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Abstract. Let G be a simple undirected graph on n vertices with max-
imum degree ∆. Brooks’ Theorem states that G has a ∆-colouring un-
less G is a complete graph, or a cycle with an odd number of vertices. To
recolour G is to obtain a new proper colouring by changing the colour of
one vertex. We show an analogue of Brooks’ Theorem by proving that
from any k-colouring, k > ∆, a ∆-colouring of G can be obtained by a
sequence of O(n2) recolourings using only the original k colours unless
– G is a complete graph or a cycle with an odd number of vertices, or
– k = ∆ + 1, G is ∆-regular and, for each vertex v in G, no two

neighbours of v are coloured alike.
We use this result to study the reconfiguration graph Rk(G) of the k-
colourings of G. The vertex set of Rk(G) is the set of all possible k-
colourings of G and two colourings are adjacent if they differ on exactly
one vertex. We prove that for ∆ ≥ 3, R∆+1(G) consists of isolated ver-
tices and at most one further component which has diameter O(n2).
This result enables us to complete both a structural classification and
an algorithmic classification for reconfigurations of colourings of graphs
of bounded maximum degree.

1 Introduction

Let G = (V,E) denote a simple undirected graph and let k be a positive integer.
A k-colouring of G is a function γ : V → {1, 2, . . . , k} such that if uv ∈ E,
γ(u) 6= γ(v). The degree deg(v) of a vertex v ∈ V is the number of edges incident
with v, or equivalently how many neighbours it has in G; we let ∆ denote the
maximum degree of G. The celebrated theorem of Brooks [10] states that a graph
G has a ∆-colouring unless G is the complete graph on ∆+1 vertices or a cycle
with an odd number n of vertices. Our goal is to translate Brooks’ theorem to
the setting of reconfiguration graphs.

Given a search problem one can define a corresponding reconfiguration graph
as follows: vertices correspond to solutions and edges join solutions that are,
in some sense, “close” to one another. As this definition suggests, for a given
search problem there might be more than one way to define an edge relation of
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the reconfiguration graph. Reconfiguration graphs have not only been studied
for colouring but also for many other problems including boolean satisfiabil-
ity [18, 28, 34], clique and vertex cover [21], independent set [5, 7, 27], list edge
colouring [22, 24], L(2, 1)-labeling [23], shortest path [3, 4], and subset sum [20];
see also a recent survey [19]. Typical questions are: is the reconfiguration graph
connected; if so what is its diameter; if not what is the diameter of its (con-
nected) components; and how difficult is it to decide whether there is a path
between a pair of given solutions? Recent work has included looking at finding
the shortest path in the reconfiguration graph between given solutions [26], and
studying the fixed-parameter-tractability of this problem [8, 25, 32, 33].

For the colouring problem, the following definition of the reconfiguration
graph is the most natural. The k-colouring reconfiguration graph of G, denoted
Rk(G), has as its vertex set all possible k-colourings of G, and two k-colourings
γ1 and γ2 are joined by an edge if, for some vertex u ∈ V , γ1(u) 6= γ2(u), and,
for all v ∈ V \ {u}, γ1(v) = γ2(v); that is, if γ1 and γ2 disagree on exactly one
vertex.

As mentioned, besides determining a bound on the diameter of the reconfig-
uration graph or of its components, another common aim in this area is to find
a path between a given pair of colourings α and β in a reconfiguration graph.
This leads to the following decision problem (where k denotes a fixed integer,
that is, k is not part of the input):

k-Colour Path

Instance : A graph G = (V,E) and two k-colourings α and β.
Question : Is there a path in Rk(G) between α and β?

Note that an equivalent formulation of this problem is whether there exists a
sequence of colourings γ0, γ1, . . . , γt with α = γ0, β = γt such that adjacent
colourings disagree on a single vertex. We call this a recolouring sequence. If, for
1 ≤ i ≤ t, vi is the vertex on which γi and γi−1 disagree, then we can think of β as
being obtained from α by recolouring the vertices v1, . . . , vt in order. Therefore,
rather than explicitly considering the reconfiguration graph, one could seek to
find a recolouring sequence of G; that is, to describe a sequence of vertices and
to say which colour each vertex should be recoloured (while avoiding that two
adjacent vertices are coloured alike).

1.1 Existing Results

The study of reconfiguration graphs of colourings was initiated by Cereda, van
den Heuvel and Johnson [12, 13] who proved some initial results on the connec-
tivity of reconfiguration graphs. The k-Colour Path problem was shown to
be solvable in time O(n2) for k = 3 by Cereceda, van den Heuvel and John-
son [14]; they also proved that the diameter of any component of the reconfigu-
ration graph R3(G) of a 3-colourable graph G is O(n2). In contrast, Bonsma and
Cerecada [6] proved that this problem is PSPACE-complete for all k ≥ 4 even for
bipartite graphs (and for bipartite planar graphs for 4 ≤ k ≤ 6), and examples
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of reconfiguration graphs with components of superpolynomial diameter were
given in all these cases.

Bonamy et al. [2] showed that reconfiguration graphs of k-colourings of
chordal graphs are connected with diameter O(n2) whenever k is more than
the size of the largest clique (and they gave an infinite class of chordal graphs
whose reconfiguration graphs have diameter Ω(n2)). Bonamy and Bousquet [1]
generalized this result by showing that if k is at least two greater than the
treewidth tw(G) then, again, Rk(G) is connected with diameter O(n2); note
that if k = tw(G) + 1, then Rk(G) might not be connected since, for example,
G might be a complete graph on tw(G)+ 1 vertices and then Rk(G) contains no
edges.

Bousquet and Perarnau [9] considered sparse graphs. They proved that, for
all d ≥ 0, k ≥ d and ǫ > 0, the reconfiguration graph Rk(G) of every (d +
1)-colourable graph G has a polynomial diameter provided that the maximum
average degree of G is at most d− ǫ. We will mention other related results later.

1.2 Our Results

We study reconfigurations of colourings for graphs of bounded maximum degree.
Let Kn and Cn denote the complete graph and cycle on n vertices, respectively.
Recall that Brooks’ Theorem states that every graph G has a ∆-colouring unless
G is isomorpic to K∆+1 or Cn for odd n. Our first result is an analogue of this
theorem for reconfiguration graphs, that is, we answer the question: given a k-
colouring γ of G, k ≥ ∆+ 1, is there a path from γ to a ∆-colouring in Rk(G)?
(Note that, for any two integers k and k′ with k ≥ k′, every k′-colouring of G
corresponds to a vertex of Rk(G) since a k′-colouring is a k-colouring in which
not all colours are used.)

