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Abstract The variation of remotely sensed neutron count rates is measured as a function of cratercentric
distance using data from the Lunar Prospector Neutron Spectrometer. The count rate, stacked over many
craters, peaks over the crater center, has a minimum near the crater rim, and at larger distances, it increases
to a mean value that is up to 1% lower than the mean count rate observed over the crater. A simple model
is presented, based upon an analytical topographical profile for the stacked craters fitted to data from the
Lunar Orbiter Laser Altimeter. The effect of topography coupled with neutron beaming from the surface
largely reproduces the observed count rate profiles. However, a model that better fits the observations
can be found by including the additional freedom to increase the neutron emissivity of the crater area by
∼0.35% relative to the unperturbed surface. It is unclear what might give rise to this effect, but it may relate
to additional surface roughness in the vicinities of craters. The amplitude of the crater-related signal in the
neutron count rate is small, but not too small to demand consideration when inferring water-equivalent
hydrogen (WEH) weight percentages in polar permanently shaded regions (PSRs). If the small crater-wide
count rate excess is concentrated into a much smaller PSR, then it can lead to a large bias in the inferred WEH
weight percentage. For instance, it may increase the inferred WEH for Cabeus crater at the Moon’s south pole
from ∼1% to ∼4%.

1. Introduction

Cosmic ray interactions with planetary surfaces lead to nuclear fragments being released in the regolith. The
study of neutrons that avoid nuclear recapture and subsequently escape through the surface provides a route
to determining the abundance of various nuclei near the surface of those bodies [Lingenfelter et al., 1961;
Metzger and Drake, 1990; Feldman et al., 1991]. Of particular interest is the epithermal neutron flux (energies
in the range 0.3 eV< E< 0.5 MeV), because of its sensitive dependence on the hydrogen abundance in the
top ∼70 cm of regolith [Feldman et al., 2000]. The first experiment to search for lunar hydrogen in this way
was the Lunar Prospector Neutron Spectrometer (LPNS) [Feldman et al., 2004]. Feldman et al. [1998] found
that there were polar dips in the epithermal neutron count rate, implying the existence of polar near-surface
hydrogen. Furthermore, the lack of a corresponding feature in the fast neutrons with energies exceeding
0.5 MeV [Feldman et al., 1998] or the thermal neutrons with E < 0.3 eV [Lawrence et al., 2006] suggested that
any hydrogen-rich layer of material should be buried beneath 5–10 cm of hydrogen-poor material.

The omnidirectional LPNS, when orbiting at 30 km, had a spatial footprint with a full width at half maximum
(FWHM) on the lunar surface of 45 km [Maurice et al., 2004]. In order to suppress statistical noise, Feldman et al.
[1998, 2001] binned the data into∼60 km×60 km pixels. This is large relative to the sizes of most permanently
shaded regions. However, Eke et al. [2009] showed, by stacking data and using a pixon-based image recon-
struction technique to improve the spatial resolution while suppressing the noise, that these count rate dips
could, in a statistical sense, be associated with the permanently shaded regions. This result was confirmed by
Teodoro et al. [2010] using a more accurate set of permanently shaded regions defined by the SELENE laser
altimeter [Noda et al., 2008]. The count rate dip inferred for Cabeus crater corresponded to a (1 ± 0.3)wt%
water-equivalent hydrogen (WEH) according to the regolith composition model of Lawrence et al. [2006],
which has a semi-infinite layer of ferroan anorthosite (FAN)-type soil with varying amounts of H2O.
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Another experiment, the Lunar Exploration Neutron Detector (LEND), contained sensors called the Collimated
Sensor for EpiThermal Neutrons (CSETN) and the Sensor for EpiThermal Neutrons (SETN) [Mitrofanov et al.,
2010]. These mapped the Moon from the Lunar Reconnaissance Orbiter at an altitude of 50 km, ∼20 km
above the orbit of Lunar Prospector. Thus, one should not expect the SETN instrument to provide competitive
results relative to the LPNS. Furthermore, comprehensive analyses of the data returned from the CSETN have
demonstrated that the collimator did not perform well enough to fulfil its mission objectives [Lawrence et al.,
2011a; Miller et al., 2012], with the vast majority of lunar neutrons being uncollimated [Eke et al., 2012] and
an effective FWHM much larger than that of the omnidirectional LPNS [Teodoro et al., 2014]. In view of the
difficulties associated with the interpretation of this data set, these data will be considered only briefly in
this paper.

The Lunar Crater Observation and Sensing Satellite (LCROSS) impacted into Cabeus crater in 2009 and the
resulting ejecta plume was analyzed to give a value of (5.6 ± 2.9)wt% WEH [Colaprete et al., 2010]. While
statistically consistent with the LPNS result, the most probable value is over 5 times the LPNS-inferred value.
The reanalysis of the LCROSS data by Strycker et al. [2013], which gave (6.3±1.6)wt% WEH, is inconsistent with
the LPNS result. These comparisons would be affected if the hydrogen detected by the LPNS was not uniformly
spread across the surface within the large resolution element, which is approximately 1000 times as long as the
crater produced by the LCROSS impact [Schultz et al., 2010]. The LPNS and LCROSS results sample somewhat
different depths into the regolith. Thus, any variation in hydrogen content with depth could also lead to a
difference between the hydrogen abundances inferred from the two separate methods. One assumption that
is implicit in the studies of craters using the LPNS data is that neutron count rates are not explicitly affected
by the surface topography. A new model will be presented in this paper to quantify the topographical effect
from craters on the neutron count rate.

The Chandrayaan-1 M3 results interpreted as implying a particular excess of water or hydroxyl molecules in
Goldschmidt crater [Pieters et al., 2009] prompted Lawrence et al. [2011b] to reexamine LPNS data in this region
in the context of a two-layer regolith model, with the surface layer being hydrogen rich. This contrasted with
previous Monte Carlo modeling of the lunar regolith, where the hydrogen had been buried under a dry layer
of regolith [Lawrence et al., 2006]. After removal of the trends caused by bulk composition, the thermal and
epithermal data in the vicinity of Goldschmidt crater were compared with the models to investigate the sensi-
tivity of neutron measurements to the depth distribution of hydrogen. Lawrence et al. [2011b] concluded that
it was necessary to understand more about systematic variations at the 1–3% level before definitive conclu-
sions could be reached. If crater topography does provide small systematic variations in neutron count rates,
then it needs to be understood in order to progress.

When studying the LPNS count rate, Feldman et al. [2001] found that local maxima overlay the floors of large,
flat-bottomed craters. They did not speculate as to what this implied, but the possibility of a topographical
effect on the measured neutron count rate is one that could create a systematic bias in the values of WEH
inferred above permanently shaded polar craters. To date there has been no systematic, quantitative study of
the imprint of topographical features on the detected orbital neutron count rate. It is important to quantify the
impact of topography on the emitted lunar neutron flux because many of the results from the LPNS involve
small changes in count rates measured over craters.

Section 2 contains a description of the neutron and topography data being used. Fits to the crater average
topography are given in section 3. The variation of neutron count rate as a function of distance to the crater
center is shown in section 4, for a variety of different subsets of craters. In section 5, a simple model is pre-
sented for how the neutron count rate changes as a function of detector distance from the crater center. This
model is confronted with the data, and the implications for our understanding of the regolith are investigated.
Section 6 discusses the implications of this work for quantitative estimates of cold-trapped hydrogen, and
conclusions are drawn in section 7.

