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We consider the continuation of free and interacting scalar field theory to noninteger spacetime
dimension d. We find that the correlation functions in these theories are necessarily incompatible with
unitarity (or with reflection positivity in Euclidean signature). In particular, the theories contain negative-
norm states unless d is a positive integer. These negative-norm states can be obtained via the operator
product expansion from simple positive-norm operators, and are therefore an integral part of the theory.
At the Wilson-Fisher fixed point the nonunitarity leads to the existence of complex anomalous dimensions.
We demonstrate that they appear already at leading order in the epsilon expansion.
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I. INTRODUCTION

Unitarity, or its absence, is a key structural property
of any quantum field theory (QFT). The purpose of this
paper is to present a novel mechanism by which unitarity
can be violated for QFTs defined in noninteger spacetime
dimensions. This mechanism was first pointed out in our
recent work [1], and here it will be explained in detail. The
mechanism is general, but here it will be demonstrated
using the example of the scalar ϕ4 theory in d dimensions,
described by the Lagrangian

L ¼ 1

2
ð∂ϕÞ2 þ 1

4!
gμ4−dϕ4: ð1:1Þ

As is well known, in d ¼ 4 − ϵ dimensions, this theory has
a conformal IR fixed point, called the Wilson-Fisher (WF)
fixed point [2]. The fixed point coupling g ¼ g� is given at
the lowest order by

g�=ð4πÞ2 ¼ ϵ=3þOðϵ2Þ: ð1:2Þ

Unitarity is violated, we believe, for all noninteger d in the
usually considered range 2 ≤ d ≤ 4.1 However, for most of

the paper we will focus on d ¼ 4 − ϵ, ϵ ≪ 1. On the one
hand, this will be enough to illustrate the general mecha-
nism. On the other hand, since the theory in this range is
weakly coupled, it will be possible to buttress general
arguments by explicit perturbative calculations.
The mechanism responsible for these unitarity violations

makes use of operators that are present in the spectrum
for all noninteger d, but that decouple for certain integer d.
Such operators are known as evanescent operators in the
QFT literature [4]. In standard QFT computations, one is
interested in computing observables at integer d, typically
d ¼ 4. After regulating the theory using dimensional
regularization and passing to d ¼ 4 − ϵ dimensions, such
evanescent operators can appear, as has been shown in
theories with fermions [5,6].2 Although these operators
themselves decouple in the limit ϵ → 0, they leave an
imprint on four-dimensional (4D) observables. A well-
known example of this phenomenon is furnished by the
QCD next-to-leading-order anomalous dimensions of
four-Fermi operators, responsible for the hadronic weak
decays [8].
In contrast to all the works just cited, here we will not

take the limit ϵ → 0. This is because we are primarily
interested in the WF fixed point, which becomes trivial in
this limit. Rather we will keep ϵ small but finite. Our main
point will be then to show that some of the evanescent
operators give rise to states that have negative norm,
implying that the ϕ4 theory in noninteger dimensions,
and a fortiori the WF fixed point, is not unitary. In passing,
the present work shows that evanescent operators already
occur in theories with a single scalar field, whereas

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

1Continuation to a larger range 1 ≤ d ≤ 4 is also sometimes
considered (see Ref. [3] for a recent discussion). The theories
in the range 1 < d < 2 are also expected to be nonunitary. For
the free scalar theory this is obvious, as the dimension of ϕ is
negative and violates the scalar primary unitarity bound
maxð0; ðd − 2Þ=2Þ.

