
Two Particle-in-Grid Realisations on Spacetrees

T. Weinzierla,∗, B. Verleyeb,c, P. Henrid, D. Rooseb

aSchool of Engineering and Computing Sciences, Durham University
Stockton Road, Durham DH1 3LE, Great Britain
bDepartment of Computer Science, KU Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium

cVrije Universiteit Brussel
Pleinlaan 2, 1050 Elsene, Belgium

dLaboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E)
CNRS, Université d’Orléans
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Abstract

The present paper studies two particle management strategies for dynamically
adaptive Cartesian grids at hands of a particle-in-cell code. One holds the par-
ticles within the grid cells, the other within the grid vertices. The fundamental
challenge for the algorithmic strategies results from the fact that particles may
run through the grid without velocity constraints. To facilitate this, we rely
on multiscale grid representations. They allow us to lift and drop particles be-
tween different spatial resolutions. We call this cell-based strategy particle in
tree (PIT). Our second approach assigns particles to vertices describing a dual
grid (PIDT) and augments the lifts and drops with multiscale linked cells.

Our experiments validate the two schemes at hands of an electrostatic particle-
in-cell code by retrieving the dispersion relation of Langmuir waves in a thermal
plasma. They reveal that different particle and grid characteristics favour differ-
ent realisations. The possibility that particles can tunnel through an arbitrary
number of grid cells implies that most data is exchanged between neighbouring
ranks, while very few data is transferred non-locally. This constraints the scala-
bility as the code potentially has to realise global communication. We show that
the merger of an analysed tree grammar with PIDT allows us to predict particle
movements among several levels and to skip parts of this global communication
a priori. It is capable to outperform several established implementations based
upon trees and/or space-filling curves.
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1. Introduction

Lagrangian-Eulerian descriptions of physical phenomena are used by a wide
range of applications. They combine the short-range aptitude of particle-based
with the long-range capabilities of grid-based approaches. Besides their pop-
ularity driven by application needs, particle-grid methods are also popular in
supercomputing. They are among the best scaling algorithms today (cf. for
example [8, 20, 21]). This scaling mainly relies on two ingredients. On the
one hand, particle-particle interactions often are computationally expensive in
terms of floating point operations with moderate memory footprint. On the
other hand, the particle-grid interaction requires a mapping of particles to the
grid. This is a spatial sorting problem. It either is performed infrequently, is
computationally cheap as the particles move at most one grid cell at a time, or
the grid can be constructed efficiently starting from the particles [21].

The present paper is driven by a plain electrostatic PIC simulation [9, 27]
of an unmagnetised plasma. Its computational profile differs from the previous
characteristics as it solves a partial differential equation (PDE) on an adaptive
Cartesian grid which has to be stored persistently in-between two time steps. At
the same time, the particles do not interact with each other—they induce very
low computational workload—but may move at very high speed through the
grid. Our work focuses on well-suited data structures and algorithms required
for such a code within a dynamic adaptive mesh (AMR) environment where the
simultion is ran on a distributed memory machine.

The setup raises an algorithmic challenge. While dynamic AMR for PDEs
as well as algorithms based upon particle-particle interactions are exhaustively
studied, our algorithm requires a fast mapping of particle effects onto the grid
and the other way round per time step. This assignment of particles to the grid
changes incrementally. Yet, some particles might tunnel several cells per time
step: no particle is constrained to move at most into a neighbouring cell. In
general, the time step size is chosen such that the majority of particles travel at
most one cell per time step. This avoids the finite grid instability [2], i.e. numer-
ical, non-physical, heating of the experiment. However, in our application as
well as most non-relativistic plasma and gravitation applications, suprathermal
particles do exist. Their velocity is not bounded.

The present paper proposes the parallel, locally refined, dynamically adap-
tive grid to result from a spacetree [29, 32] yielding a Cartesian tessellation.
Particles are embedded into the finest tree level. The latter is the adaptive grid
hosting the PDE. A multiscale grid traversal with particle-grid updates then
can be realised via a simple recursive code mirroring a depth-first search [30].

Two particle realisation variants are studied: we either store the particles
within the spacetree leaves (particle in tree; PIT) or within the dual tree (par-
ticle in dual tree; PIDT) induced by the spacetree vertices. The latter is similar
to a linked-list approach with links on each resolution level. This multiscale
linked-list can be deduced on-the-fly, i.e. is not stored explicitly but encoded
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within the tree’s adjacency information. Both particle storage variants ren-
der the evaluation of classical compact particle-grid operators straightforward
as each particle is assigned to its spatially nearest grid entity anytime. Tun-
neling is enabled as particles are allowed to move up and down in the whole
spacetree. PIDT furthermore can move particles between neighbours. Besides
neighbours and parent-child relations, no global adjacency data structure is re-
quired. While PIDT induces a runtime overhead and induces a more complex
code compared to PIT, the multiscale linked-list nature of PIDT reduces the
particle movements up (lift) and down (drop) in the tree, and particles moving
along the links can be exchanged asynchronously in-between grid traversals. If
we combine PIDT with a simple analysed tree grammar [11] for the particle
velocities, we can predict lifts and anticipate drops in whole grid regions. This
helps to overcome a fundamental problem. Since tunneling is always possible,
we need all-to-all communication in every time step: each rank has to check
whether data is to be received from any other rank. This synchronisation in-
troduces inverse weak scaling. The more particles the higher the number of
tunnels. The more ranks the more tunnel checks. With a lift prediction, we can
locally avoid the all-to-all that we map onto a reduction (reduction-avoiding
PIDT; raPIDT). We weaken the rank synchronisation. Rank and process are
used here as synonyms. For reasonably big parallel architectures, PIDT and its
extension raPIDT thus outperform PIT. Though all three flavours of particle
storage support tunneling, their performance is not significantly slower than
a classic linked-list approach not allowing particles to tunnel. The multiscale
nature of both PIT and PIDT as well as its variant raPIDT further makes the
communication pattern, i.e. the sequence and choice of particles communicated
via MPI, comprise spatial information. Ranks receiving particles that have to
be sorted into a local grid anticipate this presorting and thus can outperform
other classic approaches [4, 23, 25].

The remainder is organised as follows. We refer to related work before we
introduce the algorithmic steps of electrostatic PIC motivating our algorithmic
research (Section 3). In Section 4, we describe our spacetree grid paradigm.
Two particle realisation variants storing particles either within the grid cells or
within the vertices form the present work’s focus (Section 5). Our experimental
evaluation starts from a review of the particle movement characteristics before
we study the runtime behaviour of the particle storage and sorting schemes as
well as the scaling. Finally, we compare our results to three other approaches.
This comparison (Section 7) highlights our contribution with respect to the
particular application from Section 3 as well as the inevitable cost introduced
by the tunneling particles. A summary and outlook in Section 8 close the
discussion. The appendix comprises a real-world validation run of our code as
well as additional experimental data.

2. Related and used work

Requiring tunneling in combination with a persistent grid holding a PDE so-
lution renders many established grid data structures inappropriate or unsuited.
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We distinguish three classes of alternatives: on-the-fly (re-)construction, sort-
ing and linked-list. Reconstructing the assignment for the prescribed grid from
scratch per time step [21] is not an option, as the grid is given, holds data
and is distributed. Local sorting followed by scattering is not an option (see
e.g. [23, 25] and references therein) as the decomposition, i.e. the adaptive mesh,
is not known on each individual rank. The two possible modifications are to
rely on replicated grids per rank and then to map these grids onto the real
PDE grid—this approach is not followed-up here—or to sort locally within the
grid and then to scatter those particles that cannot be sorted locally. Such a
two-stage approach enriches local meta data information with additional decom-
position data (ranks have to know how to scatter the particles) held on each
rank, but may run into network congestion (cf. results from [4]) even if we avoid
all-to-all collectives [25] and rely on elegant decomposition paradigms such as
space-filling curves (SFCs). Finally, standard linked-cell algorithms, cell-based
Verlet lists or hypergraph-based approaches [7, 17] are not well-suited. They
impose constraints on the velocities of particles, i.e. they can not handle parti-
cles that may travel arbitrarily fast. Alternative approaches such as overlapping
domain decompositions where the grid holding the particles is replicated on all
ranks, schemes where particle and domain decomposition may differ, schemes
where the associativity is re-emended only every k steps or approaches tailored
to regular grids only are not considered here [5, 10, 17, 19].

For the present challenge, we require an algorithm that updates the grid-
particle correlation incrementally. It has to be fast, i.e. anticipate the incremen-
tal character, but nevertheless has to support particle escapees. Hereby, the
particle distribution follows the grid decomposition: particles contained within
a grid cell should reside on the compute node holding the respective grid cell in
a non-overlapping domain decomposition sense. For this, we rely on a tree data
structure where grid cells ‘point’ to particles. Our approaches materialise ideas
of bucket sorts [25]. A tree’s multiscale nature allows us to realise the sorting
incrementally, locally and fast without constraints on the particle velocity or
the dynamically adaptive grid structure. The omnipresent multiscale nature
and the lack of grid constraints make it differ from the up down tree approach
in [4]. Our PIDT variant holds particles within vertices and thus allows cells
to push particles into their neighbouring cells directly. No multiscale data is
involved. As such it materialises the linked-cells idea where each cells holds a
list of its neighbours. As these links are available on all discretisation levels,
our PIDT variant can be read as a multiscale linked-cell approach. Finally, our
code holds all tree data non-overlappingly and does not require any rank to
hold the subdomain dimensions of each and every other rank. This makes the
present algorithms differ from classic codes that rely on SFCs to obtain a fine
grid partition and then construct (overlapping) coarse grid regions bottom-up.
All adjacency data of the domain decomposition is localised.

