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ABSTRACT

Reconstruction of the local velocity field from the overdensity field and a

gravitational acceleration that falls off from a point mass as r−2 yields velocities

in broad agreement with peculiar velocities measured with galaxy distance indi-

cators. MONDian gravity does not. To quantify this, we introduce the velocity

angular correlation function as a diagnostic of peculiar velocity field alignment

and coherence as a function of scale. It is independent of the bias parameter

of structure formation in the standard model of cosmology and the acceleration

parameter of MOND. A modified gravity acceleration consistent with observed

large scale structure would need to asymptote to zero at large distances more like

r−2, than r−1.

Subject headings: surveys – gravitation – cosmology: distance scale – cosmology:

large-scale structure of Universe
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1. Introduction

One of the most significant products of redshift surveys is a map of large scale

structure. This in turn allows us to calculate the velocity field induced by density contrasts

over cosmic time. For this we often use the linear approximation that the acceleration of

a galaxy does not change much over time and that velocities are not just dimensionally

equivalent to acceleration multiplied by the Hubble time, but also proportional to it.

Regions of high overdensity are to be avoided when using the linear approximation, as

turnaround and virialization follow the rise of galaxy density to high levels. In the era

of precision cosmology, when measuring the Hubble Constant to 1% is our aspiration

(Bennett et al 2014, Suyu et al 2012) for a variety of compelling physical reasons, peculiar

velocities need to be better measured and calculated by local redshift surveys. The state of

the art is illustrated by Lavaux & Tully (2010) and Magoulas et al (2012). The fact that

approximately 70% of the Universe is dark energy and that dark energy is not physically

understood (Binétruy 2013) suggests that we should not ignore alternatives to Newton’s

gravity and Einstein’s gravity at scales larger than those of classical GR tests. Modified

gravity laws cannot yet be ruled out. In this paper we explore one such gravity law applied

to the 2MRS density distribution (Huchra et al 2012), namely Milgrom’s Modification of

Newtonian Gravity (MOND) (Milgrom 1983). We find that, while well motivated for kpc

scales, it predicts a velocity field different from what we have observed, for example in the

6dF Galaxy Survey (Jones et al 2009).

The unification of MOND with space expanding on Mpc scales with a scale factor a

is a work in progress. Close to 40 years’ history of MOND has been reviewed by Sanders

(2015) and Bothun (2015). There is a general problem with all attempts to address large

scale structure problems within the MONDian framework: the framework does not exist!

There is no cosmological MOND theory is the standard answer of MONDian aficionados.
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Be that as it may, the growth of density inhomogeneities (δρ/ρ) in that theory has been

studied by Nusser (2002) and Llinares (2008, 2014). We note that the peculiar acceleration

due to an overdensity in Newtonian gravity is given by Peacock (1999)

u̇+ 2
ȧ

a
u = −g

a
(1n)

where peculiar velocity v = a u and by Nusser (2002) as

u̇+ 2
ȧ

a
u = −√3ΩmH

2g0
2a

gN√
gN

(1m)

in the curl-free MONDian case with Ωm the present matter density. To avoid ambiguity we

write the MOND acceleration parameter a0 as g0. Our purpose in this paper is not to join

this development of MOND or TeVeS (Bekenstein 2004) to deal with groups of galaxies or

cosmological simulations (Angus et al 2013); rather we wish to motivate the extension of

peculiar velocity surveys beyond 6dFGS by illustrating the power of peculiar velocities to

investigate both structure and gravity on the largest scales.

2. Implementation

For calculating peculiar velocities from 2MRS we have followed Erdoğdu et al (2006)

and used the formulation by Peebles (1980) and Davis et al (2011) in the usual notation

with g(r) representing the gravitational acceleration at r

v(r) =
2Ω4/7βg(r)

3H0Ωm

(2)

where

g(r) = Gρ̄

∫
dr′3

δρ′

ρ′
r− r′

|r− r′|3
(3)
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and β = Ω
4/7
m /b and b the bias parameter. On Mpc scales we are in the ‘deep-MOND’

regime (Zhao et al 2013) beyond the interpolation formulae between MOND and Newtonian

gravity used in the internal dynamics of galaxies, so that the gravitational acceleration

under MOND can be written as

gMOND =
√
gN

√
g1 (4)

where gN is a Newtonian r−2 acceleration field and
√
g1 = 4

3
(
√
2 − 1)

√
g0 with g0 ∼ 10−10

m/s2. Equation (1) of Zhao et al with y >> 1 yields this definition of g1.