In order to state our results we require two definitions. A k-colouring γ of
a graph is frozen if, for every vertex v, every colour except γ(v) is used on the
neighbours of v. Notice that a frozen colouring is an isolated vertex in Rk(G).
The length of a shortest path between colourings α and β in Rk(G) is denoted
by dk(α, β). We state our result for connected graphs as disconnected graphs
can be considered component-wise.

Theorem 1. Let G be a connected graph on n vertices with maximum de-
gree ∆ ≥ 1, and let k ≥ ∆ + 1. Let α be a k-colouring of G. If α is not frozen
and G is not K∆+1 or, if n is odd, Cn, then there exists a ∆-colouring γ of G
such that dk(α, γ) is O(n2).

If all vertices of a graph have degree d, it is called d-regular (or just regular).
Note that α can only be frozen if k = ∆+ 1, and only if G is ∆-regular. Let

us briefly note that such colourings do exist: for example a 3-colouring of C6

in which each colour appears exactly twice on vertices at distance 3, or a 4-
colouring of the cube in which diagonally opposite vertices are coloured alike. In
fact, as we will see, the case k = ∆+1 is the only cause of difficulty in the proof
of our first result, which can be found in Section 2.

3



Using Theorem 1 we can, with the aid of a result of Matamala [29] on parti-
tioning graphs into two degenerate graphs, give a characterization of R∆+1(G)
for ∆ ≥ 3, which is our next result and is proved in Section 3.

Theorem 2. Let G be a connected graph on n vertices with maximum de-
gree ∆ ≥ 3. Let α and β be (∆ + 1)-colourings of G. If α and β are not frozen
colourings, then d∆+1(α, β) is O(n2).

Theorem 2 implies that R∆+1(G) contains a number of isolated vertices (rep-
resenting frozen colourings) plus, possibly, one further component. We observe
that the requirement that ∆ ≥ 3 is necessary since, for example, R3(Cn), n odd,
has more than one component consisting of at least two vertices [12, 13].

It is possible that the number of isolated vertices is zero; that is, there are no
frozen (∆ + 1)-colourings. For example, suppose that G is a connected regular
graph on n 6≡ 0 mod (∆ + 1) vertices with maximum degree ∆ ≥ 3, and let
V1, V2, . . . , V∆+1 be the colour classes of a frozen (∆ + 1)-colouring γ. Then,
by defintion, for all i, j, i 6= j, each v ∈ Vi has a neighbour in Vj and cannot
have more than one neighbour in Vj , as it has ∆ neighbours in total. Hence,
|V1| = · · · = |V∆+1| and thus n ≡ 0 mod (∆ + 1), a contradiction. We note
that connected ∆-regular graphs on n vertices can always be found (unless n
and ∆ are both odd): for example, take n vertices arranged on a circle and join
each to the nearest ⌊∆/2⌋ vertices on either side and also, if ∆ is odd, to the
diametrically opposite vertex.

It is also possible that there are only isolated vertices. Consider R4(K4) for
instance; and Brooks’ Theorem tells us that complete graphs are the only graphs
for which R∆+1(G) is edgeless, since other graphs have colourings in which only
∆ colours are used and by recolouring any vertex with the unused colour we find
a neighbouring colouring.

1.3 Two Classification Results

Theorem 2 enables us to complete both a structural classification and an algo-
rithmic classification for reconfigurations of colourings of graphs with bounded
maximum degree. In order to explain this we need to introduce some more ter-
minology.

Thoughout the paper we let n denote the number of vertices of a graph. We
distinguish four types of classes of k-colourable graphs for our structural classi-
fication. As we will see, these four types also roughly correspond to four types
of complexity results. We say that a graph class G of k-colourable graphs is of

– type 1 if, for all G ∈ G, Rk(G) is connected and has diameter O(n2);
– type 2 if, for all G ∈ G, each component of Rk(G) has diameter O(n2)

and Rk(G) has at most one component that is not an isolated vertex;
– type 3 if, for all G ∈ G, each component of Rk(G) has diameter O(n2);
– type 4 if, for all G ∈ G, Rk(G) is disconnected and has at least one compo-

nent with a superpolynomial diameter.
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Note that every graph class of type 1 is of type 2 and that every graph class of
type 2 is of type 3. At this point the reader may wonder whether there exists a
class of graphs whose reconfiguration graph of k-colourings is connected but does
not have an (at most) quadratic diameter. This is still an open problem (see, for
example, [2]). The structural classification presented in Theorem 3 below implies
that if such a graph class exists then it contains graphs whose maximum degree
is unbounded.

For integers k ≥ 1 and ∆ ≥ 0, let G∆
k be the class of connected k-colourable

graphs with maximum degree at most ∆. Note that G∆
1 = ∅ if ∆ ≥ 1 and that

Gi
k ⊆ Gj

k for any two integers i and j with i ≤ j.

We are now ready to formally state the consequences of our earlier results.
Theorem 3 classifies the connectivity and the diameter of the reconfiguration
graph of a graph of bounded degree in terms of the four types defined above. The-
orem 4 completely determines the computational complexity of the k-Colour

Path problem restricted to graphs of bounded degree. We obtain these two
classification results by combining Theorem 2 with a number of results from the
literature.

Theorem 3. Let k ≥ 1 and ∆ ≥ 0 be integers. Then:

(i) G∆
k is of type 1 if
• k = 1 and ∆ = 0
• k ≥ 2 and ∆ ≤ k − 2.

(ii) G∆
k is of type 2 if
• k = 2 and ∆ ≥ 1
• k ≥ 4 and ∆ = k − 1.

(iii) G∆
k is of type 3 if
• k = 3 and ∆ ≥ 2.

(iv) G∆
k contains a subclass of type 4 if
• k ≥ 4 and ∆ ≥ k.

Proof. We prove each of the four statements separately.

(i) The case k = 1 and ∆ = 0 is trivial. The case k ≥ 2 and ∆ ≤ k − 2 has
been shown by Dyer, Flaxman, Frieze and Vigoda [15]; see also [6,11,12] for
a proof.

(ii) The case k = 2 and∆ ≥ 1 follows from the fact that G∆
2 consists of connected

bipartite graphs. Hence, the corresponding reconfiguration graphs are either
edgeless or isomorphic to a single edge (if the bipartite graph consists of a
single vertex). The case k ≥ 4 and ∆ = k − 1 follows from Theorem 2.