Comparisions to several of these aforementioned approaches with tunneling
highlight the present algorithms’ strenghts and weaknesses. Notably, they high-
light that our local decomposition and particle handling is, for many applica-
tions, superior to classic SFC decompositions where the domain decomposition
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is known globally as well as to approaches where particles are handed around
cyclically or sorted from a coarse regular mesh into the fine AMR structure
[4]. A comparison to a classic linked-cell code that does not support tunneling
finally reveals the price we have to pay to enable tunneling.

Throughout the present paper, we rely on our open source AMR software
framework Peano [30, 31]. It allows us to rapidely implement and evaluate the
present algorithmic ideas. raPIDT was fed back into this framework and now
is available as black-box particle handling scheme. Yet, none of the present
algorithms is tied to that particular framework. They work for any spactree-
based code—relying on classic quadtree or octree discretisation, e.g.—and for
any spatial dimension as long as two criteria are met. First, our algorithms
need all resolution levels of the multiple AMR grids embedded into each other
explicitly. The meshing software has to provide all the mesh resolution levels to
the solver and the solver has to be able to embed data into each and every level.
Providing solely the finest mesh, e.g., is not sufficient. Second, the algorithms
have to switch from coarser to finer levels and the other way round throughout
the mesh traversal. Notably, a depth-first, a breadth-first or any hybrid traversal
on the tree that is implemented recursively work.

3. Use case: a particle-in-cell code

Figure 1: An artificial test setup at time steps t ∈ {2, 130, 190} from left to right: Particles
are homogeneously distributed among a small cube embedded into the unit cube at time t = 0.
We apply reflecting boundary conditions. As the particles move according to a fixed random
velocity (the brighter the higher their speed) and as the grid keeps the number of particles
per cell bounded, the mapping of grid entities to particles is permanently to be updated.

The particle-in-cell (PIC) method has originally been developed to solve
kinetic equations in plasma physics and self-gravitating systems (the so-called
Vlasov equation, or collisionless Boltzmann equation), but it has also shown to
be efficient for computational fluid simulations ([5, 6, 9, 10, 13, 14, 16, 19, 27],
e.g.). Macro particles in a Lagrangian frame—they mimic the behaviour of a
distribution function—are tracked in continuous phase space. Simultaneously,
moments of the distribution function such as charge density for plasma physics
simulations are computed on an Eulerian frame (fixed cells) in Rd, d ∈ {2, 3}.
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The PIC method reduces the N-body problem by filtering out binary interactions
between particles through a so-called mean field approximation. In return, it
couples the particles to a grid accommodating a grid-based solver of a partial
differential equation. PIC typically reads as follows:

1. Given a set of particles at positions xi, the charge density ρ is defined
on the grid, and obtained from the particle through ρ =

∑
iR(xi). The

restriction R(xi) in our case has local support and the grid based upon
squares/cubes is chosen such that R affects at most 2d vertices. It depends
on the particle position.

2. We solve
L(V ) = ρ (1)

on the grid which yields a potential V . V ’s semantics depend on the
model. In our case it is the electric potential though all properties hold
when we consider a gravitational potential with ρ being the mass density.
L is, in our case, the Laplacian. Throughout the solution process, the
grid is dynamically coarsened and refined to resolve V and the particle-
cell interplay accurately.

3. A field E = −∇V is derived from the potential. This field then is interpo-
lated from the grid to the particle positions ∀i : Ei = RT (xi)E. We
apply the transpose of the interpolation per particle.

4. The particle velocities vi and positions xi are updated (some authors call
this “push” [19]) with ∂tvi = φi(Ei, vi) and ∂txi = vi with a generic
particle property equation φi(Ei, vi).

Moving the particles is computationally cheap once the impact Ei on the parti-
cles is known. The particle-to-grid and grid-to-particle mappings usually stem
from the multiplication of particle shape functions translated to the particle
positions xi with grid-aligned test functions that in turn are used to discretise
the PDE. In our case, we restrict to Cartesian grids, i.e. to square or cube cells
for the spatial discretisation, and we use d-linear shape functions for the PDE.
More sophisticated schemes are possible.

As L generally may comprise ∂tE, E or V from the previous time step have
to be available on the grid. Equation (1) typically is solved by an iterative
scheme. The present work neglects particularities of the PDE solver as well as
dynamic load balancing and adaptivity criteria. However, we highlight that the
impact of the particles on the PDE solution correlates to the particle density,
i.e. the more particles in a given grid region, the rougher the PDE solution due to
stimuli on the right-hand side. At the same time, a proper adaptivity criterion
anticipates the Debye length: the maximum grid size depends locally on both
the particle density and the mean velocity (bulk flow velocity) or mean square
particle velocity (thermal velocity) [2]. Our particle-grid realisations have to
support dynamically adaptive grids.

We first focus exclusively on adaptive Cartesian grids and storage paradigms
for the dynamically adaptive grid holding the particles in the cells/vertices. Dif-
ferent to many other particle codes where the grid is merely a helper data struc-
ture, our grid stays persistent between any two time steps. Second, we focus on
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reassignment procedures once the particles are moved. Different to many other
particle codes, it is crucial that the grid-particle relations are updated immedi-
ately and that there is no restriction on vi with respect to the grid size. Third,
we focus on the distributed memory parallelisation of the reassignment induced
by a non-overlapping, given grid decomposition, and we study how particles
have to be exchanged if they move along this decomposed geometric structure.
This facilitates a fast evaluation of the grid-particle operator, as particles reside
on the same node as their corresponding grid element. A discussion of a proper
choice of a grid decomposition as well as dynamic load balancing are beyond
scope. Finally, we reiterate that we neither can make assumptions on the grid
structure nor on the particle velocities nor on the actual particle distribution.
Particles can either traverse the grid elements smoothly or tunnel several grid
elements a time.

4. A distributed spacetree data structure holding particles

A multitude of ways exists to formalise and implement adaptive Cartesian
grids. Tree-based approaches are popular (cf. overview in [1] or [15, 20, 21,
29, 32]). They facilitate dynamic adaptivity and low memory footprint storage
schemes teaming up with good memory access characteristics—in particular in
combination with space-filling curves [1].

In the present paper, we follow a k-spacetree formalism [29, 32]: the com-
putational domain is embedded into a square or cube, the root. This geometric
primitive is split into k parts along each coordinate axis. We end up with kd

squares or cubes, respectively. They tessellate the original primitive. This setup
can be represented by a graph with kd + 1 nodes and a relation vchild of . Each
node of this graph represents one cube or square, respectively, and is denoted
as cell. If a vchild of b, a is contained within b and is derived from b by k
cuts through b along each coordinate axis. We continue recursively while we
decide for each cell whether to refine further or not. The resulting graph is a k-
spacetree given by vchild of , a set of cells T and a distinguished root. For k = 2
the scheme mirrors the traditional octree/quadtree concept [1, 15, 20, 21]. Our
present code relies on the software Peano [30, 31] and thus uses k = 3. However,
all algorithmic ideas work for any k ≥ 2.

The distance from the root cell to any other cell is the cell’s level. All cells
of one level represent geometric primitives of exactly the same size, are aligned
and do not overlap. The k-spacetree consequently yields a cascade of ragged
Cartesian grids. The union of all these grids is an adaptive Cartesian grid.
Let Ω` denote the grid of one spacetree level `. The union Ωh =

⋃
` Ω` then

yields an adaptive Cartesian grid. A cell of T is a leaf if it does not have a
child. If a vchild of b, b is a parent of a. Due to the cascade-of-grids formalism,
there may be multiple vertices in a spacetree at the same spatial location while
they belong to different grids Ω`, i.e. different levels. Each vertex has up to
2d adjacent cells on the same level. If it has less than 2d adjacent cells, it is a
hanging vertex. Anticipating the spacetree’s partial order, a vertex has up to
2d parent vertices (Figure 2): A vertex vb is a parent to vertex va, if all cells
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Figure 2: The spacetree introduces a parent relation on the spacetree cells (left; arrows point
from child to parent). This spatial order in combination with the grid embedding induce a
parent relation upon the vertices as well (middle and right). Vertices coinciding with coarser
vertices on the same level have one parent, vertices within coarser cells have 2d parents,
vertices located on coarse grid faces and edges have a parent cardinality in-between.

that are adjacent to va have parent cells that are in turn adjacent to vb. While
many tree-based codes deduce an adaptive grid from a spacetree formalism and
then work basically on the spacetree’s leaves, we preserve and maintain the
whole tree as computational data structure though the particle-grid interaction
is often computed only in leaves.

4.1. Dual spacetree grid

Besides the cascade of Cartesian grids, the spacetree formalism also induces

dual grids. A dual grid Ω
(d)
` of one level is defined as follows: It is a grid

consisting of geometric primitives of exactly the type as in Ω`. They are dilated
such that each cell center of Ω` coincides with one non-hanging vertex of the
dual grid. T (d) then is the cascade of dual grids to T (Figure 3). For odd k—we
have k = 3—we observe dual grid consistency: A dual cell of one level either is
contained completely within a dual cell of a coarser level or does not intersect
with coarsers cells at all. The present algorithms did, in principle, not rely on
this consistency, but their implementation’s simplicity benefits from k = 3.

