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Abstract. The Eulerian Editing problem asks, given a graph G and an
integer k, whether G can be modified into an Eulerian graph using at
most k edge additions and edge deletions. We show that this problem is
polynomial-time solvable for both undirected and directed graphs. We
generalize these results for problems with degree parity constraints and
degree balance constraints, respectively. We also consider the variants
where vertex deletions are permitted. Combined with known results, this
leads to full complexity classifications for both undirected and directed
graphs and for every subset of the three graph operations.
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1 Introduction

Graph modification problems play a central role in algorithmic graph the-
ory, partly due to the fact that they naturally arise in numerous practical
applications. A graph modification problem takes as input a graph G and
an integer k, and asks whether G can be modified into a graph belong-
ing to a prescribed graph class H, using at most k operations of certain
allowed types. The most common operations that are considered in this
context are edge additions (H-Completion), edge deletions (H-Edge
Deletion), vertex deletions (H-Vertex Deletion), and a combination
of edge additions and edge deletions (H-Editing). The intensive study of
graph modification problems has produced a plethora of classical and pa-
rameterized complexity results (see e.g. [2–8,10,13,15–17,19,21–23,25,26]).
? The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013)/ERC Grant Agreement n. 267959 and from EPSRC Grant
EP/K025090/1. An extended abstract of this paper appeared in the proceedings of
FSTTCS 2014 [9].



An undirected (resp. directed) graph G is Eulerian if it contains a walk
that begins and ends with the same vertex and that uses every edge (resp.
arc) exactly once. As an immediate consequence, an undirected graph is
Eulerian if and only if it is connected and every vertex has even degree.
Similarly, a directed graph is Eulerian if it is strongly connected3 and
balanced, i.e. the in-degree of every vertex equals its out-degree. Eule-
rian graphs form a well-known graph class both within algorithmic and
structural graph theory.

Several groups of authors have investigated the problem of deciding
whether or not a given undirected graph can be made Eulerian using a
small number of operations. Boesch et al. [2] presented a polynomial-time
algorithm for Eulerian Completion, and Cai and Yang [5] showed
that the problems Eulerian Vertex Deletion and Eulerian Edge
Deletion are NP-complete [5]. When parameterized by the number k
of allowed operations, it is known that Eulerian Vertex Deletion
is W[1]-hard [5], while Eulerian Edge Deletion is fixed-parameter
tractable [8]. Cygan et al. [8] showed that the classical and parameter-
ized complexity results for Eulerian Vertex Deletion and Eulerian
Edge Deletion also hold for the directed variants of these problems. Re-
cently, Goyal et al. [17] improved the fixed-parameter tractability results
of Cygan et al. [8] for the directed and undirected variants of Eulerian
Edge Deletion by giving algorithms with running times that are single-
exponential in k. The same authors also proved that the Undirected
Connected Odd Edge Deletion problem, which asks whether it is
possible to obtain a connected graph in which all vertices have odd degree
by deleting at most k edges, is fixed-parameter tractable when parame-
terized by k.

Another problem that can be seen as involving editing to an Eulerian
multigraph is the Chinese Postman problem, also known as the Route
Inspection problem [20]. In this problem a connected graph G, together
with an integer k, is given and the question is whether or not there exists
a closed walk in G that uses every edge of G at least once and that
has length at most |E(G)| + k. In other words, can we add a total of at
most k copies of existing edges to G in order to modify G into an Eulerian
multigraph? Edmonds and Johnson [12] showed that both the undirected
and directed variant of this problem can be solved in polynomial time. The
Rural Postman problem generalizes the Chinese Postman problem,

3 Replacing “strongly connected” by “weakly connected” yields an equivalent defini-
tion of Eulerian digraphs, as it is well-known that a balanced digraph is strongly
connected if and only it is weakly connected (see e.g. [8]).
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as it requires that only every edge of some subset of E(G) needs to be
used at least once in the closed walk. Dorn et al. [10] proved that the
Rural Postman is fixed-parameter tractable for directed multigraphs
when parameterized by the number of arcs that may be added.

Our Contribution We generalize, extend and complement known re-
sults on graph modification problems dealing with Eulerian graphs and
digraphs. The main contribution of this paper consists of two non-trivial
polynomial-time algorithms: one for solving the Eulerian Editing prob-
lem, and one for solving the directed variant of this problem. Given the
aforementioned NP-completeness result for Eulerian Edge Deletion
and the fact that H-Editing is NP-complete for many graph classes H [3,
26], we find it particularly interesting that Eulerian Editing turns out
to be polynomial-time solvable. To the best of our knowledge, the only
other natural non-trivial graph class H for which H-Editing is known to
be polynomial-time solvable is the class of split graphs [18].

In fact, our polynomial-time algorithms are implications of two more
general results. In order to formally state these results, we need to in-
troduce some terminology. Let ea, ed and vd denote the operations edge
addition, edge deletion and vertex deletion, respectively. For any set S ⊆
{ea, ed, vd} and non-negative integer k, we say that a graph G can be
(S, k)-modified into a graph H if H can be obtained from G by using
at most k operations from S. We define the following problem for every
S ⊆ {ea, ed, vd}:

CDPE(S): Connected Degree Parity Editing(S)
Instance: A (simple) graph G, an integer k

and a function δ : V (G)→ {0, 1}.
Question: Can G be (S, k)-modified into a connected graph H

with dH(v) ≡ δ(v) (mod 2) for each v ∈ V (H)?

Inspired by the work of Cygan et al. [8] on directed Eulerian graphs, we
also study a natural directed variant of the CDBE(S) problem. Denoting
the in- and out-degree of a vertex v in a digraph G by dinG (v) and doutG (v),
respectively, we define the following problem for every S ⊆ {ea, ed, vd}:
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CDBE(S): Connected Degree Balance Editing(S)
Instance: A (simple) digraph G, an integer k

and a function δ : V (G)→ Z.
Question: Can G be (S, k)-modified into a weakly connected

digraph H with doutH (v)− dinH (v) = δ(v) for each
v ∈ V (H)?

In Section 3, we prove that CDPE(S) can be solved in polynomial
time when S = {ea} and when S = {ea, ed}. The first of these two results
extends the result by Boesch et al. [2] on Eulerian Completion and the
second yields the first polynomial-time algorithm for Eulerian Editing,
as these problems are equivalent to CDPE({ea}) and CDPE({ea, ed}),
respectively, when we set δ ≡ 0 (i.e. when δ(v) = 0 for every v ∈ V (G)).
The complexity of the problem drastically changes when vertex deletion
is allowed: we prove that for every subset S ⊆ {ea, ed, vd} with vd ∈ S,
the CDPE(S) problem is NP-complete and W[1]-hard with parameter k,
even when δ ≡ 0. This complements results by Cai and Yang [5] stating
that CDPE(S) is NP-complete and W[1]-hard with parameter k when
S = {vd} and δ ≡ 0 or δ ≡ 1. Our results, together with the afore-
mentioned results due to Cygan et al. [8]4 and Cai and Yang [5], yield a
complete classification of both the classical and the parameterized com-
plexity of CDPE(S) for all S ⊆ {ea, ed, vd}; see the middle column of
Table 1.

In Section 4, we use different and more involved arguments to clas-
sify the classical and parameterized complexity of the CDBE(S) prob-
lem for all S ⊆ {ea, ed, vd}. Interestingly, the classification we obtain for
CDBE(S) turns out to be identical to the one we obtained for CDPE(S).
In particular, our proof of the fact that CDBE(S) is polynomial-time solv-
able when S = {ea} and S = {ea, ed} implies that the directed variants
of Eulerian Completion and Eulerian Editing are not significantly
harder than their undirected counterparts. All results on CDBE(S) are
summarized in the right column of Table 1.

We would like to emphasize that there are no obvious hardness reduc-
tions between the different problem variants. The parameter k in the prob-
lem definitions represents the budget for all operations in total; adding
a new operation to S may completely change the problem, as there is
no way of forbidding its use. Hence, our polynomial-time algorithms for

4 The FPT-results by Cygan et al. [8] only cover CDPE({ed}) and CDBE({ed}) when
δ ≡ 0, but it can easily be seen that their results carry over to CDPE({ed}) and
CDBE({ed}) for any function δ.

4



S CDPE(S) CDBE(S)
ea, ed P P
ea P P
ed FPT [8] FPT [8]
vd W[1]-hard [5] W[1]-hard [8]
ea, vd W[1]-hard W[1]-hard
ed, vd W[1]-hard W[1]-hard
ea, ed, vd W[1]-hard W[1]-hard

Table 1. A summary of the results for CDPE(S) and CDBE(S). All results are new
except those for which a reference is given. The number of allowed operations k is the
parameter in the parameterized results, and if a parameterized result is stated, then
the corresponding problem is NP-complete.

CDPE({ea, ed}) and CDBE({ea, ed}) do not generalize the polynomial-
time algorithms for CDPE({ea}) and CDBE({ea}), and as such require
significantly different arguments. In particular, our main result, stating
that Eulerian Editing is polynomial-time solvable, is not a generaliza-
tion of the fact that Eulerian Completion is polynomial-time solvable
and stands in no relation to the FPT-result by Cygan et al. [8] for Eule-
rian Edge Deletion.

We end this section by mentioning two similar graph modification frame-
works in the literature that formed a direct motivation for the framework
defined in this paper. Mathieson and Szeider [23] considered the Degree
Constraint Editing(S) problem, which is that of testing whether a
graph G can be (S, k)-modified into a graph H in which the degree of
every vertex belongs to some list associated with that vertex; recently
some new results for this problem were obtained by Froese et al. [13] and
Golovach [16]. Golovach [15] performed a similar study to that of Math-
ieson and Szeider [23], but with the additional condition that the resulting
graph must be connected.

2 Preliminaries

We consider finite graphs G = (V,E) that may be undirected or directed;
in the latter case we will always call them digraphs. All our undirected
graphs will be simple, that is, without loops or multiple edges; in par-
ticular, this is the case for both the input and the output graph in every
undirected problem we consider. Similarly, for every directed problem that
we consider, we only consider simple digraphs, that is, we do not allow
the input or output digraph to contain multiple arcs (but we do allow
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opposite arcs). In our proofs we will also make use of directed multigraphs,
which are digraphs that are permitted to have multiple arcs.

