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Abstract 

 

Previous research has shown that when two colour-defined target objects appear in rapid 

succession at different locations, attention is deployed independently and in parallel to both 

targets. The present study investigated whether this rapid simultaneous attentional target 

selection mechanism can also be employed in tasks where targets are defined by a different 

visual feature (shape) or when alphanumerical category is the target selection attribute. 

Two displays that both contained a target and a nontarget object on opposite sides were 

presented successively, and the stimulus onset asynchrony (SOA) between the two displays 

was 100 ms, 50 ms, 20 ms, or 10 ms in different blocks. N2pc components were recorded to 

both targets as a temporal marker of their attentional selection. When observers searched 

for shape-defined targets (Experiment 1), N2pc components to the two targets were equal 

in size and overlapped in time when the SOA between the two displays was short, reflecting 

two parallel shape-guided target selection processes with their own independent time 

course. Essentially the same temporal pattern of N2pc components was observed when 

alphanumerical category was the target-defining attribute (Experiment 2), demonstrating 

that the rapid parallel attentional selection of multiple target objects is not restricted to 

situations where the deployment of attention can be guided by elementary visual features, 

but that these processes can even be employed in category-based attentional selection 

tasks. These findings have important implications for our understanding of the cognitive and 

neural basis of top-down attentional control.      
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 In real-world visual scenes, there is a vast amount of accessible information 

competing for perceptual processing and access to conscious control. Selective attention 

acts as a filter that allows us to resolve this competition, favouring those objects that are 

most relevant to our current task goals. In visual search tasks where observers must find a 

specific target object among several distractors, internal representations of target-defining 

features (attentional templates) in working memory can be employed to guide the 

allocation of attention (e.g., Duncan & Humphreys, 1989; Wolfe & Horowitz, 2004; Olivers et 

al., 2011). These attentional templates are set up before the onset of the visual search 

display, and facilitate visual processing of template-matching objects in a spatially selective 

fashion (e.g., Desimone & Duncan, 1995; Eimer, 2014, 2015). In most visual search 

experiments, search targets are presented simultaneously with multiple task-irrelevant 

distractors in the same display. When the target is defined by a known simple visual feature 

(such as the colour red), the search template will bias attention towards any object in the 

search display that possesses this feature. However, there are real-world contexts where 

multiple feature-defined target objects or events can appear simultaneously or in rapid 

succession. In such situations, observers might encounter a new object that requires 

immediate attention (e.g., traffic lights changing to red) while their attention is already 

focused elsewhere (e.g., on the car in front). To facilitate the adaptive control of behaviour 

in such situations, attentional control processes should be able to allocate attention rapidly 

and flexibly to such new target objects.  

 There is continuing debate as to whether attention can be allocated simultaneously 

to multiple objects at different locations. Serial visual search models (e.g., Treisman & 

Gelade, 1980; Wolfe, 1994, 2007) claim that focal attention can be directed only to one 

object at any given moment, and that the selection of several objects requires sequential 

movements of a unitary focus of attention. In other words, the deployment of attention to a 

new target object requires that attention is withdrawn from its previous location. On the 

other hand, parallel models of attention (e.g., Desimone & Duncan, 1995) assume that 

attention can be allocated simultaneously to several objects in a scene, and that multiple 

parallel foci of attention can operate concurrently at different locations in the visual field. 

The availability of such a parallel selection mechanism would be particularly useful in 

situations where a new attention-demanding event arrives while attention is focused at a 

different task-relevant location. Drivers will want to maintain an attentional focus on the 
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traffic in front of them while simultaneously deploying their attention to a changing traffic 

light.   

 In a recent study, we investigated the processes responsible for the rapid allocation 

of attention to new target objects with event-related brain potential (ERP) markers of 

attentional object selection (Eimer & Grubert, 2014; see also Grubert & Eimer, 2015 for 

extended findings). This study demonstrated that attention can be allocated in parallel and 

independently to multiple objects at different spatial locations. Two search displays, each 

containing one colour-defined target object (e.g., a red item) and one distractor object in a 

different task-irrelevant colour (e.g., a green, blue, or yellow item) were presented in rapid 

succession on opposite sides of central fixation. Participants were asked to report whether 

the two target-colour items in the two successive displays belonged to the same 

alphanumerical category (both letters or both digits) or not (one letter and one digit). The 

stimulus onset asynchrony (SOA) between the two displays was either 100 ms or 10 ms. To 

track the speed of the attentional selection of the two target-colour objects in the first and 

second display in real time, the N2pc component of the event-related potential was 

measured in response to both successively presented search displays. The N2pc is an 

enhanced negativity that is elicited at posterior electrodes contralateral to the visual field of 

a target object in multi-stimulus visual displays. This component typically emerges 180-200 

ms after stimulus onset, is generated in extrastriate areas of the ventral visual processing 

stream (Hopf et al., 2000), and reflects the attentional selection of a candidate target object 

among distractors in the visual field (e.g., Eimer, 1996; Luck & Hillyard, 1994; Woodman & 

Luck, 1999). Because the N2pc is computed by comparing contralateral and ipsilateral ERP 

waveforms to targets in the left versus right visual field, no N2pc is elicited for target objects 

appearing on the vertical meridian (Eimer & Grubert, 2014; Eimer, Kiss, & Nicholas, 2011; 

Hickey, Di Lollo, & McDonald, 2009; Hickey, McDonald, & Theeuwes, 2006; Woodman, & 

Luck, 1999). This fact makes it possible to use the N2pc to measure the attentional selection 

of a particular target object independently from the selection of another target that appears 

simultaneously or in close temporal proximity. When one of these two target objects is 

presented on the horizontal midline (to the left or right of fixation) and the other on the 

vertical midline (above or below fixation), the N2pc will exclusively reflect the selection of 

the horizontal target, irrespective of any parallel attentional processing of the other 

(vertical) target object. 
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 This logic was applied in our previous study (Eimer & Grubert, 2014), where one 

target/nontarget pair was always presented on the vertical meridian, and the stimulus pair 

in the other display was presented on the horizontal midline. On half of all trials, the 

horizontal target/nontarget pair preceded the vertical stimulus pair (horizontal target first: 

H1 targets), while this order was reversed in the other half of all trials (horizontal target 

second: H2 targets). Because the positions of the two targets were not predictable, 

participants could not allocate attention in advance to specific spatial locations, and 

attentional selection of each target could only commence once the respective stimulus 

displays had been presented. By comparing the onset latency of N2pc components on H1 

and H2 trials, we determined how rapidly attention was deployed to the target object in the 

second display after the initial attentional selection of the target in the first display. When 

the two displays were separated by an SOA of 100 ms, N2pc components elicited by H2 

targets were delayed by almost exactly 100 ms relative to the N2pc components triggered 

by H1 targets. When both displays were separated by only 10 ms, the onset latency 

difference between N2pc components to H1 and H2 targets was 10 ms, again matching the 

objective SOA time separating the two target objects precisely. In other words, both H1 and 

H2 targets always elicited an N2pc approximately 200 ms after they were presented, 

regardless of whether they appeared nearly simultaneously (SOA10 condition) or were 

separated by a longer temporal interval (SOA100 condition). With an SOA of 10 ms, N2pc 

components to H1 and H2 targets were equal in size and overlapped in time, suggesting that 

focal attention was allocated to the newly arriving second target while the previously 

established focus of attention on the first target location remained active. In the SOA 100 

condition, N2pc components to H1 and H2 targets were again equal in size, but did not 

overlap in time, indicating that two temporally separate attentional selection processes can 

be triggered within 100 ms of each other. Overall, these findings suggest that focal attention 

can be allocated rapidly and in parallel to multiple target objects, and that each of the two 

selection processes follows its own independent time course (see also Grubert & Eimer, 

2015, for similar results in experiments where two successively presented target objects 

were defined by two different colours). 