(iii) This case has been proven by Cereceda, van den Heuvel and Johnson [14].
(iv) Let k ≥ 4 and ∆ ≥ k. Bonsma and Cereceda [6] constructed an infinite

family of k-colourable graphs whose reconfiguration graphs have components
of superpolynomial diameter. It can be observed that these graphs belong
to Gk

k , and hence, to G∆
k for all ∆ ≥ k. ⊓⊔
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Theorem 4. Let k ≥ 1 and ∆ ≥ 0 be integers. Then k-Colour Path restricted
to G∆

k is
(i) solvable in O(1) time if

• k ≤ 2
• k ≥ 3 and ∆ ≤ k − 2;

(ii) solvable in O(n) time if
• k ≥ 3 and ∆ = k − 1;

(iii) solvable in O(n2) time if
• k = 3 and ∆ ≥ 3;

(iv) PSPACE-complete if
• k ≥ 4 and ∆ ≥ k.

Proof. We prove each of the four statements separately.
(i) This case follows from Theorem 3 (i) (the answer is always yes) unless k = 2

and ∆ ≥ k−1 = 1. Recall from the proof of Theorem 3 (ii) that in the latter
case the reconfiguration graph is either edgeless or isomorphic to an edge.
The answer is always no in the first case and yes in the second case.

(ii) If k = 3 and so∆ = 2, then G is either a path or a cycle. We know k-Colour

Path always has the answer yes for paths [11], and can be decided for cycles
by a single traversal of the edges [14]. Now let k ≥ 4. By Theorem 3 (ii), it is
necessary in this case only to check for each vertex v in the input graph G,
for each of the two given k-colourings α and β, whether v and its neighbours
use every colour in {1, 2, . . . , ∆ + 1}. If they do not, neither colouring is
frozen, so there is a path between them.

(iii) This follows from [14] for the superclass consisting of all 3-colourable graphs.
(iv) This follows from the aforementioned result of Bonsma and Cereceda [6] as

from their proof it can be seen that the problem is PSPACE-complete for Gk
k ,

and thus for G∆
k for all ∆ ≥ k. ⊓⊔

1.4 Further Work and Open Problems

We already mentioned the open problem on the existence of a class of graphs
whose reconfiguration graph of k-colourings is connected but does not have an (at
most) quadratic diameter. We recall another open problem from the literarure
which is on degenerate graphs and on which we can report some partial progress
due to our new results. A graph G is k-degenerate if every induced subgraph
of G has a vertex with degree at most k. Note that any graph is ∆-degenerate.
Cereceda [11] made the following conjecture.

Conjecture 1. For any pair of integers d, k with k ≥ d + 2, the reconfiguration
graph Rk(G) of a d-degenerate graph G has diameter O(n2).

It turns out that proving (or disproving) this conjecture is a very challenging
problem even for d = 2 and k = 4. Using Theorem 2 we can solve one more case,
as shown in the next theorem which summarizes our current knowledge.
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Theorem 5. Let d ≥ 0 and k ≥ d + 2, and let G be a d-degenerate connected
graph. Then Rk(G) has diameter O(n2) if

(i) d = 0
(ii) d = 1
(iii) d = ∆− 1
(iv) d ≥ ∆.

Proof. We prove each of the four statements separately.
(i) This case is trivial.
(ii) Cereceda [11] proved that for any two integers d and k with k ≥ 2d+ 1, the

reconfiguration graph Rk(G) of any graph G has diameter O(n2). Taking
d = 1 proves the case. As an aside, Bousquet and Perarnau [9] proved that
for any two integers d and k with k ≥ 2d + 2, the reconfiguration graph
Rk(G) of any graph G has diameter O(n).

(iii) If k = d + 2 = ∆ + 1 then we can apply Theorem 2 after observing that a
(∆− 1)-degenerate graph has a vertex with at most ∆− 1 neighbours, so no
k-colouring α is frozen. If k ≥ d+ 3 = ∆+ 2 then we apply Theorem 3 (i).

(iv) This case follows from Theorem 3 (i). ⊓⊔

Another direction for future work is to consider the problem of finding a
path or a shortest path in the reconfiguration graph Rk(G) between two given
k-colourings α and β of a graph G of maximum degree ∆. For k ≥ 4 and
∆ ≥ k this problem is PSPACE-hard due to Theorem 4 (iv). However, for 1 ≤
k ≤ 3 or 0 ≤ ∆ ≤ k − 1, this problem is not solved in statements (i)–(iii) of
Theorem 4, which correspond to exactly those cases for which k-Colour Path

is polynomial-time solvable but which only provide a yes-answer or no-answer
in polynomial time. Note that the maximum degree of Rk(G) could be equal to
(k−1)n. This bound, together with an O(n2) bound on its diameter, only imply

an (kn)O(n2) bound on the running time of a Breadth-First Search starting in
one of the colourings α, β.

Let us discuss what is known for 1 ≤ k ≤ 3 or 0 ≤ ∆ ≤ k− 1. First of all, the
problem is trivial to solve if k ≤ 2. For k = 3, Johnson et al. [25] proved that
it is possible in O(n +m) time to find even a shortest path between two given
k-colourings in the reconfiguration graph R3(G) of any 3-colourable graph G
with n vertices and m edges. The case 0 ≤ ∆ ≤ k − 2 has been shown to be
solvable in O(n2) time by Cereceda [11]. This leaves us with the case ∆ = k− 1
and k ≥ 4, or equivalenty, ∆ ≥ 3 and k = ∆ + 1. For this case we have the
following result, the proof of which can be found in Section 4.

Theorem 6. Let G be a connected graph on n vertices with maximum degree
∆ ≥ 3. Let k = ∆ + 1. If G is not regular, then it is possible to find in O(n2)
time a path between any two given k-colourings α and β in Rk(G).

Hence, the only remaining case, which we leave as an open problem, is when
∆ ≥ 3, k = ∆ + 1 and G is ∆-regular. We believe that solving this case is
nontrivial, because the straightforward approach of modifying the structural
proof of Theorem 2 does not work. As explained in Section 4, such an approach
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would require us to find a maximum independent set for graphs of bounded
maximum degree in polynomial time. However, this problem is NP-complete
even for cubic graphs [17].