The complete graph on n vertices is denoted Kn and the complete
bipartite graph with classes of size s and t is denoted Ks,t. The length of
a path or cycle is equal to the number of edges that it contains.

We denote an edge between two vertices u and v in a graph by uv.
We denote an arc between two vertices u and v by (u, v), where u is the
tail of (u, v) and v is the head. We say that a set A of arcs or edges has
size |A|. The disjoint union of two graphs G1 and G2 is denoted G1 +G2.

Let G = (V,E) be a graph or a digraph. Throughout the paper we
assume that n = |V | and m = |E|. For U ⊆ V , we let G[U ] be the graph
(digraph) with vertex set U and an edge (arc) between two vertices u
and v if and only if this is the case in G; we say that G[U ] is induced
by U . We write G − U = G[V \ U ]. For E′ ⊆ E, we let G(E′) be the
graph (digraph) with edge (arc) set E′ whose vertex set consists of the
end-vertices of the edges in E′; we say that G(E′) is edge-induced by E′.
Let S be a set of (ordered) pairs of vertices of G. We let G − S be the
graph (digraph) obtained by deleting all edges (arcs) of S∩E from G, and
we let G + S be the graph (digraph) obtained by adding all edges (arcs)
of S \ E to G. We may write G− e or G+ e if S = {e}.

Let G = (V,E) be a graph. A component of G is a maximal connected
subgraph of G. The complement of G is the graph G = (V,E) with vertex
set V and an edge between two distinct vertices u and v if and only
if uv /∈ E. For a vertex v ∈ V , we let NG(v) = {u | uv ∈ E} denote its
(open) neighbourhood. The degree of v is denoted dG(v) = |NG(v)|. The
graph G is even if all its vertices have even degree, and it is Eulerian if it
is even and connected. We say that a set D ⊆ E is an edge cut-set in G if
G−D has more components than G. An edge cut-set of size 1 is said to
be a bridge.

A matching of a graph G is a set of edges, in which no two edges have
a common end-vertex; it is called a maximum matching if its number of
edges is maximum over all matchings of G. We need the following lemma
due to Micali and Vazirani.

Lemma 1 ([24]). A maximum matching of an n-vertex graph can be
found in O(n5/2) time.

Let G = (V,E) be a digraph. If (u, v) is an arc, then (v, u) is the
reverse of this arc. For a subset F ⊆ E, we let FR = {(u, v)|(v, u) ∈ F}
denote the set of arcs whose reverse is in F . The underlying graph of G
is the undirected graph with vertex set V where two vertices u, v ∈ V
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are adjacent if and only if (u, v) or (v, u) is an arc in G. We say that G
is (weakly) connected if its underlying graph is connected. A component
of G is a connected component of its underlying graph. An arc a ∈ E is
a bridge in G if it is a bridge in the underlying graph of G. A vertex u
is an in-neighbour or out-neighbour of a vertex v if (u, v) ∈ E or (v, u) ∈
E, respectively. Let N in

G (v) = {u | (u, v) ∈ E} and Nout
G (v) = {u |

(v, u) ∈ E}, where we call dinG (v) = |N in
G (v)| and doutG (v) = |Nout

G (v)| the
in-degree and out-degree of v, respectively. A vertex v ∈ V is balanced if
doutG (v) = dinG (v), or equivalently, its degree balance doutG (v) − dinG (v) = 0.
Recall that G is Eulerian if it is connected and balanced, that is, the
out-degree of every vertex is equal to its in-degree.

Let G = (V,E) be a graph and let T ⊆ V . A subset J ⊆ E is a T -join
if the set of odd-degree vertices in G(J) is precisely T . If G is connected
and |T | is even then G has at least one T -join. In Section 3 we need to
find a minimum T -join, that is, one of minimum size. We use the following
result of Edmonds and Johnson [12] to do so.

Lemma 2 ([12]). Let G = (V,E) be a graph, and let T ⊆ V . Then a
minimum T -join (if one exists) can be found in O(n3) time.

Lemma 2 was used by Cygan et al. [8] to solve H-Edge Deletion in
polynomial time when H is the class of even graphs. It would immediately
yield a polynomial-time algorithm for CDPE({ed}) if we dropped the
connectivity condition.

We need a variant of Lemma 2 for digraphs in Section 4. Let G =
(V,E) be a directed multigraph and let f : T → Z be a function for some
T ⊆ V . A multiset E′ ⊆ E with T ⊆ V (G(E′)) is a directed f -join in G if
the following two conditions hold: doutG(E′)(v) − d

in
G(E′)(v) = f(v) for every

v ∈ T and doutG(E′)(v)−d
in
G(E′)(v) = 0 for every v ∈ V (G(E′))\T . A directed

f -join is minimum if it has minimum size. The next lemma was used by
Cygan et al. [8] to solve H-Edge Deletion in polynomial time when H
is the class of balanced digraphs; it would also yield a polynomial-time
algorithm for CDBE({ed}) if we dropped the connectivity condition.

Lemma 3 ([8]). Let G = (V,E) be a directed multigraph and f : T → Z
be a function for some T ⊆ V . A minimum directed f -join F (if one
exists) can be found in O(nm log n log logm) time. Moreover, F consists
of mutually arc-disjoint directed paths from vertices u with f(u) > 0 to
vertices v with f(v) < 0.
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3 Connected Degree Parity Editing

Let S ⊆ {ea, ed, vd}. In Section 3.1 we will show that CDPE(S) is
polynomial-time solvable if S = {ea} or S = {ea, ed} and in Section 3.2
we will show that it is NP-complete and W[1]-hard with parameter k if
vd ∈ S.

3.1 The Polynomial-Time Solvable Cases

First, let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ, k) be an instance of CDPE(S)
with G = (V,E). Let A be a set of edges not in G, and let D be a set of
edges in G, with D = ∅ if S = {ea}. We say that (A,D) is a solution for
(G, δ, k) if its size |A| + |D| ≤ k, the congruence dH(u) ≡ δ(u) (mod 2)
holds for every vertex u and the graph H = G + A − D is connected; if
we drop the condition that H is connected then (A,D) is a semi-solution
for (G, δ, k). If S = {ea} we may denote the solution by A rather than
(A,D) (since D = ∅). We consider the optimization version for CDPE(S).
The input is a pair (G, δ), and we aim to find the minimum k such that
(G, δ, k) has a solution (if one exists). We call such a solution optimal and
denote its size by optS(G, δ). We say that a (semi)-solution for (G, δ, k) is
also a (semi)-solution for (G, δ). If (G, δ, k) has no solution for any value
of k, then (G, δ) is a no-instance of CDPE(S) and optS(G, δ) = +∞.

Let T = {v ∈ V | dG(v) 6≡ δ(v) (mod 2)}. Define GS = Kn if S =
{ea, ed} and GS = G if S = {ea}. Note that if S = {ea} then GS contains
no edges of G, so in this case any T -join in GS can only contain edges
in E(G). The following key lemma is an easy observation.

Lemma 4. Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ) be an instance of
CDPE(S) and A ⊆ E(G), D ⊆ E(G). Then (A,D) is a semi-solution
of CDPE(S) if and only if A ∪D is a T -join in GS.

We recall that Boesch et al. [2] proved that Eulerian Completion
can be solved in polynomial time, that is, CDPE(S) is polynomial time
solvable if S = {ea} and δ ≡ 0. We extend this result to arbitrary δ. Our
proof is based around similar ideas but we also had to do some further
analysis. The main difference in the two proofs is the following. If δ ≡ 0
then none of the added edges in a solution will be a bridge in the modified
graph (as the number of vertices of odd degree in a graph is always even).
However this is no longer true for arbitrary δ and extra arguments are
needed. We therefore present a full proof of our result.

Theorem 1. Let S = {ea}. Then CDPE(S) can be solved in O(n3) time.
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Proof. Let S = {ea} and let (G, δ) be an instance of CDPE(S). We
first use Lemma 2 to check in O(n3) time whether GS has a T -join. If
not then (G, δ) has no semi-solution by Lemma 4, and thus no solution
either. We may therefore assume that |T | is even and F is a minimum
T -join in GS . (Recall that Lemma 2 states that we can find F in O(n3)
time if it exists.) We also assume that either T 6= ∅ or G is not connected,
otherwise the trivial solution A = ∅ is clearly optimal. Let p be the number
of components of G that do not contain any vertex of T and let q be the
number of components of G that contain at least one vertex of T .

We will prove the following series of statements. Under the assump-
tions made in the previous paragraph, these statements give necessary
and sufficient conditions for (G, δ) to be a yes-instance, and if (G, δ) is
a yes-instance tell us the exact size of an optimal solution for (G, δ). We
recall that G1 +G2 denotes the disjoint union of two graphs G1 and G2.

– (G, δ) is a no-instance if p = 2, q = 0 and G = K1 +Kt for t ≥ 1.
– optS(G, δ) = 4 if p = 2, q = 0 and G = Ks +Kt for s, t ≥ 2.
– optS(G, δ) = 3 if p = 2, q = 0 and G has a component that is not

complete.
– optS(G, δ) = p if p ≥ 3, q = 0.
– optS(G, δ) = max{|F |, p+ q − 1, p+ 1

2 |T |} if q > 0.

We split our proof into two parts depending on the value of q.

Case 1: q = 0.
In this case T = ∅, so by Lemma 4 for any semi-solution A, every vertex
in GS(A) must have even degree in GS(A). In other words, every vertex
of G must be incident to an even number of edges in A. Since T = ∅,
we assumed above that G was disconnected, so p ≥ 2 and any solution A
must be non-empty. This means that GS(A) must contain a cycle, so
optS(G, δ) ≥ 3. Recall that GS(A) is a subgraph of G.

