 8 

spectral-depth approaches is reported to be up to 1m (Carbonneau et al., 2006; 9 

Legleiter et al., 2004; Legleiter et al., 2009, Legleiter, 2012). 10 

Digital Photogrammetry 11 

Lane (2000) reviews the progress made in the use of photogrammetry for river 12 

channel research prior to the year 2000. Today, the use of digital photogrammetry is 13 

well-established for the rapid generation of topographic datasets within fluvial 14 

settings (Lane, 2000; Westaway et al., 2001, Carbonneau et al., 2003, Lane et al., 15 

2010). Collinearity equations, which relate the 2D co-ordinates within a camera to 16 

the 3D co-ordinates of the scene, are solved to produce continuous topographic 17 

datasets. Resulting DEM spatial resolutions are reported to be c. 0.05m with mean 18 

errors of c. 0.05-0.10m  from aerial platforms (Lejot et al., 2007, Lane et al., 2010) 19 

(Table 1), and close-range photogrammetry readily reaching sub-cm spatial 20 

resolutions (e.g. Butler et al., 2001). Digital photogrammetry is thus suitable for 21 

studies addressing the mesoscale and has seen widespread application to exposed 22 

terrain. However, there has been limited application of digital photogrammetry in 23 

submerged parts of the fluvial environment, perhaps due to the adverse effects of 24 

turbidity and water surface roughness, and issues relating to maximum light 25 
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penetration depth. These effects have been found to reduce the accuracy of the 1 

results in submerged areas or preclude the approach entirely (Westaway et al., 2 

2001; Feurer et al., 2008; Marcus, 2012).  3 

The complicating effects of light refraction at the air-water interface also require 4 

consideration in through-water photogrammetry. The geometry of this refraction is 5 

described by Snell’s Law (Equation 1) and shown in Figure 1;  6 

sin 𝑟𝑟
sin 𝑖𝑖

=  
ℎ
ℎ𝐴𝐴

= 𝑛𝑛 

Equation (1) 7 

Where r is the angle of the refracted light ray below the water surface, i is the angle 8 

of the incident light ray above the water surface, h is the true water depth, hA is the 9 

apparent water depth and n is the refractive index of water. For clear water, this 10 

refractive index has a value of 1.34, which varies by less than 1% for a range of 11 

temperature and salinity conditions (Jerlov, 1976; Westaway et al., 2001; Butler et 12 

al., 2002). Without the application of a correction procedure, this two-media 13 

refraction problem results in the overestimation of true bed elevation (i.e. an 14 

underestimation of water depth), as shown in Figure 1 (Fryer, 1983; Fryer and Kneist 15 

1985; Butler et al., 2002; Westaway et al., 2001). However, with the knowledge of 16 

apparent water depth (hA ) and the refractive index of water (n), the true depth (h) 17 

can be estimated using a simple refraction correction, as shown in Equation 2; 18 

ℎ = 𝑛𝑛 ×  ℎ𝐴𝐴 

Equation (2) 19 
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This simple correction procedure has been used to adjust digital photogrammetric 1 

outputs for submerged parts of the fluvial environment, as shown by Westaway et 2 

al., (2000) and Westaway et al., (2001). Results of these studies showed an 3 

improvement in mean error following refraction correction, and for depths less than 4 

0.4m mean error became comparable with that of exposed terrain. However, larger 5 

errors were observed at depths beyond 0.4m which scaled with depth (Westaway et 6 

al., 2000). A more complex correction procedure, where the camera position and 7 

water surface elevation were also considered, did not significantly improve the 8 

results and yet increased computation times. It was noted that clear and relatively 9 

shallow waters produced the most accurate results (Westaway et al., 2000; 10 

Westaway et al., 2001; Feurer et al., 2008).  11 

Refraction correction approaches have subsequently been applied elsewhere (e.g. 12 

Lane et al., 2010), further highlighting the potential of the procedure for quantifying 13 

submerged fluvial topography.  14 

Laser Scanning 15 

The use of laser scanning systems for topographic surveying has seen rapid growth 16 

since the early 2000s. Accurate elevation data can be acquired for exposed terrain. 17 

However, the use of near-infrared light, which is strongly absorbed in water, usually 18 

makes quantification of submerged topography impossible (Lane and Carbonneau 19 

2007; Legleiter, 2012). Recently, the emergence of airborne blue-green or 20 

bathymetric laser scanners has provided a potential solution (e.g. Kinzel et al., 2007; 21 

Bailly et al., 2010). Blue-green scanning approaches are less affected by turbidity 22 

and water surface roughness than passive remote sensing techniques (Marcus, 23 

2012), and are capable of surveying much greater water depths (Bailly et al., 2010; 24 
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Kinzel et al., 2013). At present however, the application of airborne bathymetric laser 1 

scanning to the mesoscale study of fluvial environments is severely limited by high 2 

cost, restricted sensor availability, coarse spatial resolution and a lack of reliability in 3 

shallower waters (Bailly et al., 2012; Hicks, 2012; Legleiter, 2012; Marcus, 2012, 4 

Kinzel et al., 2013). 5 

Terrestrial laser scanners (TLS) provide another method for fluvial topographic 6 

surveying, known for providing much higher spatial resolutions (c. 0.01m) with low 7 

mean errors (0.004m-0.030m) in exposed areas (Heritage and Hetherington 2007, 8 

Bangen et al., 2013) (Table 1). As such, they are better suited to mesoscale 9 

assessments of topography. However, data collection is time consuming and labour 10 

intensive, spatial coverage is limited by scanner range and the scanners themselves 11 

remain costly to acquire (Bangen et al., 2013).  12 

Recent publications have provided some initial testing of green wavelength (λ 13 

=532nm) TLS for surveying submerged areas (Smith et al., 2012; Smith and Vericat 14 

2013). The strongly oblique TLS scan angles mean that refraction effects are 15 

significant. The recent work of Smith and Vericat (2013) has provided one of the first 16 

field tests of this approach, representing an important advance in the applied use of 17 