2 The Proof of Theorem 1

In order to prove Theorem 1, we need a number of lemmas that are mostly
concerned with (∆ + 1)-colouring. We define a number of terms we will use to
describe vertices of G with respect to some (∆+1)-colouring. A vertex v is locked
if ∆ distinct colours appear on its neighbours. A vertex that is not locked is free.
Clearly a vertex can be recoloured only if it is free. If v is locked and then one
of its neighbour is recoloured and v becomes free, we say that v is unlocked. A
vertex v is superfree if there is a colour c 6= ∆ + 1 such that neither v nor any
of its neighbours is coloured c. A vertex can only be recoloured with a colour
other than ∆ + 1 if it is superfree. Note there are ∆ − 1 distinct colours that
must appear on the ∆ neighbours of v if it is not superfree. We say that G is
in (∆ + 1)-reduced form if for every vertex v coloured with ∆ + 1, v and each
of its neighbours are locked. This implies that the distance between any pair of
vertices coloured (∆+1) is at least 3 as no locked vertex can have two neighbours
coloured (∆+ 1).

The key to proving Theorem 1 will be to show that from a (∆+1)-colouring
one can recolour some of the vertices to arrive at a colouring in which colour
∆ + 1 appears on fewer vertices. We begin by considering the case where the
colour ∆ + 1 appears on only one vertex. The proof of the following lemma is
inspired by a proof of Brooks’ Theorem [30] but also uses some new arguments.

Lemma 1. Let G = (V,E) be a connected graph on n vertices with maximum
degree ∆ ≥ 3, and let α be a (∆ + 1)-colouring of G with exactly one vertex v
coloured ∆ + 1. If G does not contain K∆+1 as a subgraph, then there exists a
∆-colouring γ of G such that dk(α, γ) is O(n).

Proof. We can assume that G is in (∆+1)-reduced form since if v is not locked
then we can immediately recolour it; if a neighbour of v is not locked then it can
be recoloured and this will unlock v and allow us to recolour it.

Let us fix a labelling of the neighbours of v: let xi be the neighbour such that
α(xi) = i, 1 ≤ i ≤ ∆. Our aim is to find a recolouring sequence that unlocks
v. There is one recolouring sequence that we will use several times. Suppose
that C is a connected component of a subgraph of G induced by two colours i
and j, ∆+ 1 /∈ {i, j}, and no vertex coloured j in C is adjacent to v. First the
vertices coloured j are recoloured with ∆ + 1. Then the vertices coloured i are
recoloured j, and finally the vertices initially coloured j are recoloured i. It is
clear that all colourings are proper and the overall effect is to swap the colours i
and j on C.

We say that any colouring γ where G is in (∆ + 1)-reduced form, only v is
coloured ∆ + 1 and γ(xi) = i, 1 ≤ i ≤ ∆, is good. For any good colouring γ,
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let Gγ
ij be the maximal connected component containing xi of the subgraph of

G induced by the vertices coloured i and j by γ.
We make some claims about good colourings. When we claim that v can be

unlocked, it is implicit that colour ∆+ 1 is not used on any other vertex in the
graph so that unlocking v allows us to reach a colouring where ∆+1 is not used.

Claim 1: If γ is good and xj /∈ Gγ
ij , then v can be unlocked.

If xj /∈ Gγ
ij , then the only vertex adjacent to v in Gγ

ij is xi. Thus the colours i
and j can be swapped on Gγ

ij . Then v has two neighbours with colour j and is
unlocked.

Claim 2: If γ is good and Gγ
ij is not a path from xi to xj , then v can be unlocked.

By Claim 1, we can assume that xi and xj are in Gγ
ij . They must have degree

1 in Gij since, as G is in (∆ + 1)-reduced form, they are locked. Suppose that
Gγ

ij is not a path and consider the shortest path in Gγ
ij from xi to xj , and the

vertex w nearest to xi on the path that has degree more than 2. Then w has at
least three neighbours coloured alike in G and is superfree and can be recoloured
with a colour other than i, j or ∆+1. Call this new colouring γ′ and note that,

by the choice of w, Gγ′

ij does not contain xj . Now Claim 1 implies Claim 2.

As G is K∆+1-free, v and its neighbours are not a clique so we can assume
that x1 and x2 are not adjacent. Let u be the unique neighbour of x1 coloured 2.
For a good colouring γ, note that u is in Gγ

12, and let Hγ
23 be the component of

the subgraph of G induced by the vertices with colour 2 and 3 that contains u.

Claim 3: If γ is good and u has more than one neighbour in Hγ
23, then v can

be unlocked.

If Gγ
12 is not a path, then use Claim 2. Otherwise u has two neighbours coloured

1; if u has two neighbours in Hγ
23, then it also has two neighbours coloured 3

and is superfree. Recolour it and apply Claim 1.

Claim 4: If γ is good and Hγ
23 is a path, then v can be unlocked.

By Claim 2 we can assume Gγ
23 is a path. If Hγ

23 = Gγ
23, then we can use Claim 3.

So we assume Hγ
23 6= Gγ

23 and so x2, x3 /∈ H23 and H23 contains no neighbour
of v. Let γ′ be the colouring obtained by swapping the colours 2 and 3 on Hγ

23.
By Claim 3, u is an endvertex of Hγ

23. Let the other endvertex be w. (If
w = u, then u has no neighbour coloured 3 and can be recoloured. Then use
Claim 2.)

If Gγ′

12 is not a path from x1 to x2, we use Claim 2. If it is such a path, then

let the unique neighbour of x1 in Gγ′

12 be y and clearly y ∈ Hγ
23. From x2 traverse

Gγ′

12 until the last vertex z that is also in Gγ
12 is reached. Let t be the next vertex

along from z towards x1 in Gγ′

12. Clearly t is also in Hγ
23. In fact, we can assume

that w = y = t since if y or t has degree 2 in H23 as well as in Gγ′

12 it has two
neighbours coloured 1 and two neighbours coloured 3 in γ′ and is superfree. It
can be recoloured and then Claim 2 is used.

So x1wz is coloured 131 in γ so is in Gγ
13. Then z is in both Gγ

13 and Gγ
12 so

is superfree and can be recoloured so that Claim 2 can be used. This completes
the proof of Claim 4.
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To complete the proof: we know that the initial colouring α is good. If none
of the four claims can be used, then consider Hα

23. We know that u has degree 1
in H23 but H23 is not a path. So traversing edges away from u in Hα

23, let s be
the first vertex reached with degree 3. Then s is superfree and can be recoloured
so that H23 becomes a path, and then Claim 4 can be used. ⊓⊔

In Lemma 3, we shall see how the number of vertices coloured ∆+ 1 can be
reduced when more than one is present. First we need some definitions and a
lemma. Let P be a path:
– P is nearly (∆+ 1)-locked if its endvertices are locked and coloured ∆+ 1;
– P is (∆ + 1)-locked if it is nearly (∆ + 1)-locked and every vertex on the

path is locked.

