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Abstract

We study many-to-many matching with substitutable and cardinally mono-
tonic preferences. We analyze stochastic dominance (sd) Nash equilibria of the
game induced by any probabilistic stable matching rule. We show that a unique
match is obtained as the outcome of each sd-Nash equilibrium. Furthermore,
individual-rationality with respect to the true preferences is a necessary and suf-
ficient condition for an equilibrium outcome. In the many-to-one framework, the
outcome of each equilibrium in which firms behave truthfully is stable for the
true preferences. In the many-to-many framework, we identify an equilibrium in
which firms behave truthfully and yet the equilibrium outcome is not stable for
the true preferences. However, each stable match for the true preferences can be
achieved as the outcome of such equilibrium.

KEYWORDS: Probabilistic rules, stability, Nash equilibrium, substitutability,
cardinal monotonicity.
JEL Classification: C78.

1 Introduction

Centralized job matching procedures have received much attention in two-sided match-
ing literature since they were introduced to address market failures (such as uncontrolled
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unraveling of appointment dates, and chaotic recontracting). In centralized matching,
each agent submits to the clearinghouse a preference order over agents on the other
side, and the clearinghouse then uses an algorithm to produce a match. These pro-
cedures are typically deterministic: matches are produced in a context where chance
plays no role. Therefore the results do not usually reflect the case in real life situations
such as labor markets where lotteries often determine outcomes. Randomization is the
most common device to ensure procedural fairness in an environment where agents have
conflicting interests. Hence, it is reasonable to allow for randomization in studies of
centralized matching for purposes of achieving equity. Another motivation for studying
randomization is that lotteries may be considered to represent the frictions of a de-
centralized matching process. Decentralized decision making often leads to uncertain
outcomes in complex environments. The speed of the mail, the telephone network or
the internal structure of firms determine how agents communicate. Therefore, the final
match depends on the realization of random events.

We study probabilistic matching rules which may be used in centralized matching to
achieve procedural fairness. When such a rule is used, agents are faced with a game in
which they report a preference order to a clearinghouse which then produces a match.
These rules may also appear in decentralized decision making. The game that agents
face is as follows: starting from an arbitrary match, at each moment in time a pair of
agents from the two sides meets at random. They are matched if this is consistent with
their strategies. It may not be in an agent’s best interest to behave truthfully. This
implies that agents may not report their true preferences in centralized markets and
may not act according to their true preferences in decentralized ones. Indeed, no stable
matching rule makes it a dominant strategy for all agents to state their true preferences
(Roth, 1985).

Another way of stating this result is that no stable matching rule is strategy-proof.
This simply says that there is room for agents to benefit from misrepresenting their true
preferences when confronted with a game induced by a stable matching rule. Indeed, if
all agents but one behaves truthfully, the last agent may gain from this manipulation.
What we are really concerned about is not the fact that agents benefit from individually
circumventing a stable rule, but rather that stable matches that the rule recommends
for the true preferences may not be achieved. Therefore, it is crucial to study equilibria
of the game induced by a stable matching rule. Also, the study of incentives proved
to be useful for understanding behavior in matching markets with deterministic rules.
Therefore, the study of incentives facing agents is a good starting point to understand
behavior in matching markets with probabilistic rules. Empirical evidence shows that
a stable rule may produce a stable outcome for the true preferences (Roth 1984b,
1990, 1991). Under what conditions do Nash equilibria of the preference revelation
game induced by any probabilistic stable rule produce a stable outcome for the true
preferences? An answer to the above question will provide a theoretical support for the
success of stable matching rules.

In a related paper, Roth (1984c) studies the preference revelation game induced by
the man-optimal stable rule in one-to-one matching. He shows that the outcome of
each Nash equilibrium in (weakly) undominated strategies is stable for the true pref-
erences. Roth and Vande Vate (1990) prove that starting from an arbitrary match
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in the marriage problem, the process of allowing randomly selected blocking pairs to
create a new match leads to a stable match with probability one. It is argued that
since many two-sided matching markets are not centralized and yet are not determined
to encounter failures, it is reasonable to think that these markets reach stable out-
comes through decentralized decision making. It can also be argued that the process
of allowing randomly selected blocking pairs is a good approximation to dynamics in
decentralized processes. Roth and Vande Vate (1991) study a one-period game defined
by the mentioned process and show that all stable matches can be supported as equi-
libria in a class of undominated strategies namely truncations. A truncation strategy
for an agent is a preference ordering that has the same order as in her/its true prefer-
ence ordering but may have fewer acceptable elements. However, they show that some
unstable matches can arise as equilibrium outcomes in this game. They then introduce
a multi-period extension of this game and show that all subgame perfect equilibrium
outcomes are stable.

We study many-to-many matching problems where each agent can form multiple
partnerships. A match is ‘stable’ if no agent prefers to be matched to a proper subset
of its current partners, and no group of firms and workers prefers to deviate by estab-
lishing new partnerships only among themselves and possibly dissolving some existing
partnerships.1 This definition is stronger than pairwise-stability that only eliminates
blocking by firm-worker pairs. Stability proved to be a crucial property in many entry-
level labor markets where workers are matched to firms through a clearinghouse. It
has been observed that clearinghouses that adopt stable rules often perform better
than those that adopt rules that do not necessarily produce stable matches. Indeed,
the weaker stability concept, pairwise-stability, is still of primary interest for many-to-
many markets as well (Roth, 1991).

Without any restriction on preferences there are many-to-many problems for which
no stable match exists (Roth and Sotomayor, 1990, Example 2.7). We assume that
each agent’s preferences satisfy substitutability. An agent’s preferences over groups of
partners are substitutable if, once a partner is chosen from a given group of partners,
she/it is also chosen from any subset of the given group of partners.2 We will also re-
fer to responsiveness. An agent’s preferences over groups of partners are responsive (to
her/its preferences over individual partners) if for any two groups that differ in only one
partner, the agent prefers the one that contains the preferred partner. Substitutability
guarantees the existence of a pairwise-stable match.3 Hatfield and Kominers (2012)
showed that for substitutable preferences, stability and pairwise-stability are equiva-
lent.4 Thus, when preferences are substitutable, the set of stable matches is non-empty
and coincides with the set of pairwise-stable matches. We also impose cardinal mono-

1This is an adaptation of the stability definition in Hatfield and Kominers (2012).
2Substitutability is an adaptation of the gross substitutability property (Kelso and Crawford, 1982)

by Roth (1984a) and Roth and Sotomayor (1990) to matching problems without monetary transfers.
3The existence of a pairwise-stable match is shown via an algorithm for strict preferences (Roth,

1984a) and via a non-constructive proof for preferences that are not necessarily strict (Sotomayor,
1999).

4See Echenique and Oviedo (2006) and Sotomayor (1999) for different formulations of stability in
many-to-many matching problems.
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tonicity on each agent’s preferences. An agent’s preferences over groups of partners are
cardinally monotonic if whenever the group of partners available to the agent expands,
she/it will not choose to have fewer partners.5 Responsiveness implies substitutability
and cardinal monotonicity.

Our model involves the US and UK medical labor markets as special cases. In the
US, each student seeks one position and has preferences over positions. In contrast,
in the UK each student must find one medical and one surgical position to register
as a doctor therefore, she has preferences over pairs of positions. In both the US and
UK, each hospital has preferences over groups of students.6 The top three choices
of a hospital with two positions may consist only of females in its rank-order list of
individual students but it may indeed wish to employ no more than one female student.7

Then it may well prefer to employ its first and fourth choices to its first and second
choices. Similarly, each student in the UK prefers a pair of one medical and one surgical
position to any other pairs of positions and yet the top two choices in her rank-order
list of positions may be surgical. While responsiveness is a natural way of extending a
rank-order list of individual partners to that of groups of partners, it does not permit
the above complex but meaningful relations between the two lists. On the other hand,
these relations are admissible by cardinal monotonicity.