2. Data

Maps of the lunar neutron count rate, a set of predetermined lunar craters and a digital elevation map
are necessary to calculate the neutron count rate profiles near craters. The data sets to be used here,
which are all available from the Geosciences Node of NASA’s Planetary Data System (PDS), are described in
this section.
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2.1. Lunar Prospector Neutron Data
The Lunar Prospector spacecraft spent 1 year at 100 km altitude, then 7 months at 40–30 km. PDS time series
data from the thermal, epithermal, and fast neutron detectors, processed as described by Maurice et al. [2004],
are used in this study, with the focus mainly on the low-altitude subset. Some results from the high-altitude
period will also be shown for comparison, but the default choice is to consider only data for which Lunar
Prospector was at an altitude less than 45 km. Using different energy neutrons is desirable because of their dif-
fering responses to changes in regolith composition. Also, the thermal neutrons probe further into the regolith
than the epithermals, whereas the fast neutrons typically sample nearer to the surface than the epithermals.

2.2. Lunar Exploration Neutron Detector Data
Data from the first 15 months of the mapping orbits are used for both the LEND SETN and CSETN detectors,
to compare with the results from the LPNS. For the CSETN measurements the background due to cosmic rays
striking the spacecraft itself is removed statistically following the procedure described by Eke et al. [2012]. The
remaining count rate is composed of two distinct lunar components, where the detected neutrons originate
either from within or outside the collimator’s geometrical field of view. One cannot determine from which
component individual neutrons originate.

2.3. Crater List and Topographical Data
The list of craters produced by Head et al. [2010] from the Lunar Orbiter Laser Altimeter (LOLA) topographical
data is used. This consists of 5185 craters with radii of at least 10 km, distributed over the entire lunar surface. In
this study, various different selections of craters are made, based on the radii, rc , and the central locations given
in this list. The variable r will be used here to represent arc lengths along an unperturbed spherical surface,
whereas the variable x represents the distance from the symmetry axis (z) of a crater. Thus, the measured
crater diameters are really 2xc in this nomenclature. The variables x and r are related via

x = rm sin

(
r

rm

)
, (1)

where rm = 1737.4 km is the lunar radius. This equation implies that xc will be within 0.1% of rc for crater radii
less than 100 km, so the variables xc and rc will be assumed to be equal for the rest of this study. The angle
subtended at the lunar center by the crater radius is

𝜃c = sin−1

(
xc

rm

)
. (2)

The global topographic map from LOLA [Smith et al., 2010] with (1∕64)∘ resolution is used to measure the
crater topographical profiles. This corresponds to ∼0.5 km resolution at the equator, which is more than
sufficient for the approximate modeling of crater topography as a function of crater radius that is necessary
for the neutron count rate model presented in section 5.

The epithermal neutron count rate measured by the omnidirectional LP detector changes by approximately
10% across the whole Moon. This variation is dominated by known changes in regolith composition. Any
systematic topographical effects are expected to be at the level of∼1%, as noted by Feldman et al. [2001]. This
anticipated variation is sufficiently small that it is necessary to stack together craters of similar size in order to
reduce the statistical uncertainties. In addition, the stacking averages away azimuthal anisotropy that exists
in the crater sample, making radial profiles an appropriate way to represent the results. To produce a more
homogeneous set of craters to stack together, both in terms of topography and composition, only craters in
“highland” regions will be considered in this study. This means only craters on the far side of the Moon and
with latitudes greater than−20∘ will be included in the stacking procedure. These cuts leave just 2216 craters.
This choice is important for some of the results presented later involving thermal and fast neutrons, which are
both more sensitive than epithermal neutron fluxes to iron and titanium abundances.

3. Crater Topography

The model for the topographical effect on the neutron count rate described in section 5 needs to assume a
particular crater profile. This section first describes the functional form of the assumed crater profile and then
measures it using the LOLA digital elevation map by stacking radial profiles for craters in the chosen range
of sizes.

EKE ET AL. LUNAR CRATERS AND NEUTRON FLUXES 1379



Journal of Geophysical Research: Planets 10.1002/2015JE004856

Figure 1. Model crater profile (bold line) that is fitted to the LOLA
topographical data for the selected craters. The model takes into
account a flat infill region at radii less than xi , a spherical cap
depression out to xc, and an outer slope, uplifted at the crater rim by
an amount u, that returns to the unperturbed surface at xe. The center
of the Moon is used as the origin of the coordinate system.

3.1. Model Crater Profile
Rather than having a general topogra-
phy, the model craters in section 5 are
considered to have azimuthally symmet-
ric profiles of a kind shown in Figure 1.
These consist of a spherical cap depres-
sion of depth d measured down from the
x-y plane containing the crater rim, with
a central, flat (dz∕dx = 0) infill region
extending out to a radius xi, and with a
maximum depth, at x = 0 of di, where the
i subscript refers to the infill region. The
radius of curvature for the spherical cap
part of the crater is then

rcurv =
x2

c + d2

2d
, (3)

and the maximum infill depth, measured
from the base of the spherical cap to the
infill surface, is given by

di = rcurv −
√

r2
curv − x2

i . (4)

This crater is uplifted parallel to the crater
axis (the z direction) by a distance u, with

an outer slope of constant gradient, dz∕dx ≡ g, back to the unperturbed surface at a perpendicular distance
of xe from the symmetry axis of the crater. Defining

𝜃e = sin−1

(
xe

rm

)
, (5)

the gradient of the outer slope is given by

g =
rm cos 𝜃e − (rm cos 𝜃c + u)

xe − xc
. (6)

The height of the crater relative to an unperturbed surface can be found using

h(x) =
√

x2 + z(x)2 − rm, (7)

where z is defined as zero at the lunar center. For x ≥ xe, h = 0 for the model crater. At x = 0,

z(x = 0) ≡ z0 = rm cos 𝜃c − d + u + di. (8)

At radii where the presence of the crater perturbs the surface, the height can be inferred using the following
expression for z:

z(x) =
⎧⎪⎨⎪⎩

z0 if x ≤ xi ;

z0 − di + rcurv −
√

r2
curv − x2 if xi ≤ x ≤ xc ;

zc + g(x − xc) if xc ≤ x ≤ xe .

(9)

zc represents z(xc) ≡ z0 − di + rcurv −
√

r2
curv − x2

c .

A least squares minimization was performed to find the best fitting sets of the parameters [d, xi, u, xe] for the
subsets of craters of different radius. For all subsets of craters with radii of at least 20 km, the region at x < 0.2xc

was excluded from the fit, because a central peak, not included in the model, often exists. The midpoint of the
crater radius bin was chosen for the xc of the model to be fitted to the stacked profile.
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Figure 2. Mean radial LOLA topographical profiles for craters
with radii in the ranges 10–20 km (black filled circles) and
40–50 km (blue open circles). Statistical errors on the mean
profiles are smaller than the symbol sizes. Solid lines show the
least squares model fits to the data sets as detailed in
equations (1)–(9).

3.2. Crater Topography Fits
For each crater, digital elevation map measure-
ments within 3rc were used to construct the rel-
ative height profile as a function of r∕rc, where
r represents the arc length from the crater cen-
ter to the spacecraft nadir. The zero of height
for each crater is defined as the mean height in
the range 2.5< r∕rc < 3. Each measurement
provides an estimate of the relative height at its
r∕rc. The statistical uncertainty on the estimated
mean height is just the square root of the ratio
of the variance of the individual measurements
within a given bin in r∕rc to the number of obser-
vations in that bin. The craters were stacked by
crater radius, because the typical crater shape
varies systematically with crater radius.