TLS in submerged areas. TLS potentially provides a single technique capable of 18 

surveying both exposed and shallow submerged areas. However, further testing in 19 

different settings is needed. TLS is not yet capable of providing centimetre resolution 20 

topographic data over mesoscale lengths of channel, at least not without significant 21 

and time consuming field efforts. 22 

Combined Approaches 23 
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Some studies have tried to overcome some of the limitations of using a single 1 

approach by combining different techniques to quantify the topography of both 2 

exposed and submerged terrain (e.g. Westaway et al., 2003; Lane et al., 2010; 3 

Legleiter, 2012; Williams et al., 2013; Javernick et al., 2014). However, this adds to 4 

the costs, logistical challenges and data processing requirements. To our 5 

knowledge, the work of Westaway et al., (2001) using digital photogrammetry, and 6 

Smith and Vericat (2013) using TLS are the only studies which have used a single 7 

technique over mesoscale lengths of channel. Yet neither of these approaches has 8 

been shown to provide hyperspatial resolution topographic data (<0.1m) at this 9 

scale.  10 

1.3 Emergence of UAS and SfM-photogrammetry 11 

Very recently, the emergence of small unmanned aerial systems (UAS) and parallel 12 

developments in software capable of processing their imagery has further 13 

contributed to the field of topographic remote sensing. Small UAS include a range of 14 

platforms (typically less than 7kg in weight) including fixed- and rotary-winged 15 

aircraft, kites and balloons. Initial studies have been carried out for a range of 16 

topographic applications, including archaeology (e.g. Eisenbeiss et al., 2005), 17 

glacial, paraglacial and aeolian landforms (e.g. Smith et al., 2009; Hugenholtz et al., 18 

2013), landslides (e.g. Niethammer et al., 2012) and within fluvial environments (e.g. 19 

Lejot et al., 2007; Hervouet et al., 2011, Fonstad et al., 2013). These studies have 20 

suggested that data acquisition with a UAS is rapid, flexible, inexpensive and has the 21 

potential to be of centimetre scale spatial resolution (Eisenbeiss et al., 2005; Lejot et 22 

al., 2007; Vericat et al., 2008; Harwin and Lucieer 2012; Niethammer et al., 2012; 23 

Turner et al., 2012). Reported drawbacks have related primarily to the difficulties in 24 

processing imagery obtained from the relatively unstable UAS platforms using 25 
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lightweight, low cost, non-metric cameras. This results in large illumination 1 

differences between images and geometric distortions introduced by off-nadir image 2 

acquisition and lack of information concerning the external flight parameters typically 3 

required by photogrammetry (Dugdale, 2007; Lejot et al., 2007; Dunford et al., 2009; 4 

MacVicar et al., 2009; Smith et al., 2009; Laliberté et al., 2008; Vericat et al., 2008; 5 

Rosnell and Honkavaara 2012; Turner et al., 2012).  6 

In parallel to these developments in imaging platforms, topographic surveying has 7 

been undergoing another methodological revolution with the development of 8 

Structure from Motion (SfM) photogrammetry. SfM-photogrammetry reconstructs 3D 9 

scenes by automatically matching conjugate points between images acquired from 10 

different viewpoints (Snavely et al., 2006; Snavely et al., 2008). With over 1700 11 

publications1, SfM-photogrammetry approaches have been a major research focus in 12 

computer vision for over a decade, but their application to the earth sciences has 13 

been slow. SfM-photogrammetry can restitute topography from suitable image 14 

datasets with minimal input of real-world ground control points. The data are 15 

produced as often very dense, arbitrarily scaled 3D point clouds. Ground control 16 

and/or camera locations are only required when the user needs to transform the 17 

relative, arbitrarily scaled, elevation dataset (either a raster or a point-cloud) to map 18 

coordinates with correctly scaled elevations. Whilst based on the same fundamental 19 

image geometry as traditional photogrammetry, the success of SfM-photogrammetry 20 

approaches rests on a new generation of image matching algorithms first developed 21 

three decades ago (Lucas and Kanade, 1981). Since then, image matching has 22 

1 Web of Science search performed on 4th February 2014 for the exact phrase ‘Structure from Motion’ 
returned approximately 1782 papers. 
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become another heavily researched area with over 2600 published works2. SfM-1 

photogrammetry has now been integrated into readily available software packages 2 

such as the commercial PhotoScan (Agisoft LLC), the free 123D Catch (Autocad Inc) 3 

and the open source VisualSFM (http://ccwu.me/vsfm/ by C. Wu). These software 4 

packages employ a workflow which is very similar to traditional photogrammetry but 5 

with certain differences. As such this new approach to photogrammetry can be 6 

described as ‘SfM-photogrammetry’. 7 

SfM-photogrammetry has two key differences from traditional photogrammetry. 8 

Firstly, the collinearity equations are solved without prior knowledge of camera poses 9 

or ground control. Secondly, SfM-photogrammetry has the ability to match points 10 

from imagery of extremely differing scales, view angles and orientations - therefore 11 

providing significant advantages for use with UAS imagery (Rosnell and Honkavaara 12 

2012; Turner et al., 2012; Fonstad et al., 2013).  13 

Published examples of the use of SfM-photogrammetry for topographic assessment 14 

have only started to emerge since about 2011 but include application in the fields of 15 

archaeology (e.g. Verhoeven, 2012; Verhoeven et al., 2012) and geomorphology 16 

(e.g. James and Robson 2012; Westoby et al., 2012; Harwin and Lucieer 2012; 17 

Javernick et al., 2014). These initial studies demonstrate a technique which is rapid 18 

and largely automated and therefore easily performed by non-experts. The approach 19 

is relatively inexpensive, and capable of producing elevation datasets with mean 20 

errors in the range 0.02-0.15m, assuming the appropriate use of ground control 21 

(Harwin and Lucieer 2012; Turner et al., 2012; Verhoeven, 2012; Verhoeven et al., 22 

2012; Westoby et al., 2012; Fonstad et al., 2013; Javernick et al., 2014).  23 

2 Web of Science search performed on 4th February 2014 for the exact phrase ‘Image Matching’ returned 
approximately 2637 papers. 
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The combined use of UAS with SfM-photogrammetry remains in its infancy and has 1 

seen very little evaluation for applications within fluvial science and management. 2 