 These observations provide strong evidence for parallel attentional selection 

mechanisms, and challenge the hypothesis that attention must always be allocated 

sequentially to multiple targets. However, it remains possible that this type of parallel 
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selection can only be observed in the specific type of tasks that were employed in our 

previous studies (Eimer & Grubert, 2014; Grubert & Eimer, 2015). In these experiments, 

target objects were always defined in terms of their colour. Because colour is known to 

facilitate highly efficient search performance (e.g., Wolfe & Horowitz, 2004), multiple target 

objects may be selected in a rapid parallel fashion when these processes can be based on 

colour, but not when they have to be controlled by other target-defining visual features. 

This hypothesis was tested in Experiment 1, where observers again had to select two target 

objects in two search displays that were presented in rapid succession. However, these 

targets were now no longer defined by their colour, but by a particular shape. If colour was 

unique in facilitating rapid parallel attentional selection, the temporal pattern of N2pc 

components to H1 and H2 targets in Experiment 1 should be qualitatively different from the 

pattern observed in our previous N2pc studies of colour-based selection. Alternatively, 

attentional object selection may generally operate in a rapid parallel fashion whenever it 

can be guided by specific visual features, but not in tasks where search targets do not share 

a common visual attribute. This was tested in Experiment 2, where target objects were 

physically different members of the same alphanumerical category.   

  

Experiment 1 

 

Colour is a powerful guiding feature for visual search, and this may be linked to a 

special status of colour signals during the perceptual processing of visual input. Colour 

discriminations take place as early as the lateral geniculate nucleus of the thalamus (see 

Sincich & Horton, 2005, for a review), and colour is perceived faster than other visual 

attributes such as orientation or motion (Moutoussis & Zeki, 1997a, 1997b; Arnold, Clifford, 

& Wenderoth, 2001; see also Zeki, 2016, for a review). If colour signals are generally 

processed more rapidly and become available earlier than information about other visual 

features, the rapid parallel attentional selection processes observed in previous N2pc 

studies (Eimer & Grubert, 2014; Grubert & Eimer, 2015) may be specific to situations where 

participants search for colour-defined targets. To test this hypothesis, the target objects in 

Experiment 1 were defined by their shape. In contrast to colour, the status of shape for the 

control of attentional object selection is less clear (e.g., Wolfe & Horowitz, 2004). Although 

some aspects of shape can facilitate efficient search (e.g., Treisman & Gormican, 1988), the 
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exact featural properties that guide attention towards shape targets have not been fully 

specified (see Cheal & Lyon, 1992). While colour signals are extracted rapidly, shape 

information is processed more gradually, starting in V1 with orientation detectors (Hubel & 

Wiesel, 1962, 1968) and texture segregation processes (Lamme et al., 1992), and continuing 

in V2 with illusory contour processing (e.g., Kanizsa, 1979; von der Heydt & Peterhans, 

1989), and in V4 with the segregation of shapes from their backgrounds (Desimone & 

Schein, 1987). The perceptual presence of illusory contours, in the absence of a physical 

basis for a resulting percept, reflects the complexity of shape processing, and the absence of 

dedicated shape-detecting units in the brain. Such differences in the functional architecture 

of neural systems processing colour and shape might be mirrored by systematic differences 

in the effectiveness of attentional guidance by these two feature dimensions in a task where 

two task-relevant objects are presented in rapid succession.  

To test this hypothesis, participants in Experiment 1 had to attend to two 

successively presented target objects that were defined by a specific shape, and to report 

whether a gap in the contour of these two target objects was located on the same side or on 

opposite sides (see Figure 1). Four blocked SOA conditions were tested (10, 20, 50, and 100 

ms, respectively), and procedures were otherwise identical to those used in our earlier 

experiments with colour-defined targets (Eimer & Grubert, 2014; Grubert & Eimer, 2015). 

Behavioural performance and N2pc components observed in Experiment 1 can therefore be 

directly compared to the results obtained in these earlier studies. When attention is guided 

by shape rather than colour, the attentional selection of two targets presented in rapid 

succession may operate more slowly. If this were the case, the time interval between the 

two N2pc components to H1 and H2 targets should not match the objective SOA between 

the two targets (as was observed for colour-guided selection), but should be substantially 

increased. It is also possible that there are fundamental qualitative differences between 

colour-guided and shape-guided attentional selection processes, in that the former can 

operate in parallel while the latter have to take place in a strictly sequential fashion. If this 

were the case, attention would have to be withdrawn from the first target object before 

being allocated to the second target object in Experiment 1, which would result in two N2pc 

components to H1 and H2 targets that do not overlap in time. In particular for short SOAs, a 

serial selection mode could imply that attention will only be allocated to the first target 

object, because the second target may have already disappeared from view before 
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attention can be deployed to its location. In this case, behavioural performance should be 

severely impaired in blocks with short SOAs between the two displays, and N2pc 

components to H2 targets should be strongly attenuated or entirely absent. Even if serial 

selection processes operated extremely rapidly, the fact that attention would have to be 

withdrawn from the first target in order to be allocated to the second target object would 

imply that for short SOAs, the N2pc components to H1 targets should be strongly 

attenuated or absent. Thus, regardless of its speed, a serial attentional selection mechanism 

should be reflected by a marked attenuation of one of the two N2pc components in the 

short SOA conditions.  

 Alternatively, a rapid mechanism of allocating attention in parallel and 

independently to multiple target objects may not only be available in selection tasks where 

colour is the target-defining feature, but may also operate in a similar fashion for other 

target attributes, such as shape. If attention can be allocated rapidly and in parallel to 

shape-defined target objects, the pattern of N2pc results in Experiment 1 should be 

qualitatively the same as the pattern reported by Eimer and Grubert (2014) with colour-

defined targets.  

 

Methods 

 

Participants 

Thirteen participants were paid to take part in Experiment 1. One of them was 

excluded from analysis due to excessive eye movement activity. The remaining twelve 

participants were aged between 21 and 41 years (mean age 31 years). Eight were female 

and three were left-handed. All participants had normal or corrected-to-normal vision. 

 

Stimuli and procedure 

Stimuli were presented on a 22-inch Samsung wide SyncMaster 2233 LCD monitor 

(resolution of 1280x1024 pixels, 100 Hz refresh rate; 16ms black-to-white-to-black response 

time, as verified with a photodiode). Participants were seated in a dimly illuminated cabin 

and viewed the screen at a distance of approximately 100 cm. Stimulus presentation, 

timing, and response recollection were controlled by a LG Pentium PC running under 
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Windows XP, using the Cogent 2000 toolbox (www.vislab.ucl.ac.uk/Cogent/) for MATLAB 

(Mathworks, Inc.).  

Stimuli were grey outline shapes (circles, squares, or triangles; 0.2° line width), 

subtending 1.1° x 1.1° of visual angle. The contour of each shape had a gap on the left or 

right side. The size of this gap was of 0.6°, and it was always centred in the middle between 

the top and bottom of each shape (as illustrated in Figure 1, top panel). All stimuli were 

presented at an eccentricity of 3.0° from central fixation against a black background. A 

central grey fixation point (0.2° x 0.2°) remained continuously present throughout each 

experimental block. Each stimulus display contained one object in the target shape and 

another distractor object in a randomly selected nontarget shape (Figure 1). The nontarget 

shapes were never repeated within a trial. Each participant was assigned a specific target 

shape that remained constant throughout the experiment. Their task was to report whether 

the position of the gap on the two successively presented target shapes was the same side 

(both gaps left, or right) or opposite sides (one gap left, one gap right) by pressing one of 

two purpose-built vertically aligned response keys. The response-to-key mapping, as well as 

the hand-to-key mapping, was counterbalanced across participants. Trials requiring a same 

or different response were equiprobable and randomly intermixed in each block. Each of 

the three shapes (circle, square, and triangle) served as target shape for four participants. 

 On each trial, the two successive stimulus displays were each presented for 50 ms. 