We analyze equilibria of the game induced by any probabilistic stable matching
rule. The equilibrium concept we study relies on first-order stochastic dominance. All
rules used in centralized matching markets are ordinal; they elicit only agents’ ordinal
preferences over their potential partners. In such an environment, an ordinal strategy
profile is a stochastic dominance (sd) Nash equilibrium if each agent plays her/its best
response to the others’ strategies for each utility function that is compatible with the
true ordinal preferences. The study of ordinal strategies can be justified by the limited
information that agents may have about their own utility functions. We show that
a unique match is achieved as the outcome of an sd-Nash equilibrium of the game
induced by any probabilistic stable rule (Proposition 1). Furthermore, a match can
be obtained as an equilibrium outcome if and only if it is individually-rational for the
true preferences (Propositions 2 and 3). We show that the outcome of each sd-Nash
equilibrium in which firms behave truthfully is stable for the true preferences in many-
to-one matching (Proposition 4). An implication of this result is that truth-telling by
hospitals in equilibrium is a sufficient condition for stability of equilibrium outcomes in
the US medical labor market. Nevertheless, the result does not extend to the many-
to-many framework. We establish that there are equilibrium misrepresentations that
generate a match that is not stable for the true preferences (Example 1). The converse
statement holds in many-to-many matching: each stable match is supported as the
outcome of an sd-Nash equilibrium in which firms behave truthfully (Proposition 5).

5Cardinal monotonicity is called size monotonicity and law of aggregate demand in Alkan and
Gale (2003) and Hatfield and Milgrom (2005), respectively.

6In the formal description of US hospital-intern market hospitals have preferences over individual
students. This suffices to define stability without reference to preferences over groups of students as
long as they are assumed to be responsive to preferences over individual students.

7Roth (1991) observes that prior to the adoption of a centralized matching procedure the traditional
practice among surgeons in Edinburgh was to employ no more than one female student.
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We finally argue that Propositions 2 and 4 do not hold without the assumption of
cardinal monotonicity. In particular, we identify a many-to-one matching problem with
a profile of substitutable preferences that violate cardinal monotonicity and a profile
of equilibrium strategies such that the equilibrium outcome is not individually-rational
for the true preferences (Example 2). We then identify another many-to-one problem
with the same property as above and a profile of equilibrium strategies in which firms
act truthfully and yet the equilibrium outcome is not stable for the true preferences
(Example 3).

In a related paper, Pais (2008) proves aforementioned equilibrium results in many-
to-one matching when each firm’s preferences satisfy responsiveness. She also studies
sd-Nash equilibria of the sequential game of the sort studied by Roth and Vande Vate
(1990). She allows for a broader set of strategies that need not be consistent with a
unique preference ordering. However, when concerned with strategies that are compat-
ible with a distinct preference ordering for each play of the game (that corresponds to a
sequence of randomly selected pairs of agents), given a profile of stated preferences for
agents other than an arbitrary agent v, agent v has a best response that is compatible
with a preference ordering. This result extends to many-to-many matching when agents
have substitutable and cardinally monotonic preferences. Strategic issues have been the
subject of papers that focus on deterministic matching rules in many-to-one matching.
Ma (2002) assumes that firms have responsive preferences and studies a refinement of
Nash equilibrium based on a class of strategies called truncations at the match point.
A strategy in truncations at the match point for an agent is a preference ordering that
is consistent with her/its true preferences up to her/its current match and that rank as
unacceptable all the agents that are less preferred than her/its current match. He shows
that a match can arise as the outcome of a strong Nash equilibrium in truncations at
the match point if and only if it is stable for the true preferences. In many-to-many
matching, Kojima and Ünver (2008) analyze a random procedure of the sort studied by
Roth and Vande Vate (1990) in one-to-one matching. When agents on one side have
substitutable preferences and those on the other have responsive preferences, they prove
that the decentralized process of satisfying randomly chosen blocking pairs converges to
a pairwise-stable match. Thus, the decentralized interpretation of our model remains
valid in this setup.

The paper is organized as follows. We present the model in Section 2. We im-
pose preference restrictions in Section 3. We introduce the class of probabilistic stable
matching rules and the equilibrium concept in Section 4. We present equilibrium re-
sults in Section 5. We discuss validity of our results without the assumption of cardinal
monotonicity in Section 6. We conclude in Section 7.

2 The Model

Let F = {f1, ..., fn} and W = {w1, ..., wm} denote finite sets of firms and workers
respectively. Generic elements of F and W are denoted by f and w respectively while
a generic element of F ∪ W is denoted by v. “It” refers to a firm and “she” refers
to a worker. The set of (possible) partners of agent v is Sv ≡ W if v ∈ F , and
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Sv ≡ F if v ∈ W . Each agent v has at most cv positions to fill. Let c ≡ (cv)v∈F∪W
denote the list of capacities. Each agent v has a linear preference ordering Pv over
2Sv .8 We write Pf : {w1, w2}, w2, ∅, {w2, w3}, ..., w3, for example, to indicate that f ’s
first choice is being matched to w1 and w2, its second choice is being matched to w2

only, and it prefers remaining unmatched to being matched to any other subset of
workers.9 Preference profiles are (n + m) tuples of preference relations denoted by
P ≡ (Pf1 , ..., Pfn , Pw1 , ..., Pwm). A many-to-many matching problem is a pair (P, c).
Let P−v denote the profile P(F∪W )\{v}. We sometimes write the profile of preferences P
as (Pv, P−v). Let Pv denote the set of all possible preference relations for agent v and
P ≡

∏
v∈(F∪W )Pv be the set of all possible preference profiles. Let Rv denote the at

least as desirable as relation associated with Pv. For each v ∈ F ∪ W and each
S, S ′ ⊆ Sv, S Rv S

′ means either S = S ′ or S Pv S
′. Let v ∈ F ∪W and S ⊆ Sv be

given. Let US(Pv) ≡ {S ′ ⊆ Sv : S ′ Rv S} denote the set of all subsets of Sv that v finds
at least as desirable as S.

A match is a mapping µ from the set F ∪W to the set of all subsets of F ∪W
satisfying the following conditions:

(m1). For each v ∈ F ∪W, µ(v) ∈ 2Sv and |µ(v)| ≤ cv;
(m2). For each (f, w) ∈ F ×W , f ∈ µ(w) if and only if w ∈ µ(f).

Let M denote the set of all matches. An agent v is unmatched at µ if µ(v) = ∅
and matched otherwise. A matching problem (P, c) is one-to-one if for each agent
v, cv = 1. A matching problem (P, c) is many-to-one if for each worker w, cw = 1.
Preferences over partners are extended to preferences over matches in the conventional
way: an agent’s preferences over matches parallel to her/its preferences over her\its
own assignments at the matches. For example, agent v prefers µ to µ′ if and only if
µ(v) Pv µ

′(v).

Let v ∈ F ∪W, v′ ∈ Sv and Pv ∈ Pv be given. Agent v′ is acceptable to v if she/it
prefers to be matched to v′ rather than remaining unmatched. The set of acceptable
partners for v is given by A(Pv) = {v′ ∈ Sv : v′ Pv ∅}.

Let S ⊆ Sv be given. Let Ch(S, P v) denote agent v’s chosen set in S; her/its
most preferred subset of S according to its preference relation Pv. Since preferences
are strict, Ch(S, Pv) is the unique subset S ′ of S that satisfies the following: for each
S ′′ ⊆ S, S ′′ 6= S ′, S ′ Pv S

′′. We adapt the definition of stability due to Hatfield and
Kominers (2012, Section 2.2) to our model. Match µ is blocked by an agent v ∈ F∪W
at P if Ch(µ(v), Pv) 6= µ(v). Match µ is blocked by a set of firms and workers
F ′ ∪W ′ at P , where ∅ 6= F ′ ⊆ F and ∅ 6= W ′ ⊆ W , if there is a match µ′ such that for
each v ∈ F ′ ∪W ′,

(b1). ∅ 6= (µ′(v)\µ(v)) ⊆ F ′ ∪W ′;
(b2). µ′(v) ⊆ Ch(µ′(v) ∪ µ(v), Pv).

8In other words, Pv is transitive, antisymmetric (strict) and total.
9With a slight abuse of notation we sometimes write x for a singleton {x}.
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Loosely speaking, the agents in F ′∪W ′ are strictly better off by establishing new part-
nerships only among themselves and possibly breaking up some existing partnerships.
A match is individually-rational for P if it is not blocked by any agent. Let IR(P )
denote the set of individually-rational matches for P. A match is stable for P if it is
individually-rational for P and is not blocked by any set of firms and workers at P .