Fonstad et al., (2013) provide the only known published example of UAS imagery 3 

processed using SfM-photogrammetry for the quantification of fluvial topography. 4 

Imagery was acquired using a helikite UAS, processed using a freeware SfM-5 

photogrammetry package and georeferenced to produce a point cloud for the 6 

exposed topography. The resulting point cloud density was high (10.8 points/m2), 7 

with a mean elevation error of 0.07m and precision (standard deviation) of 0.15m.  8 

To our knowledge no published work has yet assessed the use of a UAS-SfM 9 

approach for quantifying topography within submerged areas. As a result, we need 10 

rigorous and robust quantitative testing which compares outputs with well-11 

established topographic surveying techniques and evaluates this approach as a tool 12 

for characterising fluvial geomorphology. 13 

Within this research, we aim to test the use of UAS imagery processed using SfM-14 

photogrammetry for creating hyperspatial resolution (<0.1m) topographic datasets at 15 

the mesoscale. This test will encompass both exposed and submerged parts of the 16 

fluvial environment at two different river sites. A quantitative assessment is 17 

undertaken by addressing the following research questions; 18 

1. How accurate, precise and replicable are the topographic datasets 19 

generated? 20 

2. How does the accuracy and precision of the datasets vary between different 21 

river systems? 22 

3. How does the accuracy and precision of the datasets vary between exposed 23 

and submerged areas? 24 
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4. Does the application of a simple refraction correction procedure improve the 1 

accuracy of the datasets? 2 

2. Site Locations 3 

We collected imagery from a UAS at two contrasting river locations. These sites 4 

were chosen because they provide diverse topographic conditions at the mesoscale, 5 

within different landscape settings. Both sites were easily accessible and permission 6 

from the landowners was granted for UAS flying. Neither of the sites have 7 

continuous tree coverage, nor are they near major roads or railway lines, power lines 8 

or sensitive sites such as airports - factors which might prohibit UAS flying.  9 

The two sites are as follows; 10 

(1) The River Arrow, near Studley in Warwickshire, UK (Figure 2). This lowland 11 

river is a small (c. 5-12m wide), meandering, pool-riffle system with a bed 12 

composed predominantly of cobbles with some submerged aquatic 13 

vegetation. We conducted three surveys over a 50m reach of the River Arrow 14 

in May, June and August 2013, in order to assess the repeatability of the 15 

approach. Average water depth during these surveys ranged between 0.15m 16 

and 0.18m, and maximum water depth between 0.50m and 0.57m. 17 

(2) Coledale Beck, near Braithwaite in Cumbria, UK (Figure 2). This river is a 18 

small (c.3-10m wide), pool-riffle system and is gently meandering. The site 19 

features a number of exposed point bars and opposing steep, undercut 20 

banks. We collected UAS imagery of a 100m reach of Coledale Beck in July 21 

2013. During the survey average water depth was 0.14m and maximum water 22 

depth was 0.70m within this reach. 23 
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3. Methods 1 

3.1 Image Acquisition 2 

At the present time, the UK’s Civil Aviation Authority (CAA) requires neither a licence 3 

nor specific permission to operate a small UAS (<7kg) for academic research 4 

purposes where one or more of the following risk mitigating factors apply; airspace 5 

segregation, visual line of sight operation and low aircraft mass (Civil Aviation 6 

Authority, 2012). Despite this, prior to conducting this research we undertook CAA 7 

approved flight training in the form of the Basic National UAS Certificate for Small 8 

UAS (BNUC-STM) and obtained permission to fly under the Articles 166(5) and 9 

167(1) of the CAA Air Navigation Order 2009. We operated a Draganflyer X6 UAS 10 

with on board camera, and adhered to the conditions of the CAA permit at all times.  11 

The Draganflyer X6 (‘the X6’ - Figure 3) is a small and lightweight (1kg) rotary-12 

winged system, capable of carrying a 0.5kg payload. With the exception of an 13 

automated take-off, flight control and image acquisition are entirely manual using 14 

handheld, wireless flight controllers. The cost of the X6, including flight training, the 15 

camera and all other accessories was approximately £29,500 at the time of purchase 16 

in 2010. 17 

Following flight training and initial flying tests, we found that a two-person team is 18 

ideal for flying the X6 and acquiring imagery. The first person is solely responsible 19 

for manual flight control and the second for navigation and manual trigger of the 20 

camera shutter for image acquisition. Navigation is conducted by eye using either 21 

specially integrated video goggles or a base station with laptop, both of which display 22 

real-time imagery from the airborne camera via radio link. We ensured sufficient site 23 

coverage by manual checking of images in between flights. Multiple flights were 24 
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often required at each site, as each X6 LiPo battery provides only 3-5 minutes of 1 

flying time. 2 

A Panasonic Lumix DMC-LX3 10.1 megapixel consumer-grade digital RGB camera 3 

is mounted on the X6 for image acquisition. The camera is wired into the control 4 

circuit of the X6, allowing the camera to be controlled remotely and to draw power 5 

from the on board LiPo battery. The original camera software is not altered.  6 

At both sites we flew the X6 at a target height of c.25-30m above ground level. The 7 

handheld controller displays the flying altitude of the X6, which we monitored 8 

throughout each flight to ensure the target height was maintained. However it is 9 

noted that in practice it is difficult to maintain flight altitude precisely, especially in 10 

areas of high topographic diversity.  11 

We manually set the camera focal length at 5mm to ensure that all imagery had a 12 

pixel size of c.1cm, as established during prior calibration of the camera. The 13 

resulting images were 3648 pixels by 2736 pixels in size and image footprint size 14 

was approximately 25m x 35m. We acquired images with a high level of overlap (c. 15 

80% or greater) to allow for subsequent image matching using SfM-photogrammetry 16 

software.  17 

3.2 Ground Control 18 

Given the lack of fixed, easily identifiable features at all research sites we 19 

constructed artificial ground control points (GCPs) from 20cm x 20cm squares of 20 

