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Factors influencing the rate of reverse intersystem crossing

(krISC) in thermally activated delayed fluorescence (TADF) emit-
ters are critical for improving the efficiency and performance

of third-generation heavy-metal-free organic light-emitting
diodes (OLEDs). However, present understanding of the TADF

mechanism does not extend far beyond a thermal equilibrium

between the lowest singlet and triplet states and consequently
research has focused almost exclusively on the energy gap be-

tween these two states. Herein, we use a model spin-vibronic
Hamiltonian to reveal the crucial role of non-Born-Oppenheim-

er effects in determining krISC. We demonstrate that vibronic
(nonadiabatic) coupling between the lowest local excitation

triplet (3LE) and lowest charge transfer triplet (3CT) opens the

possibility for significant second-order coupling effects and in-
creases krISC by about four orders of magnitude. Crucially, these

simulations reveal the dynamical mechanism for highly effi-
cient TADF and opens design routes that go beyond the Born-

Oppenheimer approximation for the future development of
high-performing systems.

The communication between low-lying singlet and triplet ex-

cited states is of great importance in the field of organic elec-
tronics and plays a fundamental role in determining key mo-

lecular and material properties such as the lifetime and mobili-
ty of charge-separated states.[1, 2] Consequently, a thorough un-
derstanding of the basic principles governing the interplay be-

tween these manifolds of spin states is of great importance,
with direct implications for the performance of devices such as
organic photovoltaics and organic light-emitting diodes
(OLEDs).

For the latter this has particular significance owing to the
emergence of thermally activated delayed fluorescence

(TADF).[3] In OLEDs, electrical excitation of the emitting mole-
cules generates, through spin statistics, a 3:1 ratio of triplet

and singlet excited states. Therefore, efficient devices call for

an effective mechanism for harvesting the triplet states, which
in fluorescence molecules are simply lost to non-radiative pro-

cesses. Presently, the most popular approach is to exploit the
large spin orbit coupling constant of iridium complexes to har-

vest the triplet population by phosphorescence.[4] However, as

iridium is the fourth most scarce naturally occurring element
on earth, it is unsustainable to base large-scale high-volume in-

dustries, such as lighting, on this resource.
Adachi and co-workers[7, 8] recently demonstrated the effec-

tiveness of the TADF approach for third-generation heavy-
metal-free OLEDs. This harvests the triplet excited states by ex-

ploiting thermal energy to drive population transfer from the

triplet to the singlet states so that they can emit as singlet
states via delayed fluorescence. These systems can therefore

achieve a high luminescence quantum yield using only organic
molecules. Adopting the predictions of Beens and Weller,[9]

Adachi and co-workers demonstrated that TADF emitters could
be constructed using charge-transfer (CT) complexes, which

exhibit a negligible gap between the singlet and triplet states

due to the small exchange energy splitting.[10, 11] This approach
has subsequently been exploited[12] to achieve efficient OLEDs

with 100 % internal quantum efficiency and >30 % external
quantum efficiency.[13]

Despite the intense research interest and obvious promise
of TADF materials, it is astounding that the reverse intersystem
crossing (rISC) process, crucial to TADF is not fully understood.

This absence is important for achieving rational material
design and especially given the widening scope of TADF in ap-
plications such as fluorescence imaging.[14] One of the first re-
ports of TADF was by Parker et al.[15] The authors rationalised
their findings in terms of a thermal equilibrium between the
lowest singlet and triplet states [Eq. (1)]:

K ¼ ½S1A
½T1A ¼

krISC

kISC
¼ 1

3
expð@DES1@T1

=kbTÞ ð1Þ

making it possible to calculate the rate of the whole TADF pro-

cess (kTADF), that is, rISC proceeded by fluorescence as [Eq. (2)]:

kTADF ¼
1
3

kf expð@DES1@T1
=kbTÞ ð2Þ

This approach, adopted by Adachi and co-workers, defines
the TADF equilibrium as depending exclusively on the energy

gap between the singlet and triplet states and crucially, as
shown in Equation (1), independent of the coupling between
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them, that is, kISC and krISC, provided it is not zero. This strongly
motivates design procedures that focus upon minimising this

energy gap using CT states and suppressing larger amplitude
molecular vibrations to reduce non-radiative pathways.[16]