Lemma 2. Let G be a graph in (∆+1)-reduced form. If G has a (∆+1)-locked
path P , then each endvertex of P is an endvertex of an (∆ + 1)-locked path of
length 3.

Proof. As we noted, by the definition of (∆+ 1)-reduced form, a path between
two vertices coloured ∆ + 1 has length at least 3. Let u be one endvertex of P
and let Q be the shortest (∆+ 1)-locked path that ends at u (so Q is induced).
Let v be the vertex on Q at distance 2 from u. Then, as v is locked and not a
neighbour of u, it has a neighbour w coloured ∆+ 1 that is not u and the path
from u to w has length 3. ⊓⊔

A path is nice if it is a nearly (∆ + 1)-locked path, it contains free vertices
and the endvertices and their neighbours are the only locked vertices. Notice
that a nice path is not necessarily induced and, in particular, may contain a
(∆+ 1)-locked subpath.

Lemma 3. Let G be a connected graph on n vertices with maximum degree
∆ ≥ 3, let α be a (∆ + 1)-colouring of G, and suppose that G is in (∆ + 1)-
reduced form. If G has at least two (∆+1)-locked vertices and is not frozen, then
there exists a (∆+ 1)-colouring γ of G, such that d∆+1(α, γ) = O(n) and fewer
vertices are coloured ∆+ 1 with γ than with α.

Proof. We consider a number of cases.

Case 1: There exists a free vertex u adjacent to a (∆+ 1)-locked path P .

Let b be the vertex on the path adjacent to u. As b is locked it has a neighbour
a coloured ∆+ 1. Let c be a neighbour of b on P other than a. As c is locked it
has a neighbour d coloured ∆+ 1.

Since G is in (∆ + 1)-reduced form, u is not adjacent to a or d but might
be adjacent to c. In each case, it is routine to verify that by recolouring u to
∆+ 1, b and c can both be recoloured unlocking a and d and allowing them to
be recoloured. Thus the number of vertices coloured ∆+ 1 is reduced.

Case 2: G has a nice path.

Let P be a shortest nice path. Let the endpoints be v and w with neighbours s
and t on P respectively. If s and t are adjacent, then the path vstw is (∆+ 1)-
locked and has a free vertex adjacent to s so use Case 1. Thus assume that P is
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induced since the presence of any other edge would imply either a shorter nice
path could be found or that the graph was not in (∆+ 1)-reduced form.

We use induction on the number ℓ of free vertices in P to show that there
is a sequence of recolourings that lead to a colouring that has fewer vertices
coloured ∆+ 1.

If ℓ = 1, let u be the free vertex in P . Recolour u to ∆ + 1. Now s and t
have two neighbours coloured ∆ + 1 and can be recoloured. Then v and w are
unlocked and can both be recoloured, and this leaves one vertex on P coloured
∆+ 1 rather than two.

Suppose that ℓ = 2. Let P = vsu1u2tw where u1 and u2 are free vertices.
First suppose that u1 or u2, say u1, is superfree: recolouring u1 to a colour
c 6= ∆+1 unlocks s; recoloured s unlocks v which, in turn, allows us to recolour
it, and the number of vertices coloured ∆ + 1 has been reduced as required.
Similarly if u1 is not superfree but a neighbour x is, then x can be recoloured
to a colour c 6= ∆ + 1 and if xs is an edge then s is unlocked and so v can be
recoloured, and otherwise u is now superfree, the colours in the neighbourhood
of s are unchanged, and the preceding argument can be applied.

Thus henceforth we can assume that u1, u2 and their neighbours are not
superfree which implies that they have degree ∆.

Subcase 2.1: u1 and u2 do not share a neighbour. Let x1 and x2 be neighbours
of u1 and u2 not in P . Clearly x1 6= x2 and u1x2 and u2x1 are not edges.

Subcase 2.1.1: x1 is locked. We know x1 has a (∆ + 1)-locked neighbour, and
this must be v (if it is some other vertex z, then vsu1x1z is a nice path that is
shorter than P ).

Suppose x1s is not an edge. Recolour u1 to ∆ + 1. This unlocks x1 which
can be recoloured with α(u1) which, in turn, unlocks v and allows us to recolour
it with α(x1). If u1 is free, it can be recoloured and the number of vertices
coloured ∆ + 1 is reduced and we are done. If u1 is locked, then note that s
has been unlocked (as it no longer has a neighbour coloured α(u1)). Thus we
can recolour s and then recolour u1 with α(s) and again we have removed one
instance of the colour ∆+ 1.

Suppose instead that x1s is an edge. Notice that α(s), α(u1) and α(x1) are
distinct as the three vertices form a triangle. Recolour u1 with ∆+1 and then s
with α(u1). Now v is unlocked and can be recoloured with α(s). If u1 is free,
then recolour it and we are done. Otherwise this sequence of recolourings leaves
u1 locked (with α(u1) and α(x1) as the colours on s and x1 respectively). So,
from α, we do the following instead: again start by recolouring u1 with ∆ + 1,
but then recolour x1 with α(u1) to unlock v. Now that α(x1) is not used on a
neighbour of u1, u1 is free and can be recoloured.

Subcase 2.1.2: x1 is free. If x2 is locked, we can, by symmetry, use the previous
subcase, so we can assume that both x1 and x2 are free. Recolour u2 to ∆+ 1.
Then t is unlocked and can be recoloured which, in turn, unlocks w allowing
us to recolour it too. If u2 is free, we recolour it and are done. If u1 is free, we
recolour it and unlock u2 and, again, recolour it.
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If u1 and u2 are both locked, observe that x1 is still free as it has no neighbour
coloured ∆+1 since u2x1 is not an edge. Recolour x1 to ∆+1, and then recolour
u1 to α(x1). Note that now s has no neighbour coloured α(u1) and is free and can
be recoloured so that v is unlocked and can also be recoloured. By recolouring
u1, we also unlock u2, so we recolour it and are done.

Subcase 2.2: u1 and u2 share a neighbour. Let x1 be a neighbour of u1 and u2.
Since P is induced, x1 is not in P . If x1 is locked, then let its neighbour coloured
∆+ 1 be y. Then vsu1x1y is a shorter nice path unless y = v. By an analagous
argument we need y = w. This contradiction tells us that x1 must be free.

If x1 is joined to both s and t, then vsx1tw is a shorter nice path. So, without
loss of generality, assume that x1t is not an edge. Thus as u2 has a neighbour
that is not adjacent to x1, x1 has a neighbour x3 that is not adjacent to u2 since
both have degree ∆.