One target-nontarget pair was presented on the horizontal meridian (left and right of 

fixation), and the other pair appeared on the vertical meridian (above and below fixation). In 

half of all trials, the horizontal stimulus pair was presented first (horizontal target first: H1 

targets). In the other half, the vertical target/nontarget display preceded the horizontal 

display (horizontal target second: H2 target). These two display sequences were presented 

in randomly intermixed trials in each block. The position of the two target objects in these 

two displays (left/right; top/bottom) was randomly and independently determined on each 

trial. There were four blocked SOA conditions. In SOA 10 blocks, the onset of the first display 

preceded the onset of the second display by only 10 ms (i.e., there was a 40 ms overlap 

between these two displays). In SOA 20 blocks, this overlap was 30 ms. In SOA 50 blocks, the 

onset of the second display coincided in time with the offset of the first display. In SOA 100 

blocks, the two consecutive displays were separated by a 50 ms blank interval. In all blocks, 
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the interval between the offset of the second display and the onset of the first display on 

the next trial was 1900 ms. 

 The experiment contained 24 blocks, with 64 trials per block (8 trials for each 

combination of display sequence [H1 target, or H2 target], side of horizontal target [left, or 

right], and side of vertical target [top, or bottom]). Each SOA condition was run in 6 

successive blocks, and the order of SOA conditions was counterbalanced across participants. 

Each SOA condition was preceded by one practice block. 

 

EEG recording and data analyses 

The continuous EEG was DC-recorded from 27 scalp electrodes at standard positions 

of the extended 10/20 system, sampled at a rate of 500 Hz, and digitally low-pass filtered at 

40 Hz. No other offline filters were applied. All channels were online referenced to the left 

earlobe and re-referenced offline to the average of both earlobes. Trials contaminated with 

artifacts (eye movements exceeding ±30 µV in the HEOG channels; eye blinks exceeding ±60 

µV at Fpz; muscular movements exceeding ±80 µV in all other channels), and trials with 

incorrect, anticipatory (faster than 200 ms), very slow (slower than 1500 ms), or missing 

responses were excluded from EEG analyses. This led to an exclusion of an average of 8.9%, 

10.4%, 11.7% and 16.4% of all trials in the SOA 10, SOA 20, SOA 50, and SOA 100 conditions, 

respectively. For the remaining trials, EEG was segmented into epochs ranging from 100 ms 

prior to 500 ms after the onset of the first stimulus display, and was baseline corrected 

relative to the 100 ms interval prior to the onset of the first display. EEG was averaged 

separately for each of the sixteen combinations of SOA (100 ms, 50 ms, 20 ms, or 10 ms), 

horizontal display sequence (H1 targets or H2 targets) and location of the horizontal target 

(left or right).  

 N2pc components were quantified on the basis of ERP waveforms measured at 

lateral posterior electrodes PO7 and PO8. N2pc onset latencies were measured on the basis 

of difference waveforms, computed by subtracting ipsilateral from contralateral ERPs at PO7 

and PO8. Onset latencies were determined with a jackknife-based procedure (Miller, 

Patterson, & Ulrich, 1998; Ulrich & Miller, 2001). Twelve grand-average difference waves 

were computed for each experimental condition, each excluding one different participant 

from the original sample. N2pc onset latency was defined as the point in time when each 

subsample difference wave reached a relative onset criterion of 50% (i.e., the point in time 
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when 50% of the peak amplitude was reached in these difference waves), as described by 

Miller et al. (1998). Differences in N2pc onset latencies between H1 and H2 targets were 

assessed with repeated-measures ANOVAs and t-tests, with F- and t-values corrected 

according to the formulas described by Ulrich and Miller (2001) and Miller et al. (1998), 

respectively. The corrected statistical values are indicated with Fc and tc, respectively. All t-

tests were two-tailed and Bonferroni corrected where necessary. To measure effect sizes, 

Cohen’s d (Cohen, 1988) was computed for all t-tests which returned a t value larger than 1, 

and partial eta-squared (labelled ηp
2) was computed for all ANOVAs which returned an F 

value larger than 1. As no standardised formula exists for correcting individual group means 

and standard deviations of jackknifed samples to calculate effect size measures such as 

Cohen’s d, jackknifed group means of N2pc latency and peak amplitude values were fed into 

repeated-measures ANOVAs where the error variance can be corrected according to the 

formula described by Ulrich and Miller (2001) to calculate corrected partial eta-squared 

values for all t-tests on N2pc latency and peak amplitude measures (reported as ηp
2

c). When 

N2pc latency comparisons are based on fractional peak amplitude measures, it has to be 

shown that there are no systematic N2pc peak amplitude differences between conditions, 

because such differences can affect onset latency estimates. To assess whether this 

condition was met, we computed N2pc peak amplitudes for H1 and H2 targets, separately 

for the four SOA conditions, using a jackknife-based approach analogous to that employed 

for determining N2pc onset latencies. Peak amplitudes for H1 targets were determined 

within a 150 -350 ms post-stimulus latency window for all SOA conditions. For H2 targets, 

these windows were 150 – 350 ms (SOA 10 and SOA 20 conditions), 200 – 400 ms (SOA 50 

condition) and 250 – 450 ms (SOA 100 condition). These peak amplitude values were then 

analysed in a repeated-measures ANOVA with the factors display sequence (H1 versus H2 

targets) and SOA (10, 20, 50, and 100 ms). There were no significant main effects and no 

two-way interaction between these factors, confirming that N2pc peak amplitudes did not 

differ systematically between task conditions. The absence of such differences justifies our 

choice of a 50% peak amplitude criterion to define N2pc onset latencies.1 

                                                           
1 All N2pc onset latency analyses reported in this article were also run using a fixed onset 
criterion of -1µV. The results of these analyses confirmed those obtained with the 50% 
relative onset criterion. 
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 N2pc mean amplitudes were computed within 100 ms post-stimulus time intervals. 

For H1 targets, a constant time window (210-310 ms) was employed for all four SOA 

conditions. Because N2pc components to H2 targets emerged at different latencies relative 

to the onset of the first display in the different SOA conditions (reflecting the difference in 

the onset of H2 displays), the time intervals used for measuring N2pc mean amplitudes for 

H2 targets were determined separately for each SOA condition on the basis of the grand-

averaged N2pc peak latency for this condition. Measurement windows were defined 

relative to a 100 ms interval centred on the N2pc peak latency (from 50ms before to 50ms 

after the N2pc peak for a particular SOA condition), rounded to the nearest 5 ms. The 

resulting H2 N2pc mean amplitude windows were 210-310 ms (SOA 10), 220-320 ms (SOA 

20), 270-370 ms (SOA 50), and 320-420 ms (SOA 100). 

 

Results 

 

Behavioural performance 

Anticipatory or exceedingly slow reaction times (RTs; faster than 200 ms or slower 

than 1500 ms) were removed from analysis, resulting in the exclusion of less than 0.3% of all 

trials. A repeated-measures ANOVA with the factors SOA (10, 20, 50, and 100 ms) and 

display sequence (H1 versus H2 targets) revealed a main effect of SOA on RTs, F(3,33) = 

5.93, p < .01, ηp
2 = .35. Paired t-tests showed that RTs in the SOA 100 (714 ms) were slower 

relative to the three other SOA conditions (SOA 50: 663 ms, SOA 20: 660 ms, SOA 10: 654 

ms; all t(11) > 2.64, all p < .05, all d > .41). RTs did not differ between the three shorter SOA 

conditions, all t(11) < 1. There was no main effect of display sequence on RTs, F < 1. 