Suppose p = 2. If G = K1 + Kt for t ≥ 2 then G = K1,t, which
does not contain a cycle. Therefore (G, δ) is a no-instance in this case.
If G = Ks + Kt for s, t ≥ 2 then G = Ks,t, which contains no cycles of
length 3. Therefore optS(G, δ) ≥ 4 in this case. Indeed, if u, v are vertices
in the Ks component of G and u′, v′ are vertices in the Kt component,
then A = {uu′, u′v, vv′, v′u} is a solution of size 4 and this solution must
therefore be optimal. Finally, suppose G contains exactly two components,
at least one of which is not a clique. Let x, y be non-adjacent vertices
in this component and let z be a vertex in the other component. Then
A = {xy, yz, zx} is a solution of size 3, which must therefore be optimal.
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Finally, suppose that p ≥ 3. Since G + A must be connected for any
solution A, every component inGmust contain at least one vertex incident
to an edge of A. By Lemma 4, this vertex must be incident to an even
number of edges of A, meaning that it must be incident to at least two such
edges. Therefore optS(G, δ) ≥ p. Indeed, if we choose vertices v1, . . . , vp,
one from each component of G then A = {v1v2, v2v3, . . . , vp−1vp, vpv1} is
a solution of size p, which is therefore optimal.

This concludes the q = 0 case.

Case 2: q > 0.
In this case T 6= ∅. We first show that optS(G, δ) ≥ max{|F |, p + q − 1,
p + 1

2 |T |}. Since F is a minimum T -join in GS , Lemma 4 implies that
optS(G, δ) ≥ |F |. Since G has p + q components, any solution A must
contain at least p + q − 1 edges to ensure that G + A is connected, so
optS(G, δ) ≥ p+q−1. Finally, let G1, . . . , Gp be the components of G that
do not contain any vertices of T . IfA is a solution then every componentGi
must contain a vertex incident to some edge in A. By Lemma 4, this vertex
must be incident to an even number of edges of A, meaning that it must
be incident to at least two such edges. By Lemma 4, every vertex of T
must be incident to some edge in A. Therefore A must contain at least
p+ 1

2 |T | edges, so optS(G, δ) ≥ p+
1
2 |T |.

Next we show that we can always construct a solution of size max{|F |,
p+ q−1, p+ 1

2 |T |}. To do this, we try to replace edges of F in such a way
that F remains a minimum T -join inGS , but the number of components in
G+F is reduced. After we have finished this process, if G+F is connected
then setting A = F gives a solution of size |F |, which is therefore optimal.
Otherwise, we will be able to use the structure of F to construct a solution
of size either p+ q − 1 or p+ 1

2 |T |.
Consider the graph GS(F ). Since F is a minimum T -join, GS(F ) can-

not contain any cycles (otherwise the edges in the cycle could be removed
from F to give a smaller T -join). We prove the following claim.

Claim 1. The graph GS(F ) is a forest that contains no path of length at
least 3 (in other words GS(F ) is a forest of stars).

Suppose, for contradiction, that there is such a path with edge set P and
end-vertices u and v. Note that u and v are in the same component of
G + F . Since G + F is not connected (otherwise A = F would be an
optimal solution of size |F |), there must be a vertex x ∈ V (G) which is
in a different component of G + F from the one containing u and v. In
this case ux, xv ∈ E(GS). Let F ′ = (F \ P ) ∪ {ux, xv}. Then F ′ is also a
T -join in GS , since the degree parity of any vertex in G+ F ′ is the same
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as its degree parity in G+ F . However, |F ′| < |F |, which contradicts the
fact that F is a minimum T -join. This proves Claim 1.

Now suppose that u, v, u′, v′ are four distinct vertices in F with uv, u′v′ ∈
F , such that uv is not a bridge in G + F and the vertices u and u′ are
in different components of G + F . Let F ′ = (F \ {uv, u′v′}) ∪ {u′v, uv′}.
Then F ′ is also a minimum T -join in GS . However, G+F ′ has one compo-
nent less than G+F . Indeed, since uv is not a bridge in G+F , the vertices
u, u′, v, v′ must all be in the same component of G+F ′. Therefore, if such
edges uv, u′v′ ∈ F exist, we replace F by F ′. We do this exhaustively until
no further such pairs of edges exist. At this point either every edge in F
must be a bridge or every edge in F is in the same component of G+ F .
We consider these possibilities separately.

First suppose that every edge in F is a bridge. Choose uv ∈ F
and let G1, . . . , Gk be the components of G + F , with u, v ∈ V (G1).
Note that since every edge in F is a bridge, k = p + q − |F |. Now let
vi ∈ V (Gi) for i ∈ {2, . . . , k}. Let A = F if k = 1 and A = (F \ {uv}) ∪
{uv2, v2v3, . . . , vk−1vk, vkv} otherwise. Now every vertex in G+A has the
same degree parity as in G+F , so A is a T -join in GS . The graph G+A is
connected, so A is a solution. However, |A| = |F |−1+p+q−|F | = p+q−1.
Therefore A is an optimal solution.

We may now assume that every edge in F is in the same component
of G+ F . If G+ F is connected, then A = F is a solution of size |F | and
is therefore optimal, so we may assume that G+ F is not connected.

Suppose uv, vw ∈ F . Then uw ∈ E(G), as otherwise we could re-
place uv, vw in F by uw to get a smaller T -join in GS . Suppose that
uv, vw do not form an edge cut-set in G+ F . In other words, we suppose
that u and v are in the same component of G+(F \{uv, vw}). Let x be a
vertex in a different component of G+F from the one containing u, v, w.
Then ux, xw ∈ E(GS). Let F ′ = (F \{uv, vw})∪{ux, xw}. Then F ′ must
also be a minimum T -join in GS . However, G+F ′ has one less component
than G+ F . Indeed, x is in the same component of G+ F ′ as u, v, w. In
this case we may replace F by F ′. Again, we apply this replacement ex-
haustively until it can no longer be applied. This process ends when either
G+F becomes connected (in which case A = F is an optimal solution of
size |F |) or, for every pair of edges of the form uv, vw ∈ F , we find that
{uv, vw} is an edge cut-set in G + F . We may assume the latter is the
case.

We will prove the following claim.
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Claim 2. Let uv, vw ∈ F . Then the component C of G + (F \ {uv, vw})
that contains v contains no vertices of T . Moreover, dGS(F )(v) = 2 and v
is the unique vertex of GS(F ) in C.

We prove Claim 2 as follows. We first show that C contains no vertices
of T . Suppose, for contradiction, that x ∈ T ∩ V (C) (x is not necessarily
distinct from v). Then by Lemma 4, x must be the end-vertex of some
edge in F \ {uv, vw}, say xy (again y is not necessarily distinct from v).
Note that x and y are in the same component of G + (F \ {uv, vw}),
which is different from the component containing u and w. Let F ′ = (F \
{xy, uv, vw})∪{ux,wy}. Then F ′ is also a T -join in GS , but |F ′| = |F |−1,
contradicting the minimality of F . Hence, C contains no vertices of T .

By Claim 1 and the definition of a T -join, every vertex of GS(F ) that
is not in T must have a neighbour in T . In particular, this means that in
the graph G + (F \ {uv, vw}), no vertex of V (C) \ {v} has a neighbour
in T and the vertex v has no neighbours in T \ {u,w}, otherwise in both
cases such a neighbour would be in C, a contradiction. This completes the
proof of Claim 2.

Recall, that by Claim 1, GS(F ) is a forest in which each component is
a star. Then, by Claim 2, each component of GS(F ) is in fact a path of
length 1 or 2. Hence, GS(F ) consists of 1

2 |T | vertex-disjoint paths of length
at most 2 with their ends in T . Since GS(F ) has |F | edges, GS(F ) consists
of |T |−|F | paths of length 1 and |F |− 1

2 |T | paths of length 2. By Claim 2,
the middle vertex of every path of length 2 lies in a different component
of those p components of G that do not contain any vertices of T . Let
G0, G1, . . . , Gk be the components of G + F such that G0 is the only
component containing vertices of T . Note that k = p − (|F | − 1

2 |T |). Let
vi ∈ V (Gi) for i ∈ {1, . . . , k}. Choose uv ∈ F and let A = (F \ {uv}) ∪
{uv1, v1v2, . . . , vk−1vk, vkv}. Then every vertex in G + A has the same
degree parity as in G + F and the graph G + A is connected, so A is a
solution. Furthermore, |A| = |F |+ p− (|F | − 1

2 |T |) = p+ 1
2 |T |, so A is an

optimal solution. This concludes the proof of Case 2.

Note that p and q can be computed and T can be found in O(n + m)
time. Recall that a minimum T -join in GS can be found in O(n3) time
by Lemma 2, so the value of optS(G, δ) can be computed in O(n3) time.
Note that the constructive proofs for Cases 1 and 2 can be turned into
algorithms. For Case 1, if p = 2, then we can check in O(n + m) time
whether or not G is the disjoint union of two cliques and either return
a no-answer or find a solution. If p ≥ 3, then we can find a solution
in O(n+m) time. For Case 2, observe that for a given F , we can find the
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components and the bridges of G+F in O(n2) time. Hence, as G+F has
at most n components, glueing these components of G+F via non-bridge
edges uv ∈ F can be done in O(n3) time. If every edge of F is a bridge of
G+F , then the rest of the construction of a solution can be done in O(n)
time. Otherwise we do as follows. We partition the edges of GS(F ) into
paths of length 1 and paths of length 2 with their ends in T . This can be
done in O(n) time. The replacements of paths of length 2 consisting of
two edges uv, vw that do not form an edge cut-set of G + F by pairs of
edges ux, xw that do can be done in O(n3) time. After this, we can find
an optimal solution in O(n) time. We conclude that an optimal solution A
can be found in O(n3) total time. ut

We are now ready to present the main result of this section. Proving
this result requires significantly different arguments than the ones used in
the proof of Theorem 1. Let S = {ea, ed} and let (G, δ) be an instance
of CDPE(S). If F is a T -join in GS = Kn, let D = F ∩ E(G) and
A = F \D. Then by Lemma 4, (A,D) is a semi-solution. Note that if F
is a minimum T -join in GS then it is a matching in which every vertex
of T is incident to precisely one edge of F , so |F | = 1

2 |T |. We will show
how this allows us to calculate optS(G, δ) directly from the structure of G,
without having to find a T -join. Note that there is no connected graph on
exactly two vertices in which both vertices have odd degree. Similarly, no
graph can contain an odd number of vertices of odd degree. This means
that not every instance of CDPE(S) is a yes-instance. However, we will
show that all no-instances are trivial, that is, they occur when |T | is odd
or G contains only two vertices.