4.2. Storing particles within the spacetree

The present paper studies two choices to store the particle-grid relations:
either each cell holds the particles covered by it, or each vertex holds the parti-
cles whose positions are closer to this vertex than to any other vertex. “Holds”
denotes that the grid entity basically links to an array of particles. While we
focus on the data handling and parallelisation, packed memory algorithms [5],
e.g., can replace these arrays with more efficient realisation variants avoiding
frequent reallocation. Furthermore, we do not discuss global data layout opti-
misations to improve the placement of the arrays in memory [5, 10] but rather
refer to [29, 32] where we introduce a multiscale ordering of the spacetree cells
along the Peano space-filling curve. Such an ordering of the cells transfers to
an ordering of arrays. We thus can assume reasonably efficient memory data
access with respect to caches. Without loss of generality, these arrays are, for
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O1

O2

Oh

Figure 3: From left to right: A spacetree is a directed graph vchild of visualised bottom-up
here. It yields a cascade of ragged Cartesian grids Ω0,Ω1,Ω2. The merger of the three is an
adaptive Cartesian grid Ωh. The dual k = 3-spacetree yields a cascade of three dual grids
(with the original grid as dotted lines).

the time being, empty on the coarse levels, whereas all particles reside within
the finest grid resolution. In our second storage scheme, particles are assigned
to the vertex whose dual cell covers their position. It is a Voronoy-based par-
ticle assignment [24]. As we are working in a spacetree environment, the two
approaches are named particle in tree (PIT) and particle in dual tree (PIDT).

4.3. Parallel grid decomposition

Let P = {p0, p1, . . .} be the finite set of processes (ranks) on a parallel
computer. col : T 7→ P is a colouring that assigns each spacetree cell a colour,
i.e. a processor that is responsible for this cell. In practice, each processor holds
only that part of a spacetree it is responsible for [29]. Let vworker of induce a
tree topology on P as follows:

∀a vchild of b : col(a) = pi ∧ col(b) = pj ⇒ pi = pj ∨ pi vworker of pj . (2)

As the graph in (2) shall be free of cycles, different subtrees of the global space-
tree are handled by different processes, i.e. on different ranks. We decompose
the spacetree. No refined cell is shared among multiple ranks, and col introduces
a master-worker relations with a distinguished global master being responsible
for the root. This scheme differs from local essential tree constructions where
coarse grid cells are replicated among multiple nodes ([15] and their references to
original work). We rely on a unique rank responsibility for coarse grid spacetree
cells [30].

Our tree colouring induces a multiscale non-overlapping spacetree decompo-
sition, i.e. each cell is assigned to a rank uniquely, while vertices at the partition
boundaries are held and replicated on up to 2d ranks. The term non-overlapping
refers to each individual level. Let each cell of T (d) be assigned to the ranks
that hold cells that are adjacent to the center of the cell in T . The colouring
then induces a multiscale 1-overlapping decomposition on T (d).
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For PIC, it is convenient to decompose particles along col as the particles do
not interact. For PIDT, dual cells intersecting with the parallel boundary then
are replicated while the particles are never replicated but always are assigned
to one rank uniquely.

4.4. Event-based formalism of the tree traversal

A tree traversal is an algorithm running through T . An effective tree traver-
sal shall have three properties:

1. All data access is local within the grid/tree.

2. All data access anticipates the domain decomposition.

3. The data access scheme is efficient. In particular, any particle sorting shall
be possible in one tree traversal even if the grid changes.

For this, we process each cell of this set twice: an operation enterCell is per-
formed prior to an operation leaveCell. We enforce

∀a vchild of b : ⇒ enterCell(b) vbefore enterCell(a) ∧
leaveCell(a) vbefore leaveCell(b) and

∀c : enterCell(c) vbefore leaveCell(c) for a, b, c ∈ T (3)

where vbefore is a partial temporal access order. Obviously, both depth-first
and breadth-first k-spacetree traversal as well as hybrid variants preserve (3).

As the tree is a representation of the cascade of grids, a tree traversal de-
scribes a strict element-wise multiscale processing of the whole grid cascade.
For any element-wise realisation of a PDE solver or a particle-based algorithm
it is then sufficient to specify which data are assigned to the k-spacetree’s ver-
tices and cells, and to specify how individual events [30] such as enterCell and
leaveCell map onto algorithmic fragments often called compute kernels. Our
discussion restricts to element-wise algorithms as those algorithms fit straight-
forwardly to non-overlapping domain decompositions.

Following the notion of element-wise processing, only records assigned to one
cell and its adjacent vertices are available to an event. Following the notion of a
spacetree, the parent data are passed to events as well. Besides the cell events,
our implementations rely on two additional events: touchVertexFirstTime is called
once per spacetree vertex per traversal per rank before the vertex is used by this
rank the very first time, i.e. before enterCell is invoked on any adjacent cell of
this vertex. touchVertexLastTime is called once per spacetree vertex on each rank
after the vertex has been used the very last time, i.e. after leaveCell has been
invoked on all adjacent cells.

In a parallel tree traversal, the global master starts to traverse the tree. Its
workers’ tree traversals are successively started up as soon as (3) allows for. This
is a broadcast along a tree topology. Whenever a tree traversal ascends again
in the tree (processes leaveCell and touchVertexLastTime), it might have to wait
for other colours to finish their share of the global tree due to (3). The startup
of a remote colour is accompanied by the two events prepareSendToWorker and

10



mergeWithWorker invoked on the master or worker, respectively. The other way
round, prepareSendToMaster and mergeWithMaster are called. Furthermore, events,
i.e. plug-in points for the algorithm, do exist to merge vertices at the domain
decomposition boundaries. Vertex exchanges are triggered after a local vertex
has been used for the last time. mergeWithNeighbour events then are invoked on
each rank per parallel domain boundary vertex prior to any usage of this vertex.
As mergeWithNeighbour is called prior to the next usage but copies are sent after
touchVertexLastTime, vertex data exchange along the rank boundaries overlaps
two iterations. This exchange is asynchronous while the information exchange
between masters and workers is synchronous.

5. Cell- and vertex-based particle movers

For each of the two particle storage schemes, PIC requires the scheme to
maintain the particle-to-grid mapping. Whenever a particle moves, our code has
to analyse whether the particle remains within its cell or dual cell, respectively,
or it has to update the mapping otherwise. While it might be straightforward
to iterate first over all particles to move them before we sort them in an up-
date sweep, we propose to merge particle movement and reassignment. This
way, we avoid an extra sorting step. For both PIT and PIDT, we propose to
move particles up and down within the spacetree to enable tunneling, but we
enforce that all particles are sorted into the leaf tree level prior to any subse-
quent operation on the particle in the next traversal. Our algorithmic sketches
describe stationary grids. If spacetree nodes are added dynamically, both ap-
proaches automatically move particles into the right grid entities as the sort
algorithm makes all particles reside on the finest grid level. If spacetree nodes
are removed, both approaches move the particles associated with removed grid
entities up in the spacetree and continue. Support of dynamic adaptivity hence
is straightforward and not discussed further.

5.1. Particle in tree (PIT)

PIT maps each particle from the particle set M onto a leaf of the spacetree,
i.e. XPIT : M 7→ T . Only the particle position x ∈ Rd determines this mapping.
PIT’s particle update then reads as Algorithm 1 and integrates into any tree
traversal preserving (3) (Figure 4).

Each global particle sorting is split among two traversals. Let traversal t2
follow t1. All lift operations with respect to particle updates in t1 are embed-
ded into the traversal t1, whereas the drops and the particle position updates
are embedded into t2. t2 already realises the lifts of the subsequent time step
whereas t1 realises the drops of the previous one. Hence, one (amortised) traver-
sal per resort is sufficient—the first 1.5 traversals realise the first sort, the next
2.5 the second, . . . —and the following statement holds:

Theorem 5.1. Whenever enterCell is invoked on a leaf a and all its preamble
operations terminate, all particles within the cell have a position x covered by a.
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Figure 4: Left: Assigning particles to cells is trivial as long as particles due not leave ‘their’
cell to the particle update (empty particle). If particles leave a cell (filled particles), they
have to be reassigned to a new cell. Middle: PIT lifts these particles to the next coarser
levels and then drops them back. If particles tunnel (light gray), they have to be lifted several
levels. Right: A tree decomposed into two colours is traversed by PIT. Lifts (red) and drops
(blue) are embedded into this parallel traversal. Therefore, particles are exchanged in-between
processors only along the parallelisation’s master-worker topology.

Proof. We restrict to a single particle m ∈M, and we assume that the theorem
holds prior to traversal t1 with XPIT(m) being a leaf. We first show that x ∈
XPIT(m) as soon as t1 terminates though the image can be a refined spacetree
cell. x ∈ XPIT(m) denotes that the spacetree cell to which m is mapped to
covers the position x. For this, we make a simple top down induction on the
tree depth. If XPIT(m) is the root, x ∈ XPIT(m) is trivial as the root spans the
whole computational domain. Otherwise we distinguish two cases for leaveCell

invoked for a spacetree cell of level `+ 1:

• x ∈ XPIT(m): the particle resided in XPIT(m) prior to a position update
and doesn’t leave the cell. PIT does not modify XPIT.

• x 6∈ XPIT(m): the particle leaves the cell in which it was contained before.
In leaveCell, we assign it to its parent, i.e.

XPIT 7→ X (new)

PIT with

X (new)

PIT (m) = p while

XPIT(m) vchild of p.