Remark 1. In one-to-one matching, the definition of stability eliminates blocking by
agents or by sets of firms and workers F ′ ∪ W ′ with |F ′| = 1 and |W ′| = 1. This
is referred as pairwise-stability. In many-to-one matching, the definition of stability
eliminates blocking by agents and by sets of firms and workers F ′ ∪W ′ with |F ′| = 1
and |W ′| ≥ 1. This is referred as many-to-one stability. Stability implies many-to-one
stability and many-to-one stability implies pairwise-stability. In many-to-one matching
blocking by a pair (f, w) is equivalent to the following condition: w /∈ µ(f), f Pw µ(w)
and w ∈ Ch(µ(f) ∪ {w}, Pf ). In many-to-many matching blocking by a pair (f, w) is
equivalent to the following condition: w /∈ µ(f), f ∈ Ch(µ(w) ∪ {f}, Pw) and
w ∈ Ch(µ(f) ∪ {w}, Pf ). �

Remark 2. Since (sets of) partners that are less desirable than being unmatched
cannot be part of an individually-rational match, it is sufficient to describe each agent’s
ranking of (sets of) partners that are preferred to being unmatched. For instance,

Pf : w1w2, w1, w3, w2,

indicates that w1w2 Pf w1 Pf w3 Pf w2 Pf ∅ and that emptyset is preferred to all other
sets of partners by f .10 �

3 Preference Restrictions

We now define several restrictions on firms’ preferences. Let v ∈ F ∪W.
Substitutability:
For each pair S, S ′ ⊆ Sv with S ′ ⊆ S and each v′ ∈ S ′; if v′ ∈ Ch(S, Pv) then v′ ∈
Ch(S ′, Pv).

Substitutability requires that an agent is willing to continue to be matched to a partner
even if some other partners become unavailable.

Cardinal monotonicity:11

For each pair S, S ′ ⊆ Sv, with S ′ ⊆ S, |Ch(S ′, Pv)| ≤ |Ch(S, Pv)|.

The following ordering over 2W , where W = {w1, w2, w3} and cf = 3

Pf : w1w2w3, w1, w1w2,

10With a slight abuse of notation we sometimes write xy for a set {x, y}.
11Cardinal monotonicity was introduced by Alkan (2002).
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illustrates that cardinal monotonicity does not imply substitutability. Notice that Pf is
cardinally monotonic but not substitutable: w2 ∈ Ch(W,Pf ), but w2 /∈ Ch(W\{w1}, Pf ).
We now define a well studied preference restriction in many-to-one matching.

Responsiveness:
For each S ⊆ Sv with |S| < cv, and each v′, v′′ ∈ (Sv\S)∪ {∅}; (S ∪ {v′}) Pv (S ∪ {v′′})
if and only if v′ Pv v

′′ and for each S with |S| > cv, ∅ Pv S.

It is easy to verify that responsiveness implies substitutability and cardinal mono-
tonicity. The following ordering over 2W , where W = {w1, w2, w3} and cf = 2

Pf : w1w3, w2w3, w1, w2, w3,

illustrates that the set of responsive preferences is a proper subset of the set of sub-
stitutable and cardinally monotonic preferences. A many-to-one matching problem
with responsive preferences is known as a college admissions problem.12

Unless otherwise stated, we assume that each agent v’s preferences Pv are substi-
tutable and cardinally monotonic.

Remark 3. For each profile of substitutable preferences P , S(P ) is non-empty (The-
orem 1, Roth, 1984a).13 Moreover, stability is equivalent to many-to-one stability and
pairwise-stability (Hatfield and Kominers, 2012, Proposition 2).14 �

The proof of the existence of a stable match relies on the firm proposing DA algo-
rithm. We will refer to the description of the algorithm in the proof of Proposition 2
below, therefore we now present how it functions in many-to-many matching.

Firm proposing DA algorithm: Let P be a preference profile.
Step 1:
(a) Each firm f proposes to its most preferred set xf (1) in 2W .
(b) Each worker w accepts her chosen set in the set xw(1) ≡ {f ∈ F : w ∈ xf (1)} of
firms that proposed to her, and rejects the rest.

...

Step k:
(a) Each firm f proposes to its most preferred set xf (k) in 2W such that f has not been
rejected by any w ∈ xf (k) in an earlier step.
(b) Each worker w accepts her chosen set in the set consisting of firms that proposed
to her in step k and firms that were not rejected in step k − 1, and rejects the rest.

12College admissions was first studied by Gale and Shapley (1962).
13Mart́ınez et al. (2004) introduced an algorithm to calculate all stable matches when preferences

are substitutable.
14Unlike in many-to-one matching with substitutable preferences, pairwise-stability is not equivalent

to core-stability in many-to-many matching. Indeed, no logical relation exists between the two concepts
(Blair, 1988).
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...

The algorithm terminates in any step, say t, in which no firm is rejected. It produces
the outcome µF in which each firm f is assigned its final proposal µF (f) = xf (t), and
each worker w is assigned her chosen set µF (w) = Ch(xw(t), Pw) in step t. The worker
proposing DA algorithm is symmetrically defined.

Remark 4. Offers remain open: for each firm f, if worker w is contained in xf (k − 1)
and is not rejected by w in step k − 1, then w is contained in xf (k) (Roth, 1984a,
Proposition 2). �

In words, Remark 4 says that firms that have not been rejected by w in step k − 1
propose to w in step k. Thus, the set of firms that propose to w in step k, xw(k),
consists of firms that have proposed in step k− 1 and have not been rejected by w and
those that have proposed in step k but not in k − 1. Stability of the match produced
by the DA algorithm lies in the observation that as firms’ preferences are substitutable,
each firm repeats its proposal in a subsequent step of the algorithm to a worker who
has not rejected its earlier proposal and that as workers’ preferences are substitutable,
no worker ever regrets having rejected a proposal in an earlier step of the algorithm.
For each profile P of substitutable preferences the algorithm produces a stable match
that is optimal for the firms in the sense that all firms find it at least as desirable as
any other stable match. The worker proposing DA algorithm produces a stable match
that is optimal for the workers in the corresponding sense. The optimal stable match
for firms is the worst stable match for workers and vice versa (Roth, 1984a). We use
the following property of stable matches.

Weak Rural Hospital Theorem [Alkan 2002].15

For each profile P of substitutable and cardinally monotonic preferences,

R1. Each firm has the same number of positions filled across stable matches for P .

Remark 3 implies that we need only consider blocking by individual agents and firm-
worker pairs. In particular, the terms ‘stability’ and ‘pairwise-stability’ can be used
interchangeably.

4 Probabilistic matching and equilibrium notions

In practice, matching is often not centralized. Instead, matches are reached through
decentralized procedures. Such procedures introduce randomness into what matches

15The theorem is first proved for the class of responsive preferences and later for the strictly larger
class of substitutable and separable preferences in many-to-one matching problems (Gale and So-
tomayor 1985, Roth 1984b, Mart́ınez et al. 2000). Separability: for each S ⊆ Sv with |S| < cv and
each v′ /∈ S; S ∪ {v′} Pv S if and only if v′ Pv ∅ and for each S with |S| > cv, ∅ Pv S.
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are achieved (the order according to which agents communicate depends on the speed
of the mail, the internal structure of firms and the telephone network). One way to
model decentralized decision making is to consider a random process that develops a
sequence of matches such that each match in the sequence is derived from the previous
one by satisfying a randomly selected blocking agent or a blocking pair (See Roth and
Vande Vate (1990) for one-to-one matching and Kojima and Ünver (2008) for many-
to-many matching). As deterministic rules inherently favor some agents over others,
randomness can be introduced in centralized matching to achieve procedural fairness.
This is felt most strongly in two-sided matching where the polarization of interests of
agents on different sides is reflected in the structure of the set of stable matches. School
choice, public housing and on campus housing in American universities are examples
of allocation problems that have adopted probabilistic procedures.

We reproduce the definitions and notation in Pais (2008). A probabilistic (match-

ing) rule ϕ̃ maps preference profiles to lotteries over the set of matches: P ϕ̃−→∆M. A
probabilistic match ϕ̃[P ] is the image of a preference profile P under a rule. We consider
only probabilistic stable rules that yield a lottery whose support (abbreviated as
supp) is a subset of the set of stable matches for each preference profile P . Formally, for
each P ∈ P , suppϕ̃[P ] ⊆ S(P ). Let ϕ̃v[P ] denote the probability distribution induced
by ϕ̃[P ] over agent v’s achievable partners. Whenever the distribution ϕ̃[P ] is degener-
ate, we abuse notation and denote by ϕ̃[P ] the unique outcome. Similarly, whenever for
some agent v, the distribution ϕ̃v[P ] is degenerate, we denote by ϕ̃v[P ], v’s unique part-

ner. A deterministic rule ϕ maps preference profiles to the set of matches: P ϕ−→M.
We consider only deterministic stable matching rules that yield a unique stable match
for each preference profile P. We let ϕF (ϕW ) denote the deterministic stable rule that
recommends the firm (worker) optimal stable match for each preference profile. We
denote v’s assignment at the match ϕ[P ] by ϕv[P ].