Theorem 2. Let S = {ea, ed}. Then CDPE(S) can be solved in O(n+m)
time and an optimal solution (if one exists) can be found in O(n3) time.

Proof. Let S = {ea, ed} and let (G, δ) be an instance of CDPE(S). By
Lemma 4, we may assume that |T | is even, otherwise (G, δ) is a no-
instance. IfG = K2 and T = V (G), orG = K1+K1 and T = ∅, then (G, δ)
is a no-instance. If G = K2 and T = ∅ then, trivially, optS(G, δ) = 0, and
if G = K1 +K1 and T = V (G) then optS(G, δ) = 1. To avoid these triv-
ial instances, we therefore assume that G contains at least three vertices.
Under these assumptions we will show that optS(G, δ) is always finite and
give exact formulas for the value of optS(G, δ). Let p be the number of
components of G that do not contain any vertex of T and let q be the
number of components of G that contain at least one vertex of T . We
prove the following series of statements.
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– optS(G, δ) = 0 if p = 1, q = 0,
– optS(G, δ) = max{3, p} if p ≥ 2, q = 0,
– optS(G, δ) = 1

2 |T | + 1 if p = 0, q = 1, G[T ] = K1,r, for some r ≥ 1,
and each edge of G[T ] is a bridge of G,

– optS(G, δ) = max{p+ q − 1, p+ 1
2 |T |} in all other cases.

Note that if p = 1, q = 0, then the first statement applies and the trivial
solution (A,D) = (∅, ∅) is optimal. We now consider the remaining three
cases separately.

Case 1: p ≥ 2 and q = 0.
Then T = ∅, so by Lemma 4 for any semi-solution (A,D), every vertex in
GS(A ∪ D) must have even degree in GS(A ∪ D). In other words, every
vertex of G must be incident to an even number of edges in A ∪D. Since
p ≥ 2, the graph G is disconnected, so any solution (A,D) is non-empty.
This means that GS(A ∪ D) must contain a cycle, so optS(G, δ) ≥ 3 if
a solution exits. Suppose p = 2. As G has at least three vertices, it con-
tains a component containing an edge xy. Let z be a vertex in its other
component. We set A = {xz, yz} and D = {xy} to obtain a solution
for (G, δ). Since |A| + |D| = 3, this solution is optimal. Suppose p ≥ 3.
Since G+ A−D must be connected for any solution (A,D), every com-
ponent in G must contain at least one vertex incident to an edge of A.
By Lemma 4, this vertex must be incident to an even number of edges
of A ∪ D, meaning that it must be incident to at least two such edges.
Therefore optS(G, δ) ≥ p. Indeed, if we choose vertices v1, . . . , vp, one from
each component of G, then setting A = {v1v2, v2v3, . . . , vp−1vp, vpv1} and
D = ∅ gives a solution of size p, which is therefore optimal. This concludes
Case 1.

Case 2: p = 0, q = 1, G[T ] = K1,r for some r ≥ 1 and each edge of G[T ]
is a bridge of G.
Then G is connected. Let v0 be the central vertex of the star G[T ] and let
v1, . . . , vr be the leaves. By Lemma 4, in any semi-solution (A,D), every
vertex of T must be incident to an odd number of edges in A ∪ D, so
optS(G, δ) ≥ 1

2 |T |.
We claim that optS(G, δ) ≥ 1

2 |T |+ 1. Suppose, for contradiction, that
(A,D) is a semi-solution of size |A| + |D| = 1

2 |T |. Then A ∪ D must be
a matching with each edge joining a pair of vertices of T . However, then
v0vi ∈ A ∪ D for some i. Since v0vi ∈ E(G), we must have v0vi ∈ D.
However, since v0vi is a bridge of G, v0 and vi must then be in different
components of G+ A−D, so G+ A−D is not connected and (A,D) is
not a solution, a contradiction. Therefore optS(G, δ) ≥ 1

2 |T |+ 1.
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Next we show how to find a solution of size 1
2 |T | + 1. Since |T | is

even, r must be odd. First suppose that r = 1. Since G is connected
and v0v1 is a bridge, G \ {v0v1} has exactly two components. Since G
contains at least three vertices, one of these components contains another
vertex x. Without loss of generality assume xv0 ∈ E(G), in which case
xv1 /∈ E(G). Then setting A = {xv1} and D = {xv0} gives a semi-
solution. Since x, v0, v1 are all in the same component of G + A − D,
the graph G + A − D must be connected, so (A,D) is a solution. Since
|A| + |D| = 2 = 1

2 |T | + 1, this solution is optimal. Now suppose r ≥ 3.
Let A = {v1v2, v2v3} ∪ {v2iv2i+1 | 2 ≤ i ≤ 1

2(r − 1)} and D = {v0v2}.
Then (A,D) is a semi-solution and since v0, . . . , vr are all in the same
component of G+A−D, we find that (A,D) is a solution. Since |A|+|D| =
2 + 1

2(r − 1) − 1 + 1 = 1
2 |T | + 1, this solution is optimal. This concludes

Case 2.

Case 3: q ≥ 1 and Case 2 does not hold.
Then T 6= ∅. Let G1, . . . , Gp be the components of G without vertices
of T and let G′ = G− (V (G1) ∪ · · · ∪ V (Gp)). Note that G′ = G if p = 0
and that G′ is not the empty graph, as q > 0. Choose vi ∈ V (Gi) for
i ∈ {1, . . . , p}.

We first show that optS(G, δ) ≥ max{p+ q− 1, p+ 1
2 |T |}. Since G has

p+q components, any solution (A,D) must contain at least p+q−1 edges
in A to ensure that G + A − D is connected, so optS(G, δ) ≥ p + q − 1.
If (A,D) is a solution then every component Gi must contain a vertex
incident to some edge in A. By Lemma 4, this vertex must be incident to
an even number of edges of A ∪ D, meaning that it must be incident to
at least two such edges. By Lemma 4, every vertex of T must be incident
to some edge in A ∪D. Therefore A ∪D must contain at least p + 1

2 |T |
edges, so optS(G, δ) ≥ p+ 1

2 |T |.
We now show how to find a solution of size max{p+ q − 1, p+ 1

2 |T |}.
We start by finding a maximum matching M in G[T ]. Let U be the set
of vertices in T that are not incident to any edge in M . We divide the
argument into two cases, depending on the size of U .

Case 3a: U = ∅.
In this case, by Lemma 4, setting A = M and D = ∅ gives a semi-
solution. Now suppose that uv, u′v′ ∈ M , such that uv is not a bridge in
G +M and the vertices u and u′ are in different components of G +M .
Let M ′ = (M \ {uv, u′v′}) ∪ {u′v, uv′}. Then M ′ is also a maximum
matching in G[T ]. However, G+M ′ has one component less than G+M .
Indeed, since uv is not a bridge in G+M , the vertices u, u′, v, v′ must all
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be in the same component of G+M ′. Therefore, if such edges uv, u′v′ ∈M
exist, we replace M by M ′. We do this exhaustively until no further such
pairs of edges exist. At this point either every edge in M is a bridge in
G + M or every edge in M is in the same component of G + M . We
consider these possibilities separately.

First suppose that every edge in M is a bridge in G + M . Choose
uv ∈ M and let Q1, . . . , Qk be the components of G +M , with u, v ∈
V (Q1). Note that since every edge in M is a bridge, k = p + q − |M |.
Now let xi ∈ V (Qi) for i ∈ {2, . . . , k}. Let D = ∅ and let A =M if k = 1
and A = (M \ {uv})∪ {ux2, x2x3, . . . , xk−1xk, xkv} otherwise. Now every
vertex in G+A−D has the same degree parity as in G+M , so (A,D) is a
semi-solution by Lemma 4. The graph G+A−D is connected, so (A,D)
is a solution. As |A| + |D| = |M | − 1 + p + q − |M | + 0 = p + q − 1, we
find that (A,D) is an optimal solution.

Now suppose that every edge inM is in the same component of G+M .
Note that G1, . . . , Gp are the remaining components of G +M . Choose
uv ∈ M . Let D = ∅ and let A = M if p = 0 and A = (M \ {uv}) ∪
{uv1, v1v2, . . . , vp−1vp, vpv} otherwise. Then every vertex in G+A−D has
the same parity as in G+M and G+A−D is connected, so by Lemma 4
(A,D) is a solution. Since |A| + |D| = 1

2 |T | − 1 + p + 1 = p + 1
2 |T |, this

solution is optimal. This concludes Case 3a.

Case 3b: U 6= ∅.
Note that z = |U | must be even since |T | is even. Every pair of vertices
in U must be non-adjacent in G, as otherwise M would not be maximum.
Therefore G[U ] is a clique. Let U = {u1, . . . , uz}.

Recall that G′ = G − (V (G1) ∪ · · · ∪ V (Gp)). We claim that Q =
G′ +M is connected. Clearly every vertex of the clique U must be in the
same component of Q = G′ +M . Suppose for contradiction that Q1 is
a component of Q that does not contain U . Then Q1 must contain some
edge w1w2 ∈M . However, in this caseM ′ = (M \{w1w2})∪{u1w1, u2w2}
is a larger matching in G[T ] than M , which contradicts the maximality
of M . Therefore Q is connected.