Due to (3), this happens after enterCell is invoked for m in t1 and does
not harm our initial assumption. Due to (3), this transition is triggered
before the leaveCell call for the parent on level `. The statement for level
` holds by induction.
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Algorithm 1 Particle-in-tree algorithm.
1: function enterCell(cell c ∈ T )
2: if c refined then
3: for all m ∈ M associated to c do . preamble
4: identify c′ vchild of c containing m
5: assign m to c′ . drop
6: end for
7: end if
8: invoke application-specific operations
9: if c unrefined then

10: for all m ∈ M associated to c do
11: update position x(m) . move
12: end for
13: end if
14: invoke application-specific operations
15: end function
16: function leaveCell(cell c ∈ T )
17: invoke application-specific operations
18: for all m ∈ M associated to c do . epilogue
19: if position x of m not contained in c then
20: assign m to c′ with c vchild of c′ . lift
21: end if
22: end for
23: end function

For the subsequent traversal t2, we again use an induction over the tree height
and distinct two cases. However, we argue bottom-up. For trees of height zero
the algorithm’s correctness is trivial. Let the root be refined.

• XPIT(m) on level ` is a leaf: The theorem holds.

• XPIT(m) on level ` is refined. The algorithm bucket sorts the particle into
the child cell covering its new position, i.e.

XPIT 7→ X (new)

PIT with

X (new)

PIT (m) = c while

c vchild of XPIT(m).

c has level ` + 1. Due to (3), enterCell for the parent is invoked prior to
enterCell for the spacetree node on level ` + 1. The statement for level
`+ 1 holds by induction.

A distributed memory parallel version of PIT adds two case distinctions. When-
ever PIT lifts a particle from a local root, i.e. a spacetree node whose parent
is assigned to a different colour, this particle is sent to the parent’s rank by
the event prepareSendToMaster. In return, mergeWithMaster receives and inserts it
into the local data structure. Whenever the tree traversal encounters a cell of
a different colour, prepareSendToWorker replaces the drop by a send to the worker
rank. mergeWithWorker receives them and continues to drop them (Figure 4). All
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Figure 5: Parallel PIDT: There are three different types of particle movements. Particles
might remain in their dual cell (blue), might move to an adjacent dual cell (gray) or tunnel (red
and dark red). Only for the latter, multilevel movement comes into play. Copies of particles
leaving through vertices without further tunneling are sent away immediately throughout the
traversal but are not received prior to the next iteration (asynchronous communication, dotted
arrows from left to right). Only very few tunneling particles are communicated synchronously
among the tree topology (dark red particle, red dotted diagonal arrow).

parallel data flow is aligned with the tree topology on P, i.e. particles are only
sent up and down within the spacetree. All data exchange is synchronous.

5.2. Particle in dual tree (PIDT)

PIDT augments each particle by a boolean flag moved ∈ {>,⊥} (“has moved
already” > and “has not not moved yet” ⊥) and maps each particle onto a vertex
of the spacetree, i.e. XPIDT : M 7→ T (d). The particle update then reads as as
Algorithm 2 and integrates into any tree traversal preserving (3) (Figure 5). For
efficiency reasons, the particle loops in enterCell and leaveCell can be merged
for leaf cells.

Theorem 5.2. Whenever touchVertexFirstTime is invoked on a vertex v and all
its preamble operations have terminated, all particles within the dual cell of v
have a position covered by this dual cell.

Proof. The proof follows the proof of Theorem 5.1.

Again, parallel PIDT is straightforward. Whenever the grid traversal has in-
voked touchVertexLastTime on one parallel rank for a vertex, each particle of this
vertex falls into one of four categories:

• It is to be lifted but the vertex does not belong to the coarsest level on
the local rank. These particles are neglected by the parallelisation as the
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Algorithm 2 Particle-in-dual-tree algorithm (continued in Algorithm 3).

1: function touchVertexFirstTime(v)
2: if v refined then . i.e. all surrounding cells are refined
3: for all m ∈ M associated to v do . preamble
4: moved(m)← ⊥
5: end for
6: end if
7: invoke application-specific operations
8: end function
9: function enterCell(cell c ∈ T )

10: if c refined then . preamble
11: for all 2d adjacent vertices v do
12: for all m ∈ M associated to v do
13: if moved(m) = ⊥ and x(m) contained in c then
14: identify child vertex v′ whose dual cell holds x(m)
15: assign m to v′ . drop
16: end if
17: end for
18: end for
19: end if
20: invoke application-specific operations
21: if c unrefined then
22: for all 2d adjacent vertices v do
23: for all m ∈ M associated to v do
24: if moved(m) = ⊥ ∧ x(m) contained in c then
25: update position x of m . move
26: moved(m)← >
27: end if
28: end for
29: end for
30: end if
31: invoke application-specific operations
32: end function

particle is lifted locally with touchVertexLastTime being called bottom-up
throughout the traversal.

• It is to be lifted and the vertex is adjacent to the coarsest cell held by a
rank. Such a particle is sent to the rank’s master node where it is received
in the same iteration prior to the master’s leaveCell.

• It belongs to the vertex’s dual cell and intersects the local domain. Such
a particle already is assigned to the correct vertex and skipped.

• It belongs to the vertex’s dual cell but it is not covered by the local domain.
In the latter case, the particle is removed from the local vertex and sent
to the respective destination rank merging all received particles into the
local vertices prior to touchVertexFirstTime in the next tree traversal.

The data flow from workers to masters is aligned with the tree topology on
P. This data flow comprises only particles that have to be lifted between the
coarsest worker cell and its parent residing on the master. It is synchronised with
the tree traversal. The drop mechanism also uses synchronous particle exchange
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Algorithm 3 Particle-in-dual-tree algorithm continued from Algorithm 2.
1: function leaveCell(cell c ∈ T )
2: invoke application-specific operations
3: for all 2d adjacent vertices v do . epilogue
4: for all m ∈ M associated to v do
5: if moved(m) = > ∧ x(m) contained in dual cell of other v′ adjacent to c then
6: assign m to v′ . linked-list type reassignment
7: . (no tunneling)
8: end if
9: end for

10: end for
11: end function
12: function touchVertexLastTime(v)
13: invoke application-specific operations
14: for all m ∈ M associated to v do . epilogue
15: if moved(m) = > ∧ x(m) not contained within dual cell of v then
16: assign m to parent vertex . lift (cmp. Figure 2)
17: . tunneling
18: end if
19: end for
20: end function

whenever a rank descends into a cell not handled locally. The exchange through
the vertices follows a Jacobi-style update: particles are sent away in one traversal
and received prior to touchVertexFirstTime of the subsequent traversal. That is
convenient, as the particle lift and drop are split among two tree traversals. The
latter data exchange is asynchronous and can be realised in the background in
parallel to the tree traversal.

5.3. Remarks

While PIT and PIDT realise the same fundamental ideas, they differ in
code complexity and the handling of not-tunneling particles. If particles do not
tunnel but move from one cell to a neighbouring cell, PIT moves them up in
the tree one level and down one level. PIDT exchanges them directly mirroring
linked-list techniques. This pattern applies in a multiscale sense for PIDT.
PIDT thus is a multiscale linked-list approach, where its “radius of operation”
is twice the grid width. It is expected to have fewer lifts and drops compared
to PIT. Contrary, PIDT’s higher algorithmic complexity mirrors directly to a
more complex code. While this might not influence the runtime, the redundant
check of particles does: we need a flag moved to mark updated particles which
might double the number of particle loads, i.e. memory accesses.

Finally, we antedate experimental insight. Both algorithms suffer from a
synchronisation of masters and workers. Workers cannot start their tree traver-
sal prior to their master having entered the parent cell, as particles might drop
from coarser resolution levels. Masters cannot continue their tree traversal be-
fore the workers have finished, as particles might have to be lifted from finer
resolution levels. Both synchronisation points introduce a latency and a band-
width penalty and make perfectly balanced load a must. The bandwidth penalty
scales with the number of particles to be exchanged. It is hence less significant
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for PIDT than for PIT. Both master-worker and worker-master communication
describe a global all-to-all communication that is realised as tree communica-
tion. We state that the resulting global synchronisation were needless if no
particles would be lifted or dropped.

5.4. Restriction-avoiding PIDT (raPIDT)

To identify cases where we could skip the global communication, we intro-
duce a marker vmax : T 7→ R+

0 . On any leaf of the spacetree, vmax shall hold
the maximum velocity component of all particles associated to the 2d adjacent
vertices. vmax is a cell-based value though it results from vertex-associated data.
It is the maximum norm of all velocity components of all particles contained
within the 2d dual cells intersecting the current cell. This value is determined
by leaveCell in each traversal. On a refined cell, we update the value with

vmax(c)← max{vmax(c′) : c′ vchild of c}. (4)

Here, vmax(c) is an analysed tree attribute [11] (re-)computable on-the-fly.
Given any spacetree cell of width h = 3−level, the time step size ∆t and a

correct vmax, we know that no particles will be removed from this cell or any of
its children and successors due to lifts if all particles contained have a velocity
smaller than h/∆t. We can check this due to vmax. We augment PIDT with
the following mechanisms:

• Each rank holds a boolean map for all its workers.

• On enterCell for a cell deployed to a worker, we first update the local vmax

due to all particles dropped into this cell.

• The updated vmax ≤ h/∆h identifies a priori whether particles will be
lifted again from the remote subtree. We store this information within
the local boolean map.

• We then continue with PIDT, i.e. start up the remote rank.

• On leaveCell on the respective deployed cell, we have two opportunities:

1. If lifts are to be expected, we receive all particles from the worker,
redetermine (4) and continue.

2. If no lifts are to be expected, we continue with the tree traversal
without waiting for any worker data. The reduction is avoided.