Although the interaction between SOA and display sequence reached significance, F(3,33) = 

2.99, p < .05, ηp
2 = .21, follow-up analyses conducted separately for each SOA showed no 

reliable RT differences between H1 and H2 targets for any SOA condition. A repeated-

measures ANOVA on error rates with the factors SOA and display sequence also showed a 

main effect of SOA, F(3,33) = 12.20, p < .001, ηp
2 = .53. Error rates were higher in the SOA 

100 condition (9.1%) relative to the three shorter SOA conditions (SOA 50: 3.4%, SOA 20: 

2.3%, SOA 10: 2.7%, all t(11) > 3.64, all p < .01, all d > 1.17), and did not differ between these 

three short SOA conditions, all t(11) < 1. There was no main effect of display sequence on 

error rates, F < 1. Even though the interaction between SOA and display sequence was 
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significant, F(3,33) = 3.35, p < .05, ηp
2 = .23, follow-up analyses conducted separately for 

each SOA condition found no reliable differences in error rates between trials with H1 and 

H2 targets for any SOA.  

 

N2pc components 

 Figure 2 (left and middle panels) shows ERPs at posterior electrodes PO7/8 

contralateral and ipsilateral to the side of the horizontal shape target for trials where this 

target appeared in the first display (H1 targets) or in the second display (H2 targets). ERPs 

are shown separately for each SOA condition. The right panel of Figure 2 shows N2pc 

difference waveforms obtained by subtracting ipsilateral from contralateral ERPs for H1 and 

H2 targets, for all four SOA conditions. In all SOA conditions, solid N2pc components were 

elicited to both H1 and H2 targets. N2pc components to both types of targets were similar 

in size. In the three shorter SOA conditions, there was considerable overlap in time between 

the N2pc components to H1 and H2 targets, and the onset latencies of these N2pcs 

appeared to match the objective SOA between the two displays. 

 These observations were confirmed by analyses of N2pc amplitudes and onset 

latencies. In a repeated-measures ANOVA of N2pc mean amplitudes with the factors display 

sequence (H1 versus H2 targets), SOA (10, 20, 50, or 100 ms), and laterality (electrode 

contralateral versus ipsilateral to the side of the horizontal target) a main effect of laterality, 

F(1,11) = 59.21, p < .001, ηp
2 = .84, confirmed that N2pc components were reliably elicited 

by horizontal shape-defined target items. There were no main effects of SOA or display 

sequence, F < 1, and no significant interactions between SOA and laterality, F(3,33) = 1.31, p 

= .287, ηp
2 = .11, or between display sequence and laterality, F(1,11) = 3.64, p = .083, ηp

2 = 

.25, indicating that the size of the N2pc did not differ systematically between SOA 

conditions, or between H1 and H2 targets. As can be seen in Figure 2 (bottom panel), the 

N2pc to H2 targets tended to be larger than the N2pc to H1 targets in the SOA 100 

condition, but an analysis conducted separately for this condition showed that this 

difference was not statistically reliable, F(1,11) = 3.72, p = .08, ηp
2 = .25. Follow up t-tests 

comparing contra- with ipsilateral activity separately for H1 and H2 targets and all four SOA 

conditions confirmed that all eight N2pc components were reliably present, all t(11) > 6.29, 

all p < .001, all d > .36.  
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 A repeated-measures ANOVA of N2pc onset latency values with the factors SOA and 

display sequence (H1 versus H2 targets) revealed a significant interaction between these 

two factors, Fc(3,33) = 28.98, p < .001, ηp
2

c = .72, showing that N2pc onset latency 

differences between H1 and H2 targets differed across SOA conditions. N2pc latencies in 

response to H1 and H2 targets were compared using paired t-tests, separately for each SOA 

condition. In blocks where both displays were separated by a 100 ms SOA, N2pc 

components to H1 and H2 targets emerged at post-stimulus latencies of 211 ms and 341 ms, 

tc(11) = 19.60, p < .001, ηp
2

c = .97. In the SOA 50 condition, the respective N2pc onset 

latencies were 231 ms and 274 ms, tc(11) = 2.78, p < .01, ηp
2

c = .41. For the two shortest SOA 

conditions, N2pc components to H1 and H2 targets emerged at post-stimulus latencies of 

217 ms and 228 ms (SOA 20 condition) and 215 and 225 ms (SOA 10 condition). However, 

these two onset latency differences failed to reach significance, both tc(11) < 1.4, both p > 

.20, both ηp
2

c < .15.  

 

Discussion of Experiment 1 

 

 Experiment 1 investigated the speed with which attention is allocated to two shape-

defined targets when these targets are presented in rapid succession. In all four SOA 

conditions, H1 and H2 targets elicited solid N2pc components. The onset delay between 

these two N2pc components (130 ms in the SOA 100 condition, 43 ms in the SOA 50 

condition, and 10 ms in the SOA 20 and SOA 10 conditions) approximately matched the 

objective SOA between the two search displays. This temporal pattern of N2pc components 

was very similar to the results previously observed for colour-defined targets (Eimer & 

Grubert, 2014), and provides no evidence that the shape-guided selection of multiple 

targets operates more slowly than target selection processes that are guided by colour. If 

this had been the case, attentional target selection as reflected by the N2pc should have 

been substantially delayed, in particular for targets in the second display. In fact, across all 

four SOA conditions, N2pc components to H1 and H2 targets were both elicited 

approximately 220 ms after the onset of the search display that included the respective 

target. This was confirmed by an additional analysis where N2pc onsets in response to H1 

and H2 targets (averaged across all four SOA conditions) were computed relative to onset of 
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the first and second display, respectively. N2pc onset latencies were nearly identical for H1 

and H2 targets (219 ms versus 222 ms; tc(11) < 1). 

In the SOA 100 condition, non-overlapping N2pc components were observed 

(analogous to previous findings for colour-defined targets; see Eimer & Grubert, 2014), 

which would be consistent with two temporally separate serial selection processes. To 

dissociate serial and parallel selection, the results from the three shorter SOA conditions are 

critical. N2pc components to H1 and H2 targets in these conditions were identical in size and 

overlapped in time (see Figure 2, right panels), which strongly suggests that two attentional 

selection processes were elicited in parallel. The hypothesis that, in contrast to colour-

guided selection processes, the attentional selection of shape-defined targets operates in a 

serial fashion would have predicted no overlap between N2pc components to H1 and H2 

targets in any SOA condition of Experiment 1, as focal attention would need to be 

withdrawn from the first target location in order to be re-allocated to the second target. 

This was clearly not the case. If the shape-guided selection of multiple targets was a serial 

process, two possible outcomes would have been expected. Firstly, if serial selection was 

relatively slow, allocating attention to H2 targets should have been particularly difficult for 

the shortest SOA conditions, where these targets may have already disappeared before 

attention could be deployed to their location. This should have resulted in impaired 

performance and strongly attenuated N2pc components to H2 targets, in particular in the 

SOA 10 and SOA 20 conditions. Secondly, if serial selection processes were very fast, it may 

have been possible to shift attention extremely rapidly from the first to the second target in 

these short SOA conditions. Although performance may be spared in this case, N2pc 

components to H1 targets should have been severely attenuated in the SOA 10 and 20 

conditions. No support for either of these predictions was obtained in Experiment 1. There 

were no reliable N2pc amplitude differences between H1 and H2 targets in any of the four 

SOA conditions (see Figure 2), demonstrating that the deployment of attention to either of 

these two targets was not impaired when they followed each other in rapid succession. 

Furthermore, task performance was not impaired with short SOAs. In fact, performance was 

better in the three shorter SOA conditions relative to blocks where the two displays were 

separated by a 100 ms SOA. The reasons for these performance costs in the SOA 100 

condition will be considered in the General Discussion.  
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It should be noted that the N2pc onset latencies to H1 versus H2 targets in 

Experiment 1 did not match the objective onset difference between the two successive 

displays as precisely as was previously found for colour-guided target selection (Eimer & 

Grubert, 2014; see also Experiment 1 of Grubert & Eimer, 2015). In these previous studies, 

the N2pc to H2 targets was significantly delayed relative to the N2pc to H1 targets even 

when the SOA between these two targets was only 10 ms. Although N2pc components to 

H1 targets also emerged numerically earlier than the N2pc to H2 targets in the SOA 10 and 

SOA 20 conditions of Experiment 1, these onset latency differences were not statistically 

reliable. This may suggest that attentional selection processes based on shape signals may 

be temporally less precise (i.e., less exactly coupled to the objective onset of a particular 

target stimulus) than colour-guided selection processes, perhaps because colour signals 

become available more rapidly than information about other sensory attributes such as 

form or motion direction (e.g., Zeki, 2016). The existence of even a small temporal jitter 

across trials may result in some temporal smearing of N2pc components to H1 and H2 

targets when SOAs are very short. In the two longer SOA conditions, reliable N2pc onset 

latency differences between H1 and H2 targets were observed. 