The crater set with 40< rc∕km < 50 was further
subdivided by depth to see how this affected
the neutron count rate profiles. To split the
crater subset by crater depth, in order to inves-
tigate the effect on the neutron profile, the
depth of each crater is defined as the differ-
ence between the average heights in the radial

ranges (0.95–1)rc and (0.2–0.3)rc. The central region is once again avoided to reduce any systematic effect due
to central peaks. While this statistic might, in some instances, reflect subcraters rather than the larger-scale
topography, it at least serves as a simple way to separate deep and shallow craters with the same radius.

Figure 2 shows the azimuthally averaged mean radial topographical profiles for craters of different sizes, as
measured using craters from the Head et al. [2010] list and LOLA topographical data. Statistical errors on the
mean profiles are smaller than the symbol sizes. It is apparent that for the larger craters there are central peaks
that are not included in the model profile, as described in the previous section. The best fitting models are
also shown in Figure 2, from which it can be seen that the model becomes increasingly inappropriate for
larger craters. A flat, dz∕dx = 0 central region does not translate to a constant height relative to the unper-
turbed spherical surface, which would provide a better fit to the rc > 70 km craters. Also, the constant dz∕dx
outer slope, at large distances, can lead to h < 0 on the outer uplifted slope; a feature not present in the
observations. Despite these shortcomings in the model, it does capture the main features present in the mea-
sured average topographical profiles, and the extent to which the model is inadequate is not quantitatively
significant for the neutron count rate results in subsequent sections.

Table 1. Least Squares Parameter Values for the Crater Topography Model Fitted to the Stacked LOLA Data as a Function
of Crater Radiusa

Crater Radius, rc (km) Number of Craters Depth d (km) Infill Radius, xi∕xc Edge of Outer Slope, xe∕xc Uplift, u (km)

10–20 1264 2.00 0.30 2.1 0.45

20–30 482 2.50 0.42 2.1 0.60

30–40 219 2.75 0.48 2.0 0.70

40–50 115 3.25 0.56 2.2 0.85

50–60 47 3.70 0.66 2.1 1.15

60–80 42 3.40 0.70 1.8 1.00

40–50 deep 57 4.05 0.48 2.2 1.15

40–50 shallow 58 3.05 0.69 2.1 0.65
aThe depth, fractional infill radius, fractional edge of outer slope, and uplift are found on grids with resolution 0.05,

0.01, 0.01, and 0.05 km, respectively, which are larger than the statistical uncertainties on these parameters. The midpoint
of the crater radius range is used to calculate the parameters for each stacked profile.
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Figure 3. Stacked, normalized radial LP neutron mean count rate profiles for different radius craters. (left) Thermal,
(middle) epithermal, and (right) fast neutron results are shown. The different colors correspond to craters in the radius
ranges 10–20 km (red), 20–30 km (magenta), 30–40 km (orange), 40–50 km (black points), 50–60 km (green), and
60–80 km (blue). A black dotted line represents the epithermal neutron profile for 40–50 km craters when the time
series is sampled in 32 s observations, like the fast neutron data set, rather than 8 s like the thermal and epithermal
time series.

Table 1 lists the best fitting model parameters for a set of different crater size ranges. These values are used
in section 5 for the model predicting the topographical effect on the neutron count rate profiles observed by
the orbiting detector. The depth parameter, d, only represents the depth of the crater when there is no infill
so, as can be seen by comparing the values in Table 1 with the data in Figure 2, the actual crater depths from
rim to minimum are typically much smaller than d. This is particularly true for the larger craters, where the
best fitting infill region extends to a larger fraction of the crater radius.

4. Neutron Count Rate Profiles

For each crater, time series observations within 3rc were used to construct relative count rate profiles, where
the relative count rate is defined for each crater by dividing each time series measurement by the mean count
rate within rc of the crater center. Each time series observation provides an estimate of the relative count rate
at a given r∕rc, and these are stacked together for different crater subsets.

4.1. Radial Count Rate Variations
The results in this subsection show how the neutron count rate varies as a function of subdetector point
distance to the crater center. Stacked subsets of similar-sized highland craters are used, as are data for different
neutron energy ranges.

Figure 3 shows the mean stacked, count rate (c) profiles, with observations from each contributing crater nor-
malized by the mean count rate measured from positions over that crater, c̄(< rc). As the craters are very well
sampled, had the count rates instead been normalized with respect to the count rate at r∕rc ∼3 the stacked
profiles would only change by a radius-independent, vertical shift. The radii are normalized by the relevant
crater radius. Points and errors on the mean profiles are shown only for the 40 < rc∕km < 50 case for clarity
but are of similar size for the other crater subsets. For both the thermal and epithermal profiles, a central ∼1%
enhancement in the neutron count rate is seen, with the count rate outside the crater being ∼0.7% lower
than the mean count rate measured over the crater. These features are about twice as pronounced as those
in the corresponding fast neutron profiles and are common to all crater samples with rc > 40 km. For smaller
crater sizes, the features in the profiles decrease in amplitude. Given that the FWHM of the LP neutron detec-
tors is approximately 45 km at an altitude of 30 km, one should expect that any features on smaller scales
will be washed out. Also, if all craters have their radii either overestimated or underestimated by 5%, then
the changes in the neutron count rate profiles are lower than 0.1%, so the results are robust to this level of
systematic uncertainty in the crater radius determination.

One reason why the fast neutron profile might be less variable than those in the lower energy ranges is that
the temporal sampling is lower, with 32 s observations, rather than 8 s. At an altitude of 30 km, LP traveled
∼50 km during 32 s. The effect of the resultant blurring of the profile can be estimated by degrading the
sampling of the epithermal neutron time series. This is illustrated for the 40 < rc∕km < 50 craters by the
dotted line in Figure 3 (middle). For craters that are at least this large, the different sampling has only a small
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Figure 4. Stacked, normalized radial LEND SETN neutron count
rate profiles for observations at altitudes less than 60 km. The
different colors correspond to different sized craters, as
described in the caption in Figure 3.

effect. However, for smaller craters, where the
distance traveled during an individual observa-
tion corresponds to a larger r∕rc , the suppression
of features in the normalized count rate profile
will be larger. Figure 3 suggests that any fea-
tures in the fast neutron profile for craters with
rc < 40 km would be small anyway.

Lunar Prospector neutron count rates are evi-
dently affected, at the ∼±1% level, by the detec-
tor position relative to craters on the surface,
provided that the detector footprint is small
enough to allow it to “see” the craters. At this
point, it is worth briefly considering the count
rate profiles produced by the LEND SETN and
CSETN. The SETN is an “omnidirectional” detec-
tor, albeit strapped to the side of a “collima-
tor”, so in practice it has an energy-dependent
anisotropic footprint. Given that it is viewing
the surface from ∼50 km altitude, the features
seen by the LPNS should be stronger than
those recovered by the SETN. This is evident in

Figure 4, which shows the count rate profiles measured by the SETN for a range of different crater sizes. The
features, while still significant, have been washed out, typically decreasing the amplitude of the central peak
by a factor of a few.