The receive branch is mirrored with the same rules on the worker to ensure that
no worker sends data in the reduction-avoiding case at all.
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6. Results

Our case studies were executed on SuperMUC at the Leibniz Supercomput-
ing Centre and the N8 Polaris system at Leeds. SuperMUC hosts Sandy Bridge
E5-2680 processors clocked to 2.3 GHz, Polaris hosts Sandy Bridge E5-2670 pro-
cessors at 2.6 GHz plus Turbo Boost. Both have two eight-core processors per
node. SuperMUC runs Intel MPI 4.1, and every 8192 cores (512 two-processor
nodes) are called an island and are connected via a fully non-blocking Infiniband
network. Beyond that core count, SuperMUC relies on a 4:1 blocking network.
Polaris runs Open MPI 1.6.1, and every 192 cores are fully non-blocking con-
nected to one Mellanox QDR InfiniBand switch. Beyond that core count, Polaris
realises 2:1 blocking. Our code relies on good, i.e. close to optimal, placement,
i.e. it uses as few switches as possible. All performance data is specified as
particle updates per second, all machine sizes are specified in cores.

For the performance tests, we remove the PDE solver part as well as the
interplay of particles and grid, and thus focus exclusively on the particle han-
dling. The appendix presents a real-world run. We study worst-case setups
where the particle handling’s performance characteristics are not interwoven
with other application phases. Yet, we artificially impose, where highlighted,
a fixed number of 0, 128, 256, 1024 or 4096 floating point operations (flops)
onto each particle move to quantify the impact of arithmetics on the runtime.
All particles are initially placed randomly and homogeneously within the unit
square (0, 1)d ⊂ Rd or a subdomain (0.1, 0.1)d ⊂ (0, 1)d. The total number
of particles results from the particle density ρparticles within the initially popu-
lated area. Each particle is assigned a random velocity 0 ≤ |v| ≤ 1 uniformly
distributed (Figure 1). This way, we make the characteristic particle movement
per step depend only on one quantity—the time step size. A confusion with
particle-grid mapping in the PIC blueprint of Section 3 is out of question as
we neglect the PDE. We hence write ρ = ρparticles. Time step size ∆t and the
maximum number of particles per cell (ppc) both determine the particle move-
ment/tunneling and the grid structure. Whenever the given ppc is overrun in
a particular spacetree cell, this cell is refined and the particles are hence sorted
into the new spacetree nodes. This mirrors dynamic adaptivity assuming that
the particle density correlates to the smoothness of E in (1). Whenever multiple
children of one refined spacetree node can be coarsened without violating the
ppc constraint, we remove these children and lift the particles into the formerly
refined cell. All experimental code supports dynamic AMR. All experiments
apply reflecting boundary conditions at the border of the unit square or cube,
respectively, but do not change the particle velocities otherwise. All experimen-
tal data result from a code with a static domain decomposition deriving P from
the spacetree due to graph partitioning. The experiments are, if not stated oth-
erwise, stopped after few time steps and thus do not suffer (significantly) from
ill-balancing. All domain decomposition/initialisation overhead is removed from
the measurements.

With all these parameters at hand, we can study the impact of total particle
count relative to the computational domain, we can study setups with extremely
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inhomogeneous particle distribution vs. homogeneous particle distributions, we
can analyse the impact of the ratio of particle speed to minimal grid size, and
we can study the interplay of particle density, ppc and time step size.

6.1. Algorithmic properties
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Figure 6: Lifts per particle per time step (ppc=1000). Left column: particles are homo-
geneously distributed among the unit square (d = 2). Right column: particles are initially
homogeneously distributed in (0, 0.1)3 ⊂ R3, i.e. the grid is dynamically adaptive. Results
from ten random initial setups (blurry) with averages as solid lines. No lifts are observed at
all for ∆t ≤ 10−3.

Prior to measuring the runtime, we focus on the lift behaviour for different
setups and count the average number of lifts per particle during the first 50
time steps. Drop observations deduce from these. All measurements are almost
independent of (sufficiently big) ρ—here set to 107. If a particle is lifted n levels
up in the spacetree, we count this as n independent lifts. When we fix ppc

(ppc=1000 in Figure 6, e.g.), we observe that the number of lifts remains de
facto invariant throughout the simulation for a globally homogeneous particle
distribution. For an inhomogeneous initial distribution, lifts occur only sporad-
ically (unless the time step size is very large), i.e. the average number of lifts
is below one. For both realisation variants, the number of lifts scales with the
time step size, i.e. the bigger the time step size the more lifts per particle, while
PIT yields significantly more lifts than PIDT. If the time step sizes underrun a
certain threshold, PIDT comes along completely without lifts while PIT has a
very low lift count.
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If we fix in turn the time step size and make ppc a free parameter (see
Appendix B), we observe that any ppc yields, on average, time-independent
behaviour for homogeneous setups. The bigger ppc the fewer lifts, and the num-
ber of lifts per particle is always bigger for PIT than for PIDT where the number
of lifts is negligible for reasonably big ppc or coarse grids, respectively. Larger
ppc make each leaf represent larger geometric domains and thus explain the
ppc dependence. If the particle distribution is inhomogeneous, the correspond-
ing grid at setup time is strongly adaptive if ppc is reasonably small. Initial
time steps of PIDT then face almost no lifts; similar as in the homogeneous
setup. However, the number of lifts increases as the grid becomes more regular
(and coarser), and the particles distribute more homogeneously, until the lift
count drops again to its regular characteristics. With increasing ppc the curve
flattens out and shifts to the right.

Due to the invariant velocity profile besides the reflecting boundary con-
ditions, particles are expelled from the subarea by the large (electric) field.
Therefore, the global grid determined by ppc becomes coarser and more regular
(Figure 1). It smoothens out. As a consequence, subtrees of a certain depth
hold more and more particles with velocities of the same magnitude. In return,
the average particle density within each cell decreases. The further (fast) parti-
cles move away from the initially dense area, the more often they hit adaptivity
boundaries, i.e. hanging nodes. PIDT has to lift them there. For PIT, these
additional lifts make almost no difference compared to the lifts required anyway.
Particles hit adaptivity boundaries often if ppc is small. As the grid smoothens
out, also the lift counts drop.

Referring to real-world runs (Appendix A), such a behaviour mirrors a
setup where initially all particles are held within the subarea where the solution
to (1) depending on the particle density is non-smooth and yields large particle
accelerations. The push out from this area then results from a mixed neutralising
positively charged background and negatively charged particles.

6.2. Memory throughput

Table 1: Stream particle throughput, i.e. particles per second, for different particle counts p
using 1,2,4,12,16 cores or 16 cores plus hyperthreading (32) on SuperMUC. The upper section
gives results for d = 2, the lower for d = 3. Best case throughputs per row are bold.

p 1 2 4 8 12 16 32

104 3.03 · 107 2.98 · 107 4.14 · 106 2.46 · 107 1.46 · 107 2.21 · 107 1.94 · 107

105 6.66 · 107 1.03 · 108 1.35 · 108 1.06 · 108 8.96 · 107 1.02 · 108 6.15 · 107

106 7.03 · 107 1.16 · 108 1.58 · 108 1.56 · 108 2.25 · 108 2.41 · 108 5.51 · 107

107 7.14 · 107 1.25 · 108 1.63 · 108 2.44 · 108 2.63 · 108 2.42 · 108 7.99 · 107

108 7.17 · 107 1.26 · 108 1.68 · 108 2.28 · 108 2.65 · 108 2.84 · 108 2.59 · 108

104 2.48 · 107 3.22 · 107 3.25 · 107 2.39 · 107 2.42 · 107 2.27 · 107 1.44 · 107

105 5.11 · 107 8.43 · 107 1.14 · 108 1.23 · 108 7.67 · 107 2.44 · 107 2.43 · 107

106 4.93 · 107 9.15 · 107 1.18 · 108 1.73 · 108 1.81 · 108 1.94 · 108 4.56 · 107

107 5.40 · 107 9.30 · 107 1.24 · 108 1.82 · 108 1.77 · 108 1.63 · 108 9.24 · 107

108 5.41 · 107 9.33 · 107 1.25 · 108 1.65 · 108 1.84 · 108 1.92 · 108 1.65 · 108

To be able to put runtime measurements into context, we first run a bench-
mark holding an array of particles that is iterated once per time step without
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any grid. Each particle position is updated according to an explicit Euler inte-
gration step, it is reflected at the domain boundaries, and the resulting position
is written back to the corresponding array position. Besides the position update,
no computation or assignment to grid entities is done and no data is reordered.
The implementation is the same source code fragment we use in the spacetree
algorithms. As we aim to compare it with our parallel implementation running
multiple MPI ranks per node, we parallelise this embarrassingly parallel bench-
mark with a plain parallel-for along the lines of the Stream benchmark [18].
This yields upper bounds, as our spacetree implementation relies on MPI only
and thus has message passing overhead.

We analyse the throughput behaviour at hands of SuperMUC (Table 1).
Polaris exhibits qualitatively the same behaviour. On both systems, a single
core cannot exploit the memory subsystem alone. The bigger the particle count
the more cores can be used effectively and the higher the throughput. However,
the throughput does not scale linearly with the core count due to bandwidth
restrictions. 3.00 · 108 for d = 2 and 2.00 · 108 for d = 3 are upper bounds for
the throughput of our particle codes in the absence of any solver, i.e. of any
‘real’ computation, on SuperMUC. On Polaris, these best case thresholds have
to be doubled due to the higher clock rate and the Turbo Boost. Besides for
small particle numbers, less than eight threads/ranks per node do not make the
nodes run into bandwidth saturation. As a consequence, all parallel experiments
deploy six MPI ranks per node from hereon. This heuristic choice valid for both
SuperMUC and Polaris yields a reasonable core usage while memory subsystem
effects are not dominant. It also anticipates that the presence of a grid to
maintain increases the average per-particle memory footprint.