We study the game induced by any probabilistic stable rule ϕ̃ in which agents are
called upon to state their preferences. No stable rule makes it a dominant strategy for
all workers and firms to state their true preferences (Roth, 1985). This implies that
an agent may reveal a different order than her/its true preferences. To understand
what outcomes will result when all agents behave in this way, we need to study the
manipulation “game” associated with the rule. Consider the following game in which
the strategy space for each agent v is the set of all preferences Pv. Each agent announces
a preference list Qv ∈ Pv over subsets of agents on the other side and then a match
is randomly selected among all matches that are stable for the stated preferences Q.
Formally, the set of strategy profiles P and a probabilistic stable matching rule ϕ̃ define
a mechanism (P , ϕ̃). The mechanism together with the true preference profile defines
the game (P , ϕ̃, P ). Similarly, (P , ϕ) is a deterministic stable mechanism that induces
the game (P , ϕ, P ).

We introduce more notation to define our equilibrium concept. Let v ∈ F ∪ W,
S ⊆ Sv, Pv ∈ Pv and π ∈ ∆M. Let πv denote the lottery induced by π over v’s set of
assignments, i.e, over 2Sv . Let πv(US(Pv)) denote the probability that v obtains a set
of partners that is at least as desirable as S according to Pv at π. For each pair π, π′ ∈
∆M and each v ∈ F ∪W, π stochastically P v-dominates π′, denoted as π P sd

v π′,
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if for each S ⊆ Sv, πv(US(Pv)) ≥ π′v(US(Pv)).
Next, we define what constitutes a better strategy for an agent. Let Q ∈ P and

v ∈ F ∪W. Given Q−v, we say that strategy Qv stochasticallyP v-dominates an
alternative strategy Q′v, if ϕ̃v[Qv, Q−v] P

sd
v ϕ̃v[Q

′
v, Q−v]. This means that no agent v

can increase the probability of obtaining a set of partners S or a higher ranked set
of partners in its list Pv by using Q′v rather than using Qv. The following equilibrium
notion relies on the criterion of stochastic dominance.

The profile of strategies Q is a stochastic-dominance (sd) Nash equilibrium
of the game (P , ϕ̃, P ) if for each v ∈ F ∪ W, Qv stochastically Pv-dominates each
alternative strategy, given Q−v.
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The profile of strategies Q is an sd-Nash equilibrium of the game (P , ϕ̃, P ) if, once
adopted by the agents, no agent finds any unilateral deviation profitable for each utility
function compatible with the true ordinal preferences.

5 Equilibrium Analysis

We now analyze sd-Nash equilibria of the game induced by any probabilistic stable rule.
The following lemmas will be used in the proofs of the results. Lemma 1 below shows
that each partner of an agent at a stable match is acceptable to the agent.

Lemma 1. Let Q ∈ P and µ ∈ S(Q). Then for each v ∈ F ∪W µ(v) ⊆ A(Qv).

Proof. Let v ∈ F ∪ W and v′ ∈ µ(v). By µ ∈ S(Q), Ch(µ(v), Qv) = µ(v). Thus,
v′ ∈ Ch(µ(v), Qv). By substitutability, v′ ∈ Ch({v′}, Qv). Hence, v′ Qv ∅ and v′ ∈ A(Qv).
Since v′ is arbitrary, µ(v) ⊆ A(Qv).

Let Q ∈ P and µ ∈ S(Q). Let Q′ ∈ P differ from Q in that an agent announces
her/its partners at µ as her/its most preferred set of partners. Lemma 2 says that
µ ∈ S(Q′).

Lemma 2. Let Q ∈ P, µ ∈ S(Q) and v ∈ F ∪ W. Let Q′ ∈ P be such that
Ch(Sv, Q

′
v) = µ(v) and for each v′ ∈ F ∪W, v′ 6= v, Q′v′ = Qv′ . Then, µ ∈ S(Q′).

Proof. Let Q ∈ P , µ ∈ S(Q) and v ∈ F ∪W. Let Q′ ∈ P be such that Ch(Sv, Q
′
v) = µ(v)

and for each v′ ∈ F ∪W, v′ 6= v, Q′v′ = Qv′ . We show that µ ∈ S(Q′). By µ ∈ S(Q)
and the definition of Q′, for each v′ ∈ F ∪ W, v′ 6= v, Ch(µ(v′), Q′v′) = µ(v′). By
Ch(Sv, Q

′
v) = µ(v) and the definition of Ch, Ch(µ(v), Q′v) = µ(v). Hence, µ ∈ IR(Q′).

Suppose that a firm-worker pair (f, w) blocks µ at Q′;

w /∈ µ(f), f ∈ Ch(µ(w) ∪ {f}, Q′w) and w ∈ Ch(µ(f) ∪ {w}, Q′f ). (1)

Since µ(v) is v’s most preferred set of partners, v /∈ {f, w}. Then, (1) becomes w /∈ µ(f),
f ∈ Ch(µ(w) ∪ {f}, Qw) and w ∈ Ch(µ(f) ∪ {w}, Qf ), contradicting µ ∈ S(Q).

16This name is taken from Thomson (2011). The concept was introduced by d’Aspremont and
Peleg (1988). It is referred as ordinal Nash equilibrium in the literature.
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Since stability implies individual-rationality, Lemma 2 holds for the set of individually-
rational matches.

Remark 5. Let Q ∈ P, µ ∈ IR(Q) and v ∈ F ∪ W. Let Q′ ∈ P be such that
Ch(Sv, Q

′
v) = µ(v) and for each v′ ∈ F ∪W, v′ 6= v, Q′v′ = Qv′ . Then, µ ∈ IR(Q′).

Proposition 1 states that one and only one stable match is achieved as the outcome of
each sd-Nash equilibrium of (P , ϕ̃, P ).

Proposition 1. Let Q be an sd-Nash equilibrium of the game (P , ϕ̃, P ). Then, a single
match is obtained with probability one.

Proof. Let Q be an sd-Nash equilibrium of the game (P , ϕ̃, P ). Assume, by contradic-
tion that |supp ϕ̃[Q]| ≥ 2. Then there are w ∈ W and µ, µ̂ ∈ supp ϕ̃[Q] such that
µ(w) 6= µ̂(w). Let µ′ ∈ supp ϕ̃[Q] be such that for each µ ∈ supp ϕ̃[Q], µ′(w) Rw µ(w).
Let Q′w ∈ P be such that A(Q′w) = µ′(w) and Ch(F,Q′w) = µ′(w). Let Q′ ≡ (Q′w, Q−w).
By Lemma 2, µ′ ∈ S(Q′). By A(Q′w) = µ′(w), Lemma 1 and R1, w is matched to µ′(w)
across stable matches for Q′. Hence, Qw does not stochastically Pw-dominate Q′w.

Propositions 2 and 3 establish that a match can be supported as an equilibrium
outcome if and only if it is individually-rational for the true preferences. We provide a
complete characterization of sd-Nash equilibria of the game induced by any probabilistic
stable rule.

Proposition 2. Let Q be an sd-Nash equilibrium of (P , ϕ̃, P ). Then, ϕ̃[Q] ∈ IR(P ).