Figure 5 shows the spacecraft background-corrected CSETN count rate profiles. After correction, the count
rates are typically only ∼2 per second, hence, the large statistical uncertainties. However, unlike the SETN
profiles that show similar trends with crater size to the LPNS results, the CSETN profiles show no obvious
trends or significant central bumps in the count rate. This is entirely consistent with the large CSETN detector
footprint inferred by Teodoro et al. [2014].

Having determined that the LPNS count rate varies systematically with distance from crater centers, the
question becomes what is responsible for this? One uninteresting possibility can be immediately discounted
by recalculating the count rate profiles using the raw LPNS data.v The features are similarly present in the
raw data, implying that the data reduction process did not create them and they do reflect something to

Figure 5. Stacked, normalized radial LEND CSETN neutron
count rate profiles for observations at altitudes less than 60 km.
The different colors correspond to different sized craters, as
described in the caption in Figure 3.

do with the lunar surface. Compositional varia-
tion would not create almost identical features
in the thermal and epithermal count rate pro-
files. Also, if mafic and magnesian central peaks
[Cahill et al., 2009] were having an important
impact on these profiles, then the thermal and
fast neutron profiles should be anticorrelated,
whereas they show qualitatively similar behav-
ior. The possibility that these profiles are the
result of the geometrical configuration will be
considered in the following section.

5. A Simple Geometrical Model

A model describing how topography affects the
detected neutron flux is outlined in this section,
in order to determine if this alone can explain
the neutron count rate profile over craters. The
predictions from this model are compared with
the LPNS count rate profiles, and the implica-
tions of this comparison are then discussed.
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Figure 6. Variation of the model count rate profile normalized to the mean count rate over the crater. (a) The variation
with crater depth, d, for a 45 km radius crater, with no infill or uplift, and the detector placed at an altitude of 30 km.
These model craters are just spherical cap depressions. Fixing d = 3.0 km, (b) the effect of adding a flat central infill
region out to a fraction xi∕rc of the crater radius. Fixing xi = 0.6 rc and xe = 2.0 rc , (c) the variation of the count rate
profile with crater uplift. Finally, (d) how the model profile varies with crater radius. At each different radius, the crater
shapes are defined using the appropriate parameters in Table 1. The data points show the LPNS count rate profiles for
the corresponding crater stacks.

5.1. The Model
The flux measured a distance r away from a patch of surface area dA emitting neutrons at a rate f0 per unit
area, with a detector an angle 𝜃 away from the surface normal can be written as

df (r, 𝜃) =
(2 + 𝛼)f0

2𝜋r2
cos1+𝛼 𝜃 dA, (10)

where 𝛼 represents the effective beaming of the neutrons out of the surface resulting from the increase in
neutron number density with depth in the top∼mean free path in the regolith [McKinney et al., 2006]. 𝛼 ≈ 0.5
provides a good match to the Monte Carlo neutron transport flat surface models of Lawrence et al. [2006] for
the range of neutron energies detected by the LPNS.

The model for the total flux received by the detector involves integrating equation (10) over the lunar surface
that is visible from the detector, assuming that the flux from a particular piece of surface is proportional to the
incident cosmic ray flux. One complication is that when the surface includes concave craters, their walls can
act to block parts of the crater interior from the detector’s view. If crater uplift is included, then this effect can
also extend to the exterior of the crater. The model accounts for this but does not, by default, allow neutrons
emitted from the crater and impinging on the crater wall to be reemitted. This assumption will be considered
further in section 5.3.

In practice, the flux calculation can be more efficiently performed by partitioning the surface into different
zones and using symmetries in the problem to avoid needing to do a two-dimensional numerical integration
over the full visible surface. These zones are (1) the central infilled region of the crater, (x ≤ xi), (2) the con-
stant radius of curvature crater walls, (xi ≤ x ≤ xc), (3) the outer uplifted slope, (xc ≤ x ≤ xe), and (4) the
unperturbed surface beyond the outer uplifted slope, (xe ≤ x).

For the more interested reader, Appendix A contains specific details of the calculations involved.

5.2. Predictions of the Model
Figure 6 shows the neutron count rate profile from the model. The four panels show how the profile changes
with (a) crater depth, (b) extent of the infill region, (c) amount of uplift, and (d) crater radius. In all cases the
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detector is placed at an altitude of 30 km, and the effective beaming of neutrons is taken to be 𝛼 = 0.5. The
mean altitude for the LPNS observations being considered at altitudes less than 45 km is ∼31 km.

Figures 6a and 6b show that, for a 45 km radius crater, as the crater becomes deeper or the infill zone smaller,
the central peak in count rate over the crater increases. This happens because these changes enhance the
effect of the neutron beaming seen over the crater. If the beaming of neutrons is switched off, i.e., 𝛼 = 0, and
neutrons are allowed to be reemitted off the crater interior, then the model has c(r)∕c̄(< rc) = 1 for all r.

Figure 6c shows how uplifting a 45 km crater and having a constant gradient outer slope that returns to the
unperturbed surface at xe = 2.0 rc affects the neutron count rate profile. As the uplift increases, the outer
uplifted slope focuses more neutrons onto the detector when it is over the crater exterior, leading to larger
count rates at r∕rc > 1.

The variation of the model count rate profile with crater radius is shown in Figure 6d. Parameters for the model
crater shapes are taken from the fits to the stacked LOLA topographical profiles, as listed in Table 1. For the
15 km radius craters, the central peak in the count rate profile occurs on scales too small for the 45 km FWHM
of an omnidirectional detector at an altitude of 30 km. Consequently, the profile looks almost flat. For larger
craters, the central peak in neutron count rate becomes increasingly apparent as the instrumental FWHM
corresponds to smaller r∕rc. The simple geometrical model captures much of the central bump that is present
in the data for the different crater sizes. However, more apparent is the failure to reproduce the LPNS results
at r∕rc ≳ 2, where the model overpredicts the observed count rate by ∼0.3%.

The features of the comparison between model and LPNS neutron count rate profiles are common across
the different crater sizes, in both the deep and shallow craters, and when the observations are split into
high- and low-altitude subsets and the model is adjusted accordingly. In all cases, the model appears slightly
to underestimate the count rate observed over the crater. Given that this provides the normalization for all
count rates, a consequence is that the model overestimates the normalized count rate at large distances from
the crater.

One might wonder if the stacking process, used here to increase the statistical significance of the measured
average neutron count rate profile features, might introduce systematic effects. For instance, not all craters in
a particular radius range have identical topographical profiles. If the neutron count rate profile features were
especially sensitive to the deepest craters, which might have only a small impact on the average topographi-
cal profile, then the stacked count rate profile might not reflect changes in the average topography. However,
as the features in the neutron count rate profiles are small and the model performs similarly well for subsets of
craters selected by radius or depth, this provides reassurance that such nonlinearities are unimportant here.
Consequently, it is evident empirically that the model based upon the average crater topography does encap-
sulate the important features that are responsible for giving rise to the stacked neutron count rate profile, and
the stacking procedure is an appropriate way to perform this study.

5.3. Improvements to the Simple Model
The small difference between the model and LPNS neutron count rate profiles presumably arises due to an
inappropriate assumption in the simple geometrical model. In this section, the assumptions being made in
the model will be varied to determine what is required in order to fit the data.