6.3. Single core results

We next measure the particle throughput for homogeneous and inhomo-
geneous start scenarios with different ∆t on a single core with 107 particles
for 50 time steps, while we still neglect arithmetics per particle (Figure 7).
PIT’s throughput monotonously increases with increasing reasonable ppc. It
decreases with increasing time step size. Any reduction of lifts due to a bigger
ppc or smaller time step sizes pays off for a homogeneous start setup. For an
inhomogeneous start setup, we observe a decreasing performance with bigger
time step sizes as the grid then changes faster. This picture would change if we
fixed the simulation time rather than the time step count. PIDT is typically
outperformed by PIT due to the more complicated algorithm despite in situa-
tions where particles move very fast in an adaptive setting. ppc ≈ 1000 here
yields the best throughput. Polaris and SuperMUC results do coincide if scaled
with the clock rate, i.e. the duplication of throughput rates on Polaris cannot
be observed again.

Hardware counter measurements with Likwid [26] reveal that cache misses
for both approaches are negligible. They resemble exactly the results reported
in [1, 29, 32] and references therein for other application areas. Our algo-
rithms’ AMR code base Peano [31] relies on a depth-first alike tree traversal
[30] that picks up Hölder continuity properties of the Peano space-filling curve
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Figure 7: Single core throughput with homogeneous (left) or inhomogeneous/breaking dam
(right) start conditions for PIT (top) and PIDT (bottom). d = 2 marked by solid lines and
d = 3 by dashed lines. Figures compare impact of ppc choice on throughput for regular
(homogeneous) and dynamically adaptive (breaking dam) grids. Results from SuperMUC.

[32]. This implies advantageous spatial and temporal memory access charac-
teristics. However, we expect a reimplementation with another code base to
yield advantageous properties as well, as all PIC and PIDT ingredients follow
a strict element-wise/local formulation and as the memory subsystem in above
measurements is underutilised. A slight increase of cache misses thus does not
neccessarily pollute runtime results significantly, if proper prefetching is applied,
while the basic memory usage profile is advantageous since all operations are
local—either accessing neighbours or parents/children within the grid.

There is a sweet spot from which it pays off to use PIDT rather than PIT.
This payoff point depends on time step size and ppc. For sufficiently big time
steps and reasonable small ppc, PIDT outperforms PIT. This is due to the
reduction of lift operations, i.e. due to PIT having more particles tunneling.
PIT is around a factor of three slower than the pure particle throughput on
a single core if ∆t is very small. PIDT is around a factor of 3d slower due
to the particle sorting overhead. The remainder of the experiments runs all
settings for ∆t = 10−4 as this is an interesting regime where PIT has not yet
overtaken PIDT for the majority of experiments. Putting runtime evaluations
into relation to the number of lifts always allows us to predict properties of all
particle handling algorithms. The remainder of the experiments also restricts to
homogeneous settings, i.e. the particles initially are distributed homogeneously
among the computational domain, as particle characteristics then remain invari-
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ant. Putting runtime evaluations into relation to the number of characteristic
ppc allows us to predict properties of simulations where the computational do-
main comprises different spatial regions with different particle distributions.

6.4. Parallel PIT
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Figure 8: Parallel throughput of PIT. Each plot studies three different total particle numbers
(different markers) for one fixed ppc and dimension d. Each particle study is ran five times
with 0, 128, 256, 1024 or 4096 flops per particle. The brighter the points the higher the number
of flops. The saturated points with a solid line are measurements without any compute flops
per particle, i.e. solely the particle move and resort into the grid. Different colours here pick
up the colouring from Figure 9 and PIDT experiments.

We start our parallel studies with PIT and artificially perform an additional
0, 128, 256, 1024 or 4096 floating point operations per particle to emulate the
solving of a PDE and to be able to study the impact of this additional workload
on the particle performance. Each experiment hence was performed five times.

Four properties become apparent from measurements on SuperMUC (Figure
8): First, the more computation is done per particle the lower the throughput,
but this difference almost vanishes for high core counts. Second, the throughputs
for d = 2 and d = 3 approach each other for high core counts. Third, PIT’s
2d scaling is close to linear up to a given threshold. For d = 3, the results are
rougher, but a similar threshold is hit for higher core counts. If the core count
exceeds this threshold, the throughput stagnates. Fourth, the more particles the
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lower the parallel efficiency. Eventually, PIT does not scale for 109 particles.
We observe an inverse weak scaling with respect to particle numbers.

The behaviour results purely from the particle handling, as the synchronisa-
tion of the grid along subdomain boundaries is neglectable due to our realisation
from [22]. Any master has to wait for all its workers before it may ascend, as the
workers might lift particles. Any node triggers its send to its master after the
traversal of its local domain has finished. This is a partial synchronisation of the
ranks and a blocking data exchange realising a reduction. The latter is sensitive
to latency and bandwidth restrictions. As master-worker data exchange prelude
or follow the actual local particle handling, the computational work per particle
does influence the runtime, as it cannot overlap with the communication. The
fewer computation to be done, however, i.e. the more cores participate in the
computation, the lower the impact of this work and the more severe communi-
cation bounds. As the logical master-worker tree topology is broader for d = 3
than for d = 2, the synchronisation runtime pressure at the workers is higher
for d = 3. As latency is critical for the global reduction and its counterpart
when we start up the cores and drop particles, latency dominates the runtime if
“too” many cores collaborate. The performance then stagnates. As bandwidth
is critical for the master-worker data exchange, more particles slow down the
reduction phase and its startup counterpart. PIT scales only in a very limited
parameter regime.
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Figure 9: Results from Figure 8 without any additional flops rerun on Polaris. The marker
size/colour identifies the ppc, while circles plot 107 particles and triangles 108 particles. Ver-
tical lines mark whenever the ports of one switch layer theoretically are exceeded. In practice,
more switches are used for lower (small) core counts already.

Basically, its scaling is determined by the hardware characteristics plus the
tight synchronisation. This effect becomes evident for the same experiments
on Polaris (Figure 9). Polaris exhibits slightly better results for moderate core
counts. However, the throughput drops whenever the core count requires the su-
percomputer to employ another level of switches. Due to a good placement that
anticipates broken or overbooked nodes, the resulting performance drops appear
slightly prior to the theoretical switch capacity. Notably, the more restrictive
network topology introduces an inverse weak scaling effect for a high core count
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to particles ratio, where an increase of cores introduces a degeneration of the
throughput due to increased communication/synchronisation pressure.

6.5. Parallel PIDT
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Figure 10: Parallel throughput of PIDT for SuperMUC (left) and Polaris (right). The darker
the dots the fewer flops are added to each particle. Solid lines are worst case setups with
no computation per particle besides position updates. The bigger the marker the bigger ppc

∈ {102, 103, 104} (blue,green,red). All marker types pick up conventions of the other plots.

We next rerun all experiments for PIDT and compare the outcomes to the
PIT results. Three differences become apparent (Figure 10): First, the impact
of the operations per particle diminishes. Yet, lower arithmetic intensity still
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means higher throughput. Second, PIDT inherits its lower throughput com-
pared to PIT for low core counts. It still is slower. Third however, PIDT scales
better than PIT if the number of particles is reasonably big and ppc is small.
There still is a stagnation threshold, but this threshold is higher than for PIT,
i.e. PIDT overtakes its sibling algorithm for a decent core count.

The improvement of PIDT compared to PIT stems from the fact that PIDT
exchanges particles both via master-worker relations and along subdomain bound-
aries. The exchange along these boundaries can be realised asynchronously.
This allows PIDT to hide computations behind non-blocking MPI calls. Such
a hiding is the more effective the more computational workload per particle.
However, it also depends on the dimensionality as the domain boundary is a
d − 1-dimensional submanifold. Still, PIDT restricts data along the spacetree
each iteration and thus is vulnerable to latency effects. However, the actual
number of lifts along the master-worker hierarchy is significantly smaller than
for PIT and thus attenuates the impact of bandwidth constraints. Big ppc make
the underlying spacetree more shallow and thus counteract to this effect while
small ppc lead to deep spacetrees where boundary data exchange and parallel
domain handling gain weight in the total runtime profile.

6.6. raPIDT
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Figure 11: Parallel throughput of PIDT (left) and raPIDT (right) on Polaris.
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Figure 12: Scaling results for ppc=100 regarding different time step sizes for d = 2 (top)
and d = 3 (bottom). PIT (left) is outperformed by raPIDT (right) while both approaches
profit from decreasing time step sizes. Large core count measurements become dominated by
network effects that eventually stop any scaling for both approaches on Polaris as opposed to
Figure 13.

raPIDT tackles the reduction challenge of our particle management, i.e. skips
them if possible, and thus yields improved throughput rates for the previously
studied setups (Figure 11) where the time step size is kept constant. It makes
the PIDT idea to yield throughput rates comparable to PIT. Notably, it weakens
the impact of the network topology.

An interpretation of raPIDT on a bigger core scale requires us to empha-
sise how the scenario properties normalise experiment parameters. Due to ppc,
we control the particle density per spacetree cell, while the total particle count
determines the spacetree depth, i.e. the cell sizes. Since we standardise the do-
main to the unit square or cube, prescribe the time step size and have a uniform
velocity distribution, the relative velocity of particles to cell sizes scales with the
total particle count by roughly d

√
#particles. An increase of the particle count

induces an increase of the particles’ velocity. While a study of weak scaling
with respect to particles in Section 6.4 and 6.5 is reasonable to understand al-
gorithmic properties, our subsequent performance studies focus on weak scaling
where the overall computational domain is successively increased. To enable use
to compare results with previous results, we stick with the unit length domain
but decrease the time step size when we increase the particle count.
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Figure 13: Experiments from Figure 12 for different particle counts rerun on SuperMUC.