Proof. By Proposition 1, a unique match is obtained from each sd-Nash equilibrium of
(P , ϕ̃, P ). Let µ ≡ ϕ̃[Q]. We prove that µ ∈ IR(P ). Assume, without loss of generality,
that there is f ∈ F such that Ch(µ(f), Pf ) 6= µ(f). Then there is a set of workers
SG ( µ(f) such that SG Pf µ(f). Let Q′f be an alternative strategy for f such that
A(Q′f ) = SG and Ch(W,Q′f ) = SG. Let Q′ ≡ (Q′f , Q−f ). Let µ′F denote the firm-optimal
stable match for Q′. It is the match produced by applying to Q′ the firm-proposing DA
algorithm. We claim that µ′F (f) = SG. To prove the claim, it is sufficient to prove that

no f̂ ∈ F is ever rejected by any ŵ ∈ µ(f̂) in the course of the algorithm. This, together
with Ch(W,Q′f ) = SG ( µ(f) establishes that µ′F (f) = SG. By A(Q′f ) = SG and R1,
f is matched to SG across stable matches for Q′. Thus, Qf does not stochastically-Pf

dominate Q′f .
We now argue that no firm is rejected by any of its partners at µ in the course of the

algorithm applied to Q′. First note that since µ ∈ S(Q) and for each ŵ ∈ W,Q′ŵ = Qŵ,
we have

for each ŵ ∈ W, Ch(µ(ŵ), Q′ŵ) = µ(ŵ). (2)

Suppose, by the induction hypothesis that no f̂ ∈ F is rejected by any ŵ ∈ µ(f̂) up
to step r − 1 of the algorithm. We show that no f̂ ∈ F is rejected by any ŵ ∈ µ(f̂) in
step r.
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Assume, by contradiction that there is f ∈ F and w ∈ µ(f) such that f is rejected
by w in step r. Then, f ∈ xw(r) but f /∈ Ch(xw(r), Q′w). Each of the following para-
graphs begins with a statement and follows with its proof.

(p1). Ch(xw(r), Q′w) 6= ∅. Otherwise, by f ∈ xw(r) and the definition of Ch,
f /∈ Ch({f}, Q′w). By w ∈ µ(f) and substitutability, f /∈ Ch(µ(w), Q′w), contradict-
ing (2).

(p2). Ch(xw(r), Q′w)\µ(w) 6= ∅. Otherwise, Ch(xw(r), Q′w) ⊆ µ(w). Let K ≡
Ch(xw(r), Q′w). Notice that f /∈ K. By K ∪ {f} ⊆ xw(r) and the definition of Ch,
Ch(K ∪ {f}, Q′w) = K. Since K ∪ {f} ⊆ µ(w) and f /∈ K = Ch(K ∪ {f}, Q′w), by
substitutability, f /∈ Ch(µ(w), Q′w). Then Ch(µ(w), Q′w) 6= µ(w), contradicting (2). Let
F ′ ≡ {f ′ ∈ Ch(xw(r), Q′w) and f ′ /∈ µ(w)}.

(p3). f /∈ F ′. Otherwise, f /∈ µ(w) implies that f does not state w acceptable
at Q′f . In any step k of the algorithm w can not be part of f ’s chosen set in the set
of workers who have not rejected f prior to step k. This contradicts f ∈ Ch(xw(r), Q′w).

(p4). For each f ′ ∈ F ′, w ∈ Ch(µ(f ′) ∪ {w}, Q′f ′). First, Ch(xf ′(r) ∪ µ(f ′), Q′f ′) =
xf ′(r). This is because xf ′(r) is f ′’s chosen set in the set of workers who have not
rejected f ′ prior to step r and because by the induction hypothesis, no worker in µ(f ′)
rejects f ′ prior to step r. Notice that f ′ ∈ xw(r). Therefore, w ∈ xf ′(r). By substi-
tutability, w ∈ Ch(µ(f ′) ∪ {w}, Q′f ′).

(p5). Ch(µ(w)∪xw(r), Q′w)\µ(w) 6= ∅. Otherwise, Ch(µ(w)∪xw(r), Q′w) ⊆ µ(w). By
the definition of Ch, Ch(µ(w), Q′w) = Ch(µ(w)∪xw(r), Q′w) ⊆ µ(w). This, together with
(2) implies that Ch(µ(w)∪xw(r), Q′w) = µ(w). By f ∈ µ(w)∩xw(r) and substitutability,
f ∈ Ch(xw(r), Q′w), contradicting our assumption.

(p6) There is a firm f ′ ∈ F ′ such that f ′ ∈ Ch(µ(w) ∪ {f ′}, Q′w). By (p5), there is
f ′ ∈ F such that f ′ ∈ Ch(µ(w) ∪ xw(r), Q′w) and f ′ ∈ xw(r)\µ(w). By substitutability,
f ′ ∈ Ch(xw(r), Q′w) (hence f ′ ∈ F ′), and f ′ ∈ Ch(µ(w) ∪ {f ′}, Q′w), as desired.

By (p3), f ′ 6= f. Since Q′f ′ = Qf ′ and Q′w = Qw, (p4) and (p6) establish that
f ′ ∈ Ch(µ(w) ∪ {f ′}, Qw) and w ∈ Ch(µ(f ′) ∪ {w}, Qf ′), contradicting µ ∈ S(Q).
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Proposition 3. Let µ ∈ IR(P ) and let ϕ̃ be a probabilistic stable rule. Then, there is
an sd-Nash equilibrium Q of the game (P , ϕ̃, P ) that supports µ.

Proof. Let Q ∈ P be such that for each v ∈ F ∪W, Ch(Sv, Qv) = µ(v) and A(Qv) =
µ(v). By repeatedly applying Remark 5 to preference profile P , we obtain µ ∈ IR(Q).
We next show that there is no blocking pair for µ at Q. Assume, by contradiction
that there is a blocking pair (f, w) for µ at Q; w /∈ µ(f), f ∈ Ch(µ(w) ∪ {f}, Qw)
and w ∈ Ch(µ(f) ∪ {w}, Qf ). By substitutability, w ∈ Ch({w}, Qf ). Thus, w Qf ∅
and w ∈ A(Qf ), contradicting w /∈ µ(f) = A(Qf ). Hence, µ ∈ S(Q). Since for each
v ∈ F ∪W, A(Qv) = µ(v), by R1, each agent v is matched to µ(v) across stable matches
for Q. Thus, S(Q) = {µ} and µ is reached with probability one. We next show that
no agent can profitably deviate. Let v ∈ F ∪W and Q′v be an alternative strategy.
Let Q′ ≡ (Q′v, Q−v). Let µ′ ∈ S(Q′). Since only agents in µ(v) find v acceptable at
Q′, by Lemma 1, µ′(v) ⊆ µ(v). By individual-rationality of µ for P, µ(v) Rv µ

′(v).
Since µ′ is arbitrary, agent v cannot benefit from deviating. Hence, Q is an sd-Nash
equilibrium.

In many-to-one matching, we provide a sufficient condition for stability of the out-
come of each sd-Nash equilibrium in the game induced by any probabilistic stable rule.
To this end, we turn our attention to sd-Nash equilibria where firms behave truthfully.
Each sd-Nash equilibrium where firms behave truthfully generates a stable match for the
true preferences. However, Example 1 shows that truthtelling by firms in equilibrium
is not sufficient for stability of the equilibrium outcome in many-to-many matching.

Proposition 4. Let (P, c) be a many-to-one matching problem, i.e, for each w ∈
W, cw = 1. Let Q ≡ (PF , QW ) be an sd-Nash equilibrium of the game (P , ϕ̃, P ). Then,
ϕ̃[Q] ∈ S(P ).

Proof. By Proposition 1, a unique match is obtained from each sd-Nash equilibrium
of (P , ϕ̃, P ). Let µ ≡ ϕ̃[Q]. By Proposition 2, µ ∈ IR(P ). We prove that µ ∈ S(P ).
Assume, by contradiction that µ /∈ S(P ). Suppose (f, w) blocks µ at P ;

w /∈ µ(f), f Pw µ(w) and w ∈ Ch(µ(f) ∪ {w}, Pf ). (3)

Let Q′w be an alternative strategy for w such that for each v, v′ ∈ (F\{f}) ∪ {∅},
f Q′w v′ and v Q′w v′ if and only if v Qw v′. Let Q′ ≡ (Q′w, Q−w). If w is matched to
f with positive probability at ϕ̃[Q′], then Qw does not stochastically Pw-dominate Q′w
and hence, Q is not an sd-Nash equilibrium of (P , ϕ̃, P ). Suppose w is not matched to
f with positive probability at ϕ̃[Q′].