First suppose that z ≥ 4 (recall that z is even). LetM ′ = {u1u2, u3u4,
. . . , uz−1uz}. Since U is a clique, G′ +M −M ′ is connected. If p = 0 set
A =M and D =M ′. If p > 0 set A =M ∪ {u1v1, v1v2, . . . , vp−1vp, vpu2}
and D =M ′\{u1u2}. Then G+A−D is connected, so (A,D) is a solution
by Lemma 4. This solution has size |A|+ |D| = p+ 1

2 |T |, so it is optimal.
Now suppose that z ≤ 3. Then z = 2. If p > 0, let A = M ∪ {u1v1,

v1v2, . . . , vp−1vp, vpu2} andD = ∅. Then G+A−D is connected, so (A,D)
is a solution by Lemma 4. This solution has size |A|+ |D| = p+ 1

2 |T |, so
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it is optimal. Assume that p = 0, so G+M contains only one component.
If u1u2 is not a bridge in G+M , let A =M and D = {u1u2}. Then G+M
is connected, so (A,D) is a solution. This solution has size |A| + |D| =
p+ 1

2 |T |, so it is optimal.
Now assume that u1u2 is a bridge in Q = G+M . Let Q1 and Q2 denote

the components of Q − {u1u2} with u1 ∈ V (Q1) and u2 ∈ V (Q2). Note
that u1u2 is also a bridge in G. We claim that the edges of M are either
all in Q1 or all in Q2. Suppose for contradiction that y1z1 ∈ E(Q1) ∩M
and y2z2 ∈ E(Q2)∩M . ThenM ′ = (M \{y1z1, y2z2})∪{u1y2, u2y1, z1z2}
would be a larger matching in G[T ] thanM , contradicting the maximality
of M . Without loss of generality, we may therefore assume that all edges
of M are in Q1.

LetM = {x1y1, . . . , xryr}, where r = 1
2 |T |−1. We claim that u1 must

be adjacent in G to all vertices of T \ {u1}. Suppose for contradiction
that u1 is non-adjacent inG to some vertex of T \{u1}. Since u1u2 ∈ E(G),
this vertex would have to be incident to some edge in M . Without loss of
generality, assume u1x1 /∈ E(G). Then M ′ = (M \ {x1y1})∪ {u1x1, u2y1}
would be a larger matching in G[T ] than M , contradicting the maximal-
ity of M . Therefore u1 is adjacent in G to every vertex of T \ {u1}. In
particular, since p = 0, it follows that q = 1 and G is connected.

Suppose that every edge between u1 and T \{u1} is a bridge in G. Then
no two vertices of T \ {u1} can be adjacent, and G[T ] = K1,r. However,
then Case 2 applies, which we assumed was not the case. Without loss of
generality, we may therefore assume that u1x1 is not a bridge in G. Let
A = (M \{x1y1})∪{y1u2} and D = {u1x1}. Then G+A−D is connected,
so (A,D) is a solution. Since |A|+|D| = 1

2 |T |−1−1+1+1 = p+ 1
2 |T |, this

solution is optimal. This concludes Case 3b and therefore also concludes
Case 3.

It is clear that optS(G, δ) can be computed in O(n + m) time. We also
observe that the above proof is constructive. Hence, we not only solve the
decision variant of CDPE(ea, ed) but we can also find an optimal solu-
tion in polynomial time. To do so, we first observe that we can check in
O(n + m) time whether Case 1, 2, or 3 applies. Moreover, if we are in
Case 1 or 2 then we can also construct an optimal solution in O(n +m)
time. Suppose that we are in Case 3. Then we must find a maximum
matching in G[T ]. This takes O(n5/2) time by Lemma 1. However, the
bottleneck is in Case 3a, where we are glueing components by replacing
two matching edges by two other matching edges, which takes O(n2) time.
As the total number of times we may need to do this is O(n), this pro-
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cedure may take O(n3) time in total. Hence, we can obtain an optimal
solution in O(n3) time. ut

3.2 The W[1]-Hard Cases

We first describe the problem used in our W[1]-hardness construction.
A red/blue graph is a bipartite graph G = (R,B, E) whose vertices are
partitioned into independent sets R (the red vertices) and B (the blue
vertices). A set R ⊆ R is an odd set if every vertex in B has an odd
number of neighbours in R. The Odd Set problem takes as input a
red/blue graph G = (R,B, E) and an integer k > 0, and asks whether
there is an odd set R ⊆ R of size at most k. This problem is known to be
NP-complete as well as W[1]-hard when parameterized by k [11]. We are
now ready to prove the hardness results of this section.

Theorem 3. Let {vd} ⊆ S ⊆ {vd, ed, ea}. Then CDPE(S) is NP-
complete and W[1]-hard when parameterized by k, even if δ ≡ 0.

Proof. The CDPE(S) problem clearly belongs to NP. To prove that the
problem is NP-complete and W[1]-hard when parameterized by k, even if
δ ≡ 0, we reduce from Odd Set. Recall that Odd Set is NP-complete as
well as W[1]-hard when parameterized by k [11], and this clearly remains
true when we assume that every vertex in R has at least one neighbour
in B.

Let (G, k) be an instance of Odd Set, where G = (R,B, E) is a
red/blue graph with R = {r1, . . . , rp} and B = {b1, . . . , bq}, and where
every vertex inR has at least one neighbour in B. We construct a graphG∗

from G as follows:

– Keep the set R = {r1, . . . , rp}.
– Replace B by 2(k+ 1) copies of B denoted by B1, . . . ,B2(k+1), and for
i ∈ {1, . . . , 2(k+1)}, let Bi = {bi1, . . . , biq}, where bih is a copy of bh for
h ∈ {1, . . . , q}.

– For i ∈ {1, . . . , 2(k + 1)}, j ∈ {1, . . . , p} and h ∈ {1, . . . , q}, add the
edge rjbih if and only if rjbh ∈ E(G).

– For h ∈ {1, . . . , q}, if dG(bh) is odd then add the edge b2i−1h b2ih for
i ∈ {1, . . . , k + 1}.

– Introduce 2k new vertices x1, . . . , xk, y1, . . . , yk and add the edge xiyi
for i ∈ {1, . . . , k}.

– Add a new vertex z and make it adjacent to all vertices of B∗ =
B1 ∪ . . . ∪ B2(k+1) and to all vertices x1, . . . , xk, y1, . . . , yk.
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This completes the construction of G∗. We define a parity function δ :
V (G∗)→ {0, 1} by setting δ(v) = 0 for every v ∈ V (G∗).

We will show that (G∗, k, δ) is a yes-instance of CDPE(S) if and only
if (G, k) is a yes-instance of Odd Set. We first observe that in G∗, each
vertex of R ∪ {x1, . . . , xk} ∪ {y1, . . . , yk} ∪ {z} has even degree and that
each vertex of B∗ has odd degree.

Suppose that (G, k) is a yes-instance of Odd Set. Then there exists
an odd set R ⊆ R in G such that |R| ≤ k. Note that R is also a subset of
the vertices of G∗. Let H = G∗−R. Because R is an odd set, the vertices
of B∗ have even degree in H. As the degree of the other vertices of H is the
same as in G∗, all the vertices of H have even degree. Since every vertex
of R has at least one neighbour in each B1, . . . ,B2(k+1) and z is adjacent
to all the vertices of B∗, H is connected. We conclude that (G∗, k, δ) is a
yes-instance of CDPE(S).

Now suppose that (G∗, k, δ) is a yes-instance of CDPE(S). Then there
is a sequence L of at most k operations from S transforming G∗ into an
Eulerian graph H. Let R be the set of vertices of R that are deleted by L.
Clearly, |R| ≤ k. We will show that R is an odd set in G.

We claim that z cannot be deleted by an operation from L. To obtain
a contradiction, suppose that z is deleted. Then the obtained graph has at
least k+1 components. Notice that it is impossible to obtain a connected
graph by the remaining at most k − 1 operations, as each operation can
reduce the number of components by at most one.

Because L contains at most k operations, it follows that there is an
index i ∈ {1, . . . , 2(k + 1)} such that

(i) no vertex of Bi is deleted by an operation of L,
(ii) no edge incident to a vertex of Bi is deleted,
(iii) no edge incident to a vertex of Bi is added.

Recall that the vertices of Bi have odd degree in G∗. Since performing the
operations of L causes these vertices to have even degree, but the vertex z
is not deleted, it follows that deleting the vertices of R makes every vertex
of Bi have even degree. Therefore, R is an odd set in G. ut

4 Connected Degree Balance Editing

Let S ⊆ {ea, ed, vd}. In Section 4.1 we will show that CDBE(S) is
polynomial-time solvable if {ea} ⊆ S ⊆ {ea, ed} and in Section 4.2 we will
show that it is NP-complete and W[1]-hard with parameter k if vd ∈ S.

19



4.1 The Polynomial-Time Solvable Cases

Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ, k) be an instance of CDBE(S) with
G = (V,E). Let A be a set of arcs not in G, and let D be a set of arcs
in G, with D = ∅ if S = {ea}. We say that (A,D) is a solution for (G, δ, k)
if its size |A| + |D| ≤ k, the equation doutH (u) − dinH (u) = δ(u) holds for
every vertex u and the graph H = G+A−D is connected; if we drop the
condition that H is connected then (A,D) is a semi-solution for (G, δ, k).
Just as in Section 3.1 we consider the optimization version for CDBE(S)
and we use the same terminology.

Let (G, δ) be an instance of (the optimization version) of CDBE(S)
where G = (V,E). Let T = T(G,δ) be the set of vertices v such that
doutG (v) − dinG (v) 6= δ(v). Define a function f(G,δ) : T → Z by f(v) =
f(G,δ)(v) = δ(v)− doutG (v) + dinG (v) for every v ∈ T .

We construct a directed multigraph GS with vertex set V and arc set
determined as follows. If {ea} ⊆ S ⊆ {ea, ed}, for each pair of distinct
vertices u and v in G, if (u, v) /∈ E, add the arc (u, v) to GS (these arcs
are precisely those that can be added to G). If S = {ea, ed}, for each pair
of distinct vertices u and v, if (u, v) ∈ E, add the arc (v, u) to GS (these
arcs are precisely those whose reverse can be deleted from G). Note that
adding a (missing) arc has the same effect on the degree balance of the
vertices in a digraph as deleting the reverse of the arc (if it exists). Also
observe that GS becomes a directed multigraph rather than a digraph only
if S = {ea, ed} and there are distinct vertices u and v such that (u, v) ∈ E
and (v, u) /∈ E applies. Moreover, GS contains at most two copies of any
arc, and if there are two copies of (u, v) then (v, u) is not in GS .