Once we apply this normalisation, we observe that raPIDT outperforms PIT
(Figures 12 and 13) for reasonable big time step sizes. For small time step sizes
(relative to the particle count, i.e. the grid structure), both perform with the
same throughput. raPIDT is more robust than PIT on Polaris (Figures 12).
The d = 3 throughput is lower than the two-dimensional counterpart for both
setups, as the typical grid structure for fixed ppc differs. If we normalised with
respect to the grid depth, d = 2 and d = 3 yield similar results. On SuperMUC,
the 4:1 blocking topology for more than 8192 cores stops both variants to pass
the 1010 particles per second threshold and makes the throughput stagnate or
degenerate. raPIDT here does not perform significantly more robust than PIT.

7. Comparison with other algorithms

We finally compare PIT, PIDT and raPIDT to alternative implementations. Ob-
viously, only alternatives that support both tunneling and dynamically adaptive
grids candidate. The most prominent class of spacetree AMR codes is the fam-
ily of spacetree algorithms that rely on space-filling curves for the partitioning
[1, 8, 15, 20, 21]. Textbook variants of SFC codes typically hold information
about their subpartitioning on each rank—they basically store where the SFC’s
preimage is cut into pieces. Each rank’s tree construction starts from its lo-
cally owned cells, i.e. the cells in-between the rank’s start index and its end
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index along the SFC. From hereon, the rank constructs the local spacetree in
a bottom-up manner: if a cell is held by a rank, also its parent is held by this
rank which yields, on coarser levels, a partial replication. Detailed comparisons
to the present Peano approach used in our PIT and raPIDT implementation
can be found in [30].

If the cuts along the SFC are known, it is possible due to the SFC code [30]
to compute per particle the preimage of their position, i.e. an index along the
SFC. This immediately yields the information which rank holds a particle. One
thus can send any particle directly to the right rank after the move. Though
our implementation base relies on a space-filling curve as well [22, 29, 31, 32],
it does neither exhibit curve information to the application nor does it hold
information about the global partitioning on any rank. However, we can man-
ually expose this information to the ranks and thus reconstruct a SFC-based
implementation. This allows us to compare an SFC-based code directly to the
present alternatives: Our implementation using SFC cuts runs through the grid
and moves the particles as for PIT. Whenever a particle leaves the local domain,
we move it into a buffer. For each rank, there’s one buffer. Upon termination of
the local traversal, all buffers are sent away. As there is no information available
whether particles tunnel, each rank then has to wait for a notification from all
other ranks. Though this is a global operation, our implementation follows [25]
and realises it with point-to-point exchange. If one rank finishes prior to other
ranks, the in-between time is then already used for data exchange. Throughout
our experiments, any overhead to maintain the global decomposition data is
neglected, i.e. we restrict purely to the particle sorting. However, we emphasise
that a rank receiving particles does not hold any additional information about
the particle position, i.e. where within the local domain it has to be inserted. We
thus rely on the drop mechanism. Comparisons to a direct insert based upon
SFCs again (the particle’s cell is identified due to the preimage and inserted
right into the correct cell) show that both variants yield comparable results.
This is an important difference to PIT and PIDT as the latter schemes encode
remote sorting information implicitly within their send order.

A second competing idea is the sieve approach from [4]. Different to SFCs,
it comes along without global domain decomposition knowledge. Each rank
collects all particles that leave its domain. Again, we rely on local buffers.
These sets of particles then are passed around between the ranks cyclically.
Each rank extracts the particles falling into its domain. It sieves and then
passes on the array. We distinguish two variants to sort particles into the local
grid if we receive a set of particles from the neighbour node: in one variant
(sieve & drop), we rely on PIT’s drop mechanism. In a second variant, we use
the local SFC information to sort the received particles directly into the correct
cells.

Besides the alternative variants, we also compare PIT, PIDT and raPIDT to
a plain linked-cell algorithm. For the latter, we use a modified PIDT code. The
velocity profile is chosen such that no particle may tunnel. As a consequence,
we manually switch off all multiscale checks, and we, in particular, skip any
master-worker or worker-master communication. Such a test is thus a valid
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Figure 14: Comparison of different solvers for small core counts and characteristic setups
with ppc=100, ∆t = 10−2 (top left), ppc=100, ∆t = 10−3 (top right), ppc=100, ∆t = 10−4

(bottom left). ppc=10, ∆t = 10−4 for d = 3 (bottom right) illustrates a regime where all
algorithms yield comparable results because of a low particle density. All experiments are ran
with 106 particles.

setup to quantify the overhead introduced by the tunneling for the present
software independent of the quality of implementation. No software ingredient
is particular tuned and all codes rely on the same ingredients where possible. All
setups rely on exactly the same domain decomposition, i.e. balancing differences
are eliminated.

We reiterate that PIDT is faster than PIT for big time step sizes of ∆t =
10−2 (Figure 14). However, each run with the linked-cell approach remains
faster though the performance gap closes with increasing core counts. Neither
our SFC-cut nor our sieve implementations can cope with these results. How-
ever, they always scale better. For sufficiently big ∆t, they eventually close the
performance gap. If we reduce the time step size, there is a sweet spot where
PIT becomes faster than PIDT as well as the linked-cell approach (visible here
only for d = 3). Still, the sieve algorithm yields significantly lower throughput.
The SFC-based variants are slower, too.

The differences between PIT and PIDT have been discussed already. Our
experiments validate, for most setups, statements from [4] that observe that
all variants supporting tunneling are slower than a pure linked-cell like code.
However, both PIT and PIDT reduce this runtime difference significantly. This
is insofar interesting, as PIT exhibits similarities to the up down tree algorithm
from [4] which is reported to be even slower than sieve. Sieve suffers from a
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global communication phase after each iteration where the length of the phase
(number of data exchange steps) increases with more ranks participating. It
thus cannot scale. PIT circumnavigates such a global data exchange phase.
While the SFC-cut implementation scales and allows all the ranks to process
their local grid asynchronously, it still runs into a synchronisation phase, as
each rank has to wait per time step for every other rank for notification. This
point-to-point synchronisation determines the performance, since we found no
significant runtime difference when we studied whether a drop mechanism for
local sorting or the direct application of SFC indices yields better results for
SFCs. PIT and PIDT are able to spread all data transfer more evenly accross
the executation time than their competitors. It is in particular interesting that
PIT manages to outperform the linked-cell approach for very small time steps
and d = 3 with small ppc, i.e. a deep spacetree. This results from the fact
that particles within a cell are not sorted and few particles cross the cell faces
per time step. Obviously this is an unfair competition: as no neighbourhood
information is available in PIT (different to PIDT where we have half a cell
overlap), no particle-particle interaction can be realised. PIT is designed for
particle-mesh interaction only. Our SFC implementation was able to compete
with PIT and PIDT only for small core counts and deep spacetree hierarchies.
For bigger core counts, the SFC’s behaviour resembles the sieve algorithm which
results from the global communication phase found there, too.

We emphasise that the whole runtime picture might change if the grid were
regular, if the grid were not fixed prior to the particle sorting, i.e. if we could
create the grid depending on the particles without persistent grid data, or if we
translated our reduction-avoiding mechanism from raPIDT into the SFC world.
The latter would yield a higher asynchronity level and remove a global SFC
communication phase.

8. Conclusion and outlook

We introduce three particle management variants facilitating solvers that
have to resort particles into an existing dynamically adaptive Cartesian grid
frequently and can run into tunneling. Particle in tree (PIT) holds the particles
within the tree, i.e. the cells of a multiscale adaptive Cartesian grid, and lifts
and drops the particles between the levels to move particles in-between cells.
Particle in dual tree (PIDT) stores the particles within the vertices, i.e. switches
to a dual grid, and thus fuses ideas of a tree-based particle management with
a multiscale linked-list paradigm. Particles either can move up or down within
the (dual) tree or directly into neighbouring cells. The latter works on any
level of the multiscale grid. raPIDT finally augments PIDT by a simple velocity
analysis. This analysis labels regions where no particle is moved in-between
certain grid levels in the subsequent time steps. This allows us to eliminate
reductions within the tree locally.

Comparisons of the straightforward PIT with the dual grid strategy PIDT
reveal that no scheme is superior to the other schemes by default. For small
problem setups with slowly moving particles, PIT yields higher performance

31



than PIDT. For big problem setups or fast particles, there is a sweet spot where
the higher code complexity of PIDT pays off. Particular interesting is the fact
that raPIDT picks up advantages of linked cell strategies, i.e. asynchronity of
the ranks and exchange of data in the background, while arbitrary tunneling
still is enabled. This might make it a promising candidate for the upcoming
massively parallel age. It is also not surprising that the particle throughput
depends on differences in the hardware characteristics. High clock rates pay off
for moderate particle counts. For high core counts, topology properties of the
interconnection network outshine clocking considerations. Regarding latency
effects, raPIDT is more robust than PIT and PIDT. For big core counts and
high particle numbers, all variants however continue to suffer from latency and
bandwidth constraints introduced by x:1 blocking.