2Evanescent operators are also necessary to renormalize
theories whose action involves the epsilon tensor, like the
WZNW model [7].
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previous QFT computations only encountered such oper-
ators when nonscalar fields were present.
There is a simple reason that evanescent operators in

the WF fixed point have not been noticed up to now. This
is because most computations have focused on low-
dimension operators such as ϕ, ϕ2 and ϕ4, which are
obviously present in d ¼ 4. As we will see, to discover the
evanescent operators in the scalar theory and to demon-
strate their various properties, one has to go pretty high up
in operator dimension.3 For instance, in this paper we will
work with all scalar operators below the cutoff Δmax ¼ 23
in operator dimension. The number of operators grows
exponentially fast, and as a result there are thousands of
operators below this cutoff.
To our knowledge, such a systematic investigation of the

Hilbert space and spectrum of WF was taken only once
before us, by Kehrein et al. [9–11]. These papers used a
different methodology that did not take evanescent oper-
ators into account. As a result, they did not notice the
presence of negative-norm states in 4 − ϵ dimensions. In
other aspects there are some similarities between our
works, and a more detailed comparison will be given in
Sec. IV C.
The remainder of this paper is organized as follows.

Section II discusses evanescent operators in the free scalar
theory. We will show that their existence implies that the
theory in noninteger dimensions has negative-norm states,
violating unitary. In addition we mention how these
operators fit into representations of the conformal algebra,
and we also give a systematic counting of all the evanescent
operators around d ¼ 4 up to Δmax ¼ 23.
From Sec. III onwards we consider the interacting

theory at the WF fixed point in 4 − ϵ dimensions. We
begin with a review of the computation of one-loop
anomalous dimensions in Sec. III. In Sec. IV we discuss
the anomalous dimensions of the evanescent operators and
show that there is no reason for them to be real valued. We
substantiate this claim with an explicit computation in
Sec. IV B: there exist four scalar operators with Δ ¼ 23
(in d ¼ 4) that get a complex anomalous dimension at one
loop. We also briefly explain how the evanescent oper-
ators can affect the general computation of higher-loop
anomalous dimensions. The implications of our results for
the structure of four-point functions are discussed in
Appendix B.
Our final Sec. V offers some general comments,

including an overview of the expected structure of the
WF fixed point for any 2 ≤ d ≤ 4 that stems from our
results. In Sec. V C we consider the effect of evanescent
operators on numerical studies of the crossing symmetry
equations.

II. THE FREE BOSON IN NONINTEGER d

As a first order of business we will have to make the
definition of a quantum field theory in noninteger dimen-
sions more precise. We will investigate local operators and
their correlation functions, and leave the study of other
observables like the S-matrix or nonlocal operators to
future work.4 In this section we will consider the free
massless scalar field ϕ in noninteger dimensions in more
detail. Unless otherwise mentioned, we will always work in
Euclidean signature.
For any integer d > 2, the set of local operators is

generated by taking symmetrized normal-ordered products,
or “words,” of the elementary “letters” which consist of
zero or more derivatives acting on the fundamental field ϕ.
Each operator therefore looks like

∶∂n1ϕ∂n2ϕ…∂nkϕ∶ðxÞ; ð2:1Þ

where ∂n stand for various derivatives of order n, some of
whose indices may be contracted (see below). Correlation
functions and operator product expansions (OPEs) of these
operators can be computed by Wick’s theorem.
In this paper we will mainly consider scalar, parity-even

operators.5 A basis for such operators is produced by taking
operators of the form (2.1) and contracting all the indices
on the derivatives with the inverse metric δμν. Contracting
two derivatives acting on the same ϕ is considered to give
rise to a zero operator, and such operators are not included
in the basis. This is justified, because operators propor-
tional to the equation of motion □ϕ ¼ 0, □≔∂μ∂μ, have
nonvanishing correlation functions only at coincident
points. If one is interested in correlation functions at
noncoincident points, as is the case here, one can drop
such operators from the start. In the above discussion, this
means that we will eliminate operators of the form
∂n
□ϕ × ðanythingÞ.
Through the operator-state correspondence the set of

operators also defines the Hilbert space of the theory on the
(d − 1)–sphere Sd−1. As is familiar, the states in this
Hilbert space can be decomposed into highest-
weight representations of the d-dimensional conformal
algebra SOðdþ 1; 1Þ built on top of conformal primary
operators satisfying ½Kμ;Oð0Þ� ¼ 0. For our purposes, we
will not need to explicitly organize all states in such
representations. With some abuse of language, in this work
we will sometimes talk about states and operators
interchangeably.
Moving to noninteger d, most of the above story extends

in a fairly standard and natural manner. The scaling

3This is different from the fermionic case where already at the
four-Fermi level one finds an infinite number of evanescent
operators.