There is no energy dependence in the model predictions, so the similarity between observed thermal and
epithermal count rate profiles and how they differ from the fast neutron profiles is immediately suggestive
that there is an energy-dependent misassumption in the model. The assumed beaming factor 𝛼 = 0.5 is
relevant for thermal and epithermal neutrons, but for LPNS fast neutrons, with energies above 0.5 MeV, the
best fitting 𝛼 decreases, corresponding to less beaming. Figure 7 shows these results from fits to Monte Carlo
neutron transport simulations. Furthermore, the single-parameter power law fit does not accurately model
the angular distribution of emitted neutrons at the fastest energies, with the actual distribution being less
beamed normal to the surface. Accounting for the LPNS detector response and the incoming flux as a function
of fast neutron energy suggests that an appropriate value for𝛼 for the model is probably in the range 0.4–0.45.
This lessening of the beaming acts to suppress the size of the features in the fast neutron count rate profile
and goes roughly halfway to explaining the difference between the LPNS epithermal and fast neutron count
rate profiles.
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Figure 7. Variation of the best fitting neutron leakage
beaming parameter, 𝛼, with neutron energy, E. The fit to the
angular distribution of leakage neutrons determined using
Monte Carlo neutron transport simulations has the flux as a
function of angle from the surface normal, 𝜃, proportional to
cos1+𝛼 𝜃. Statistical uncertainties are smaller than the circles
representing the simulation results, and the vertical line
shows the lower limit of 0.5 MeV for LPNS fast neutrons.

Another possible effect that might reduce the fast
neutron count rate profile features is that the emit-
ted fast neutrons may have an angular distribu-
tion that retains some memory of the direction
of the incoming cosmic ray that produced them.
The model assumes that the emitted neutron flux
depends only on the angle from the normal to the
surface, and not the azimuthal angle. Within craters,
if fast neutrons are more likely to be emitted in
the forward direction with respect to the incom-
ing cosmic rays, then this would preferentially aim
them into the crater and thus slightly reduce the
count rate measured over the crater. This is quali-
tatively consistent with the difference between the
fast neutron count rate profiles and the thermal and
epithermal ones. Given these difficulties in mod-
eling the fast neutron emission, the fast neutron
results will not be considered further.

Figure 8 shows the results found for the epither-
mal neutron count rate profiles of 45 km radius
craters when various different model assumptions
are made. The common theme in tweaking the
model is the desire to increase the count rate
observed over the crater relative to that observed
outside the crater. For instance, the blue curve

results from allowing all neutrons emitted from within the crater and aimed at another part of the crater
interior to be reemitted rather than absorbed. Details of this calculation are described in Appendix A5. The
difference between no reemission and complete reemission, which is presumably also unrealistic, amounts
to less than 0.1% in the count rate, so is insufficient to make the model fit the data.

Figure 7 suggests that 𝛼 = 0.515, rather than 0.5 represents the best description of the beaming of thermal
and epithermal neutrons, but this change is too small to make a significant difference in the count rate profile.
Increasing the amount that neutrons are beamed from the surface by changing 𝛼 from 0.50 to 0.51 within the
crater, while leaving 𝛼 = 0.50 for the crater exterior, has a larger impact on the predicted count rate profile.
This is shown by the green curve in Figure 8, but it still fails to fit the LPNS results. A similar result is found if the
number of neutrons emitted per incident cosmic ray is increased by 0.5% within the crater only (red curve).
While this approximately recovers the LPNS profile for r∕rc > 2, it predicts a dip at r∕rc ∼1.2 that is deeper than
observed.

No single-parameter change that has been considered is able to recover the observed LPNS neutron
count rate profiles. However, a good fit can be found by including a combination of 75% neutron ree-
mission from the crater walls and a 0.35% enhancement in the neutron yield for the region out to
2rc, which includes the crater interior and most of the outer uplifted slope. This fits the LPNS count rate pro-
files constructed from time series observations taken from altitudes below 45 km. The same model also fits
the profiles observed in different altitude ranges, as shown in Figure 9. At larger altitudes, the detector foot-
print is larger, and this suppresses the amplitude of the features in the count rate profile, and this behavior is
accurately captured by the model. This success was not inevitable, but it was necessary if the tweaks to the
model are to be interpreted as telling us something about the lunar surface. Had Figure 9 included results
from craters/basins with sizes comparable to the LPNS detector footprint at an altitude of 100 km, then the
high-altitude data would show a central count rate peak and a drop outside the crater radius.

Similar changes to the simple model are able to fit the thermal and epithermal neutron profiles for all
crater size ranges. The required enhancement is 0.3–0.4% for the crater subsets with rc < 50 km, with this
enhancement ranging out to 1.5–2rc from the crater center.

One possible explanation for the enhanced neutron emission could be surface or near-surface roughness, of
the sort seen by radar measurements out to twice the crater radius [Stickle et al., 2015]. While previous neutron
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Figure 8. Variation of the model normalized neutron count rate
profile with different changes to the default model for a 45 km
radius crater (black line) relative to the LPNS epithermal neutron
result for the stack of 40 < rc/km < 50 craters (points). The red
curve shows the model resulting from increasing the emitted
epithermal neutron flux per input cosmic ray by 0.5% within
the crater. Including reemission of all neutrons (rather than the
default of none) from the crater interior surface changes the
default model to that shown with a blue curve. The green line
results from increasing the neutron beaming from the surface
from 0.50 to 0.51 within the crater only.

transport simulations for planetary surfaces
have assumed emission from a flat surface
[Lawrence et al., 2006], it has been shown that
the neutron leakage flux can be enhanced for
nonflat surfaces [Drüke and Schaal, 1991]. If
such roughness leads to the increase in emitted
neutron flux required to fit the observed LPNS
count rate profiles, then the neutron count
rate could actually be sensitive to the physical
condition of the lunar surface, making it com-
plementary to the radar and thermal infrared
data sets [Bandfield et al., 2011; Ghent et al.,
2015]. The impact of changing the regolith mass
distribution near the surface can be addressed
directly using Monte Carlo neutron transport
simulations that use realistic topographic mod-
els of a planetary surface, as has been done
for other planetary bodies [Prettyman and
Hendricks, 2015].

6. Implications for Hydrogen in
Polar Cold Traps
The beaming of neutrons increases the count
rate measured by the LPNS when it passes
over craters. This is the opposite effect to
that produced by placing hydrogen into per-
manently shaded regions (PSRs) within polar

craters, which reduces the epithermal count rate. Not accounting for the varying topography will lead to
underestimates of the water-equivalent hydrogen cold trapped into polar PSRs. If the change in observed
count rate due to topography is ∼1%, then one might wonder how this could possibly have a significant
impact upon the inferred WEH. However, this small change to the observed count rate is evidentover the

Figure 9. Stacked, normalized radial LP epithermal neutron
count rate profiles for 40–50 km radius craters as a function of
LP altitude. Blue, black, and red results correspond to detector
altitudes of a < 33 km, [33, 60] km, and a> 90 km,
respectively. Curves show the corresponding best fitting
model results.

entire crater area, whereas the PSR may only
cover a tiny fraction of the crater area.The blur-
ring caused by the response function of the LPNS
can have the effect of levering a small effect act-
ing over the large crater area into a large effect in
the small PSR area.