Let µ′ ∈ suppϕ̃[Q′]. We show that µ′ ∈ S(Q). Assume, by contradiction that
µ′ /∈ S(Q). Since the definitions of Q′, Q and of ϕ̃ and µ′(w) 6= f ensure µ′ ∈ IR(Q),
then there is a blocking pair (f ′, w′) for µ′ at Q; w′ /∈ µ′(f ′), f ′ Qw′ µ′(w′) and
w′ ∈ Ch(µ′(f ′)∪ {w′}, Qf ′). This implies that (f ′, w′) blocks µ′ at Q′ unless w′ = w
and µ′(w′) = f , contradicting the assumption that w is not matched to f with positive
probability at ϕ̃[Q′]. Hence, µ′ ∈ S(Q).
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We next show that µ is the firm-optimal stable match for Q. Suppose not. Then,
there are µ ∈ S(Q) and f ∈ F such that µ(f) Qf µ(f). Since Pf = Qf , then

µ(f) Pf µ(f). Let Qf be an alternative strategy for f such that A(Qf ) = µ(f) and

Ch(W,Qf ) = µ(f). Let Q ≡ (Qf , Q−f ). By Lemma 2, µ ∈ S(Q). By A(Qf ) = µ(f),

Lemma 1 and R1, f is matched to µ(f) across stable matches for Q and in particular
across matches in suppϕ̃[Q]. Since µ(f) Pf µ(f), then f has a profitable deviation when
the other agents act according to Q−f . Hence, µ is the firm-optimal stable match for
Q.

We next show that w /∈ Ch(µ′(f) ∪ {w}, Pf ). Assume, by contradiction that
w ∈ Ch(µ′(f) ∪ {w}, Pf ). Since Q′f = Qf = Pf , then w ∈ Ch(µ′(f) ∪ {w}, Q′f ). Since
w is not matched to f with positive probability at ϕ̃[Q′], then by the definition of Q′w,
f Q′w µ′(w), contradicting µ′ ∈ S(Q′). Hence, w /∈ Ch(µ′(f) ∪ {w}, Pf ).

We now complete the proof. By substitutability, w /∈ Ch(µ(f)∪µ′(f)∪{w}, Pf ). Let
K ≡ Ch(µ(f) ∪ µ′(f) ∪ {w}, Pf ). Thus, w /∈ K. We show that K * µ(f). Assume, by
contradiction that K ⊆ µ(f). Then, by the definition of Ch, Ch(µ(f)∪ {w}, Pf ) = K.
Thus, w /∈ Ch(µ(f)∪{w}, Pf ), contradicting (3). Hence, K * µ(f). This, together with
w /∈ K implies that (K∩µ′(f))\µ(f) 6= ∅. Let w ∈ (K∩µ′(f))\µ(f). By substitutability,
w ∈ Ch(µ(f) ∪ {w}, Pf ). Since Qf = Pf , then

w ∈ Ch(µ(f) ∪ {w}, Qf ). (4)

Since µ is the firm-optimal stable match for Q, then workers unanimously find µ the
worst among all stable matches for Q. This, together with µ′ ∈ S(Q) implies that

µ′(w) = f Qw µ(w). (5)

Statements (4) and (5) imply that (f, w) blocks µ at Q, contradicting µ ∈ S(Q).

Example 1: Let F = {f1, f2, f3} and W = {w1, w2, w3, w4}. Let for each v ∈ F ∪
W\{w4}, cv = 2 and cw4 = 1. Let true preference profile P ∈ P be as follows.

Pf1 : w1w3, w1w2, w2w3, w1, w3, w2,

Pf2 : w2w4, w3w4, w2w3, w4,

Pf3 : w2w3, w1w2, w1w3, w2, w3, w1,

Pw1 : f1f3, f1, f3,

Pw2 : f1f3, f2f3, f1f2, f3, f1, f2,

Pw3 : f1f2, f2f3, f1f3, f2, f1, f3,

Pw4 : f2,

Consider the game (P , ϕF , P ) induced by the probabilistic matching rule that assigns
probability one to the firm-optimal stable match for each preference profile.

Let Q be a preference profile such that for each v ∈ F ∪ W\{w3} Qv = Pv and
Qw3 : f2f3, f2, f3. The match µ ≡ ϕF [Q] is the firm-optimal stable match for Q shown
below.
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µ =

(
f1 f2 f3

w1w2 w3w4 w2w3

)
.

Notice that since (f1, w3) is a blocking pair for µ at P, then µ is not stable for P. We
now prove that Q is an sd-Nash equilibrium of the game (P , ϕF , P ). Since firm f3 and
workers w2 and w4 are assigned at µ to their most preferred partners according to their
true preferences, we only need to consider deviations for firms f1 and f2 and workers w1

and w3. Since w3 finds any subsets of partners that include f1 unacceptable at Qw3 , firm
f1 cannot deviate to obtain w1w3. Thus, firm f1 cannot improve upon µ by deviating.

We next consider deviations for f2. Firm f2 can benefit from deviation only if it
obtains w2w4. Let Q′f2 be an alternative strategy for f2. Let µ2 ≡ ϕF (Q′f2 , Q−f2). We
show that firm f2 can not be assigned w2w4 at µ2. Assume, by contradiction that f2 is
assigned w2w4 at µ2. Then there are three possibilities for w2’s assignment at µ2. 1)
Worker w2 is assigned f2f3 at µ2. Since w3 finds any subsets of partners that include
f1 unacceptable at Qw3 , f1 is either assigned w1 or unmatched at µ2. In either case
(f1, w2) blocks µ2 at (Q′f2 , Q−f2), contradicting stability of µ2. 2) Worker w2 is assigned
f1f2 at µ2. Then f3 is assigned w1w3 or w1 only or w3 only at µ2. In all cases (f3, w2)
blocks µ2 at (Q′f2 , Q−f2), contradicting stability of µ2. 3) Worker w2 is assigned f2 only
at µ2. Then as before f3 is assigned w1w3 or w1 only or w3 only at µ2. In all cases
(f3, w2) blocks µ2 at (Q′f2 , Q−f2), contradicting stability of µ2. Hence, firm f2 can not
be assigned w2w4 at µ2. Since Q′f2 is arbitrary, then firm f2 cannot improve upon µ by
deviating.

We now consider deviations for w1. Worker w1 can benefit from deviation only if
she obtains f1f3. Let Q′w1

be an alternative strategy for w1. Let µ1 ≡ ϕF (Q′w1
, Q−w1).

We show that w1 can not be assigned f1f3 at µ1. Assume, by contradiction that w1

is assigned f1f3 at µ1. Then there are three possibilities for f3’s assignment at µ1. 1)
Firm f3 is assigned w1w2 at µ1. Then w3 is either assigned f2 or unmatched at µ1.
In either case (f3, w3) blocks µ1 at (Q′w1

, Q−w1), contradicting stability of µ1. 2) Firm
f3 is assigned w1w3 at µ1. Then w2 is assigned f1f2 or f1 only or f2 only at µ1. In
all cases (f3, w2) blocks µ1 at (Q′w1

, Q−w1), contradicting stability of µ1. 3) Firm f3 is
assigned to w1 only at µ1. Then w3 is either assigned f2 or unmatched at µ1. In either
case (f3, w3) blocks µ1 at (Q′w1

, Q−w1), contradicting stability of µ1. Hence, worker w1

can not be assigned f1f3 at µ1. Since Q′w1
is arbitrary, worker w1 cannot benefit from

deviating at Q.
We finally consider deviations for w3. Worker w3 can benefit from deviation only if

she obtains f1f2. Let Q′w3
be an alternative strategy for w3. Let µ3 ≡ ϕF (Q′w3

, Q−w3).
We show that w3 can not be assigned f1f2 at µ3. Assume, by contradiction that w3

is assigned f1f2 at µ3. Then there are three possibilities for f2’s assignment at µ3.
Firm f2 is assigned w3w4 at µ3. If w2 is assigned f1 or f3 only, then (f2, w2) blocks
µ3 at (Q′w3

, Q−w3), contradicting stability of µ3. Thus, w2 is assigned f1f3 at µ3. This
implies that f1 is assigned w2w3 at µ3. Then, w1 is either assigned f3 or unmatched at
µ3. In either case (f1, w1) blocks µ3 at (Q′w3

, Q−w3), contradicting stability of µ3. Firm
f2 is assigned w2w3 at µ3. Then, w4 is unmatched at µ3. Thus, (f2, w4) blocks µ3 at
(Q′w3

, Q−w3), contradicting stability of µ3. 3) Firm f2 is assigned w3 at µ3. Again w4 is
unmatched at µ3. Thus, (f2, w4) blocks µ3 at (Q′w3

, Q−w3), contradicting stability of
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µ3. ♦

The example illustrates that even when each agent has responsive preferences, the
result does not hold either. We next question the existence of an sd-Nash equilibrium
where firms behave truthfully. Proposition 5 states the converse result that each stable
match for the true preferences can be achieved as the outcome of an sd-Nash equilibrium
in which firms behave truthfully. An immediate implication of the result is that workers
can obtain any jointly achievable match as the outcome of the game induced by any
probabilistic stable rule.