0.5mm thick black PVC pond liner (Wheaton, 2012). We spray painted two white 21 

triangles onto each to create GCP targets similar to those often used in 22 

photogrammetry. Following image acquisition, we recorded the position of each GCP 23 
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using a GNSS device or total station, as detailed for each site in Table 2. Figures 4 1 

and 5 show the quantity and spatial distribution of GCPs used at each site, which 2 

varied between surveys. Following the conclusions of Vericat et al., (2008), we made 3 

efforts to ensure GCPs were located in a uniform random pattern which represented 4 

the topographic variation at each site. 5 

3.3 Image Selection 6 

Following image acquisition, we assessed the quality of individual images prior to 7 

further processing. We checked images visually to remove those affected by 8 

blurring. We also used information stored within the X6 log file to exclude images 9 

which were; a) not acquired at or near nadir, in order to minimise the effect of 10 

refraction induced by oblique viewing angles, and; b) not within an acceptable 11 

altitude range (c.22-30m above ground level). Whilst SfM-photogrammetry is 12 

capable of matching images acquired at differing flying heights (i.e. at differing 13 

scales), the exclusion of images acquired outside of the specified flying height range 14 

allowed us to ensure the outputs would be of hyperspatial resolution. The logic here 15 

is that flying altitude controls image resolution, which in turn determines the density 16 

of the resulting SfM-photogrammetry point cloud and subsequently the resolution of 17 

the DEM. The point cloud density and DEM resolution is also a function of the level 18 

of image overlap. However, it is not possible to maintain a consistent level of overlap 19 

in the same way as it is to maintain flying altitude using the manually operated X6 20 

platform and manually triggered camera. 21 

 22 

Table 3 details the total number of images acquired at each site and the subset of 23 

these taken forward for processing. Due to the large numbers of images initially 24 

acquired, we could make these exclusions without creating gaps in image coverage. 25 
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 1 

3.4 Image Processing  2 

We processed the imagery acquired at both sites using PhotoScan Pro version 3 

0.9.1.1714 (Agisoft LLC). At the time of writing, this SfM-photogrammetry package is 4 

available to academic institutions under an educational licence for $549, and for 5 

$3499 for commercial use (Agisoft LLC, 2014). PhotoScan Pro contains all the 6 

necessary routines required to output rasterised DEMs, fully orthorectified imagery 7 

and dense point clouds from the raw UAS imagery. Our workflow comprised the 8 

following key steps: image import, image alignment, geometry building, texture 9 

building, georeferencing, optimisation of image alignment and re-building of scene 10 

geometry and texture. 11 

The algorithms implemented in PhotoScan are similar to the Scale Invariant Feature 12 

Transform (SIFT) proposed by Lowe (2004), and differ from those used in standard 13 

photogrammetry. Image templates are bypassed in favour of a multiscalar, local 14 

image gradients approach. This method allows sub-pixel accuracy with invariance to 15 

scale, orientation and illumination – a key advantage for use with UAS imagery 16 

(Lowe, 2004; Snavely et al., 2006; Snavely et al., 2008). Additionally, these 17 

advanced feature matching algorithms are so computationally efficient and accurate 18 

that imagery can be uploaded in a random manner without affecting the success of 19 

the matching process. Readers are referred to recent papers by James and Robson 20 

(2012), Turner et al., (2012) and Javernick et al., (2014) for further detail on the SfM 21 

process.  22 

The georeferencing stage is crucial for quantitative geomorphological investigations, 23 

as it allows the data to be scaled, translated and rotated to real-world co-ordinates. 24 
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The XYZ positions of the GCPs were imported into PhotoScan for each dataset and 1 

used in a least-squares sense in order to derive the 7 parameters (1 scale, 3 2 

translation and 3 rotation parameters) needed to register the model to real-world 3 

coordinates.  4 

The georeferencing process provides a linear, affine, transformation of the model, 5 

but cannot remove non-linear model misalignments. Therefore, it is necessary to 6 

optimise the initial alignment of images following georeferencing. In this process, 7 

known GCP co-ordinates are used to refine the camera lens models in order to 8 

minimise geometric distortions within the 3D model. As a result, reprojection errors 9 

and reference co-ordinate misalignment errors are reduced in the final output 10 

geometry (Agisoft LLC, 2013). Subsequently the model geometry is then re-built and 11 

the texture re-mapped.  12 

It is possible to carry out georeferencing on the sparse point cloud, prior to the first 13 

building of geometry and texture mapping. This would save processing time, but we 14 

found that accurate placement of GCP marker positions was easier on the textured 15 

model than on the initial sparse point cloud. 16 

The outputs of this SfM-photogrammetry process include orthorectified image 17 

mosaics and DEMs for each survey, referenced to their respective UTM co-ordinate 18 

systems (Figures 4 and 5). Table 3 provides further detail concerning the spatial 19 

resolution of these products.  20 

3.5 Refraction Correction 21 

Within submerged areas, the SfM-photogrammetry outputs will have been affected 22 

by refraction at the air-water interface. Typically this results in an overestimation of 23 
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the true bed elevation, as observed within studies using digital photogrammetry in 1 

submerged areas (Fryer, 1983; Fryer and Kneist 1985; Butler et al., 2002; Westaway 2 

et al., 2001). Given the acquisition of UAS imagery predominantly at nadir, here we 3 

test the use of a simple refraction correction procedure for through-water 4 

photogrammetry, as described by Westaway et al., (2000). Apparent water depths 5 

are multiplied by the refractive index of clear water to obtain refraction corrected 6 

water depths. We assess the success of this procedure by comparison to 7 

topographic validation data collected within submerged areas. 8 

Applying this refraction correction required us to model the water surface elevation in 9 

order to estimate water depths. We mapped the position of the water’s edge from 10 

each orthophoto at a scale of 1:50. At 0.25m intervals along this mapped line, we 11 

extracted DEM elevation values and interpolated between them using a TIN model, 12 

to produce estimated water surface elevations. We subtracted the underlying DEM 13 

from this surface to give estimates of water depth, as a raster dataset. Next, we 14 

multiplied the resulting depth values by 1.34 (the refractive index of clear water) to 15 

produce maps of refraction corrected water depth. This allowed us to create maps of 16 

refraction corrected submerged channel elevations by subtracting the difference in 17 

water depth between the non-corrected and corrected datasets from the original 18 