However, the key assumption in this equilibrium description,
that is, kISC and krISC @ kf must be broken to support new emit-

ters with stronger fluorescence yields. Within this regime, TADF
is cast in terms of a kinetic process,[17] which in the long time
limit, assuming non radiative and phosphorescence channels

are small can be expressed as [Eqs. (3a) and (3b)]:

dS1

dt
¼ @kf ½S1A þ krISC½T1A ð3aÞ

dT1

dt
¼ @krISC½T1A ð3bÞ

Solving Equations (3a) and (3b) yields Equations (4a) and (4b):

T1ðtÞ ¼ T1ð0Þexpð@krISCtÞ ð4aÞ

S1ðtÞ ¼
krISC

kf @ krISC

. -
T1ð0Þexpð@krISCtÞ ð4bÞ

where T1(0) is the population of the triplet states at t = 0, S1(t)

and T1(t) are the time-dependent populations of the emitting

singlet and triplet states, respectively. This shows that krISC is
crucial in determining the effectiveness of TADF. It is also im-

portant within a device context for the roll-off efficiency of
TADF OLEDs.[18] Further supporting the breakdown of the ther-

mal equilibrium representation, Ward et al.[19] recently showed
that different D–A–D molecules with very similar energy gaps

(DES1@T1
) exhibit large variations in krISC. They found that by

sterically hindering the motion of D and A group, the emission
can be switched from TADF to phosphorescence. This effect

cannot be explained within present models for TADF and is in-
dicative of a mechanism which is dynamic in nature, in the

sense that it depends on molecular vibrations.

Another aspect that remains unclear is the coupling respon-
sible for the rISC. Spin orbit coupling (SOC) between 1CT and
3CT of D–A complexes is forbidden.[20] It is therefore unlikely for
the 1CT state to harvest the population of the 3CT states via

rISC directly, especially in view of the large krISC&107 s@1 report-
ed.[21, 22] Alternatively Ogiwara et al.[23] used electron paramag-

netic resonance (EPR) spectroscopy to propose that rISC is
driven by hyperfine coupling induced ISC. This mechanism
arises from interactions between an electron’s spin and the

magnetic nuclei of its molecule. It is therefore completely local
and not quenched by significant electron-hole separation ex-

perienced in CT states like SOC.[24] However, the hyperfine cou-
pling constants are very small, usually in the range of

10@4 meV, and it therefore also appears highly unlikely that

such coupling accounts for these recent observations. Recently,
D–A and D–A–D molecular TADF systems[19, 21, 25] have demon-

strated that two of the excited states involved in the rISC step
can be independently tuned. They must therefore be of differ-

ent character and a 1CT and local excitonic triplet (3LE) pair ap-

pears most likely. Indeed, SOC between these two sets of
states will be allowed.

Two theoretical papers have recently discussed the influence
of multiple excited states and vibrational motion on TADF.[26, 27]

Firstly, Chen et al.[26] used Fermi’s Golden Rule to calculate the
rate of rISC occurring via SOC. They found that their calculated

value differed significantly from experimental values, even for
the 1CT!3LE transition. They subsequently postulated that for

D–A–D systems this deviation occurs due to an absence of
nonadiabatic effects between the low-lying excited states in-
volved in the upconversion. Marian[27] then used multi-refer-

ence quantum chemistry methods to show, in agreement with
ref. [26] that direct SOC was indeed too small to explain effi-

cient rISC. Instead Marian proposed that it is mediated by
mixing with an energetically close-lying 3LE state along a car-

bonyl stretching mode. Both of these works, which are largely

consistent with previous experimental findings, promote
mixing between multiple excited states as being crucial to effi-

cient rISC. However, neither explicitly calculate the dynamical
processes important to understand the exact mechanism of

rISC. Consequently, to construct a mechanistic understanding
of the TADF process, and crucially the krISC, herein we use

model quantum dynamics simulations to investigate the role

of vibronic (nonadiabatic) coupling on kISC and krISC. This is ach-
ieved using a D–A molecule composed of a phenothiazine