Rather than considering a general crater, it makes
sense to focus on Cabeus, where LCROSS actu-
ally made a local estimate of the WEH weight
percentage. Cabeus is also significantly deeper
than the average crater with a similar radius. The
azimuthally averaged shape of Cabeus is best fit-
ted with a profile defined by d = 6.05 km, xi∕xc =
0.7, xe∕xc = 2.3, and u = 0.85 km. Adopting 42 km
as the radius of the crater [Head et al., 2010], and
choosing a central circular disc covering 275 km2

as the PSR [Teodoro et al., 2010], a model where the
PSR region emits 0.35 times as many epithermal
neutrons per incoming cosmic ray as the rest of
the surface gives rise to the black line in Figure 10.
This reasonably fits the epithermal neutron data
for Cabeus, shown with black filled circles. The
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Figure 10. LP epithermal (black filled circles) and thermal (red
open circles) neutron count rate profiles for Cabeus crater.
Curves show models for an rc = 42 km crater with
the topography that best fits that of Cabeus, and 75%
reemission of neutrons hitting the crater interior. The black
curve additionally has a central “composition” that emits only
0.35 times as many neutrons per cosmic ray as the rest of the
surface. The red curve traces a model where the surface
interior to rc = 2.2 emits 0.97 times as many neutrons per
cosmic ray as the rest of the surface.

thermal neutron data, in contrast, are well fitted

by a model where the surface interior to 2.2rc

emits 0.97 times as many neutrons as the rest of

the surface.

That the thermal and epithermal count rate pro-

files differ is consistent with the suggestion that

hydrogen in the PSR is responsible for the odd

shape of the epithermal neutron profile, although

the reason for the thermal neutron profile rising

above 1 at r ≳ 2rc is not clear. If one ascribes the

lack of an epithermal central count rate bump

entirely to hydrogen in the PSR, then the factor of

0.35 in neutron count rate can be converted using

the formula supplied by Lawrence et al. [2006] into

∼4.5 wt% WEH. This is a factor of 4 greater than

was inferred by Teodoro et al. [2010] and consis-

tent with the LCROSS results [Colaprete et al., 2010;

Strycker et al., 2013]. As Cabeus does not have a

simple crater morphology and the possibility that

additional compositional variation is being sug-

gested by the thermal neutron profile, this value

should be taken with a pinch of salt. However, it

serves to illustrate how the effect of topography

upon remotely sensed neutron count rates could

lead to a significant bias in the inferred wt% WEH.

Given that many PSRs occupy a larger fraction of the area of the crater within which they reside, the case of

Cabeus may be a more extreme example of how large an effect topography can play.

7. Conclusions

This study shows that there are some features in the neutron count rate profiles sensed from orbital detectors

as they are flown over lunar craters located in highland regions. There is a central bump in the detected count

rate, and the mean count rate over the stacked crater is up to 1% larger than it is outside. This factor is largest

for thermal and epithermal neutrons but still detectable in the fast neutrons.

A simple geometrical model has been developed. It predicts qualitatively very similar behavior to that

observed from the LPNS thermal and epithermal data sets. The central peak results from the weak

beaming of emitted neutrons normal to the surface [Lawrence et al., 2006], which is analogous to

solar limb darkening. This simple model underestimates the mean count rate observed over the crater

by ∼0.3%.

To fit the observed stacked count rate profiles well requires a ∼0.35% enhancement in the neutron emis-

sivity of the regolith within ∼2rc of the crater center. It should be possible, using Monte Carlo neutron

transport simulations, to determine if this can be achieved by a plausible amount of surface or near-surface

roughness.

The beaming of neutrons over polar craters hosting PSRs may mean that the concentration of hydrogen in

the PSRs has been underestimated in previous work. For the particular case of Cabeus, where a large crater

contains a relatively small PSR, it was shown that ∼4.5 wt% WEH within the PSR can reproduce the epithermal

neutron count rate profile, assuming a simple azimuthally symmetric topographical model for Cabeus. This

is a factor of 4 times larger than previously inferred and is consistent with the value measured using LCROSS

data. In polar craters where the PSR occupies a larger fraction of the crater, the impact of topography on the

inferred wt% WEH will be less important.
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Figure A1. Variables used in the calculation of the count rate
from the unperturbed lunar surface. The origin is placed at the
lunar center, O, and the detector, D, is at an altitude a above the
surface.

Appendix A: Details of the Model
Neutron Count Rate Calculation
In order to calculate the model neutron count
rate in an orbiting omnidirectional detector, it
is easiest to split the surface into a few dis-
tinct regions: the unperturbed surface, the outer
uplifted slope, the crater walls, and the flat infill
region in the crater center. The simpler case with
no uplift will be considered first.

A1. Neutron Count Rate From the
Uncratered Surface
This part of the calculation is very similar to
that described in Appendix B of Prettyman et al.
[2006]. The flux of neutrons a distance r away
from a patch of lunar surface of area dA, at
an angle 𝜃 to the surface normal, as shown in
Figure A1, will satisfy

df (r, 𝜃) ∝ cos1+𝛼 𝜃

r2
dA, (A1)

where 𝛼 represents the effective beaming of neutrons from the surface. Integrating over 2𝜋 steradians and
defining the flux through the surface as f0 leads to

df (r, 𝜃) =
(2 + 𝛼)f0

2𝜋r2
cos1+𝛼 𝜃 dA. (A2)

The flux detected from the whole surface is then

f =
(2 + 𝛼)f0

2𝜋 ∫
2𝜋

0
d𝜙∫

𝛽max

0

( rm

r

)2
cos1+𝛼 𝜃 sin 𝛽d𝛽. (A3)

As shown in Figure A1, 𝛽 is the angle subtended at the lunar center by the vectors to the detector and surface
patch and 𝛽max = cos−1[rm∕(rm + a)] defines the lunar horizon for a detector at altitude a. Using the sine and
cosine rules,

sin 𝜃 =
(

rm + a

r

)
sin 𝛽, (A4)

and

r2 = (rm + a)2 + r2
m − 2rm(rm + a) cos 𝛽. (A5)

Defining t = (rm + a)∕rm yields

f = (2 + 𝛼)f0 ∫
𝛽max

0

(t cos 𝛽 − 1)1+𝛼 sin 𝛽d𝛽

(t2 + 1 − 2t cos 𝛽)
3+𝛼

2

, (A6)

which can be computed numerically to find the flux from the uncratered surface.

The detector has been assumed to be omnidirectional in the above calculation such that the detected count
rate is merely proportional to the flux at the detector. The LPNS is, in fact, cylindrical and thus is not quite
omnidirectional. However, comparison of the inferred instrumental point spread function with that given by
Maurice et al. [2004] shows them to be similar in shape to the extent that correcting for any differences has a
negligible effect upon the results in this paper.