DEM. This process assumes a planar water surface, unaffected by waves or surface 19 

rippling. In reality this is very unlikely, but an assessment of the impact of surface 20 

waves on refraction is beyond the scope of this study. 21 

3.6 Ground Validation 22 

In order to validate the topographic data produced using the UAS-SfM approach, we 23 

collected elevation data using traditional topographic surveying methods. This 24 
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included the use of a differential GPS or total station across both exposed and 1 

submerged parts of each site. Table 2 shows the numbers of validation points 2 

collected at each site. 3 

At both sites, we established 4 permanent marker positions which we surveyed in 4 

using a Trimble R8 network RTK system (River Arrow) or a Leica GPS1200 dGPS 5 

(Coledale Beck). The latter were post-processed using RINEX data. We surveyed 6 

the ground validation data relative to these markers, using a Leica Builder 500 total 7 

station. The use of permanent markers was particularly important at the River Arrow 8 

site where we conducted repeat surveys between May and August 2013. During the 9 

collection of topographic validation data we also recorded measures of water depth 10 

to the nearest centimetre.  11 

3.7 DEM Accuracy 12 

We conducted an additional UAS flight within a Sports Hall setting to test the ability 13 

of the SfM-photogrammetry approach to reconstruct a flat surface. A total of 27 14 

images were acquired at or as close to nadir as possible from the Panasonic Lumix 15 

DMC-LX3 camera on board the X6. We flew the X6 at a height of c. 4m above 16 

ground level, covering an area roughly 9m x 7m. We processed the imagery within 17 

PhotoScan Pro, as described earlier, and performed georeferencing using 7 GCPs. 18 

The GCPs were evenly distributed within the scene, and surveyed into a local co-19 

ordinate system using a Leica Builder 500 total station. We also used the total 20 

station to collect 30 validation points to check for elevation variation within the 21 

supposedly ‘flat’ surface. 22 

4. Results 23 

20 
 



Table 3 provides an overview of the data coverage and resolution by site, and the 1 

time taken for data collection and processing. First, we conducted a quantitative 2 

assessment of the topographic data produced from the UAS-SfM process by 3 

comparison against the independent ground validation data for each site. We 4 

assessed both the original DEM and the refraction corrected DEM by calculating the 5 

elevation mean error (accuracy) and standard deviation (precision), and by 6 

performing regression against the independent validation data. Table 4 and Figures 7 

6 to 8 present the results. 8 

Second, we calculated residual errors in the planimetric (X, Y) and the vertical (Z) by 9 

comparing the measured positions of all GCPs against their mapped positions on the 10 

orthophoto and DEM (Table 5). The mean of X, Y residual errors at all sites is almost 11 

always less than 0.01m. This is less than the pixel size of the DEMs, thereby 12 

suggesting the residual planimetric error will have minimal impact on the 13 

independent validation of the topographic data. Larger residual errors occur in some 14 

places, as indicated by the standard deviation values also given in Table 5. In some 15 

cases, these values exceed the pixel size (0.02m) and therefore may start to affect 16 

the validation of DEM accuracy in Z.    17 

4.1 Exposed Areas  18 

For exposed areas, DEM accuracy is highest for the datasets acquired at the River 19 

Arrow where mean error ranges are consistently low, i.e. between 0.004m and 20 

0.04m (Table 4). The equivalent values at Coledale Beck are slightly worse (0.11m) 21 

and relate to the presence of tall, dense bracken and grasses covering much of this 22 

site. The removal of validation points collected in such areas leads to an 23 

improvement in mean error to -0.04m.  24 
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Table 4 presents a similar pattern of DEM quality for exposed areas as observed 1 

from the standard deviation values. DEM precision is highest for the River Arrow 2 

datasets (c. 0.02-0.07m), and considerably poorer at Coledale Beck (0.2m). Again, 3 

the value for Coledale can be improved (to 0.08m) by exclusion of points in areas of 4 

tall vegetation. 5 

The strength of the relationship between the DEM and independent validation data is 6 

indicated by the regressions presented in Figure 6. High R2 values (>0.98) are 7 

returned for all sites, with the River Arrow datasets displaying the strongest values 8 

(all >0.99). Within the regression line equations, slope values closest to 1 and 9 

intercept values closest to 0 represent the best match between the DEM and 10 

corresponding independent validation data. Again, the best results are observed 11 

within the River Arrow datasets (Figure 6a-c), with poorer results from Coledale Beck 12 

(Figure 6d). 13 

4.2 Submerged Areas – No Correction 14 

Table 4 shows that DEM quality (as expressed by the mean error and standard 15 

deviation values) is nearly always poorer in submerged areas than in exposed areas. 16 

The lowest mean error of 0.017m is observed for Coledale Beck, and low values are 17 

also found for the River Arrow datasets (0.053-0.089m). The values of precision for 18 

the Coledale and Arrow datasets are similar, in the range of 0.06-0.08m. The Arrow 19 

datasets show a reduced strength of correlation for submerged areas (compared to 20 

the datasets for exposed areas), with R2 values within the range 0.78-0.88 (Figure 21 

7a-c). The co-efficient of determination for the Coledale data is improved very slightly 22 

from 0.98 in exposed areas to 0.99 in the submerged zone (Figure 7d). 23 

4.3 Water Depth and DEM Error 24 
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Figure 8 shows the correlation between water depth and DEM error for all sites. 1 

These are independent measures of water depth, acquired in the field to the nearest 2 

centimetre. For all surveys DEM error appears to increase with water depth (thereby 3 

demonstrating the probable effects of refraction). This trend is strongest for the 4 

Arrow datasets, with R2 values at about 0.50, and slightly less strong for the Coledale 5 

data (R2 = 0.40).  6 

4.4 Submerged Areas – With Refraction Correction 7 

Figure 9 provides two example cross sections, demonstrating the effect of the 8 

refraction correction on the DEM in submerged areas. Table 4 and Figure 7 suggest 9 

that the effect of the refraction correction procedure on DEM quality in submerged 10 

areas is variable. Mean error is found to be consistently improved for all datasets 11 

collected at the River Arrow (by c. 0.03-0.06m), but the same is not observed for 12 