Our particle maintenance strategies are of relevance for multiple particle-
in-cell (PIC) simulations as well as other particle-grid codes with different al-
gorithmic properties. Examples for PIC are plasma processes with shocks or
reconnection, global large-scale simulations with multifaceted particle velocity
characteristics, or self-gravitating systems whose dynamics imply large parti-
cle inhomogeneities. While such setups require substantial investment into the
PDE solver, our particle treatment transfers directly. Another example is local
particle time stepping where some particles march in time fast and thus might
tunnel, while others then follow up with tiny time steps where the reduction
skips come into play. It is part of our future work to use the present algorithms
in such a context. Of particular interest to us is the fusion with applications
that realise implicit schemes or particle-particle interactions. While the former
weaken the grid size and, hence, time step constraints—though we still can make
the grid size adapt to fine-scale inhomogeneities of the PDE without algorithmic
constraints resulting from the particle velocities—both increase the arithmetic
intensity and thus damp the impact of communication on the scaling. We fur-
ther recognise that the dual grid approach allows us to realise any interaction
with a cut-off radius smaller than half the grid width without any additional
helper data structure such as linked-cell lists or modified linked lists [7, 17]. In
this sense, our approach is related to dual tree traversals [3, 28] that also avoid
to build up connectivity links.

It seems to be important to stress two facts. On the one hand, our lift
and drop mechanisms can also be used by particle-interaction kernels to push
particles to the “right” resolution level, i.e. a level fitting to their cut-off radius.
For complex applications, there is no need to drop particles always into the finest
grid all the time. This enables particles suspended within the tree. It is subject
of future work with respect to applications with particle-particle interaction
to exploit such a multilevel storage. On the other hand, we appreciate how
fast linked-list algorithms perform in many applications. In our formalism,
they basically induce an overlapping domain topology on top of a given tree
distribution. And we recognise that the fastest variants of these algorithms rely
on incremental updates of these interaction lists. It is hence a straightforward
idea to combine our grammar paradigm plus the particle management with an
update of these lists where the grammar eliminates also list updates.
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Appendix A. Validation

Figure A.15: Electric field spectrum in the wavevector-frequency plane (k1, ω), at k2 = 0.
The colors range from white (low signal) to black (high signal). The red dashed line shows
the theoretical Langmuir wave dispersion relation obtained from the Vlasov-Poisson theory.

As validation of our PIC implementation—which is independent of the choice
of PIT or PIDT—we study a thermal plasma at rest, and we confirm that our
code retrieves the theoretical Langmuir wave dispersion relation obtained from
the Vlasov-Poisson theory. For our test, we rely on a regular d = 2 grid with
243 × 243 grid cells. Time is normalized to the inverse plasma frequency ω−1p ,
and space is normalized to the Debye length λd, i.e. a grid cell has size λd×λd.
The (angular) plasma frequency is defined by

ωp =

√
ne2

ε0me

with n being the electron density, me being the electron mass and e being the
elementary charge. The Debye length λd, the typical length scale for the electric
screening of a charge in a plasma, is defined by

λd =

√
ε0kB

T

ne2
= vth/ωp

with ε0 being the vacuum permittivity, k
B

being the Boltzmann constant, and
T being the electron temperature. All parameters follow [12]. Our observed
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Langmuir waves, also called electron plasma waves, are high frequency oscilla-
tions of the electron density over a fixed ion background. The frequency is high
enough for the ions not to have time to respond because of their higher inertia.
The charge separation generates an electric force acting as the restoring force.

In the cold plasma approximation, i.e. when the thermal velocity of the
plasma is much smaller than the phase velocity of the wave, the Langmuir
waves oscillate at the plasma frequency. When taking into account the finite
temperature of the electrons, a (small) frequency correction appears, leading to
the following dispersion relation for a Maxwellian velocity distribution function

ω2 = ω2
p + 3k2v2th = ω2

p(1 + 3k2λ2d)

where k
L

is the wave vector, vth the electron thermal velocity.
The electron plasma is initially loaded with 100 macro-particles per cell,

a charge-to-mass ratio q/m = −1, and a random velocity characterized by a
Gaussian distribution of mean velocity 0 and thermal velocity vth = 1. The
electron charge density is initially uniform n = −1. We also set a neutralising
fixed ion background—this contribution adds as constant term to the right-
hand side in (1) besides the simulated particles—with a constant charge density
ni = 1. Our simulation runs with a time step size ∆t = 0.01 and the potential
is output every 150 time steps.

Figure A.16: Electric field spectrum in the wavevector-wavevector plane (k1, k2), at ω = 1.14.
The colors range from white (low signal) to black (high signal). The red dashed line shows the
wavevectors in the d = 2 plane corresponding to Langmuir waves at frequency ω = 1.14, from
the theoretical Langmuir wave dispersion relation obtained from the Vlasov-Poisson theory.

The initial random velocity seeds a sea of Langmuir waves whose dispersion
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relation can be checked from the analysis of the electric potential: the output
electric potential V (x, y, t) is Fourier transformed both in time and space which
yields V̂ (k1, k2, ω) where k1 and k2 are the wave vectors associated to the space
coordinates xi i ∈ {1, 2}. ω is the frequency. The Fourier transform of the
electric field is shown for a cut at ky = 0 in the plane (kx, ω) in Figure A.15. The
electric fluctuations are organized in Fourier space so to match the theoretical
Langmuir wave dispersion relation obtained from the Vlasov-Poisson theory
ω2 = ω2

p

(
1 + 3 (kλd)2

)
(dashed line). The result is identical in a cut at kx = 0

in the plane (ky, ω). The Fourier transform of the electric field is also shown
in a two-dimensional cut at fixed frequency ω = 1.14, in the wavevectors plane
(k1, k2), in Figure A.16. Again, the electric fluctuations are organized in Fourier
space at the wave vectors corresponding to Langmuir waves (dashed line) at the
prescribed frequency.

Appendix B. Additional experimental data

Table B.2: Experiments from Table 1 reran on Polaris.

p 1 2 4 8 12 16 32

103 4.59 · 107 4.86 · 107 5.26 · 107 3.73 · 107 2.94 · 107 3.03 · 107 1.92 · 107

104 1.04 · 108 1.65 · 108 2.24 · 108 2.36 · 108 2.24 · 108 1.98 · 108 1.32 · 108

105 1.17 · 108 2.31 · 108 4.18 · 108 6.60 · 108 8.08 · 108 8.83 · 108 7.04 · 108

106 1.14 · 108 2.35 · 108 4.57 · 108 8.52 · 108 1.20 · 109 1.38 · 109 1.33 · 109

107 1.11 · 108 2.20 · 108 4.26 · 108 5.99 · 108 6.24 · 108 6.29 · 108 5.93 · 108

108 1.05 · 108 2.20 · 108 4.30 · 108 6.02 · 108 6.28 · 108 6.31 · 108 6.26 · 108

103 5.92 · 107 4.52 · 107 3.91 · 107 3.26 · 107 3.01 · 107 3.40 · 107 1.90 · 107

104 7.85 · 107 1.28 · 108 1.83 · 108 2.13 · 108 1.94 · 108 2.00 · 108 1.18 · 108

105 9.77 · 107 1.90 · 108 3.40 · 108 5.64 · 108 6.82 · 108 7.20 · 108 5.42 · 108

106 8.94 · 107 1.71 · 108 3.36 · 108 5.53 · 108 6.44 · 108 6.71 · 108 6.13 · 108

107 7.75 · 107 1.67 · 108 3.20 · 108 4.05 · 108 4.17 · 108 4.20 · 108 4.07 · 108

108 7.73 · 107 1.72 · 108 3.22 · 108 4.07 · 108 4.19 · 108 4.24 · 108 4.21 · 108

We ran the stream-like benchmark without particle sorting or any grid on
both Polaris and SuperMUC. On Polaris, it yields almost twice the performance
compared to SuperMUC (Table B.2). This is a direct result of the higher clock
frequency on the smaller cluster.

Finally, some additional plots illustrating the lift behaviour for a fixed time
step size can be found in Figure B.17. They validate our statements on pros
and cons of PIT or PIDT respectively.

38



0 10 20 30 40 50
time step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

#
lif

ts
/p

a
rt

ic
le

PIT, 2d, (0.0,1.0)2 , ∆t=0.01

0 10 20 30 40 50
time step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

#
lif

ts
/p

a
rt

ic
le

PIT, 2d, (0.0,0.1)2 , ∆t=0.01

ppc=10000

ppc=1000

ppc=100

ppc=10

0 10 20 30 40 50
time step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

#
lif

ts
/p

a
rt

ic
le

PIDT, 2d, (0.0,1.0)2 , ∆t=0.01

0 10 20 30 40 50
time step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

#
lif

ts
/p

a
rt

ic
le

PIDT, 2d, (0.0,0.1)2 , ∆t=0.01

Figure B.17: ∆t = 0.01 for PIT (top) and PIDT (bottom). We restrict to d = 2 and
study homogeneous (left) and inhomogeneous (right) initial distributions, i.e. regular and
dynamically adaptive grids.

39


	1 Introduction
	2 Related and used work
	3 Use case: a particle-in-cell code
	4 A distributed spacetree data structure holding particles
	4.1 Dual spacetree grid
	4.2 Storing particles within the spacetree
	4.3 Parallel grid decomposition
	4.4 Event-based formalism of the tree traversal

	5 Cell- and vertex-based particle movers
	5.1 Particle in tree (PIT)
	5.2 Particle in dual tree (PIDT)
	5.3 Remarks
	5.4 Restriction-avoiding PIDT (raPIDT)

	6 Results
	6.1 Algorithmic properties
	6.2 Memory throughput
	6.3 Single core results
	6.4 Parallel PIT
	6.5 Parallel PIDT
	6.6 raPIDT

	7 Comparison with other algorithms
	8 Conclusion and outlook
	Appendix  A Validation
	Appendix  B Additional experimental data