Subcase 2.2.1: x3 = s. Recolour u1 with ∆+1 and then s with α(u1). Now v is
unlocked and can be recoloured with α(s). If u1 is free, then recolour it and we
are done. If u2 or x1 is still free, then recolour one of them to unlock u1, which
in turn can be recoloured and are done. Otherwise this sequence of recolourings
leaves u1, u2 and x1 locked so x1 is the only neighbour of u2 coloured α(x1). So,
from α, we do the following instead: recolour x1 with ∆+1 to unlock s and then
v. If x1 can be recoloured, then we do so and are done. Otherwise notice that
α(x1) is not used on a neighbour of u2. It is thus free and can be recoloured to
unlock x1 and allow us to recolour it.

Subcase 2.2.2: x3 6= s, and x3 is free. First, suppose x3s is an edge. Recolour
u2 to ∆ + 1, t to α(u2) and w to α(t). If either u2 or one of its neighbours is
now free, u2 can be recoloured and we are done. Otherwise u1, u2 and x1 are all
locked, but x3 is still free since it has no neighbour coloured ∆+1. Recolour x3

to ∆+ 1 to unlock x1; then recolour x1 to unlock and recolour u2. As x3s is an
edge, s has two neighbours coloured ∆+ 1. Thus we recolour s to unlock v.

If x3t is an edge we can use a similar argument. So suppose x3s and x3t are
not edges. Recolour u2 to ∆+ 1, to unlock and recolour first t and then w. It is
possible to recolour u2 unless it and all its neighbours are locked. This implies
that u1, x1 and u2 are locked. We consider two subcases.

Subcase 2.2.2.1: u1x3 is not an edge. We recolour x3 to ∆+ 1 to unlock and
recolour x1 and then u2. Notice that u1 is now free since it has no neighbour
coloured ∆ + 1. Recoloured u1 unlocks s, so we recolour it, which in turn un-
locks v. Observe that x1 now has two neighbours u1 and x3 with colour ∆+1 so
is free. If u1 or u3 is free, we can recolour at least one of them directly and we
are done. Otherwise, we recolour x1 so that x3 and u1 can now be recoloured.

Subcase 2.2.2.2: u1x3 is an edge. Recolour u3 to ∆ + 1, then recolour u1, s
and v. Observe that x1 now has two neighbours u2 and u3 with colour ∆+ 1. If
u2 or u3 are free, we are done. Otherwise, recolour x1, then recolour u2 and x3,
and we are done.

Subcase 2.2.3: x3 6= s, and x3 is locked. Then x3 has a (∆ + 1)-locked neigh-
bour y. If y = v, the path H = vx3x1u2tw is nice with two free vertices x1
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and u2. Furthermore, u1 is free and a neighbour of x1 and u2, in which case
H satisfies the previous subcase unless x3 and t are adjacent in which case use
Subcase 2.1. A similar argument can be made if y = w or y 6∈ {v, w}.

This completes the case ℓ = 2. (We note that if we wished to use the proof to
construct an algorithm, we would first check whether x3 is superfree as in this
case the proof can be simplified in many places.)

Now suppose that for all i < ℓ, if there is a nice path containing i free
vertices, the number of vertices coloured ∆ + 1 can be reduced. Suppose that
the shortest such path is P = vsu1u2 . . . uℓtw where ℓ ≥ 3. We recolour uℓ to
∆ + 1, then t and then w. If uℓ or one of its neighbours is free, then uℓ can
be recoloured and we are done. Otherwise, uℓ and uℓ−1 are locked. Consider
the path P ′ = vsu1 . . . uℓ−2uℓ−1uℓ. By our inductive hypothesis, the number of
colour ∆+ 1 vertices in P ′ can be reduced. Case 2 is complete.

After Cases 1 and 2 we are left with:

Case 3: There does not exist a free vertex adjacent to a (∆+1)-locked path
and G has no nice path.

As G contains more than one (∆+1)-locked vertex, it contains a nearly (∆+1)-
locked path; let P be the shortest and let v and w be its endvertices. As G is
in (∆+ 1)-reduced form, v, w and their neighbours are locked. If P contains no
other vertices, it is (∆ + 1)-locked. Otherwise, since there are no nice paths, P
contains another locked vertex u. Let y be the neighbour of u coloured∆+1. If y
is on P , then we can assume, without loss of generality, that it is not between v
and u. Then, whether or not y is on P , the subpath from v to u plus the edge uy
is a shorter nearly (∆ + 1)-locked path. This contradiction proves that G must
contain a (∆+ 1)-locked path.

As G is not frozen, it contains a free vertex. Let Q be the shortest path in G
that joins a free vertex to a (∆ + 1)-locked vertex. Let v be the (∆ + 1)-locked
endvertex. So v is an endpoint of a (∆ + 1)-locked path R, and, by Lemma 2,
we can assume that R has length 3.

Let u be the endvertex of Q that is free. By the minimality of Q, u is the
only free vertex in Q. Let a be the neighbour of u in Q. As a is locked it has a
(∆+ 1)-locked neighbour z. Thus we must have z = v and Q = vau.

Let R = wtsv. Observe that us, ut, uv and uw cannot be edges as no locked
path has a free neighbour. Thus the vertices of R and Q other than v are distinct.
Consider the (not necessarily induced) path M = wtsvau. Notice also that at is
not an edge else the free vertex u is adjacent to the (∆+ 1)-locked path vatw.

Suppose M is an induced path. Recolour u with ∆+1 to unlock and recolour
a and then v. If u is not locked, then recolour and we are done. Else notice that
the vertices v and s are free, and the vertices u, a, t, w are locked. Consequently,
we have that M is a nice path, and by Case 2 we are done.

The only edge that might be present among the vertices ofM is as so suppose
this exists. Recolour u with ∆+1 to unlock and recolour first a and then v. If u
or any of its neighbours are free, u can be recoloured and we are done. Otherwise
note that recoloured v unlocks s. It follows that the path H = uastw is nice,
and we can use Case 2. This completes Case 3.
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As each vertex is recoloured a constant number of times, the lemma follows. ⊓⊔

We are now ready to prove Theorem 1, which we first restate.

Theorem 1. Let G be a connected graph on n vertices with maximum degree ∆ ≥
1, and let k ≥ ∆ + 1. Let α be a k-colouring of G. If α is not frozen and G is
not K∆+1 or, if n is odd, Cn, then there exists a ∆-colouring γ of G such
that dk(α, γ) is O(n2).