Coledale where mean error is worsened. There is no significant change in DEM 13 

precision or strength of the correlation for any of the surveys. However, the nature of 14 

the relationship between the DEM and validation data (as indicated by the regression 15 

line equations) is improved in all cases. That is, the slope is closer to 1 and the 16 

intercept closer to 0.  17 

We re-calculated DEM error following refraction correction and re-plotted this against 18 

water depth for all surveys. As shown in Figure 8, this has the effect of reducing the 19 

depth dependency of the error for all datasets at both sites.  20 

4.5. Spatial patterns of DEM quality 21 

In theory, the DEM of the sports hall floor should be flat. Statistically, this DEM had a 22 

mean error of 0.005m and a standard deviation of 0.005m. However, we constructed 23 
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a simple cross section of the DEM (Figure 10a) which shows a dome-like 1 

deformation with a central peak which is c. 0.02m above the surface and edges 2 

which are c. 0.02m below the surface.  In addition to the deformation small-scale 3 

noise with an amplitude of c. 0.002m was present.   4 

For the river reaches, figures 10b and 10c shows the errors plotted spatially.  In the 5 

Coledale reach (figure 10b), we can also see a dome-like deformation with larger 6 

underpredictions at the edge of the DEM.  In this case, the amplitude of the dome-7 

like deformation is c. 0.2m. However, figure 10c does not suggest any pattern in the 8 

error distribution. 9 

5. Discussion 10 

5.1 Exposed Areas 11 

The quantitative assessment of the UAS-SfM approach used at the River Arrow and 12 

Coledale Beck sites has demonstrated the ability to produce hyperspatial (c. 0.02m), 13 

continuous topographic datasets for exposed parts of the fluvial environment, with 14 

high levels of accuracy (0.004-0.04m) and precision (0.02-0.07m) for areas which 15 

are non-vegetated or feature only low-level vegetation (such as short grass). These 16 

results are comparable with existing findings in the use of UAS and SfM-17 

photogrammetry for quantifying topography in both fluvial and other settings (Lejot et 18 

al., 2007; Harwin and Lucieer 2012; James and Robson 2012; Fonstad et al., 2013), 19 

and are approaching those possible with TLS for exposed areas (Heritage and 20 

Hetherington 2007; Milan et al., 2010; Bangen et al., 2013).  21 

Table 4 presents ratios for precision: flying height and DEM resolution: precision. 22 

These ratios give an indication of the magnitude of error in relation to flying altitude 23 
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and DEM resolution. In exposed areas, the DEM resolution: precision ratios indicate 1 

that mean error varies from less than the pixel size (Arrow May and June datasets) 2 

to more than five times the pixel size (Coledale). The precision: flying height ratios 3 

range from 1: 257 (where vegetation degrades mean error) to as high as c. 1: 6613. 4 

According to the recent research of James and Robson (2012),  precision: flying 5 

height ratios previously obtained using SfM-photogrammetry for surface 6 

reconstruction from an aerial survey  are in the region 1: 1000-1800, and theoretical 7 

estimates from conventional photogrammetry using metric cameras  are in the range 8 

1: 1080-9400. The results we have obtained suggest the UAS-SfM approach is 9 

providing precision: flying height ratios at best in line with those obtained from 10 

traditional photogrammetry, and sometimes below. We suspect that the lower 11 

precision: flying height ratios obtained for the River Arrow August and Coledale 12 

datasets relate to the presence of taller and denser vegetation at these sites during 13 

image acquisition campaigns which were conducted later in the summer. 14 

The three surveys conducted at the River Arrow indicate that the UAS-SfM approach 15 

is repeatable and objective, consistently producing high quality orthophotos and 16 

DEMs for exposed areas with low mean errors in comparison with the independent 17 

validation data (Table 4), and low residual errors in X, Y and Z associated with 18 

georeferencing (Table 5).  19 

5.2 Submerged Areas and Refraction Correction 20 

High resolution topographic data are also available for the submerged parts of both 21 

sites. Table 4 indicates slightly reduced levels of accuracy (0.02-0.09m) and 22 

precision (0.06-0.09m), and lower precision: flying height and DEM resolution: 23 

precision ratios compared to exposed areas. All datasets show that the DEM 24 
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consistently over-predicts elevation, a trend which appears to increase with water 1 

depth (Figure 8). This suggests that the DEM error in submerged areas is depth 2 

dependent. Similar studies using through-water digital photogrammetry have found 3 

comparable results and have attributed this overestimation to a combination of 4 

refraction effects and the photogrammetric process fixing matches at points within 5 

the water column, but above the channel bed (Tewinkel, 1963; Fryer, 1983; Fryer 6 

and Kniest 1985, Westaway et al., 2000; Westaway et al., 2001; Butler et al., 2002; 7 

Feurer et al., 2008).  8 

The application of the simple refraction correction procedure has the effect of 9 

reducing DEM errors by c. 50%, as indicated by the DEM resolution: precision ratios 10 

in Table 4. Mean error values are also significantly improved following refraction 11 

correction (i.e. reduced overestimation by the DEM - Figure 7a-c), where there is an 12 

existing correlation between error and water depth (Figure 8a-c). These 13 

improvements are not observed for the Coledale dataset, perhaps because the 14 

correlation between DEM error and water depth is weaker for Coledale (Figure 8d) 15 

and mean error is already very low prior to refraction correction (0.017m). In fact, this 16 

mean error value is already comparable to that obtained for exposed areas and 17 

perhaps suggests that refraction correction is not required. The work of Westaway et 18 

al., (2001) using through-water digital photogrammetry reports that at water depths 19 

less than 0.2m, the effects of refraction are negligible thereby deeming correction 20 

procedures unnecessary. Coledale has the highest percentage of validation points 21 

which fall within depths of less than or equal to 0.2m (83%). Therefore, we suggest 22 

that this is why the refraction correction procedure has limited effect at this site. 23 

Further research specifically testing this hypothesis is required to confirm this. 24 
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Whilst the effect on mean error differs between the Arrow and Coledale datasets, 1 

refraction correction has the effect of reducing the magnitude of overestimation with 2 

depth at both sites, but does not entirely eliminate it (Figure 8). This may result from 3 

the SfM-photogrammetry process matching points within the water column at 4 

elevations higher than the channel bed, as found in similar photogrammetry studies 5 