Figure 1. a) Schematic representation of the donor–acceptor (D–A) molecule
composed of a phenothiazine donor and a dibenzothiophene-S,S-dioxide ac-
ceptor (PTZ-DBTO2).[5] b) A 3D structure of the ground state of PTZ-DBTO2.[5]

The transparent overlaid structure is the optimised geometry in the S1 state.
c) A simplified energy diagram representing a general schematic of the the
up-conversion of triplet states to a higher energy singlet state. krISC is ap-
proximately equal to the kISC multiplied by a Boltzmann factor determine the
number of states with sufficient energy to overcome barrier (DES1@T1

). Devia-
tions from this relationship arise from a higher density of final states expect-
ed for the direct intersystem crossing case.[6]
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donor and a dibenzothiophene-S,S-dioxide acceptor (PTZ-
DBTO2), shown in Figure 1.[5] As also shown in ref. [5] this

dimer analogue and the D–A–D trimer both give identical pho-
tophysics and excellent OLED performance >19 % EQE. Our

Hamiltonian, composed of the most important electronic and
vibrational degrees of freedom, enables us to demonstrate the

crucial role of non Born-Oppenheimer effects in determining
these rates and the mechanism by which efficient rISC occurs.

We show efficient rISC cannot be achieved using direct cou-

pling between two states, but must incorporate a third.
The most relevant low-lying valence excited states of PTZ-

DBTO2 are the lowest singlet CT state (1CT), the lowest triplet
CT state (3CT) and the lowest triplet LE state (3LE). In agreement

with recent experimental findings,[5, 19] our TDDFT simulations
show that the lowest triplet state is the 3LE on the donor

group composed of a HOMO!LUMO + 3 (Figure 2 a) transition.

The two charge transfer states (3CT and 1CT) are dominated by
a HOMO!LUMO transitions. The energies of these states,

shown in Table S2 of the Supporting Information (SI), are in
good agreement with the absorption spectra shown in ref. [5] .

Figure 2 c shows the potential energy curve of the 3LE (red),
3CT (blue) and 1CT (black) states of PTZ-DBTO2 along a mass-

frequency-scaled coordinate of its lowest frequency normal

mode (v1 = 14 cm@1). This mode, found to be important for the
ISC/rISC dynamics, corresponds to a twist of the donor–accept-

or dihedral angle, as shown schematically in Figure 2 b. In Fig-
ure 2 c, the filled circles correspond to quantum chemistry cal-

culations obtained using time-dependent density functional

theory (TDDFT) within the Tamm–Dancoff approximation[29]

and the M062X exchange and correlation functional.[30] The

lines are a fit of the linear vibronic coupling Hamiltonian[32]

used to determine the nonadiabatic coupling between the

two triplet states. Importantly, this fit reveals significant cou-
pling between the two triplet states along this mode. This is

also found to be the case for two additional lower frequency
normal modes (v11 and v23), which are shown in Figure S1.

The fitted potential energy curves shown in Figure 2 c and

Figure S1 are used to construct a three-mode–three-state
model Hamiltonian, which is detailed in full in Table S3 and
adopted in the proceeding dynamics simulations. Using this
model, Figure 3 a shows the relative population of the 3LE

state for 1 ns after excitation of the 1CT state; therefore, these
dynamics follow the intersystem crossing (ISC) kinetics, simu-

lated using the standard wavefunction formalism of the multi-

configurational time-dependent Hartree (MCTDH) approach.
The black trace uses the model Hamiltonian as calculated for

PTZ-DBTO2 (Table S3). This shows, after 1 ns, a population of
the 3LE state of &0.075, and consequently, an ISC rate constant

Figure 2. a) Molecular orbitals most involved in the low-lying excited states
(3LE, 3CT and 1CT) considered herein. b) Nuclear displacements, correspond-
ing to a torsion of the D–A angle, associated with the lowest molecular
normal mode (v1) of PTZ-DBTO2. c) Potential energy curves of the low-lying
excited states (3LE = red, 3CT = blue and 1CT = black) relative to the 3LE
energy minimum calculated using TDDFT (dots). The solid lines corresponds
to the fit of the model vibronic coupling Hamiltonian to these potentials.