Let F be a minimum directed f -join in GS (if one exists). Note that F
may contain two copies of the same arc if GS is a directed multigraph.
Also note that for any pair of vertices u, v, either (u, v) /∈ F or (v, u) /∈ F ,
otherwise F ′ = F \ {(u, v), (v, u)} would be a smaller f -join in GS , con-
tradicting the minimality of F .

We define two sets AF and DF which, as we will show, correspond to
a semi-solution (AF , DF ) of (G, δ). Initially set AF = DF = ∅. Consider
the arcs in F . If F contains (u, v) exactly once then add (u, v) to AF if
(u, v) /∈ E and add (v, u) toDF if (u, v) ∈ E (in this case (v, u) ∈ E holds).
If F contains two copies of (u, v) then add (u, v) to AF and (v, u) to DF ;
note that by definition of F and GS , in this case S = {ea, ed}, (u, v) /∈ E
and (v, u) ∈ E. Observe that the sets AF and DF are not multisets. We
need the following lemma, which consists of seven easy observations.
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Lemma 5. Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ) be an instance of
CDBE(S) where G = (V,E). Let F be a minimum directed f -join. The
following statements hold.

(i) If (u, v) ∈ AF then (u, v) /∈ E.
(ii) If (u, v) ∈ DF then (u, v) ∈ E.
(iii) AF ∩DF = ∅ and moreover, (u, v) ∈ F if and only if (u, v) ∈ AF or

(v, u) ∈ DF .
(iv) There are two copies of (u, v) in F if and only if (u, v) ∈ AF and

(v, u) ∈ DF .
(v) If S = {ea}, then DF = ∅.
(vi) If vertices u and v are joined by an arc in G then they are joined by

an arc in G+AF −DF .
(vii) If (u, v) ∈ F then u and v are connected by an arc in G+AF −DF .

Proof. Statements (i) and (ii) follow directly from the definitions of AF
and DF , respectively. The fact that AF ∩ DF = ∅ follows directly from
Statements (i) and (ii). The second part of Statement (iii) follows directly
from the definitions of AF and DF . Statement (iv) follows directly from
the definition of AF and DF .

To prove Statement (v), suppose for contradiction that S = {ea} and
(u, v) ∈ DF . By Statement (ii), (u, v) ∈ E. Since S = {ea}, F can contain
at most one copy of (v, u). By definition of AF and DF , it follows that
(v, u) ∈ F and (v, u) ∈ E. However, since (u, v), (v, u) ∈ E and S = {ea},
(v, u) is not an arc in GS by definition of GS . Therefore F cannot be an
f -join in GS , which is a contradiction.

Next we consider Statement (vi). First suppose that (u, v), (v, u) ∈ E.
If u and v are not connected by an arc in G+AF−DF , then (u, v), (v, u) ∈
DF . Then, by Statement (iii), (v, u), (u, v) ∈ F . However, as stated earlier,
this cannot happen, since F is minimum. Now suppose (u, v) ∈ E and
(v, u) /∈ E. If u and v are not connected by an arc in G+AF −DF , then
(u, v) ∈ DF . By Statement (iii), (v, u) ∈ F . Since (v, u) /∈ E, we find
that F must contain two copies of (v, u). Hence (v, u) ∈ AF . However in
this case u and v are connected by an arc in G+AF −DF . This completes
the proof of Statement (vi).

Finally, we consider Statement (vii). Suppose (u, v) ∈ F . If (u, v) ∈ AF
then by Statement (iii), (u, v) is an arc in G + AF −DF . Otherwise, by
Statement (iii), (v, u) ∈ DF , so (v, u) ∈ E by Statement (ii). However, in
this case Statement (vi) implies that u and v are connected by an arc in
G+AF −DF . ut
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If X and Y are sets, then X ] Y is the multiset that consists of one
copy of each element that occurs in exactly one of X and Y and two copies
of each element that occurs in both.

The next lemma provides the starting point for our algorithm. Recall
that DR = {(u, v) | (v, u) ∈ D} denotes the set of arcs whose reverse is
in D.

Lemma 6. Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ) be an instance of
CDBE(S) where G = (V,E). The following holds:

(i) If F is a minimum directed f -join in GS, then (AF , DF ) is a semi-
solution for (G, δ) of size |F |.

(ii) If (A,D) is a semi-solution for (G, δ), then A ] DR is a directed
f -join in GS of size |A|+ |D|.

Proof. First consider Statement (i). Suppose F is a minimum directed f -
join inGS . By Lemma 5 (iii) and (iv), (AF , DF ) has size |AF |+|DF | = |F |.

Let H = G + AF − DF . Let u ∈ V . Let Aout(u) and Ain(u) be
the sets of arcs in F with u as tail or head, respectively, that were put
into AF . Let Dout(u) and Din(u) be the set of arcs in F with u as tail
or head, respectively, whose reverse was put into DF . Define doutGS(F )(u) =

dinGS(F )(u) = 0 if u is not in G(F ) and f(u) = 0 if u /∈ T . Then by the
definition of a directed f -join, we have

δ(u)− (doutG (u)− dinG (u)) = f(u)

= doutGS(F )(u)− d
in
GS(F )(u)

= |Aout(u)|+ |Dout(u)| − |Ain(u)| − |Din(u)|.

If (u, v) ∈ AF then (u, v) /∈ E by Lemma 5 (i). If (u, v) ∈ DF then
(u, v) ∈ E by Lemma 5 (ii). Moreover, in that case, (v, u) ∈ F . Conse-
quently, we find that

doutH (u)− dinH (u)

= doutG (u)− dinG (u) + |Aout(u)| − |Ain(u)|+ |Dout(u)| − |Din(u)|

= doutG (u)− dinG (u) + δ(u)− (doutG (u)− dinG (u))

= δ(u).

We conclude that (AF , DF ) is a semi-solution for (G, δ).
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Now consider Statement (ii). Suppose (A,D) is a semi-solution for (G, δ).
Let Aout(u) and Ain(u) be the sets of arcs in A with u as tail or head,
respectively. Let Dout(u) and Din(u) be the set of arcs in D with u as
tail or head, respectively. Let H = G + A −D. Let u ∈ T (recall that T
consists of every vertex u with doutG (u) − dinG (u) 6= δ(u)). Because (A,D)
is a semi-solution, we have

doutG (u)− dinG (u) + |Aout(u)| − |Ain(u)| − (|Dout(u)| − |Din(u)|)

= doutH (u)− dinH (u)

= doutG (u)− dinG (u) + δ(u)− (doutG (u)− dinG (u))

= doutG (u)− dinG (u) + f(u),

where we define f(u) = 0 if u /∈ T . This leads to

f(u) = |Aout(u)| − |Ain(u)| − (|Dout(u)| − |Din(u)|).

Let F = A ] DR. Suppose (u, v) appears once in F . Let (u, v) ∈ A.
Then (u, v) /∈ E. By definition, GS contains (u, v). Let (u, v) ∈ DR. Then
S = {ea, ed}, so (v, u) ∈ E. By definition, GS contains (u, v). Suppose
(u, v) appears twice in F . Then (u, v) ∈ A and (u, v) ∈ DR. Hence,
(u, v) /∈ E and (v, u) ∈ E, and moreover, S = {ea, ed}. Then (u, v)
appears twice in GS . We conclude that F is a subset of the arcs in GS .
Let Dout(u)R and Din(u)R be the set of arcs in DR with u as tail or head,
respectively. Then |Dout(u)R| = |Din(u)| and |Din(u)R| = |Dout(u)|. We
find that, for all u ∈ V ,

doutGS(F )(u)− d
out
GS(F )(u) = |A

out(u)| − |Ain(u)|+ |Dout(u)R| − |Din(u)R|

= |Aout(u)| − |Ain(u)| − (|Dout(u)| − |Din(u)|)

= f(u).

Hence, F is a directed f -join. It follows from the corresponding definitions
that the size of (A,D) is |A| + |D| = |A| + |DR| = |A ]DR| = |F |. This
completes the proof of Lemma 6. ut

Let (G, δ) be an instance of CDBE(S). Let p = p(G,δ) be the number
of components of G that contain no vertex of T . Let q = q(G,δ) be the
number of components of G that contain at least one vertex of T . Let
t = t(G,δ) =

∑
u∈T |f(u)|.

We now state the following lemma; its proof is based on Lemmas 3, 5
and 6.
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Lemma 7. Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ) be an instance of
CDBE(S) with q ≥ 1. If F is a (given) minimum directed f -join in GS,
then (G, δ) has a solution that has size at most max{|F |, p+q−1, p+ 1

2 t},
which can be found in O(n3) time.

Proof. Let F be a minimum directed f -join in GS . If H = G+AF −DF

is connected, then the statement of the theorem holds by Lemma 6. Sup-
pose H is not connected. We will try to replace arcs in F to obtain a
different minimum directed f -join F ′ such that H ′ = G + AF ′ − DF ′

will have fewer components. Either this will eventually cause the graph
to be connected (in which case the corresponding solution will still have
size |F |), or else the structure of this directed f -join will enable us to find
a solution for CDBE(S) of size either p+q−1 or p+ 1

2 t. Our changes to F
will be such that no additional arcs are ever added to the corresponding
set DF . Thus, if S = {ea}, then the property DF = ∅ will be preserved.

By Lemma 3, GS(F ) must only consist of mutually arc-disjoint di-
rected paths from vertices u with f(u) > 0 to vertices v with f(v) < 0.
We claim that all such paths must be of length at most 2. Suppose, for
contradiction, that there is a directed path of length at least 3 in GS(F )
from some vertex u to some vertex v. Note that u and v are in the same
component of H. Since H is not connected, there must be a vertex x in
some other component of H. By Lemma 5 (vi), this means that x is not in
the same component of G as u or v, so (u, x) and (x, v) are arcs in GS . Re-
placing the directed path from u to v in F by the arcs (u, x), (x, v) would
yield a smaller directed f -join in GS , which is a contradiction. Therefore
all directed paths in GS(F ) must be of length at most 2.