(Westaway et al., 2001).  6 

The repeat surveys at the River Arrow site confirm the repeatability of the approach 7 

for submerged areas. Whilst the most accurate and precise results are obtained for 8 

the June 2013 dataset, all surveys produce DEMs with both a mean error and 9 

standard deviation less than 0.09m prior to refraction correction (Table 4). 10 

Furthermore, the refraction correction procedure has the effect of improving the 11 

accuracy of the DEM to less than 0.06m in submerged areas for all River Arrow 12 

surveys. 13 

With reference to Table 1, it is clear that the resolution (0.02m) and mean error 14 

(0.004-0.06m) of the DEMs produced in submerged areas using the UAS-SfM 15 

approach (with refraction correction) exceed those reported for the use of 16 

bathymetric laser scanning, digital photogrammetry and the spectral-depth method. 17 

However, these approaches are often conducted at quite different scales. TLS 18 

surveys are more comparable to the UAS-SfM approach in terms of scale of 19 

assessment. Our results demonstrate that the UAS-SfM approach is capable of 20 

providing data resolutions exceeding those reported for TLS at the mesoscale in 21 

submerged areas, with similar accuracies and reduced data collection times (Smith 22 

and Vericat 2013).  23 
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The UAS-SfM approach is capable of returning topographic data in areas as deep as 1 

0.7m in clear water and with adequate illumination. However, refraction correction is 2 

needed, and the technique performs best at depths less than 0.2m. This is roughly in 3 

line with maximum water depths achieved for digital photogrammetry and TLS, but is 4 

shallower than that achieved using bathymetric LiDAR and the spectral-depth 5 

approach (Table 1).  6 

5.3 Evaluation of the UAS-SfM Approach for Fluvial Topography  7 

Ultimately, the choice of a method for quantifying topography, within both fluvial and 8 

other settings, will be determined by the specific requirements of the intended 9 

application in terms of scale and accuracy, as well as the availability of resources, 10 

time and funds. Within this paper we have demonstrated the potential of a UAS-SfM 11 

approach for quantifying the topography of fluvial environments at the mesoscale 12 

with hyperspatial resolutions (0.02m). This approach provides a single surveying 13 

technique for generating accurate and precise DEMs for non-vegetated exposed 14 

areas of the fluvial environment, and within submerged areas for depths up to 0.7m 15 

providing the water is clear, there is limited water surface roughness (e.g. white 16 

water) and refraction correction is implemented. As such, it represents an important 17 

innovation over hybrid approaches and has potential as a tool for characterising 18 

topographic heterogeneity at the mesoscale within a ‘riverscape’ style framework 19 

(Fausch et al., 2002).  20 

Platform mobilisation and data collection are relatively rapid using the Draganflyer 21 

X6 UAS. With a skilled UAS pilot and low wind speeds (ideally <5mph), imagery 22 

covering c. 200m lengths of channel of widths of up to c. 40m can easily be obtained 23 

within day’s fieldwork by a team of two people, including setup and surveying of 24 

28 
 



GCPs. Processing times within PhotoScan are also relatively fast, as indicated in 1 

Table 3. 2 

Errors within the point clouds and DEMs produced using SfM-photogrammetry 3 

remain a key concern.  In the case of PhotoScan, the ‘black box’ nature of the 4 

interface means that exact sources of error are almost impossible to isolate.  In 5 

traditional photogrammetry, it has been established that the self-calibration of 6 

camera lens models is error prone in image datasets acquired at nadir (Wackrow 7 

and Chandler, 2008).  Furthermore, Robson and James (in press) have 8 

demonstrated, using an SfM-photogrammetry simulation model, that images 9 

acquired at nadir produce dome-like deformations as we have observed in figures 10 

10a and 10b. Javernick et al. (2014), also find a dome-like pattern of error before the 11 

optimisation of the lens model in PhotoScan.  However, this dome-like deformation is 12 

not reported by Westoby et al (2012) or Fonstad et al (2013).  Our results show that 13 

the amplitude of this dome-like deformation is moderate.  It appears to scale with 14 

flying height with amplitude: flying height ratios of 1:200 and 1:300 for the cases of 15 

the indoor and outdoor flights respectively.  In absolute terms, these errors can be 16 

deceptively small for small flying heights and may have gone unreported in previous 17 

literature.  Robson and James (in press) find that the addition of oblique imagery with 18 

convergent view-angles eliminates the dome-like deformation.  It is therefore 19 

possible that the dome-like deformation is not presence for image acquisitions with 20 

sufficient variability around nadir.  At the very least, it would seem that greater 21 

consideration must be given to image viewing angle during the flight planning phase 22 

(James and Robson, in press).   However, in the present case and with respect to 23 

the objective of submerged topography mapping, oblique imagery would be affected 24 

differently by refraction and therefore the combined usage of nadir and oblique 25 
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imagery could require a more advanced refraction correction procedure.  Ultimately, 1 

it is clear that further research is clearly needed if we are to understand error 2 

sources in SfM-photogrammetry and potential users should be aware that the 3 

visually stunning outputs are by no means error-free.      4 

6. Conclusions and Future Work 5 

Within this study we have provided a quantitative assessment of the use of high 6 

resolution UAS imagery, processed within an SfM-photogrammetry workflow, to 7 

generate topographic datasets for both the exposed and submerged parts of two 8 

different river systems. Within exposed areas, the topographic outputs are of 9 

hyperspatial resolution (0.02m), with accuracy and precision values approaching 10 

those typically obtained using TLS. DEM accuracy and precision were slightly poorer 11 

within submerged areas, with an apparent scaling of error with increasing water 12 

depth. A simple refraction correction procedure improved results in submerged areas 13 

for sites where there was an existing correlation between error and water depth. 14 