When a crater is inserted into the surface, the integration limits in equation (A3) need to be changed. If the
crater center lies at the spacecraft nadir, then the minimum 𝛽 is increased so that the integration starts at the
edge of the crater. However, for a more general crater position it is necessary to find the range of azimuthal
angle 𝜙 that lies outside the crater as a function of 𝛽 . Figure A2 shows this more general configuration, where
the crater center subtends an angle 𝜃cen at the lunar center. Without loss of generality, the detector and crater
center can both be placed in the x-z plane, where the axes have been chosen such that the y axis is into the
page and the detector is placed on the z axis. The required𝜙(𝛽) can be found by determining the points where
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Figure A2. Variables used in the calculation of the count rate
from the unperturbed part of the surface when a crater is
present. The dotted line represents the intersection of the
cone with half-opening angle 𝛽 and the sphere with radius rm.

the ring of lunar surface at 𝛽 intersects with the
plane containing the crater rim. Using the fact
that the crater center lies in the same plane as
the crater rim, one can infer that the rim plane is
given by

x ⋅ n̂ = rcen = rm cos 𝜃c, (A7)

where the unit normal to the plane is given by

n̂ =
⎛⎜⎜⎝
− sin 𝜃cen

0
cos 𝜃cen

⎞⎟⎟⎠ . (A8)

Noting the symmetry in the y direction and find-
ing the solution when

x = rm

⎛⎜⎜⎝
sin 𝛽 cos𝜙
sin 𝛽 sin𝜙

cos 𝛽

⎞⎟⎟⎠ , (A9)

leads to the following expression for 𝜙rim(𝛽), the angle that represents the fraction of 𝜋 radians outside the
crater for this 𝛽 :

cos𝜙rim =
cos 𝜃cen cos 𝛽 − cos 𝜃c

sin 𝜃cen sin 𝛽
. (A10)

A2. Cosmic Ray Occlusion Within a Crater
The cosmic ray flux impinging upon a unit area of crater interior will be lower than that incident on the outside,
convex surface. Under the assumption that the cosmic ray flux is isotropic, this is accounted for by replacing
f0 with f0Ωi∕𝜋, where Ωi is the cos(incidence angle)-weighted solid angle of visible sky. At a point P within a
spherical cap crater, this is given by

Ωi = ∫
2𝜋

0 ∫
𝜃max(𝜙)

0
cos i sin 𝜃d𝜃d𝜙, (A11)

where the incidence angle, i, is the angle between the vector PF and the direction (𝜃, 𝜙) and 𝜃max is the maxi-
mum angle down from the z direction that lies above the crater rim, as shown in Figure A3. Q represents the
point on the crater rim at this particular azimuthal angle, 𝜙, and the vector PQ makes an angle 𝜃max with the
z direction. The incidence angle can be written in terms of the two angular coordinates as

cos i =
(rcurv − zP) cos 𝜃 − xP cos𝜙 sin 𝜃

rcurv
, (A12)

where xP and zP are the x and z coordinates of point P.

Redefining the origin of the coordinate system to be at the base of the crater, the position of Q is given by

xQ =
⎛⎜⎜⎝

xc cos 𝜂
xc sin 𝜂

d

⎞⎟⎟⎠ , (A13)

with 𝜂 being the angle between the x axis and the point beneath Q in the z = 0 plane. Point P has coordinates

xP =
⎛⎜⎜⎝

xP = rcurv sin𝜓

0
zP = rcurv(1 − cos𝜓)

⎞⎟⎟⎠ , (A14)

where 𝜓 is the angle between the −z direction and FP. The vertical plane containing P and Q has

n̂ =
⎛⎜⎜⎝

sin𝜙

− cos𝜙
0

⎞⎟⎟⎠ , (A15)
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Figure A3. Variables used in the calculation of the sky
visibility from a point P, at y = 0, within the spherical cap
crater. Points F and Q represent the crater focus and the
point on the crater rim that lies in the vertical plane through
P making an angle 𝜙 with the x axis. 𝜃max(𝜙) represents
the maximum colatitude to which P sees cosmic rays at an
angle 𝜙. 𝜂 is the angle between the x axis and the point
underneath Q in the x-y plane, such that tan𝜂 = yQ∕xQ .

and satisfies
x ⋅ n̂ = xP sin𝜙. (A16)

Inserting xQ into this equation yields the following
expression for 𝜂 as a function of 𝜙:

𝜂 = 𝜙 − sin−1

(
xP

xc
sin𝜙

)
. (A17)

Using the fact that

̂PQ ⋅ ẑ = cos 𝜃max, (A18)

one can infer that

cos 𝜃max =
d − zP√

x2
c + x2

P − 2xcxP cos 𝜂 + (d − zP)2

.

(A19)

For a choice of crater shape and distance from the
crater axis, xP , equations (A17) and (A19) determine
cos 𝜃max(𝜙), which can then be used in conjunc-
tion with equations (A11) and (A12) to determine
the fraction of sky visible from this point within
the crater.

Extending this approach to the case where there is a flat infilled region in the crater center is straightforward.
In practice, a table of Ω values as a function of xP is created once, and this is used, with interpolation, for the
two-dimensional numerical integration to find the flux coming from within the crater.

A3. Visibility of a Surface Patch From the Detector
Out to the lunar horizon the crater exterior is all visible to the detector in the case where there is no uplifted
rim. However, there are parts of the crater interior that may not be visible to the detector. Consequently, it is
necessary to see if the line of sight from the detector to the surface patch passes above or below the crater rim.

Placing the origin of the coordinate system, O, at the lunar center, and the detector at

xD = (rm + a)
⎛⎜⎜⎝

sin 𝜃D

0
cos 𝜃D

⎞⎟⎟⎠ , (A20)

with the z axis going through the crater center, a general point within the crater can be written as

xP =
⎛⎜⎜⎝

rcurv sin𝜓 cos 𝛾
rcurv sin𝜓 sin 𝛾

rm cos 𝜃c − d + rcurv(1 − cos𝜓)

⎞⎟⎟⎠ , (A21)

where 𝛾 represents the angle around from the x axis to point P. The symmetry of the problem means that the
contribution to the flux coming from 0 ≤ 𝛾 ≤ 𝜋 is the same as that from −𝜋 ≤ 𝛾 ≤ 0. Following a similar
methodology to that adopted in section A2, the normal to the plane containing O, P, and D can be defined
using n = xP × (xD − xP). The point Q on the rim determining if the detector is above or below the crater rim
as viewed from P can then be found as the solution to xQ ⋅ n̂ = xP ⋅ n̂ with an x coordinate between those of P
and D. In this case,

xQ =
⎛⎜⎜⎝

xc cos 𝜂
xc sin 𝜂

rm cos 𝜃c

⎞⎟⎟⎠ (A22)
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and the plane equation is used to determine 𝜂. For the detector to be able to see point P requires

ẑ ⋅
(xD − xP)|xD − xP| > ẑ ⋅

(xQ − xP)|xQ − xP| . (A23)

These equations, along with those from sections A1 and A2, allow the computation of the curves in Figures 6a
and 6b. One- and two-dimensional numerical integrations are required to evaluate the flux from outside and
within the crater, respectively. For the flux from within the crater, it is also necessary to compute the distance
to the detector and the angle between surface normal and the detector direction, but these are readily found
from the vectors used to determine if the detector can see that point within the crater. The two-dimensional
integration to find the crater flux is simply done over an azimuthal angle ranging from 0 to 2𝜋 and the angle
from the focus to the crater center, 𝜓 , running from 0 to 𝜓max = tan−1[xc∕(rcurv − d)].

A4. Uplifted Crater Rim
Including an uplifted crater rim complicates the calculation considerably, because parts of the previously
unperturbed surface may now undergo some cosmic ray shadowing and may also no longer be visible from
the detector. Similarly, the outer uplifted slope going from the crater rim back down to the unperturbed sur-
face is a new topographical component that also suffers from these issues. In contrast, the calculation of the
flux from the crater itself is only slightly changed to account for the raising of the entire crater surface.
A4.1. Cosmic Ray Occlusion
Considering first the occlusion of cosmic rays from the outer uplifted slope and the unperturbed surface, the
symmetry is such that this is just a function of the distance from the crater center. The outer uplifted slope is
most conveniently parametrized using an azimuthal angle, 𝜖, and the fraction of the way down the slope from
the rim to the unperturbed surface, f . For a point P on the outer uplifted slope, the azimuthal variation of the
maximum polar angle to which the sky can be seen, 𝜃max(𝜙), will be set either by the unperturbed surface or
the outer uplifted slope, depending on which is hit first as the zenith angle increases.