Proof. If k > ∆+1, then, by Brooks’ Theorem, a ∆-colouring γ exists in Rk(G)
unless G is complete or an odd cycle. We know that, in this case, Rk(G) is
connected and has diameter O(n2) so certainly dk(α, γ) is O(n2).

Suppose that k = ∆+1 and G is in (∆+ 1)-reduced form with α: if not, we
try to recolour each vertex with colour∆+1 either directly or by first recolouring
one of its neighbours. Repeatedly applying Lemma 3 starting from α, we obtain
a (∆ + 1)-colouring γ′ by O(n2) recolourings such that at most one vertex is
coloured (∆+ 1) with γ′. Lemma 1 can now be applied to obtain a ∆-colouring
γ from γ′ by O(n) recolourings. Hence, d∆+1(α, γ) ≤ O(n2) as required. ⊓⊔

3 The Proof of Theorem 2

First we need the following result of Matamala [29]. We use ω(G) to denote the
number of vertices in the largest clique in G.

Lemma 4 ([29]). Let G = (V,E) be a graph with maximum degree ∆ ≥ 3 and
ω(G) ≤ ∆. Let p1 and p2 be non-negative integers such that p1 + p2 = ∆ − 2.
Then there is a partition {S1, S2} of V such that S1 induces a maximum size
p1-degenerate graph in G and S2 induces a p2-degenerate graph.

We also need the following two lemmas.

Lemma 5. Let G be a connected (∆ − 1)-degenerate graph on n vertices with
maximum degree ∆ ≥ 3, and let k ≥ ∆ + 1. Let α be a k-colouring of G. Then
there exists a ∆-colouring γ of G such that dk(α, γ) is O(n2).

Proof. The result follows immediately from Theorem 1 by observing that a (∆−
1)-degenerate graph has a vertex with at most ∆ − 1 neighbours, so α is not
frozen and G is not K∆+1 or Cn. ⊓⊔

Lemma 6. Let G = (V,E) be a graph on n vertices with maximum degree ∆ ≥ 1.
Let γ1 and γ2 be ∆-colourings of G. Then d∆+1(γ1, γ2) is O(n2).

Proof. We use induction on ∆. If ∆ ∈ {1, 2} the statement is trivially true.
Let ∆ ≥ 3. We observe that ω(G) ≤ ∆ because G is ∆-colourable. Applying
Lemma 4 with p1 = 0 and p2 = ∆− 2, we obtain a partition {S1, S2} of V such
that S1 is a maximum independent set and S2 induces a (∆ − 2)-degenerate
graph that we denote by H .
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From γ1 and γ2 recolour the vertices of S1 with colour ∆+1 (the colour that
is not used in either γ1 or γ2). This can be done by at most 2n recolourings. So
now we can focus on the colourings restricted to S2, and as long as we do not
use the colour ∆+ 1 we do not need to worry about adjacencies with S1. So let
γH
1 and γH

2 be the colourings of H that are obtained by taking the restrictions
of γ1 and γ2 to S2, and if we can recolour from γH

1 to γH
2 by O(n2) recolourings

without using colour ∆+ 1, we will be done. We note that
– γH

1 and γH
2 use only colours from {1, 2, . . . , ∆};

– each component of H has maximum degree at most ∆−1 (since every vertex
in S2 has at least one neighbour in S1 by the maximality of S1);

– each component of H is (∆− 2)-degenerate.
Thus we can apply Lemma 5 on each component ofH to recolour each of γH

1 and
γH
2 to a (∆ − 1)-colouring using at most O(n2) recolourings. By the inductive

hypothesis, there is a path of length O(n2) between these two (∆−1)-colourings
that includes only ∆-colourings so does not use colour ∆+1. Because at most 2n
recolourings were needed to recolour γ1 and γ2 to γH

1 and γH
2 , the total number

of recolourings is O(n2). This completes the proof of Lemma 6. ⊓⊔

The lemma says that there is a path between any pair of ∆-colourings, but,
because we are working with R∆+1(G), the intermediate colourings might use
∆+ 1 colours. We are now ready to prove Theorem 2, which we restate below.

Theorem 2. Let G be a connected graph on n vertices with maximum degree ∆ ≥
3. Let α and β be (∆+1)-colourings of G. If α and β are not frozen colourings,
then d∆+1(α, β) is O(n2).

Proof. Theorem 1 implies that from each of α and β there is a path in R∆+1

to a ∆-colouring; Lemma 6 implies that there is a path between these two ∆-
colourings that completes the path from α to β. ⊓⊔

4 The Proof of Theorem 6

The degeneracy of a graph G is the least integer k such that G is k-degenerate.
We start with the following easy lemma, which is well known (see, for exam-

ple, [29]). We give a short proof for completeness.

Lemma 7. Let ∆ ≥ 1. Every connected graph with maximum degree ∆ that is
not regular is (∆− 1)-degenerate.

Proof. Let G be a smallest possible counterexample, so G has degeneracy and
maximum degree equal to ∆ and contains a vertex v with deg(v) < ∆. If G− v
has degeneracy ∆ then, by the minimality of G, we find that G− v is ∆-regular.
This means that in G every neighbor of v has more than ∆ neighbours, which is
not possible. Hence, G− v has degeneracy ∆− 1. Every induced subgraph G′ of
G is either an induced subgraph of G− v or contains v. Hence, G′ has a vertex
of degree less than ∆ contradicting the claim that G has degeneracy ∆. ⊓⊔
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Lemma 7 tells us that Theorem 6 is a statement about (∆ − 1)-degenerate
graphs.

We introduce some additional definitions. We let G[S] denote the subgraph
of a graph G = (V,E) induced by some set S ⊆ V . It is well-known that G is
p-degenerate for some integer p if and only if there exists a degeneracy ordering
v1, v2, . . . , vn of its vertices such that vi has at most p neighbours vj with j < i.
One can compute such an ordering in O(n2) time (let vn be a vertex of minimum
degree in G and, for i = n − 1, . . . , 1, let vi be a vertex of minimum degree in
G[V \ {vi+1, . . . , vn}]).

We need an algorithmic version of a result of Mihók [31], which was proven
independently by Wood [35]. We present a slightly modified version of the proof
of Wood which was implicitly algorithmic (it suffices to make a few additional
algorithmic observations).

Lemma 8 ([31,35]). Let r ≥ 1 and k ≥ r−1. Let G = (V,E) be a k-degenerate
graph on n vertices. Let p1, . . . , pr be non-negative integers so that

∑r
t=1 pt =

k − r + 1. Then it is possible to compute in O(n2) time a partition {V1, . . . , Vr}
of V such that G[Vt] is pt-degenerate for t = 1, . . . , r.