Let (u, v) and (u′, v′) be arcs in F . Note that by Lemma 5 (vii), u
and v are in the same component of H and u′ and v′ are in the same
component of H. Suppose that (u, v) and (u′, v′) are chosen such that u
and v are in a different component of H from the one containing u′ and v′

and that one of the following situations holds:

(i) either (u, v) ∈ AF and (u, v) is not a bridge in H, or
(ii) (v, u) ∈ DF .

By Lemma 5 (vi), vertex u is not in the same component of G as v′ and
vertex v is not in the same component of G as u′. Hence, by the definition
of GS , the arcs (u, v′) and (u′, v) are in GS . As such, we may replace
(u, v) and (u′, v′) in F by (u, v′) and (u′, v). This yields another minimum
directed f -join in GS which, as we explain below, reduces the number of
components in H by one. Because u and v are not in the same components
of G as u′ or v′, adding (u, v) and (u′, v′) to F means that these two arcs
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will be put into AF . Suppose (i) holds. Then the vertices in the original
component of H that contained u and v will still be connected, whereas
the vertices in the original component of H that contained u′ and v′ will
still be connected as well (if necessary via a path that uses the new arcs
(u, v) and (u′, v′)). Thus, H has one component less. Suppose (ii) holds.
Then removing (v, u) from F means removing it from DF . Hence, in H,
the arc (v, u) is restored and we can apply the same arguments.

We apply the above replacement operation exhaustively. At termina-
tion, we have modified F into a minimum directed f -join of GS , in which
either every arc in AF will be a bridge in H and DF = ∅, or the end-
vertices of every arc in F will all be in the same component of H. We
discuss these two cases separately.

Case 1: Every arc in AF is a bridge in H and DF = ∅.
Then F = AF . We claim that every directed path in GS(F ) has length 1.
For contradiction, suppose (u, v) and (v, w) are two arcs in F . Since both
(u, v) and (v, w) are bridges in H, we must have that (u,w) is not an arc
in H. Then replacing (u, v) and (v, w) in F by (u,w) would yield a smaller
directed f -join in GS , which would contradict the minimality of F .

As every directed path in GS(F ) has length 1, every arc (u, v) ∈ F
must be such that f(u) > 0 and f(v) < 0. Hence, F = AF contains
exactly 1

2 t arcs.
Let H1, . . . ,Hk be the components of H. Because every arc in AF is

a bridge in H and DF = ∅, we find that k = p + q − 1
2 t. Suppose k = 1.

Then H is connected, so p = 0. Hence we have a solution for CDBE(S)
that uses p+ 1

2 t arcs. Suppose k ≥ 2. Choose an arc (u, v) ∈ AF arbitrarily
and assume without loss of generality that u and v are in H1. Next, choose
a vertex vi inHi for i ∈ {2, . . . , k}. Replace the arc (u, v) in AF by the arcs
(u, v2), (v2, v3), . . . , (vk−1, vk), (vk, v). This gives a solution for CDBE(S)
that uses 1

2 t− 1 + k = 1
2 t− 1 + p+ q − 1

2 t = p+ q − 1 arcs.

Case 2: The end-vertices of each arc in AF ∪ DF are all in the same
component of H.
Suppose H has at least one other component; let x be a vertex in such a
component. Suppose that (u, v) and (v, w) are two distinct arcs in F such
that the following situation holds: u and v are in the same component of
the graph obtained fromH after removing (u, v) and (v, w). Because F is a
minimum directed f -join, u and w are distinct vertices. By Lemma 5 (vi),
vertices u and w are not in the component of G that contains x. Hence, by
the definition of GS , the arcs (u, x) and (x,w) are in GS . As such, we may
replace (u, v) and (v, w) in F by (u, x) and (x,w). This yields another
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minimum directed f -join in GS which, as we explain below, reduces the
number of components in H by one.

Because u and w are not in the component of G that contains x, we
find that (u, x) and (x,w) will be put into AF . Because F is a minimum
directed f -join, (u,w) must be in H already, so (u,w) ∈ E or (u,w) ∈ F .
By Lemma 5 (vi) and (vii), u and w are still in the same component after
our replacement. Consequently, all vertices u, v, w, x will be in the same
component. Hence, the number of components in H is reduced by one.

We apply the above replacement operation exhaustively. If H becomes
connected, then since F is (still) a minimum directed f -join, we have found
a solution of size |F |. Assume H does not become connected. Then, at
termination of our procedure, we have obtained the following situation.
For every two distinct arcs (u, v) and (v, w), we have that u and v are
in different components of the graph H ′ obtained from H after removing
(u, v) and (v, w). Moreover, w is in the same component of H ′ as u (by
our earlier arguments, we have that (u,w) ∈ H).

Let H ′v be the component of H ′ that contains v. We claim that (u, v) ∈
AF and (v, w) ∈ AF , and that H ′v contains no vertices incident to arcs
in F \ {(u, v), (v, w)}. This can be seen as follows. Because H ′v does not
contain u or w, we find that (u, v) and (v, w) are both in AF due to
Lemma 5 (vii). If H ′v contains a vertex incident to some arc in F \
{(u, v), (v, w)}, then this component must also contain the other end-
vertex of this arc by Lemma 5 (vii). Suppose u′, v′ are in H ′v and (u′, v′) ∈
F \ {(u, v), (v, w)}. (Note that we do not insist that u′ 6= v or v′ 6= v.)
Then we find a smaller directed f -join of GS by replacing (u, v), (v, w)
and (u′, v′) in F by the arcs (u, v′) and (u′, w) (which are already not in
F \ {(u, v), (v, w)} due to Lemma 5 (vi)). This contradicts the minimality
of F .

We now do as follows. Recall that every directed path in F has length
at most 2. Hence, we can partition F into r arcs (u,w) with f(u) > 0 and
f(w) < 0 and 1

2 t−r pairs of arcs (u, v), (v, w) with f(u) > 0 and f(w) < 0.
We deduced above that every directed path (u, v), (v, w) reduces the num-
ber of components in H by one. Hence, the number of components in H
is 1 + p− (12 t− r).

Let G1, . . . , Gk be the components of H that do not contain any ver-
tex v with f(v) 6= 0. Note that k = p − (12 t − r). Because H is not con-
nected and every vertex v with f(v) 6= 0 belongs to the same component
of H, we find that k ≥ 1. Choose an arbitrary arc (u, v) from F and for
i ∈ {1, . . . , k}, choose an arbitrary vertex vi in Gi. Remove (u, v) from H
if (u, v) ∈ AF or add (v, u) to H otherwise (by Lemma 5 (iii) (v, u) ∈ DF
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if (u, v) /∈ AF ). Add the arcs (u, v1), (v1, v2), . . . , (vk−1, vk), (vk, v) to AF .
This gives a solution for CDBE(ea) that uses r+2(12 t−r)+p−(12 t−r) =
p+ 1

2 t arcs.

We now analyze the running time of an algorithm that can be derived
from the above construction of a solution. As long as we find can two arcs
(u, v) and (u′, v′) in F , such that u and v are in a different component
of H than u′ and v′, and moreover, Condition (i) or (ii) holds, we replace
the arcs (u, v) and (u′, v′) in F by the arcs (u, v′) and (u′, v). Note that
we can identify all arcs of F that satisfy Condition (i) or (ii) in O(n2)
time. We showed that every time we apply the above operation we reduce
the number of components in H by at least one. Hence we apply this
operation at most n times. Consequently, this step takes O(n3) time in
total.

By checking whether the condition in Case 2 holds, we can find out
whether Case 1 or 2 applies in O(n +m) time. If Case 1 applies, we can
then construct an optimal solution in O(n2) time (as described).

Suppose Case 2 applies. Recall that every directed path in GS(F ) has
length at most 2. If we have arcs (u, v), (v, w) ∈ F , then by minimality
of F it follows that (u,w) ∈ E(H). This means that in the graph H every
vertex of N in

GS(F )(v) is connected by an arc to every vertex of Nout
GS(F )(v).

Thus if a vertex v has at least two in-neighbours or at least two out-
neighbours in GS(F ), it immediately follows that {(u, v), (v, w)} is not
an edge-cut set in H and we can do the replacement as described in
Case 2, after which H will have one fewer component. Hence, we need
to search for such a vertex v at most n times, so this procedure stops in
O(n2) time. If there is no such vertex v (anymore) with at least two in-
neighbours or at least two out-neighbours in GS(F ), that is, if all middle
vertices of the 3-vertex paths in GS(F ) are distinct, then there are at
most O(n) paths composed of two arcs (u, v), (v, w) ∈ F . All such paths
can be found in O(n2) time. For each of these, we can check whether
or not {(u, v), (v, w)} is an edge-cut set in H and do the replacement if
appropriate in O(n2) time. After this, we can construct a solution in O(n2)
time (as described in Case 2). The total runtime is therefore O(n3). This
completes the proof of Lemma 7. ut

The next result is our first main result of this section. We prove it by
showing that the upper bound in Lemma 7 is also a lower bound for
(almost) any instance of CDBE(S) with {ea} ⊆ S ⊆ {ea, ed} that has a
semi-solution.
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Theorem 4. For {ea} ⊆ S ⊆ {ea, ed}, CDBE(S) can be solved in time
O(n3 log n log logn).

Proof. Let {ea} ⊆ S ⊆ {ea, ed}, and let (G, δ) be an instance of
CDBE(S). We first use Lemma 3 to check whether GS has a directed
f -join. Because GS has at most 2n2 arcs, this takes O(n3 log n log log n)
time. If GS has no directed f -join then (G, δ) has no semi-solution by
Lemma 6, and thus no solution either. Assume that GS has a directed
f -join, and let F be a minimum directed f -join that can be found in
time O(n3 log n log log n) by Lemma 3. As before, p denotes the number
of components of G that do not contain any vertex of T , while q is the
number of components of G that contain at least one vertex of T , and
t =

∑
u∈T |f(u)|.

We will prove the following series of statements.