Choosing the z axis to pass through point P and the crater center to lie in the x –z plane at x < 0, the value of
𝜃max to the unperturbed surface is independent of 𝜙. Simple trigonometry gives

cos 𝜃max,1 = −

√
1 −

(
rm

rP

)2

, (A24)

with rP being the distance of point P from the lunar center. For sufficiently extended outer slopes, it is possible
for rP < rm, in which case cos 𝜃max,1 is set to 0.

It may be that the outer uplifted slope itself is the first piece of lunar surface to intersect the line of sight as
the zenith angle is increased at a particular azimuthal angle. In this case, 𝜃max is set by the local slope at point
P in the azimuthal direction, 𝜙. For a small displacement on the uplifted slope having components dx and dy,
such that (ds)2 = (dx)2 + (dy)2 and tan𝜙 =dy∕dx, the maximum zenith angle to the outer uplifted slope can
be found from

cos 𝜃max,2(𝜙) = sin
[

tan−1
(dz

ds

)]
. (A25)

dz
ds

= 𝜕z
𝜕x

dx
ds

+ 𝜕z
𝜕y

dy
ds

, (A26)

with 𝜕z∕𝜕y = 0, ds∕dx = 1∕ cos𝜙, and 𝜕z∕𝜕x being the gradient g from equation (6) rotated through 𝜃cen into
the coordinate system with P on the z axis. This leads to

𝜕z
𝜕x

=
sin 𝜃cen + g cos 𝜃cen

cos 𝜃cen − g sin 𝜃cen
. (A27)

The value of cos 𝜃max(𝜙) is taken as the larger of cos 𝜃max,1 and cos 𝜃max,2(𝜙), and the cosmic ray occlusion
factor, Ωi∕𝜋, at a given fraction of the way down the outer uplifted slope is calculated using equation (A11).

The cosmic ray occlusion for points on the unperturbed surface, like that on the outer uplifted slope, is
just a function of distance to the crater center. It is convenient to place the patch of unperturbed surface
under consideration, P, on the z axis and rotate the crater center through an angle −𝜃cen about the y axis
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(moving the crater in the −x direction). Points an angle 𝜖 around from the x axis on the crater rim, xR, or the
outer edge of the outer uplifted slope, xE , can then be described via

xR =
⎛⎜⎜⎝
−(rm cos 𝜃c + u) sin 𝜃cen + rm sin 𝜃c cos 𝜖 cos 𝜃cen

rm sin 𝜃c sin 𝜖

(rm cos 𝜃c + u) cos 𝜃cen + rm sin 𝜃c cos 𝜖 sin 𝜃cen

⎞⎟⎟⎠ (A28)

and

xE =
⎛⎜⎜⎝
−rm cos 𝜃e sin 𝜃cen + rm sin 𝜃e cos 𝜖 cos 𝜃cen

rm sin 𝜃e sin 𝜖

rm cos 𝜃e cos 𝜃cen + rm sin 𝜃e cos 𝜖 sin 𝜃cen

⎞⎟⎟⎠ , (A29)

respectively. For a given azimuthal angle 𝜙 around from the x axis as seen from point P on the z axis, it is
possible to find any points on the uplifted outer slope that lie in the plane

[xR + f (xE − xR)] ⋅
⎛⎜⎜⎝

sin𝜙

− cos𝜙
0

⎞⎟⎟⎠ = 0. (A30)

If there are no solutions for f in the range [0,1], then the plane at fixed 𝜙 does not intersect the uplifted region
and cos 𝜃max(𝜙) = 0. If solutions exist, then equation (A30) provides a constraint on f (𝜖) for points on the outer
uplifted slope that lie in the plane an azimuthal angle 𝜙 around from the x axis as viewed from point P on
the unperturbed surface. The largest zenith angle from which cosmic rays arrive at point P, 𝜃max(𝜙), is found
using a numerical minimization algorithm applied to the set of points on the slope. A root-finding algorithm
is employed to determine f at any given 𝜖 as part of this process. Given cos 𝜃max(𝜙) as a function of distance
from the crater center, the cosmic ray occlusion factors can be found using equation (A11).
A4.2. Visibility of Surface Patch From Detector
Points on either the outer uplifted slope or the unperturbed surface may not be visible from the detector as
a result of the uplifted region surrounding the crater.

For a point P on the outer uplifted slope to be visible from the detector, D, the line of sight must not be blocked
by either the outer uplifted slope or the unperturbed surface. If the dot product of the surface normal at P
and the surface-to-detector vector, Δ = xD − xP , is positive, then P is not blocked by the outer uplifted slope.
The unperturbed surface will block the line of sight if the line connecting P to the detector passes within rm

of the lunar center. Defining the fractional distance along this line as v, such that x = xP + vΔ, this happens
if 0 < vmin < 1 and |x(vmin)| < rm, where vmin represents the v for which this line passes nearest to the lunar
center. With the coordinate system origin at the lunar center, this leads to

vmin = −
xP ⋅ Δ|Δ|2

(A31)

and |x(vmin)|2

r2
m

=
|xP|2 − (xP ⋅ Δ̂)

2

r2
m

, (A32)

where Δ̂ is a unit vector in the direction of Δ. These equations allow a quick determination of whether or not
the unperturbed surface blocks the detector’s view of a part of the outer uplifted slope.

To determine the visibility of the unperturbed surface from the detector, consider placing the detector on the
z axis at (0, 0, rm+a) and the crater center in the x-z plane at x ≤ 0. If the far point of the edge of the crater outer
uplifted slope is visible above the far point of the rim (𝜖 = 𝜋 in equations (A29) and (A28), respectively), then
the entire unperturbed surface is visible from the detector. If this is not the case, then the plane containing
the lunar center, detector, and point P can be found. The line of intersection of this plane with the uplifted
slope and the minimum zenith angle from P to points on this line follow, and the visibility is determined by
comparison with the zenith angle from point P to the detector. This is a very similar methodology to that
described to determine the cosmic ray occlusion factor for the unperturbed surface.

A5. Neutron Flux Impinging Upon the Crater Walls
In the preceding sections of this appendix, the assumption has been made that any neutrons emitted from
within the crater and aimed at the crater walls are absorbed on contact with the regolith and do not contribute
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to the neutron flux emerging from the crater. This is a simplification, because some of these neutrons will
be reemitted before being absorbed. The more energetic neutrons may even lead to nuclear reactions that
create more than one lower energy neutron that escapes from the crater, in which case the crater would be
producing a thermal neutron flux that was an amplified version of the incident fast neutron flux.

While quantifying the impact of this process requires Monte Carlo neutron transport simulations, it is possible
to use the simple model to determine how much of the emitted crater flux impinges on the crater surface as
a function of position within the crater. Following the methodology of the previous sections, when the crater
flux at the detector was determined, it is possible to place the “detector” on the crater surface and calculate
the flux from the crater that is aimed into the crater surface. The only additional factor to consider is to include
the fact that the normal to the “detecting” surface is at different angles to the lines of sight to the various other
bits of crater surface. Multiplying the detected flux by the cosine of the incidence angle and integrating over
the entire crater surface leads to the results shown in Figure 8 for the case where all neutrons are assumed to
be reemitted from the surface.
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