 Overall, the results from Experiment 1 demonstrate that the time course of the 

attentional selection of two target objects defined by their shape is very similar to the time 

course of colour-guided target selection (Eimer & Grubert, 2014). They strongly suggest that 

attention can be allocated rapidly and in parallel to successively presented target objects, 

regardless of whether these targets are defined by a particular colour or a specific shape. 

Such rapid parallel attentional selection processes are clearly not restricted to situations 

where targets are defined by their colour. However, they may only be available during 

search for target objects that share a particular known visual attribute, but not under 

conditions where targets differ in their visual-perceptual features, and are instead defined 

by their category. This was tested in Experiment 2. 

 

 

Experiment 2 

  

 When the physical features of target objects are known in advance, their attentional 

selection can be guided by search templates that represent these features. Although there 
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may be substantial differences in the ability of different visual features to guide attention 

(e.g., Wolfe & Horowitz, 2004), it is generally assumed that target selection processes 

operate more rapidly and more efficiently when search targets are defined by one or more 

visual-perceptual attributes than under conditions where these targets are defined at a 

more abstract level in terms of their category membership. In fact, Wolfe & Horowitz (2004) 

have argued that information about the category membership of target objects (e.g., their 

alphanumerical or semantic category) is unlikely to guide the deployment of spatial 

attention in visual search tasks. Many studies have demonstrated that search for specific 

visual target features is much more efficient than search for category-defined targets (e.g., 

Malcolm & Henderson, 2009; Yang & Zelinsky, 2009). When targets are defined by visual 

features, their selection can be based on a direct match between a stored feature template 

and the physical attributes of particular objects. During category-based search, objects 

within the current target category will often differ substantially with respect to their 

physical features, ruling out the possibility of a feature-based match with a particular target 

template as the mechanism of target selection. The important role of visual representations 

of target-defining properties for fast attentional selection has been demonstrated by 

behavioural and ERP visual search studies which have shown that search targets are 

detected more rapidly when they are specified by visual as compared to verbal descriptions 

(Wolfe, Horowitz, Kenner, Hyle, & Vasan, 2004; Nako, Smith, & Eimer, 2015).  

 If there are such qualitative differences in the control of attentional selection 

between feature-based and category-based search tasks, this may affect the availability of 

rapid parallel target selection mechanisms in situations where multiple targets are 

encountered in rapid succession. Such mechanisms may operate only under conditions 

where targets are defined by particular visual attributes such as their colour (Eimer & 

Grubert, 2014) or shape (Experiment 1 of the present study), but not in tasks where 

different possible target objects are physically dissimilar and their status as targets depends 

on their category membership. This prediction was tested in Experiment 2, which used the 

same procedures as Experiment 1, except that targets were now defined by their 

alphanumerical category. One each trial, two successively presented displays contained one 

letter and one digit on opposite sides (Figure 1, bottom panel). Half of all participants were 

instructed to select the two digits and to decide whether or not these target objects 

belonged to the same sub-category (odd versus even digits). The other six participants had 
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to select the two successively presented letters to make an analogous judgment (vowels 

versus consonants). As in Experiment 1, the two displays were separated in different blocks 

by SOAs of 100, 50, 20, or 10 ms, and N2pc components were measured in response to 

horizontally presented category-defined target objects in the first or second display (H1 and 

H2 targets). If the mechanism of guiding attention rapidly and in parallel to multiple target 

objects when targets are defined by colour or shape is not available when target selection 

has to be based on alphanumerical category, the pattern of N2pc components to H1 and H2 

targets should be very different from the pattern observed in our previous study (Eimer & 

Grubert, 2014) and in the current Experiment 1. A delay of N2pc components to H1 targets 

relative to Experiment 1 would show that the deployment of attention to category-defined 

targets operates more slowly than the allocation of attention to target objects defined by a 

particular shape. Critically, if category-guided attention cannot be allocated rapidly and in 

parallel to multiple targets, N2pc components to H2 targets should be considerably delayed 

or attenuated, especially for the shorter SOA conditions, and task performance should be 

impaired when the SOA between the two targets is short. Alternatively, if rapid and parallel 

attentional allocation to multiple objects is a general mechanism of target selection that is 

even available when selection processes are category-based, Experiment 2 should reveal a 

qualitatively similar temporal pattern of N2pc components as was observed in Experiment 

1. 

  

Methods 

 

Participants 

 Thirteen participants were paid to take part in this study. One of them was excluded 

from analysis due to excessive eye movement activity. The remaining twelve participants 

were aged between 20 and 40 years (mean age 30 years). Eight were female and four were 

left-handed. All participants had normal or corrected-to-normal vision. 

 

Stimuli and procedure 

 The procedure was identical to that of Experiment 1, except that stimuli were grey 

letters (A, D, E, K, N or U) and digits (2, 4, 5, 6, 7, or 9), and the target was defined by its 

alphanumerical category (letter or digit). All digits and letters were matched in height and 
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width (0.8° x 0.8°). Target objects were all objects in one category and distractor objects 

were all objects in the other category (Figure 1, bottom panel). Each participant was 

assigned a target category that remained constant throughout the entire experiment. For 

half of the participants, the target items were letters, for the other half they were digits. 

Participants’ task was to report whether the two successively presented category-defined 

targets belonged to the same sub-category (for letter targets, both vowels or both 

consonants; for digit targets, both odd or both even) or a different sub-category (one vowel 

and one consonant, or one odd and one even digit) by pressing one of two purpose-built 

vertically aligned response keys. Every other aspect of stimulus presentation and procedure 

was identical to Experiment 1. 

 

EEG recording and data analyses 

 All EEG recording and data analyses were identical to those used in Experiment 1. As 

in Experiment 1, the fixed N2pc mean amplitude window for H1 targets was 210-310 ms, 

and H2 mean amplitude windows were again defined as four 100 ms intervals centred on 

N2pc peak latencies for each SOA condition, rounded to the nearest 5 ms. These windows 

were 215-315 ms (SOA 10), 235-335 ms (SOA 20), 280-380 ms (SOA 50), and 335-435 ms 

(SOA 100) in Experiment 2. To justify the use of a 50% peak amplitude criterion to define 

N2pc onset latencies, it was again tested whether N2pc peak amplitudes differed reliably 

between task conditions. N2pc peak amplitudes for these two types of targets were 

computed and compared with jackknife-based analyses within the same post-stimulus time 

windows as in Experiment 1. An ANOVA with the factors display sequence (H1 versus H2 

targets) and SOA (10, 20, 50, and 100 ms) found no significant main effects and no 

interaction between these two factors, confirming that N2pc peak amplitudes did not differ 

systematically between H1 and H2 targets or between the four SOA conditions. 