Proof. We first compute a degeneracy ordering v1, . . . , vn of G in O(n2) time.
For i = 1, . . . , n, we define Xi = {v1, . . . , vi}. Then, by definition, vi has at most
k neighbours in Xi−1. It suffices to prove the invariant that we can compute
in O(n) time a partition {Y1, . . . , Yr} of Xi, where G[Ys] is ps-degenerate for
s = 1, . . . , r. If i = 1 the invariant trivially holds. Let i ≥ 2. By our invariant,
we can compute in O(n) time a partition {Z1, . . . , Zr} of Xi−1 where G[Zs] is
ps-degenerate for s = 1, . . . , r. If vi has more than ps neighbours in every G[Zs]
then vi has at least

∑r
i=1(pi + 1) = k + 1 neighbours in Xi−1, a contradiction.

Hence, vi has at most pq neighbours in at least one set Zq, which we can find
in O(n) time. We put vi into Zq to get the desired partition for Xi in O(n)
time. ⊓⊔

Recall that Cereceda [11] proved that for any k ≥ 2d+ 1 the reconfiguration
graph Rk(G) of every d-degenerate graph G on n vertices has diameter O(n2).
We adapt his proof to show the following lemma.

Lemma 9. Let G be a graph on n vertices with maximum degree ∆ ≥ 1 and
degeneracy ∆ − 1. Let α be a (∆ + 1)-colouring of G. It is possible to compute
a ∆-colouring γ of G in time O(n2) such that d∆+1(α, γ) ≤ n2.

Proof. We first compute a degeneracy ordering v1, . . . , vn of G in O(n2) time.
Also in O(n2) time we record, for each vertex v, the neighbour of v that is latest
in the ordering, and the set of colours that are not used on neighbours of v.

Let h be the lowest index such that α(vh) = ∆ + 1. We will describe an
algorithm that finds in time O(n) a sequence of recolourings such that
– for i < h, vi is not recoloured,
– for i ≥ h, vi is recoloured at most once, and
– vh is recoloured with a colour other than ∆+ 1.
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By repeatedly using such sequences, we can obtain a colouring γ in which colour
∆ + 1 is not used. At most n such sequences are needed, so each vertex is
recoloured at most n times and the lemma follows.

We must describe the algorithm. First we find a sequence S of pairs of vertices
and colours (wj , cj) as follows:
– the first vertex w1 is vh;
– for each vertex wj , if there is a colour that is not used on it or any of its

neighbours then this is cj , and (wj , cj) is the final pair in S;
– otherwise let wj+1 be the neighbour of wj that is latest in the degeneracy

ordering and let cj = α(wj+1).
If all ∆+1 colours appear on wj and its neighbours, then wj must have degree∆,
each neighbour of wj must have a distinct colour, and, as at most ∆− 1 neigh-
bours can be earlier in the degeneracy ordering, at least one neighbour is later in
the ordering. Thus each vertex in S is later in the degeneracy ordering than its
predecessor and so the algorithm will terminate and S is finite. Moreover, this
also implies that each vertex in vh+1, . . . , vn is considered at most once during
the computation of S and so, as the information required about each vertex was
found during our preliminary computations, we can find S in O(n) time.

Let s denote the number of pairs in S. We can recolour the vertices of S
in time O(n) by simply recolouring wj with cj , starting with ws and working
backwards through S. Each colouring obtained is proper since ws has no neigh-
bour coloured cs and when a vertex vj , j < s is recoloured, its unique neighbour
wj+1 coloured cj has just been recoloured and it is not adjacent to any other
vertex that has been recoloured since they are later in the degeneracy ordering
than any of its neighbours. Finally note that w1 = vh has been recoloured with
a colour other than α(vh) = ∆+1, so the recolouring sequence achieves its aim.
This completes the proof. ⊓⊔

Finally we need an algorithmic version of Lemma 6 for the special case of
(∆−1)-degenerate graphs; to prove it we follow the line of the proof of Lemma 6
but need Lemma 8 instead of Lemma 4 and Lemma 9 instead of Lemma 5. The
question whether there exists an algorithmic version for the remaining case of ∆-
regular graphs is still open; note that one cannot replace Lemma 8 by Lemma 4
in the proof of Lemma 10, as that would require solving the NP-compete problem
of finding a maximum independent set in graphs of bounded maximum degree
in polynomial time.

Lemma 10. Let G = (V,E) be a (∆ − 1)-degenerate graph on n vertices with
maximum degree ∆ ≥ 1. It is possible to find in O(n2) time a path between any
two given ∆-colourings γ1 and γ2 in R∆+1(G).

Proof. We use induction on ∆. If ∆ ∈ {1, 2} the statement is trivially true.
Let ∆ ≥ 3 and assume that we have an O(n2)-time algorithm for connected
(∆− 2)-degenerate graphs on n vertices with maximum degree ∆− 1.

Applying Lemma 8 with p1 = 0 and p2 = ∆ − 2 gives us in O(n2) time a
partition {S1, S2} of V such that S1 is an independent set and S2 induces a
(∆− 2)-degenerate graph that we denote by H . We modify the pair (S1, S2) in
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O(n2) time by moving vertices from S2 to S1 until S1 is a maximal independent
set. Let γH

1 and γH
2 be the colourings of H that are the restrictions of γ1 and γ2

to S2. We note that
– γH

1 and γH
2 use only colours from {1, 2, . . . , ∆};

– H has maximum degree at most ∆− 1 (by the maximality of S1);
– H is (∆− 2)-degenerate.

Thus we can apply Lemma 9 to recolour each of γH
1 and γH

2 to a (∆−1)-colouring
in O(n2) time. We then apply the induction hypothesis to find in O(n2) time
a path between these two (∆ − 1)-colourings that includes only ∆-colourings.
Hence the total running time is O(n2), as required. ⊓⊔

We are now ready to prove Theorem 6, which we first restate.

Theorem 6. Let G be a connected graph on n vertices with maximum degree
∆ ≥ 3. Let k = ∆ + 1. If G is not regular, then it is possible to find in O(n2)
time a path between any two given k-colourings α and β in Rk(G).

Proof. By Lemma 7 we find that G is (∆− 1)-degenerate. By Lemma 9 we can
find in O(n2) time a path from α to some ∆-colouring γ1 and a path from β to
some ∆-colouring γ2. Applying Lemma 10 completes the proof. ⊓⊔
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