Proposition 5. Let µ ∈ S(P ) and ϕ̃ be a probabilistic stable matching rule. Then,
there is an sd-Nash equilibrium Q = (PF , QW ) of the game (P , ϕ̃, P ) that supports µ.

Proof. Let Q ∈ P be such that for each w ∈ W, A(Qw) = µ(w) and Ch(F,Qw) = µ(w)
and for each f ∈ F , Qf = Pf . We show that µ ∈ S(Q). Since µ ∈ S(P ) and QF = PF ,
then for each f ∈ F, Ch(µ(f), Qf ) = µ(f). By Ch(F,Qw) = µ(w) and the definition
of Ch, for each w ∈ W, Ch(µ(w), Qw) = µ(w). Thus, µ ∈ IR(Q). Suppose that a
firm-worker pair (f ′, w′) blocks µ at Q;

w′ /∈ µ(f ′), f ′ ∈ Ch(µ(w′) ∪ {f ′}, Qw′) and w′ ∈ Ch(µ(f ′) ∪ {w′}, Qf ′). (6)

By substitutability, f ′ ∈ Ch({f ′}, Qw′). Thus, f ′ Qw′ ∅. Then, f ′ ∈ A(Qw′) which
implies that f ′ ∈ µ(w′), contradicting (6). Hence, µ ∈ S(Q). Since for each w ∈ W,
A(Qw) = µ(w), by R1, each worker w is matched to µ(w) across stable matches for Q.
Hence, S(Q) = {µ} and µ is reached with probability one.

We now prove that Q is an sd-Nash equilibrium of (P , ϕ̃, P ). Let w ∈ W and Q′w be
an alternative strategy for w. Let S ⊆ F be such that S Pw µ(w). Let Q′ ≡ (Q′w, Q−w).
We show that w can not be matched to S at any stable match for Q′. Assume, by
contradiction that there is µ′ ∈ S(Q′) such that µ′(w) = S.

We first show that Ch(µ′(w) ∪ µ(w), Pw)\µ(w) 6= ∅. Suppose not. Then,
Ch(µ′(w)∪µ(w), Pw) ⊆ µ(w). By the definition of Ch, Ch(µ′(w)∪µ(w), Pw) = Ch(µ(w), Pw).
By µ ∈ S(P ), Ch(µ(w), Pw) = µ(w). Thus, Ch(µ′(w)∪ µ(w), Pw) = µ(w), contradicting
µ′(w) = S Pw µ(w).

Now let f ∈ Ch(µ′(w)∪µ(w), Pw)\µ(w). Then, f ∈ µ′(w)\µ(w). By substitutability,
f ∈ Ch(µ(w) ∪ {f}, Pw). By µ ∈ S(P ),

w /∈ Ch(µ(f) ∪ {w}, Pf ). (7)

By the definition of Ch, Ch(µ(f) ∪ {w}, Pf ) = Ch(µ(f), Pf ). This, together with
µ ∈ S(P ) implies that Ch(µ(f) ∪ {w}, Pf ) = µ(f). By (7) and Q′f = Qf = Pf ,

w /∈ Ch(µ(f) ∪ {w}, Q′f ) = µ(f). (8)

We next show that µ(f)\µ′(f) = ∅. Suppose not. Then µ(f) ⊆ µ′(f). This, together
with f ∈ µ′(w)\µ(w) implies that µ(f) ∪ {w} ⊆ µ′(f). By (8) and substitutability,
w /∈ Ch(µ′(f), Q′f ), contradicting µ′ ∈ S(Q′). Thus, µ(f)\µ′(f) 6= ∅.

Let w ∈ µ(f)\µ′(f). Notice that w 6= w and µ′(w) 6= µ(w). Since A(Q′w) = µ(w),
and µ′ ∈ S(Q′), by Lemma 1, µ′(w) ⊆ A(Q′w) = µ(w). By µ ∈ S(Q), Q′w = Qw
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and w ∈ µ(f), we have f ∈ µ(w) = Ch(µ(w), Q′w). Since µ′(w) ∪ {f} ⊆ µ(w), by
substitutability,

f ∈ Ch(µ′(w) ∪ {f}, Q′w). (9)

Since only workers in µ(f) ∪ {w} find f acceptable at Q′, by Lemma 1, µ′(f) ⊆
(µ(f) ∪ {w}). Noting that w ∈ µ(f), we have (µ′(f) ∪ {w}) ⊆ (µ(f) ∪ {w}). By (8)
and substitutability,

w ∈ Ch(µ′(f) ∪ {w}, Q′f ). (10)

Statements (9) and (10) imply that (f, w) blocks µ′ at Q′, contradicting µ′ ∈ S(Q′).
Hence, w cannot get matched to f at any stable match for Q′. This implies that w
cannot improve upon µ(w) by deviating.

Now let f ∈ F. The only workers willing to get matched to f are those in µ(f).
Moreover, by individual-rationality of µ for P , for each S ⊆ µ(f), µ(f) Rf S. Hence,
f cannot improve upon µ(f) by deviating.

6 Discussion

We now inquire validity of our results without the assumption of cardinal monotonicity.
All our proofs rely on the substitutability assumption and property R1. This property
does not hold without further assumptions on preferences. Hatfield and Milgrom (2005)
establish cardinal monotonicity as a maximal domain for R1 in many-to-one matching.
Klijn and Yazici (2014) complements this result by establishing cardinal monotonic-
ity as a maximal domain for R1 in many-to-many matching. Precisely, if some agent’s
preferences violate cardinal monotonicity but do not necessarily satisfy substitutability,
then there are substitutable and cardinally monotonic preferences for the others such
that R1 fails. In Example 2 below we identify a profile of substitutable preferences
that violate cardinal monotonicity, a probabilistic stable rule and an equilibrium strat-
egy profile such that the equilibrium outcome is not individually-rational for the true
preferences. In our construction each worker has a capacity 1, therefore, the example
applies to many-to-one matching as well. In Example 3 below we identify a many-to-one
problem with a profile of substitutable preferences that violate cardinal monotonicity,
a probabilistic stable rule and an equilibrium strategy profile where firms behave truth-
fully such that the equilibrium outcome is not stable for the true preferences.

Example 2: Let F = {f1, f2, f3} and W = {w1, w2, w3, w4}. Let for each v ∈ F ∪
W\{f1, f2}, cv = 1 and cf1 = 2, cf2 = 3. Let P be the class of substitutable preferences.
Let true preference profile P ∈ P be as follows.

Pf1 : w1, w1w3,

Pf2 : w2, w1w3w4, w1w3, w1w4, w3w4, w1, w3, w4,

Pf3 : w4, w2,
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Pw1 : f1, f2
Pw2 : f2, f3
Pw3 : f1, f2
Pw4 : f3, f2

Notice that firm f2’s preferences violate cardinal monotonicity: w1 Pf2 ∅ but w2 Pf2

w1w2. Consider the game (P , ϕ̃, P ) induced by the probabilistic matching rule ϕ̃ de-
scribed below.

For each P ∈ P , ϕ̃[P ] =

{
ϕF [P ] if Pf1 : w1w3, w1, w3,

ϕW [P ] otherwise.

In words, ϕ̃[P ] assigns probability one to the firm-optimal stable match if f1 states the
particular strategy mentioned above and to the worker-optimal stable match otherwise.
Let strategy profile Q ∈ P be as follows.

Qf1 : w1w3, w1, w3,

Qf2 : w2, w1w3w4, w1w3, w1w4, w3w4, w1, w3, w4,

Qf3 : w4, w2,

Qw1 : f2, f1,

Qw2 : f3, f2,

Qw3 : f2, f1,

Qw4 : f2, f3,

It is easy to verify that

ϕ̃[Q] = ϕF [Q] =

(
f1 f2 f3

w1w3 w2 w4

)
.

We argue that Q is an sd-Nash equilibrium. Notice that each agent but f1 is assigned
her/its most preferred (set of) partners according to P. Thus, each agent but f1 has
no interest in deviating. For each alternative strategy that f1 states ϕ̃ recommends the
worker-optimal stable match for the corresponding strategy profile. Indeed, for each
such profile of strategies ϕ̃ recommends the following match.

For each Q′f1 ∈ Pf1 , Q
′
f1
6= Qf1 , ϕ̃[Q′f1 , Q−f1 ] =

(
f1 f2 f3
∅ w1w3w4 w2

)
.