 

Results 

 

Behavioural performance 

Anticipatory or exceedingly slow responses (RTs faster than 200 ms or slower than 

1500 ms) were removed from analysis, resulting in the exclusion of less than 0.3% of all 

trials. The repeated-measures ANOVAs with the factor SOA (10, 20, 50, 100 ms) and display 
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sequence (H1 versus H2 targets) revealed no significant main effect of SOA on RTs (SOA 100: 

667 ms, SOA 50: 688 ms, SOA 20: 710 ms, SOA 10: 710 ms; F(3,33) = 2.35, p = .091, ηp
2 = 

.18). Subsequent paired t-tests found a non-significant trend for faster RTs in the SOA 100 

than SOA 10 and 20 conditions (SOA 10 vs. SOA 100: t(11) = 1.95, p = .077, d = .48; SOA 20 

vs. SOA 100: t(11) = 2.14, p = .056, d = .45). There was no main effect of display sequence on 

RTs, and no interaction between SOA and display sequence, both F < 1.6. Error rates were 

statistically identical across SOA conditions (SOA 100: 3.1%, SOA 50: 3.0%, SOA 20: 3.3%, 

SOA 10: 3.0%), F(3,33) < 1. There was no main effect of display sequence and no interaction 

between SOA and display sequence on error rates, both F < 1. 

 

 

N2pc components 

 Figure 3 (left and middle panels) shows ERPs at posterior electrodes PO7/8 

contralateral and ipsilateral to the side of the horizontal alphanumerically defined target in 

the first display (H1 targets) or in the second display (H2 targets). ERPs are shown separately 

for each SOA condition, together with N2pc difference waveforms obtained by subtracting 

ipsilateral from contralateral ERPs for H1 and H2 targets. Analogous to Experiment 1, N2pc 

components of similar size were elicited to both H1 and H2 targets in all four SOA 

conditions, with onset latencies that mirrored the objective SOA between the two displays. 

N2pc components to H1 and H2 targets again overlapped in time for the three shorter SOA 

conditions. 

 These observations were confirmed by analyses of N2pc amplitudes and onset 

latencies. In a repeated-measures ANOVA of N2pc mean amplitudes with the factors display 

sequence (H1 versus H2 targets), SOA (10, 20, 50, or 100 ms), and laterality (electrode 

contralateral versus ipsilateral to the side of the horizontal target) a main effect of laterality, 

F(1,11) = 37.45, p < .001, ηp
2 = .77, confirmed that N2pc components were reliably elicited 

by horizontal category-defined target items. There were no main effects of SOA or display 

sequence, and no significant interaction between SOA and laterality, all F < 1. The 

interaction between display sequence and laterality reached significance, F(1,11) = 5.24, p < 

.05, ηp
2 = .32, suggesting that there was a small but reliable tendency for N2pc amplitudes 

to be larger for H2 relative to H1 targets (see Figure 3). However, additional analyses 

conducted separately for each SOA condition did not find any significant interactions 
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between laterality and display sequence, all F(1,11) < 2.78, all p > .123, ηp
2 < .21. Eight 

follow up t-tests revealed that N2pc components to both H1 and H2 targets were reliably 

present in all four SOA conditions, all t(11) > 3.33, all p < .01, all d > .21.  

 A repeated-measures ANOVA of N2pc onset latencies with the factors SOA and 

horizontal display sequence revealed a significant interaction between both factors, Fc(3,33) 

= 21.46, p < .001, ηp
2

c = .66, demonstrating that the onset of N2pc components to H1 and 

H2 targets was sensitive to the objective time interval between the two displays. Four 

follow-up t-tests compared N2pc onset latencies to H1 and H2 targets for each SOA 

condition. In the SOA 100 condition, where the two N2pc components showed no temporal 

overlap, their onset latency difference was 121 ms (214 vs. 336 ms; tc(11) = 13.22, p < .001, 

ηp
2

c = .94). In the SOA 50 condition, this difference was 71 ms (199 vs. 270 ms), tc(11) = 6.48, 

p < .001, ηp
2

c = .79). In contrast to Experiment 1, there was now also a significant N2pc onset 

latency difference between H1 and H2 targets of 29 ms in the SOA 20 condition (203 vs. 231 

ms; tc(11) = 2.48, p < .05, ηp
2

c = .36). In the SOA 10 condition, the N2pc to H1 targets 

preceded the N2pc to H2 targets by 13 ms (215 vs. 228 ms), and this difference approached 

significance, tc(11) = 2.09, p = .061, ηp
2

c = .28. 

 

Discussion of Experiment 2 

 

 The temporal pattern of N2pc components to H1 and H2 targets in Experiment 2 was 

very similar to the pattern found in Experiment 1, in spite of the fact that target selection 

could no longer be guided by a visual feature (shape), but was instead determined by the 

alphanumerical category of target objects. The onset latency of the N2pc to horizontal 

targets in the first display (208 ms, averaged across all four SOA conditions) was similar to 

the corresponding N2pc latency for H1 targets in Experiment 1 (219 ms), demonstrating that 

the attentional selection of category-defined targets was not systematically delayed relative 

to the selection of shape targets. N2pc components triggered by H1 and H2 targets were 

equal in size and overlapped in time in the SOA 10, 20, and 50 conditions (see Figure 3). As 

in Experiment 1, the onset delay between these two N2pc components (129 ms, 71 ms, 29 

ms, and 13 ms, for the SOA 100, 50, 20, and 10 conditions) approximately matched the 

objective SOA between the two search displays, indicating that the attentional selection of 

each of the two targets followed its own independent time course. However, and in contrast 
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to Experiment 1, there was a small but reliable delay in the onset of the N2pc to H2 targets 

(measured relative to the onset of the second display) relative to the onset of the N2pc to 

H1 targets (208 ms versus 221 ms; averaged across all four SOA conditions; tc(11) = 2.61, p < 

.01, ηp
2

c = .54).2 This suggests that when two category-defined targets are presented in rapid 

succession, the deployment of attention to the second target object may be slightly but 

systematically delayed relative to the initial attentional selection of the first target. 

 Overall, the results of Experiment 2 provide strong evidence that the rapid parallel 

selection of multiple target objects is not restricted to situations where targets are defined 

by specific visual features such as colour or shape, but also operates when it has to be based 

on the alphanumerical category of visual objects. If the category-based attentional 

deployment to target objects presented in rapid succession was based on slow serial 

attentional selection mechanisms, N2pc components to H2 targets should have been 

strongly delayed and attenuated in Experiment 2, particularly for the short SOA conditions, 

and behavioural performance should have been strongly impaired in these conditions. No 

evidence for this was found in the N2pc waveforms, or in the pattern of behavioural results. 

There were no systematic differences in RTs or error rates between the four SOA conditions, 

demonstrating that decreasing the interval between the two category-defined targets did 

not impair participants’ ability to select and identify both of them.  

 The rapid selection of category-defined targets observed in Experiment 2 is in line 

with previous behavioural studies demonstrating that information about category 

membership can affect attentional control processes. Nontarget objects which are 

physically dissimilar but semantically linked to current targets can attract attention during 

visual search (e.g., Moores, Laiti, & Chelazzi, 2003; Belke, Humphreys, Watson, Meyer, & 

Telling, 2008; see also Telling, Kumar, Meyer, & Humphreys, 2010, for ERP evidence). Along 

similar lines, images of real-world visual objects that match the current search target 

category can capture attention even when they are presented at task-irrelevant locations 

(Wyble, Folk, & Potter, 2013), indicating that information about object categories can be 

                                                           
2 To determine whether this N2pc onset delay to H2 versus H1 targets in Experiment 2 
differed across SOA conditions, we ran an additional ANOVA of these latency values with the 
factors SOA (10, 20, 50, or 100 ms) and display sequence (H1 versus H2). There was a main 
effect of display sequence, Fc(1,11) = 11.43, p < .01, ηp

2
c = .51, reflecting the delayed N2pc to 

H2 targets, but no interaction between display sequence and SOA, Fc < 1, demonstrating 
that this delay was unaffected by the SOA between H1 and H2. 
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encoded rapidly and can affect the deployment of attention in a task-set contingent fashion 

(see also Castelhano, Pollatsek, & Cave, 2008, and Maxfield, Stadler, & Zelinsky, 2014, for 

evidence that the typicality of target objects in terms of their category can affect visual 

search performance). The speed of such category-based attentional selection processes has 

been investigated in recent N2pc studies from our lab which used category-based visual 

search tasks where a single target object appeared together with multiple distractor objects. 