Figure 3. a) Relative populations of the 3LE state associated with intersystem
crossing after excitation into the 1CT state. The inset is a simplified schematic
representation of the model Hamiltonian used. b) The relative populations
of the 1CT state associated with reverse intersystem crossing after initially
populating the 3LE state. Black: full model Hamiltonian described in
Table S3, green: no HFI, blue: No Vibronic Coupling, red: vibronic coupling
increased by 10 %, cyan: energy gap between 3LE and 3CT halved.
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of kISC = 5 V 105 s@1. Importantly, if the vibronic coupling be-
tween the 3LE and 3CT states is removed from the Hamiltonian

(blue trace), kISC is significantly reduced and within the time-
scale of the dynamics population transfer to the 3LE (T1) state

is negligible. Removing the HFI, which couples the two CT
states (Figure 3 a inset) has very little effect on the ISC kinetics.

This indicates, contrary to the recent conclusions of Ogiwara
et al. ,[23] that the HFI cannot be the dominant mechanism. In
contrast, increasing the vibronic coupling (red trace) or de-

creasing the energy gap (cyan trace) gives rise. as one might
expect, to significant increases in kISC, highlighting their domi-
nant roles in the process.

Figure 3 b shows the same simulations, but in this case they

are initiated in the lowest triplet state, 3LE, to mimic the rISC
dynamics. Consequently, the population of the 1CT state is

shown. These simulations are performed within the density op-

erator formalism of MCTDH with a temperature of 300 K. As ex-
pected, these indicate the same trends as observed in Fig-

ure 3 a. The black trace finds a krISC 7 V 104 s@1 and as expected,
this can be correlated to kISC by krISC ¼ kISCexpð@DES1@T1

=kbTÞ. If

the vibronic coupling between the 3LE and 3CT states is again
neglected (blue trace) the krISC is significantly reduced to a rate

of &1 V 101 s@1, in good agreement with recent calculations on

similar systems by Chen et al.[26] As seen from the schematic
shown inset in Figure 3 a, in this case the krISC can only occur

via the weak SOC between the 3LE and 1CT states, (2 cm@1).
This population transfer can therefore be cast within Fermi’s

Golden rule, where the two excited states, 3LE and 1CT, are
coupled via the SOC matrix element between them. Given the

small magnitude of this coupling (2 cm@1) and the relatively

large gap between the states (0.1 eV) it is not surprising that
the rISC process in this case is slow.

Importantly, the critical role of vibronic coupling between
the two triplet states for the 3LE!1CT conversion cannot be

described within a similar first order perturbation theory ap-
proach. Therefore following the work of Henry and Siebrand,[33]

a more general expression of the ISC/rISC rate derived from

second-order perturbation theory must be adopted. Here the
rISC rate is described as [Eq. (5)]:

krISC
i@f ¼

2p

(h

X
f

hY f jĤintjY ii þ
X

n

hY f jĤintjYnihYnjĤintjY ii
Ei @ En

44444
44444

2

dðEf @ EiÞ

ð5Þ
The first term is the normal first-order Fermi’s Golden rule

describing the transition from some initial state (Yi) to a final
state (Yf). In contrast, coupling between the initial and final

states in the second term, so called second order, is mediated
by an intermediate state (Yn). In the present case, a direct

second-order coupling would require population transfer be-

tween the two CT states, via the HFI, that is, an initial 3LE state
populates the 3CT via vibronic coupling, which decays into the
1CT, via the HFI. However, as already demonstrated, it plays an
insignificant role. Consequently, the relevant terms for the

present observations are [Eq. (6)]:

krIC ¼
2p

(h
hY 3CTjĤvibjY 3LEi
44 442dðE3CT @ E3LEÞ ð6Þ

and [Eq. (7)]:

krISC ¼
2p

(h
hY 1 CTjĤsocjY 3 LEihY 3LEjĤvibjY 3 CTi

E3CT @ E3LE

4444 44442dðE1CT @ E3LEÞ ð7Þ

Equations (6) and (7) indicate a two-step mechanism. Firstly,
the large vibronic coupling between 3LE and 3CT promotes, on
a timescale much faster than the rISC (see Figure S2), an equi-
librium between the two states. Obviously, the position of this

equilibrium depends both on the size of the vibronic coupling
and the energy gap. Subsequently, the second-order term,