Firm f1 prefers w1w3 to being unmatched. Thus, it can not improve upon ϕ̃[Q](f1) by
deviating. ♦

Example 3: Let F = {f1, f2, f3} and W = {w1, w2, w3, w4, w5, w6, w7, w8}. Let for each
w ∈ W, cw = 1 and each f ∈ F, cf = 3. Let P be the class of substitutable preferences.
Let true preference profile P ∈ P be as follows.
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Pf1 : w6w8, w2w3w8, w2w3w6, w1w2w3,w2w3w7, w3w8, w2w8, w1w8, w2w6, w3w6, w1w6,

w2w3, w1w3, w1w2, w3w7, w2w7, w1w7, w8, w6, w2, w3, w7, w1,

Pf2 : w3w4, w4w5w8, w3w5w8,w5w6w8, w4w5, w4w8, w3w5, w3w8, w5w8, w5w6, w6w8, w3,

w4, w5, w8, w6,

Pf3 : w2w5, w2w4w6, w5w6, w4w5, w2w4, w4w6,w1w4, w1w5, w2w6, w1w2, w1w6, w2,

w5, w6, w4, w1,

Pw1 : f1,f3,

Pw2 : f1, f3,

Pw3 : f1, f2,

Pw4 : f3, f2,

Pw5 : f2, f3,

Pw6 : f2, f3, f1,

Pw7 : f1,

Pw8 : f2, f1,

Notice that f1’s preferences violate cardinal monotonicity: |Ch(W,Pf1)| = |{w6, w8}| = 2
and |Ch(W\{w6}, Pf1)| = |{w2, w3, w8}| = 3. Indeed, each firm’s preferences violate car-
dinal monotonicity. Consider the game (P , ϕ̃, P ) induced by the probabilistic matching
rule ϕ̃ described below.

For each P ∈ P , ϕ̃[P ] =

{
ϕW [P ] if Pw1 : f3,

ϕF [P ] otherwise.

In words, ϕ̃[P ] assigns probability one to the worker-optimal stable match if worker w1

has the particular preference relation mentioned above and to the firm-optimal stable
match otherwise. Let strategy profile Q ∈ P be such that for each v ∈ F ∪W\{w1}
Qv = Pv and worker w1 has the following strategy.

Qw1 : f3,

It is easy to verify that

µ ≡ ϕ̃[Q] = ϕW [Q] =

(
f1 f2 f3

w2w3w7 w5w6w8 w1w4

)
.

Notice that (f1, w1) blocks µ (shown in bold) at P . We argue that Q is an sd-Nash
equilibrium. Notice that each worker but w1 is assigned her most preferred partner
according to P. Thus, only w1 may have an interest in deviating. For each alternative
strategy that w1 states ϕ̃ recommends the firm-optimal stable match for the correspond-
ing strategy profile. Indeed, for each such profile of strategies w1 remains unmatched.

For each Q′w1
∈ Pw1 , Q

′
w1
6= Qw1 , ϕ̃[Q′w1

, Q−w1 ] =

(
f1 f2 f3

w6w8 w3w4 w2w5

)
.

Worker w1 prefers f3 to being unmatched. Thus, she can not improve upon ϕ̃[Q](w1)
by deviating.
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For each possible firm deviation ϕ̃ recommends the worker-optimal stable match
for the corresponding strategy profile. We first consider deviations for f1. Let Q′f1 be
an alternative strategy for f1. First notice that each firm receives proposals from its
partners at µ at the end of the first step of the worker proposing DA algorithm applied
to (Q′f1 , Q−f1). Furthermore, each of f2 and f3 holds its partners at µ at the end of the
first step. Firm f1 rejects at least one of its partners at µ in the first step. Otherwise, it
holds each of its partners at µ at the end of the first step. Since no worker is rejected,
the algorithm stops. Firm f1 is matched to its partners at µ and cannot benefit from
deviating. Firm f1 can receive a more preferred set of partners than those it is matched
at µ according to its true preferences only if it rejects either w7 only or each of its
partners at µ in the first step. 1) Firm f1 rejects w7 only in the first step. Worker w7

does not make any further proposals. The algorithm stops and f1 is matched to w2w3.
2) Firm f1 rejects each of its partners at µ, w2, w3, w7, in the first step. Workers w2 and
w3 propose respectively to f3 and f2 whereas w7 makes no proposal in the second step.
Firm f2 holds w3w5w8 and rejects w6. Firm f3 holds w2w4 and rejects w1. In the next
step w6 proposes to f3 and w1 makes no proposal. Firm f3 holds w2w4w6 and issues
no rejection. Since no worker is rejected, the algorithm stops. Firm f1 is left unmatched.

We next consider deviations for f2. Let Q′f2 be an alternative strategy for f2. First
notice that each firm receives proposals from its partners at µ at the end of the first step
of the worker proposing DA algorithm applied to (Q′f1 , Q−f1). Furthermore, each of f1
and f3 holds its partners at µ at the end of the first step. Using the same reasoning
above we conclude that f1 rejects at least one of its partners at µ in the first step. Firm
f2 can receive a more preferred set of partners than those it is matched at µ according
to its true preferences only if it rejects either w6 only or each of its partners at µ in
the first step. 1) Firm f2 rejects w6 only in the first step. Worker w6 proposes to f3
in the second step. Firm f3 holds w4w6 and rejects w1 who makes no proposal in the
next step. The algorithm stops and f2 is matched to w5w8. 2) Firm f2 rejects each of
its partners at µ, w5, w6, w8, in the first step. Workers w5 and w6 propose to f3 and
w8 proposes to f1 in the second step. Firm f3 holds w5w6 and rejects w4 and w1. Firm
f1 holds w2w3w8 and rejects w7. In the next step w4 proposes to f2 whereas w1 and
w7 make no proposals. Firm f2 holds w4 and issues no rejection. Since no worker is
rejected, the algorithm stops. Firm f2 is matched to w4.

We next consider deviations for f3. Let Q′f3 be an alternative strategy for f3. First
notice that each firm receives proposals from its partners at µ at the end of the first
step of the worker proposing DA algorithm applied to (Q′f1 , Q−f1). Furthermore, each
of f1 and f2 holds its partners at µ at the end of the first step. As before f3 rejects
at least one of its partners at µ in the first step. Firm f3 can receive a more preferred
set of partners than those it is matched at µ according to its true preferences only if it
rejects either w1 only or each of its partners at µ in the first step. 1) Firm f3 rejects w1

only in the first step. Worker w1 does not make any further proposals. The algorithm
stops and f3 is matched to w3. 2) Firm f3 rejects each of its partners at µ in the first
step. Worker w4 proposes to f2 whereas w1 makes no proposal in the second step. Firm
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f2 holds w4w5w8 and rejects w6. In the next step w6 proposes to f3. Firm f3 holds w6

and issues no rejection. Since no worker is rejected, the algorithm stops. Firm f3 is
matched to w6. ♦

7 Conclusion

We analyze sd-Nash equilibria of the game induced by any probabilistic stable match-
ing rule in many-to-many matching when each agent has substitutable and cardinally
monotonic preferences. Our first result is that a unique match is achieved as the out-
come of each sd-Nash equilibrium whereas multiple matches may arise with positive
probability in the game as the outcome of truthful behavior. The second result es-
tablishes individual-rationality with respect to the true preferences as a necessary and
sufficient condition for a match to be achieved as the outcome of an sd-Nash equilib-
rium. Stochastically dominant Nash equilibria where firms behave truthfully always
lead to stable matches for the true preferences in many-to-one matching. This result
is not carried over to the many-to-many matching framework. Conversely, each stable
match for the true preferences is supported as the outcome of an sd-Nash equilibrium
where firms behave truthfully.

Pais (2008) examines the connection between equilibria of the game induced by a
probabilistic stable rule with those induced by a deterministic stable rule in the college
admissions problem. In particular, each sd-Nash equilibrium of the game induced by any
probabilistic stable rule is a Nash equilibrium of the game induced by some deterministic
stable rule. A partially converse result is the following. Let Q be an sd-Nash equilibrium
of the game induced by the firm-optimal stable rule and of the game induced by the
worker-optimal stable rule. Then Q is an sd-Nash equilibrium of the game induced
by any probabilistic stable rule. With obvious modifications, the proofs of all these
results remain valid in many-to-many matching when each agent has substitutable and
cardinally monotonic preferences.
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