Multiple surveys acquired from the River Arrow site gave consistently high quality 15 

results, indicating the repeatability of the approach. However, we have observed a 16 

dome-like deformation which can be present in SfM-photogrammetry DEMs.  This 17 

deformation can be small in absolute terms and users of SfM-photogrammetry 18 

should be cautious about using the resulting DEMs in process models that are 19 

sensitive to slope.  Key areas which would benefit from further targeted research 20 

include; the effects of varying camera orientation during image acquisition;  the 21 

effects of varying GCP densities; the effects of varying the level of image overlap; 22 

the potential of alternative refraction correction procedures; direct comparisons with 23 

TLS data in submerged environments; and the ability of repeat surveys for detecting 24 

geomorphic change. This UAS-SfM technique has potential as a valuable tool for 25 
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creating high resolution, high accuracy topographic datasets for assessment of 1 

fluvial environments at the mesoscale and a wide range of other geomorphological 2 

applications.  3 
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Tables 16 

Table 1. Comparison of topographic products obtained using remote sensing 17 
techniques during field tests. Values for submerged areas are shown in italics. 18 

Approach Typical 
mean 

error (m) 

Typical 
spatial 

resolution 
(m) 

Typical 
maximum 

water depth 
penetration 

(m) 

References 

Spectral-depth 
relationship 

0.10 0.05 – 4.00 0.53 – 1.00 Winterbottom and 
Gilvear 1997, 
Westaway et al., 
2003, 
Carbonneau et 
al., 2006, Lejot et 
al., 2007, 
Legleiter 2012 

44 
 



Digital 
photogrammetry 

0.05-0.17 

0.10 

0.05 – 1.00 

0.09 

N/a 

0.60 

Westaway et al., 
2001, Westaway 
et al., 2003, Lejot 
et al., 2007, 
Feurer et al., 
2008, Lane et al., 
2010 

Bathymetric 
LiDAR 

0.10-0.30 1.00 3.90 Kinzel et al., 
2007, Feurer et 
al., 2008, Bailly et 
al., 2010, 2012 

TLS 0.004-0.03 

0.01-0.10 

<0.05 

1.00 

N/a 

0.50 

Heritage and 
Hetherington 
2007, Bangen et 
al., 2013, Smith 
and Vericat 2013 

 1 
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Table 2. Data collection information by site. 1 

Site Location River Arrow Coledale 
Beck 

Date of data 
acquisition 

May 2013 June 
2013 

Aug 
2013 

July 2013 

Average flying height 
(m above ground 
level) 

26.89 25.81 27.53 28.39 

Number of GCPs used 21 22 16 25 

Instrument used to 
record GCP positions 

Leica 
Builder 

500 (total 
station) 

Leica 
Builder 

500 (total 
station 

Trimble 
R8 

GNSS 
(RTK 
GPS) 

Leica 
Builder 

500 (total 
station 

Co-ordinate System  OSGB 1936 (British National Grid) 

Number of validation 
points collected in 
exposed areas 

279 218 57 532 

Number of validation 
points collected in 
submerged areas 

169 142 113 252 

 2 

  3 
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Table 3. Specification of data outputs by site. 1 

Site Location River Arrow Coledale 
Beck 

Date of data 
acquisition 

May 2013 June 
2013 

Aug 
2013 

July 2013 

Spatial coverage (m2) 2803.50 2563.90 2084.20 4382.00 

Exposed areas as % 
of total coverage 

83.65 84.18 83.95 90.57 

Submerged areas  as 
% of total coverage 

16.35 15.82 16.05 9.43 

Total number of 
images collected 

93 69 70 88 

Number of images 
used in SfM 

58 41 32 64 

Spatial resolution of 
output orthophoto (m) 

0.009 0.009 0.009 0.010 

Spatial resolution of 
output DEM (m) 

0.018 0.018 0.019 0.020 

Time required in the 
field for set-up and 
image acquisition 
(including use of 
GCPs) 

0.5 days 0.5 days 0.5 days 0.5 days 

Time required in the 
field for collection of 
validation data 

1 day 1 day 1 day 2 days 

Time required for SfM 
image processing 

0.5 days 0.5 days 0.5 days 0.5 days 

 2 

  3 
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Table 4. Comparison of elevation validation observations with UAS-SfM DEM 1 
elevations. NC denotes non-corrected and RC denotes refraction corrected 2 
datasets.*Precision: Flying height ratios are calculated by dividing average flying 3 
height by mean error.**Pixel size: Precision ratios are calculated by dividing mean 4 
error by final DEM resolution (Table 3). 5 

Site Location River Arrow Coledale 
Beck 

Date of data acquisition May 
2013 

June 
2013 Aug 2013 July 2013 

Mean 
error (m) 

Exposed 0.005 0.004 0.044 0.111 

Submerged 
(NC) 

0.089 0.053 0.064 0.016 

Submerged 
(RC) 

0.053 -0.008 0.023 -0.029 

Standard 
deviation 
(m) 

Exposed 0.019 0.032 0.069 0.203 

Submerged 
(NC) 

0.073 0.065 0.085 0.078 

Submerged 
(RC) 

0.069 0.064 0.086 0.078 

Precision: 
Flying 
Height 
Ratio* 

Exposed 1: 5119 1: 6613 1: 627 1: 257 

Submerged 
(NC) 

1: 303 1: 484 1: 433 1: 1729 

Submerged 
(RC) 

1: 508 1: 2991 1: 1199 1: 988 

Pixel size: 
Precision 
Ratio** 

Exposed 1: 0.28 1: 0.22 1: 2.32 1: 5.55 

Submerged 
(NC) 

1: 4.94 1: 2.94 1: 3.37 1: 0.80 

Submerged 
(RC) 

1: 2.94 1: 0.44 1: 1.21 1: 1.45 

 6 
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Table 5. Residual errors associated with the georeferencing of each dataset. 1 

Site Location River Arrow Coledale 
Beck 

Date of image 
acquisition 

May 
2013 

June 
2013 

August 
2013 

July 2013 

Mean of 
residual errors 
(m) 

X 0.006 -0.028 0.007 0.006 

Y -0.001 0.008 0.007 -0.007 

Z 0.002 -0.001 -0.015 0.022 

Standard 
deviation of 
residual errors 
(m) 

X 0.013 0.162 0.035 0.062 

Y 0.014 0.046 0.026 0.043 

Z 0.008 0.016 0.019 0.037 
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