Equation (7), couples the 3CT and the 1CT, using the 3LE as an

intermediate. This latter second-order term is very efficient be-
cause of the good vibrational overlap between the almost de-

generate initial and final states, 3CT and 1CT, respectively. There-
fore, the two coupling terms driving this dynamics are the SOC

and the vibronic coupling elements. This explains recent exper-
imental results which demonstrated that steric hindrance of

D–A dihedral angle switches the main pathway from TADF to

phosphorescent.[19, 21, 25] This steric hindrance is equivalent to re-
moving the vibronic coupling term, which is shown herein to

be strongest along modes exhibiting a distortion of the D–A
dihedral angle.

In the context of recent results on similar molecules with
the D–A–D setup, Santos et al.[25] reported a strong depend-

ence on the relative energy levels according to the environ-

ment. This is not surprising, given the interplay between CT
and LE states, both of which will exhibit different responses to

changes in the local embedding environment. This gives rise
to three distinct scenarios, shown schematically in Figure 4:

a) the LE below the CT states, b) the LE degenerate with the CT
states and c) the LE above the CT states. In the first case (Fig-

ure 4 a), the situation is as reported here. Assuming population

exists only in lowest triplet state, a first step from 3LE to 3CT is
required. This is then followed by a direct second order cou-
pling via the initially populated 3LE state. For the latter two ex-
amples (Figure 4 b,c), a first step is not necessary and TADF can

proceed efficient via a direct second-order coupling mecha-
nism. However, it is important to stress, as highlighted by the

schematic in Figure 3 a and the population kinetics in Fig-
ure S2, that because the vibronic coupling is an order of mag-
nitude larger than the other coupling mechanisms, this first

step required in Figure 4 a will be significantly faster than the
krISC process. It therefore is not the rate-determining step and

consequently will not change the overall rate of rISC. More-
over, rISC is independent of the location of the lowest energy
3LE state. For the present case, PTZ-DBTO2, the 3LE is localised

on the donor fragment. But recently an efficient TADF emitter
has been confirmed with the lowest energy 3LE state residing

on the acceptor fragment.[31] Our present model, which can
easily be recalculated to other D–A TADF molecular emitters,

applies equally to this situation as the model only considers
the lowest triplet excited state, not its location, and so explains
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rISC in the more general context of all D–A and D–A–D TADF

emitters.

In conclusion, our present results clearly demonstrate the
critical contribution of non-Born-Oppenheimer effects to the

rate of rISC in TADF molecules. Indeed, we show that a mecha-
nism involving the conversion between two states is slow.

Consequently, rISC is most effective between 3LE and 1CT states
when vibronic coupling exists between the 3LE and the 3CT

states. This gives rise to strong second order coupling. Crucial-

ly, these results, which explain recent experimental observa-
tions, reveal the dynamical mechanism of rISC and therefore

great care must be taken in reducing non-radiative decay by
restricting molecular vibrations. This also demonstrates the im-

portant of not just tuning the DES1-T 1
gap but playing close at-

tention to the gaps between the 3LE and 1CT and 3CT and 1CT

states. Finally, this emphasises the need for molecular design

of novel functional materials that is based upon simulations
that go beyond the Born-Oppenheimer approximation and the

limitations of the static picture provided by quantum
chemistry.

Computational Methods

The Hamiltonian used is based upon the vibronic coupling Hamil-
tonian[32] and is described in detail in the Supporting Information.
The potential energy surfaces were calculated using
TDDFT(M062X)[30] using a def2-TZVP basis set[34] as implemented
within the Gaussian quantum chemistry package.[35] The SOC
matrix elements were computed using the perturbative ap-
proach[36] implemented within ADF.[37] The quantum dynamics were
performed using the Heidelberg Multi Configuration Time Depen-
dent Hartree (MCTDH) package.[28] Further details are provided in
the Supporting Information.
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