N2pc components to target objects appeared approximately 200 ms after display onset 

when observers searched for any letter among digits, or vice versa (Nako, Wu, & Eimer, 

2014), and around 240 ms post-stimulus in a task where targets were line drawings of real-

world objects from a specific category (kitchen objects among items of clothing, or vice 

versa; Nako et al., 2015). While these findings demonstrate that the category-based 

selection of single target objects can be triggered remarkably rapidly, the results of 

Experiment 2 show that multiple category-guided selection processes can be elicited in 

parallel and independently. The mechanisms that may be responsible for this rapid parallel 

selection of category-defined targets will be considered in the General Discussion.   

 

 

General Discussion 

 

 The aim of the present study was to determine whether the rapid parallel 

mechanisms for the attentional selection of multiple targets that can be activated in tasks 

where targets are defined by colour is also available when target selection is controlled by 

other attributes. In Experiment 1, targets were defined by shape and in Experiment 2 by 

alphanumerical category. Relative to colour, shape and in particular category are believed to 

be less efficient in guiding attentional target selection in visual search (see Wolfe & 

Horowitz, 2004). When pairs of shape-defined or category-defined targets appear in rapid 

succession, their selection may therefore be less rapid than colour-based selection, or may 

operate serially rather than in a parallel fashion. This should be reflected in a systematically 

different temporal pattern of N2pc components in response to the successively presented 

two target objects than in experiments where colour was the target-defining attribute 

(Eimer & Grubert, 2014; Grubert & Eimer, 2015).  
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 The N2pc results observed in the current study did not provide any evidence for the 

assumption that there are systematic temporal and functional differences between the 

attentional selection of multiple successive target objects when these targets are defined by 

colour, shape, or alphanumerical category. In Experiment 1, where target objects are 

defined by shape, temporally overlapping N2pc components were elicited in the short SOA 

conditions in response to horizontal targets in the first and second display. The onset of 

these N2pc components to H1 and H2 targets matched the objective time interval between 

these two targets. When N2pc latencies to H1 and H2 targets were computed relative to the 

onset of the first or second display, respectively, there was no delay in N2pc onset latencies 

to H2 as compared to H1 targets, and no amplitude differences between these two N2pc 

components, demonstrating that the attentional selection of a second shape-defined target 

was not delayed or impaired when another shape target at another location had been 

selected immediately before. The pattern of N2pc components observed in Experiment 1 

was very similar to the pattern previously found for during the selection of multiple colour-

defined targets (e.g., Eimer & Grubert, 2014), which strongly suggests that colour and shape 

are attributes that are both equally available for the control of rapid parallel and 

independent attentional selection processes. 

Perhaps the most surprising outcome of the present study was that essentially the 

same temporal pattern of N2pc components to H1 and H2 targets was observed in 

Experiment 2 where target objects were defined by their alphanumerical category. These 

N2pc components were again equal in size and overlapped in time in the short SOA 

conditions, which suggests that the selection of category-defined targets that appear in 

rapid succession is based on the same fast parallel attentional processes that are activated 

when targets are defined by a visual feature (colour or shape). In contrast to Experiment 1, 

there was a small but systematic delay in the onset of N2pc components to H2 versus H1 

targets (relative to the onset of their respective stimulus displays) in Experiment 2, which 

suggests that the two successive target selection processes may not be entirely 

independent, but that the category-guided allocation of attention to a new target object 

starts slightly later when attention has already been deployed to another category-defined 

target at a different location. The fact that the selection of the second target was delayed 

relative to the selection of the first target by approximately 10 ms in Experiment 2 but not in 

Experiment 1 mirrors similar observations from previous N2pc experiments where the two 
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target objects were defined either by the same colour or two different colours (Grubert & 

Eimer, 2015). In this study, there was a small but systematic delay of the N2pc to H2 targets 

on trials where the two targets differed in colour. This was attributed to costs that arise 

when there is a feature change between these targets, so that the selection of the second 

target cannot be guided by the same feature-specific template that was activated during the 

selection of the first target object. An analogous explanation may also account for the small 

delay of the N2pc to H2 targets in Experiment 2, where the two target objects belonged to 

the same category but were physically different, and the absence of such a delay in 

Experiment 1, where both target objects had the same shape.  

Overall, the results of Experiment 2 indicate that alphanumerical category may be 

just as efficient as colour and shape in controlling the rapid parallel allocation of attention to 

multiple target objects. The behavioural results observed in Experiments 1 and 2 also 

suggested that attention was deployed rapidly and in parallel both to shape-defined and to 

category-defined objects. There were no systematic performance differences between 

these two tasks, as confirmed by between-participant analyses across both experiments, 

which found no reliable differences in RTs, F(1,22) < 1, or error rates, F(1,22) = 1.78, p = 

.196, ηp
2 = .07, between the shape and category selection tasks of Experiments 1 and 2. If 

the allocation of attention to shape- or category-defined target objects was slow or 

operated in a serial fashion, the selection of target objects in the second display should have 

been particularly challenging when the SOAs between the two displays were very brief, and 

this should have been reflected by impaired performance in the short SOA conditions. No 

such performance costs for short SOAs were observed in either experiment. In Experiment 

2, RTs and error rates did not differ between the four SOA conditions. In Experiment 1, 

participants performed worse when the SOA between the two displays was 100 ms relative 

to blocks with shorter SOAs. These performance costs in the SOA 100 condition are likely 

due to the fact that a perceptual comparison between the two successively presented target 

shapes was required in Experiment 1, as participants had to decide whether these shapes 

had a gap on the same side or on opposite sides. Previous research investigating the 

mechanisms of matching successively presented visual stimuli (e.g., Brockmole, Wang, & 

Irwin, 2002; Dalvit & Eimer, 2011) have found good matching performance when the 

interval between the two stimuli was either very short (below 100 ms) or long (300 ms or 

longer), but strongly impaired performance for intermediate intervals. This pattern of 
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results was interpreted as evidence for the existence of two qualitatively different types of 

matching processes. With very short intervals between two targets, a sensory-perceptual 

representation of the first target is still available when a visual representation of the second 

target is generated, and both representations can be directly compared (percept-percept 

matching). With longer intervals, a representation of the first target has been encoded in 

working memory, and can be compared with a perceptual representation of the second 

target (image-percept matching). When the interval between both targets is intermediate, 

the sensory representation of the first target is no longer available and a working memory 

representation of this target has not yet been formed, resulting in strong impairments for 

matching performance. It is likely that the behavioural costs observed for the SOA 100 

condition in Experiment 1 are due to the fact that a sensory representation of the first 

target shape had already faded at the time when a perceptual representation of the second 

target was formed, and a working memory representation was not yet available. No such 

performance impairments for the SOA 100 condition were observed in Experiment 2, 

presumably because response selection did not require a perceptual comparison between 

the two targets, but instead a judgment with respect to their alphanumerical subcategory 

(odd/even; vowel/consonant).3  

If attention can be allocated rapidly and in parallel to multiple target objects not only 

when these objects are defined by a specific visual attribute, but also when they are defined 

by their alphanumerical category, which attentional control mechanisms are responsible for 

these remarkably fast and flexible selection processes? Attentional target selection is 

assumed to be controlled by attentional templates that represent currently relevant target-

defining features (e.g., Desimone & Duncan, 1995; Duncan, 2006). Such templates may be 

implemented by target-selective baseline shifts of neural activity that emerge prior to the 

arrival of visual input during the preparation for a particular selection task (e.g., Chelazzi, 

                                                           
3 This difference between the two experiments was also confirmed by the comparison of 

error rates between the two tasks, which found an interaction between task (shape 

selection versus category selection) and SOA, F(3,66) = 10.58, p < .001, ηp
2 = .32. Follow-up 

analyses showed that error rates did not differ between the two tasks for the three shorter 

SOAs, all t(22) < 1.26, all p > .223, all d < .51, but were significantly higher for SOA 100 in 

Experiment 1 where target selection was shape-based than in Experiment 2 where targets 

were defined by their alphanumerical category (9.1% versus 3.1%, t(22) = 2.91, p < .05, d = 

1.19).  