Our calculation therefore proceeds by substituting the MONDian acceleration for the

Newtonian one in equation (2). The value of β is calculated from the bias factor, measured

for this sample to be b = 1.48 ± 0.27 (Beutler et al 2012). Nusser (2014) has pointed out

that not only are we assuming the linear approximation in doing this, and thus erring

in high density regions, but also we are neglecting velocities generated at early times1.

Such initial peculiar velocities are subject to adiabatic decay, however, over the age of the

Universe (Davis et al 2011).

3. Results

In this calculation, and generally in n-body codes, each particle communicates with

every other particle. In the MONDian case every grid point that looks at the Shapley

supercluster, sees an overdensity not fully attenuated , as the luminosity field is, by r−2

1During early cosmic times, all accelerations on all scales are large, so that the Newtonian

equations pertain. As time goes by, the gravitational field decreases in amplitude and enters

the MOND region. This modification would be TN gN + TMOND gMOND, where TN is

the time spent in the Newtonian regime and TMOND is time spent in the MOND regime.

TN/TMOND depends on the amplitude of the initial fluctuations.
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and wants to move towards Shapley. The outcome of this is Figures 1 and 2 , which depict

the velocity field. In Figure 1 we see a smooth flow with a coherence length as large as

the volume. It is quite unlike the observed velocity field, and there is no free parameter to

remedy it.

Fig. 1.— The MONDian flow-

field in the supergalactic plane.

The SGX and SGY coordinates are in

units of Mpc/h.

Fig. 2.— The Newtonian flowfield for compar-

ison with Figure 1. Prominent features are the

Great Attractor on the left and the Perseus-

Pisces supercluster on the right.

In Figures 3 & 4 we see the predicted velocity distribution functions in the SGX

coordinate. These figures are not the problem. There are two free parameters β and, to

some degree, g0 that can be adjusted to bring the speed everywhere into the range that

we observers see in the cosmic microwave background rest frame. By contrast, Figures 2

and 4 for the Newtonian case do resemble the observed velocity field , and can be brought

into agreement with it with β ≈ 0.6 (Magoulas et al 2012, 2015). Figure 5 shows both the

density and velocity fields for standard model cosmological parameters.
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Fig. 3.— The distribution of MONDian pe-

culiar velocities in the SGX direction. This

figure is for β = 0.4 in equation (2), and ve-

locities would scale by a factor of 1.5 for β =

0.6.

Fig. 4.— The distribution of Erdoğdu model

peculiar velocities. Again, we used β = 0.4.

4. Analysis

A formal comparison of the prediction of MOND and 6dFGS observations is made in

Figure 6. Here we show bulk flow velocity as a function of scale. To calculate this, we

create a large number of spheres of particular radii and average the velocities within each.

To reconcile MOND and observations in this plot would require a four order of magnitude

change in g0, which would disrupt the agreement between MOND predictions and galaxy

rotation curves (Swaters et al 2010). The mismatch between our observations and MOND

rules out MOND. As we see below, the standard Erdoğdu r−2 model, on the other hand,

agrees with the observations within the uncertainties.

We have also calculated the velocity angular correlation function as follows. For every

pair of galaxies in the 6dFGS peculiar velocity sample the angle between the radial peculiar

velocities is calculated. Figure 7 shows the probability that this angle θ is small (cos θ >
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Fig. 5.— The flow field in the supergalactic plane in the Newtonian case, superposed on the

density field from 2MRS colour coded (red being denser than the mean by a factor of 12 and

blue zero density). We are at the origin and the two closest prominent features are inflow

into the Great Attractor (towards the upper left) and into Perseus Pisces (towards the lower

right). The longest arrows reach 1500 km/s.
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Fig. 6.— Bulk flow velocity for the MOND case for β = 0.4. Reducing g0 by two orders of

magnitude gives the dashed line. It improves the MOND prediction but is still far from a fit

to 6dFGS data: open circles with error bars. The 2MRS model predictions for β = 0.6 are