– optS(G, δ) = 0 if p ≤ 1, q = 0,
– optS(G, δ) = p if p ≥ 2, q = 0,
– optS(G, δ) = max(|F |, p+ q − 1, p+ 1

2 t) if q > 0.

If p ≤ 1 and q = 0 then A = D = ∅ is an optimal solution. If p ≥ 2
and q = 0, to ensure connectivity and preserve degree balance, for every
component of G there must be at least one arc whose head is in this
component and at least one arc whose tail is in this component, thus any
solution must contain at least p arcs. Let G1, . . . , Gp be the components
of G and arbitrarily choose vertices vi ∈ V (Gi) for i ∈ {1, . . . , p}. Let
A = {(v1, v2), (v2, v3), . . . , (vp−1, vp), (vp, v1)} and D = ∅. Then (A,D) is
a solution which has size p and is therefore optimal.

Suppose q ≥ 1. By Lemma 7 we find a solution (A,D) for (G, δ) of size
at most max{|F |, p+q−1, p+ 1

2 t} in O(n3) time. Hence, the total running
time is O(n3 log n log logn), and it remains to show that any solution has
size at least max(|F |, p+ q − 1, p+ 1

2 t).
Let (A,D) be an arbitrary solution. Then (A,D) is also semi-solution.

Every semi-solution has size at least |F | by Lemma 6 (ii). Therefore (A,D)
has size at least |F |.

Since there are p+ q components in G, we must add at least p+ q− 1
arcs to ensure G+A−D is connected. Therefore (A,D) has size at least
p+ q − 1.

Finally, for every vertex u with f(u) > 0 (resp. f(u) < 0) we find that
(A,D) must be such that at least |f(u)| arcs are either in A and have u as
a tail (resp. head) or else are in D and have u as a head (resp. tail). For
every component containing only vertices v with f(v) = 0, there must be
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Fig. 1. The gadget used in the construction of G′.

at least one arc in A whose head is in this component and at least one arc
in A whose tail is in this component (to ensure connectivity and to ensure
that the degree balance is not changed for any vertex in this component).
Therefore we have that (A,D) has size at least p+ 1

2 t. This completes the
proof of Theorem 4. ut

4.2 The W[1]-Hard Cases

Recall that Cygan et al. [8] proved that CDBE({vd}) is NP-complete and
W[1]-hard when parameterized by k, even when δ ≡ 0. Our next results
shows that this remains true if we allow not only vertex deletions, but
also edge deletions and/or edge additions.

Theorem 5. Let {vd} ⊆ S ⊆ {vd, ed, ea}. Then CDBE(S) is NP-
complete and W[1]-hard when parameterized by k, even if δ ≡ 0.

Proof. Let {vd} ⊆ S ⊆ {vd, ed, ea}. The CDBE(S) problem trivially
belongs to NP. To prove hardness, we describe a parameterized reduction
from Directed Balanced Node Deletion. This problem takes as
input a digraph G and an integer k > 0, and asks whether there exists a
set A of at most k vertices whose deletion yields a balanced digraph. This
problem is known to be NP-complete and W[1]-hard with parameter k [8].

Let (G, k) be an instance of Directed Balanced Node Deletion,
and let n = |V (G)|. We construct a digraph G′ as follows (see also Fig. 1).
We start with a copy of G, where for every v ∈ V (G), we denote the
copy of v in G′ by v′. Let V ′ = {v′ | v ∈ V (G)}. We add k isolated
vertices v1, . . . , vk. For each i ∈ {1, . . . , 2k+1}, we construct a gadget Gi
consisting of vertices ai, bi, x1i , . . . , x

n
i and arcs (ai, x

j
i ) and (xji , bi) for every
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j ∈ {1, . . . , n}. We make every vertex v ∈ V ′∪{v1, . . . , vk} adjacent to each
of the gadgets by adding arcs (v, ai) and (bi, v) for every i ∈ {1, . . . , 2k+1}.
This completes the construction of G′. We define a function δ : V (G′)→ Z
by setting δ(v) = 0 for every v ∈ V (G′).

We claim that (G′, k, δ) is a yes-instance of CDBE(S) if and only if
(G, k) is a yes-instance of Directed Balanced Node Deletion.

First suppose (G, k) is a yes-instance of Directed Balanced Node
Deletion. Then there is a set A ⊆ V (G) of size at most k such that
G − A is balanced. We define a set A′ ⊆ V (G′) of size k as follows.
If |A| = k, then we set A′ = {a′ | a ∈ A}. If |A| < k, then we set
A′ = {a′ | a ∈ A} ∪ {v1, . . . , vk−|A|}. We claim that G′ − A′ is Eulerian.
Since the gadgets are connected and every vertex outside the gadgets is
adjacent to each of the gadgets, it is clear that G′ − A′ is connected. It
remains to show that every vertex in G′ − A′ is balanced. In G′, the in-
and out-degrees of each vertex ai equal n+k and n, respectively, while the
in- and out-degrees of each vertex bi equal n and n+k, respectively. Since
each of the k vertices in A′ is an in-neighbour of ai and an out-neighbour
of bi, it holds that doutG′−A′(ai) = dinG′−A′(ai) = doutG′−A′(bi) = dinG′−A′(bi) = n
for each i ∈ {1, . . . , 2k + 1}. All other vertices in the gadgets, already
balanced in G′, remain balanced in G′−A′. The same holds for the vertices
in {v1, . . . , vk} \A′; the in- and out-degree of each of these vertices, both
in G′ and in G′−A′, equals 2k+1. For every vertex v′ ∈ V ′ \A′, it holds
that doutG′−A′(v′) = doutG−A(v) + 2k + 1 and dinG′−A′(v′) = dinG−A(v) + 2k + 1.
Since doutG−A(v) = dinG−A(v) for every v ∈ V (G) \ A due to the assumption
that G−A balanced, it holds that every v′ ∈ V ′\A′ is balanced in G′−A′.
We conclude that G′ −A′ is Eulerian.

For the reverse direction, suppose there exists a sequence L of opera-
tions from S that transforms G′ into an Eulerian digraph. We first argue
that L deletes exactly k vertices from V ′ ∪ {v1, . . . , vk}. As we mentioned
before, the in- and out-degrees of each vertex ai in G′ equal n+ k and n
in G′, respectively, while the in- and out-degrees of each vertex bi in G′

equal n and n + k, respectively. Since k > 0 by assumption, this means
that the operations in L need to either delete or balance each of the 4k+2
vertices in the set Z = {a1, . . . , a2k+1, b1, . . . , b2k+1}. Since |L| = k and
each edge deletion or edge addition changes the degree of at most two
vertices in Z, there is a gadget Gj such that L neither deletes a vertex
of Gj nor adds or deletes an edge incident with any of the vertices of Gj .
The fact that the vertices of Gj , and aj and bj in particular, are bal-
anced after applying the operations in L implies that L deletes exactly k
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in-neighbours of aj (all of which are out-neighbours of bj). We conclude
that L deletes exactly k vertices from V ′ ∪ {v1, . . . , vk}.

Let A′ ⊆ V ′ be the set of at most k vertices that are deleted from V ′

by L, and let A = {v ∈ V (G) | v′ ∈ A′} be the corresponding set of
vertices in G. Let v ∈ V (G)\A. From the construction of G′, it holds that
doutG−A(v) = doutG′−A′(v)−(2k+1) and dinG−A(v) = dinG′−A′(v′)−(2k+1). Since
doutG′−A′(v′) = dinG′−A′(v′), we have that doutG−A(v) = dinG−A(v). This shows
that G − A is balanced, and hence (G, k) is a yes-instance of Directed
Balanced Node Deletion. ut

5 Conclusions

By extending previous work [2,5,8] we completely classified both the clas-
sical and parameterized (with respect to parameter k) complexity of the
problems CDPE(S) and CDBE(S), as summarized in Table 1. Our work
followed the framework used [15,23] for (Connected) Degree Con-
straint Editing(S). Our study was motivated by Eulerian graphs. As
such, the variants DPE(S) and DBE(S) of CDPE(S) and CDBE(S),
respectively, in which the graph H is no longer required to be connected,
were beyond the scope of this paper. It follows from results of Cai and
Yang [5] and Cygan et al. [8], respectively, that for S = {vd}, DPE(S)
and DBE(S) are NP-complete and, when parameterized by k, W[1]-hard,
whereas they are polynomial-time solvable for S = {ed} as a result of Lem-
mas 2 and 3, respectively. The problems DPE(S) and DBE(S) are also
polynomial-time solvable if {ea} ⊆ S ⊆ {ea, ed}; this is in fact proven
by combining Lemmas 2 and 4 for the undirected case, and Lemmas 3
and 6 for the directed case. We expect the remaining (hardness) results
of Table 1 to carry over as well.

Let ` be an integer. Here is a natural generalization of CDPE(S).

`-CDME(S): Connected Degree Modulo-`-Editing(S)
Instance: A graph G, integer k and

a function δ : V (G)→ {0, . . . , `− 1}.
Question: Can G be (S, k)-modified into a connected graph H

with dH(v) ≡ δ(v) (mod `) for each v ∈ V (H)?

Note that 2-CDME(S) is CDPE(S). The following theorem shows that
the complexity of 3-CDME(S) may differ from 2-CDME(S).

Theorem 6. 3-CDME({ea, ed}) is NP-complete even if δ ≡ 2.

31



Proof. Reduce from the Hamiltonicity problem, which is NP-complete
for connected cubic graphs [14]. Let G be a connected cubic graph. Let
δ(v) = 2 for every v ∈ V (G), and take k = |E(G)|−|V (G)|. Then G has a
Hamiltonian cycle if and only if G can be (S, k)-modified into a connected
graph H with dH(v) = 2 (mod 3) for all v ∈ V (H). ut

It is natural to ask whether 3-CDME({ea, ed}) is fixed-parameter
tractable with parameter k.

Finally, another direction for future research is to investigate how the
complexity of CDPE(S) and CDBE(S) changes if we permit other graph
operations, such as edge contraction, to be in the set S. For instance,
Belmonte et al. [1] considered this operation and obtained the first results
extending the work of Mathieson and Szeider [23] in this direction.
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