27 
 

Duncan, Miller, & Desimone, 1998; Chawla, Rees, & Friston, 1999). Once displays containing 

target and nontarget stimuli have been presented, the neural processing of template-

matching features is enhanced. Importantly, such goal-selective attentional modulations of 

neural activity are elicited in a spatially global fashion across the entire visual field (“feature-

based attention”; e.g., Martinez-Trujillo & Treue 2004; Saenz, Buracas, & Boynton, 2002; 

Bichot, Rossi, & Desimone, 2005; Serences & Boynton, 2007; Zhang & Luck, 2009). Such 

spatially global feature-based attentional modulations may be a direct result of the previous 

activation of feature-selective preparatory attentional templates (see Eimer, 2014, 2015, for 

further discussion). In this context, the rapid emergence of temporally overlapping N2pc 

components to successively presented objects with a particular target-defining feature 

could reflect feature-based attentional modulations of visual processing that are elicited in 

parallel at multiple locations in the visual field. Because spatially global effects of feature-

based attention have been observed in tasks where observers were instructed to attend to 

simple visual attributes such as colour, shape, or motion, this interpretation may account for 

the presence of parallel independent N2pc components to H1 and H2 targets in tasks where 

targets are defined by a particular colour (Eimer & Grubert, 2014) or shape (the current 

Experiment 1). However, the fact that Experiment 2 showed a virtually identical temporal 

pattern of N2pc components in response to category-defined targets is more difficult to 

reconcile with such an explanation in terms of spatially global feature-based attentional 

modulations. 

One possibility to account for the findings of Experiment 2 is to assume that 

alphanumerical category is equivalent to visual features such as colour and shape in its 

ability to guide attention rapidly and flexibly to candidate target objects. In line with this 

assumption, visual search for letters among digits, or vice versa, is remarkably efficient 

(Egeth, Jonides, & Wall, 1972; Duncan, 1980), even when the physical similarity between 

and within these two categories is matched (Dixon & Shedden, 1987). If information about 

alphanumerical category is extracted rapidly during the early parallel processing of visual 

input (as proposed by Duncan, 1980), this information might be employed just as effectively 

in the guidance of attentional target selection as signals related to basic physical stimulus 

attributes such as colour and shape. Initial evidence for the involvement of object categories 

in the top-down control of visual search comes from fMRI studies that investigated 

distributed patterns of brain activity elicited in visual cortex during search for category-
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defined target objects in real-world visual scenes (e.g., people or cars). Activation patterns 

selective to the current target category were found during both the preparation for an 

upcoming search task (Peelen & Kastner, 2011), and also during the subsequent processing 

of search displays, even when category-matching objects appeared at task-irrelevant 

ignored locations in these displays (Peelen, Fei-Fei, & Kastner, 2009). Such findings suggest 

that preparatory attentional templates and spatially global feature-based attentional 

modulations in visual cortex may be involved in the control of attentional target selection 

not only when targets are defined by simple visual attributes, but also during search for 

target objects that belong to more abstract but presumably highly overlearned categories 

(e.g., people, animals, cars, or letters versus digits). 

Instead of assuming that the rapid parallel attentional selection of multiple category-

defined target objects revealed by the N2pc results of Experiment 2 is based on attentional 

control processes that operate primarily within posterior visual cortical areas, an alternative 

possibility is that these selection processes are based on long-range interactions between 

visual cortex and prefrontal areas involved in top-down attentional control. If information 

about the alphanumerical category of specific stimuli is extracted rapidly during the initial 

parallel processing of visual input, these signals may then be transmitted to prefrontal 

cortex which is known to be involved in category-based object discrimination processes 

(e.g., Freedman et al., 2001; Miller et al., 2003). The detection of a target category match in 

prefrontal cortex would then trigger recurrent feedback signals to spatially corresponding 

locations in visual cortex, resulting in enhancements of visual activity at these locations, and 

the emergence of N2pc components to category-defined targets (see Hochstein & Ahissar, 

2002, and Bundesen et al., 2005, for similar ideas about the role of recurrent feedback 

pathways in the control of attentional target selection). In this context, the temporal pattern 

of N2pc components to H1 and H2 targets observed in Experiment 2 would suggest that 

individual target selection processes controlled by recurrent interactions between visual and 

prefrontal cortex can be triggered in rapid succession, with each process following its own 

independent time course. 

The central new insight of the present study is that processes involved in the rapid 

attentional selection of successive shape-defined or category-defined target objects show 

an extremely similar temporal profile to the processes previously observed during colour-

based selection (Eimer & Grubert, 2014). This similarity strongly suggests that the same 
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attentional control processes operate in all these selection tasks, thereby providing 

important constraints for the type of neural mechanisms that are likely to be involved. The 

rapid parallel attentional selection of targets defined by their alphanumerical category in 

visual areas may be mediated by category-sensitive areas of prefrontal cortex, and thus 

involve long-range recurrent interactions between prefrontal and visual cortex. The fact that 

the time course of selecting successive category-defined targets is virtually identical to the 

time course of allocating attention to multiple targets in colour or shape selection tasks 

suggests that the same recurrent interactions between posterior and anterior cortical areas 

are involved in the control of attention when targets are defined by simple visual attributes 

or by their alphanumerical category.   
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Figure legends 

 

Figure 1. Schematic illustration of the search displays and the time course of events in the SOA 100 

and SOA 10 conditions of Experiment 1 (top panel) and Experiment 2 (bottom panel). On each trial, 

two consecutive search displays were presented for 50 ms each. In different blocks, the SOA 

between these two displays was 100, 50, 20, or 10 ms (the SOA 50 and 20 conditions are not shown). 

Both displays contained a target/distractor pair on the horizontal or vertical meridian. On half of all 

trials, a horizontal target appeared in the first display and a vertical target in the second display, and 

this order was reversed in the other half (horizontal target first: H1 target; horizontal target second: 

H2 target). In Experiment 1, stimuli were shapes with a gap on their left or right side, and 

participants’ task was to decide whether the target shapes in the two displays (circles in Figure 1) 

had a gap on the same or on different sides. In Experiment 2, stimuli were letters and digits, and 

participants’ task was to decide whether the two objects in the target category (letters or digits) 

belonged to the same sub-category (vowels/consonants; odd/even digits) or not.  

 

Figure 2. N2pc results in Experiment 1. The left and middle panels show grand-average ERP 

waveforms measured in the 500 ms interval after the onset of the first search display at posterior 

electrodes PO7/PO8 contralateral and ipsilateral to a horizontal target in the first display (H1 targets) 

or second display (H2 targets), separately for all four SOA conditions. The right panel depicts N2pc 

difference waveforms obtained by subtracting ipsilateral from contralateral ERPs, separately for H1 

and H2 targets, and all four SOA conditions. The circles mark the point where N2pc difference 

amplitudes reach the onset criterion value (50% of maximum amplitude). N2pc onset latency 

differences between H1 and H2 targets closely matched the objective time interval between the two 

displays.  

 

Figure 3. N2pc results in Experiment 2. Grand-average ERP waveforms measured in the 500 ms 

interval after the onset of the first search display at posterior electrodes PO7/PO8 contralateral and 

ipsilateral to a horizontal target in the first display (H1 targets) or second display (H2 targets), shown 

separately for all four SOA conditions, together with the corresponding N2pc difference waveforms 

(right panel). The circles mark the point where N2pc difference amplitudes reach the onset criterion. 

N2pc onset latency differences between H1 and H2 targets again matched the temporal delay 

between the two search displays. 
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Figure 1. 
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Figure 2. 
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