the dot-dashed line.
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Fig. 7.— The velocity angular correlation function for the MOND case (dot-dashed line) for

the Newtonian model (dashed line) and for 6dFGS (solid line with error bars). In the 2MRS

galaxy separations are measured in Mpc/h, where h is the Hubble constant in units of 100

km/s.
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0.9) as a function of separation. In MOND small misalignments continue to large galaxy

separations. In the Erdoğdu model the fall off is more rapid. Again, the data are most

inconsistent with MOND. For galaxy separations between 20/h and 100/h Mpc χ2 per

degree of freedom is over five times larger for MOND than it is for the r−2 prediction.

Absolute values of χ2 are hard to calculate exactly because of the expected failure of the

linear approximation at separations smaller than 20 Mpc and the non-gaussian probability

distributions of 6dFGS peculiar velocities (Springob et al 2014). The coherence length of

velocity structure measured as an e-folding scale for this function is 2600 km/s for 6dFGS,

2700 km/s for the Newtonian 2MRS model and 3300 km/sec for the MOND model.

5. Conclusions

Peculiar velocities are not a unique probe of modified gravity at the 10 Mpc scale. Weak

lensing coupled with galaxy redshifts also provides a good constraint (Reyes et al 2010).

Focussing on peculiar velocities, however, we conclude

(1) MOND predicts a velocity field overwhelmingly dominated by the largest overdensities

on the largest scales (100 Mpc) that we have tested here. The velocity angular correlation

function shows markedly worse agreement with 6dFGS in the MONDian case than in the

acceleration ∼ r−2 case.

(2) Smaller well established features observed in the flow field such as the infall into the

Great Attractor (e.g. Lynden Bell et al 1987, Mathewson & Ford 1994) and into the Perseus

Pisces supercluster (e.g. Han & Mould 1992) are not seen in the MOND flow field.

(3) If we consider modified gravities more broadly than MOND, those with accelerations

that fall off more slowly than r−2 will tend to run into similar problems, but these would

need to be statistically tested for a mismatch with peculiar velocity data.

(4) The velocity power spectrum (Johnson et al 2014) is a fine basis for such tests. Evidence
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for more power on large scales than ΛCDM predicts under the linear approximation and

standard gravity is at the 2σ level currently (Feldman et al 2011). Larger scale coherence

than discussed here is seen (Tully 1989, Tully et al 2014). The relevance of modified gravity

to such observations remains to be seen.
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Erdoğdu, P et al 2006, MNRAS, 373, 45

2http://www.caastro.org



– 13 –

Davis, M et al 2011, MNRAS, 413, 2906

Feldman, H et al 2010, MNRAS, 407, 2328

Han, M & Mould, J 1992, ApJ, 396, 453

Huchra, J et al 2012, ApJS, 199, 26

Johnson, A et al 2014, MNRAS, 444, 3926

Jones, DH et al 2009, MNRAS, 399, 683

Lavaux, G & Tully, RB 2010, ApJ, 709, 483

Llinares, C 2008, MNRAS, 391, 1778

Llinares, C 2014, PhRvD, 89, 4023

Lynden-Bell, D et al 1988, ApJ, 326, 19

Magoulas, C et al 2012, MNRAS, 427, 245

Magoulas, C et al 2015, in preparation

Mathewson, D & Ford, V 1994, ApJ, 434, L39

Milgrom, M 1983, ApJ, 270, 365

Nusser, A 2002, MNRAS, 331, 909

Nusser, A 2014, private communication

Peacock, J 1999, Cosmological Physics, Cambridge University Press

Peebles, P 1980, The Large Scale Structure of the Universe, Princeton University Press

Reyes, R et al 2010, Nature, 464, 256

Sanders, R 2015, Can J Phys, 93, 126

Springob, C et al 2014, MNRAS, 445, 2677

Suyu, S et al 2012, astro-ph 1202.4459

Swaters, R et al 2010, ApJ, 718, 380

Tully, RB 1989, ASSL, 151, 41

Tully, RB et al 2014, Nature, 513, 71

Zhao, H et al 2013, A&A, 557, L3


	1 Introduction
	2 Implementation
	3 Results
	4 Analysis
	5 Conclusions