4Results on nonlocal operators in the epsilon expansion can be
found, for example, in Refs. [12,13].

5See however Sec. II E for a brief discussion of general
tensorial operators, the epsilon tensor and the parity operation.
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dimension of ϕ is analytically continued from integer d, i.e.
Δϕ ¼ ðd − 2Þ=2. One does not dwell too much on the range
of the index μ for noninteger d. One also imposes
that ∂μxν ¼ δνμ and furthermore that the metric satisfies
δμνδμν ¼ d. This procedure completely defines correlation
functions of local operators in flat space, with the exception
of those involving the epsilon tensor, which we discuss in
more detail below. It basically amounts to the analytic
continuation of coefficients multiplying the tensor
structures.
We will also need to integrate correlation functions

over either all of Rd or on Sd−1. We will use the standard
dimensional regularization integration rules [4,14]. In par-
ticular the volume of a unit sphere inRd is Sd≔VolðSd−1Þ ¼
2πd=2=Γðd=2Þ. As explained in Refs. [4,14], such d-
dimensional integrals can be properly defined if
one considers vectors to have infinitely many components
in noninteger dimensions; one may show that they
truncate to finite-dimensional integrals when d becomes
integer.
Finally, it will be helpful to have a definition of

correlation functions on the cylinder R × Sd−1. We define
these formally through the standard Weyl transformation
rules from flat space. Mapping to the cylinder is morally
equivalent to the radial quantization of the theory, which
will be extensively used in the following sections. Notice
that if we can integrate correlation functions then we can
also define nonlocal operators, like the generators of the
conformal algebra, and hence conformal transformations
on local operators are defined unambiguously. We will
therefore also be able to group operators into conformal
multiplets and distinguish between primary and descendant
operators.
Although the above setup defines all local observables

needed in this work, some aspects of the continuation to
noninteger d remain somewhat mysterious. These issues
relate to the representation theory of the algebras soðdÞ and
soðdþ 1; 1Þ in noninteger d, which does not appear to be
developed in the mathematical literature.6 One concrete
relevant question concerns the meaning of the analytic
continuation of the partition function Z of the free boson on
S1 × Sd−1 [16]. For integer d the partition function counts
all states on the sphere with weight one (times qΔ, where Δ
is the dimension and q is the modular parameter). In
analytically continued Z, the vector j∂μϕi is then counted
with weight d, whereas we expect that this representation is
infinite dimensional for noninteger d. This leads to the
conclusion that in noninteger d, the partition function Z
only counts degrees of freedom in a regulated sense. Is
there an intrinsic representation-theoretic meaning to the
dimensions of soðdÞ representations analytically continued

to noninteger d? It would be interesting to better understand
this question.7

A. Evanescent operators

Consider the sequence of scalar, parity-even operators of
the form

RnðxÞ≔δμ1½ν1δjμ2jν2…δjμnjνn�∶Mμ1ν1ðxÞ � � �MμnνnðxÞ∶;
ð2:2Þ

where n ¼ 1; 2;… is a positive integer and we have
introduced the shorthand notation

MμνðxÞ ¼ ∂μ∂νϕðxÞ: ð2:3Þ

The product of deltas has to be antisymmetrized in the
second indices as indicated by the notation. Explicitly, the
first few of these operators are given by

n Rn

2 −trM2

3 2trM3

4 −6trM4 þ 3ðtrM2Þ2
5 24trM5 − 20ðtrM2ÞðtrM3Þ

ð2:4Þ

where e.g. trM3 stands for the contraction MμνMνλMλμ etc.
Notice that trM ¼ □ϕ ¼ 0. Clearly, with this definition
each of the operators Rn is defined for any d, integer or
noninteger.
However if d < n the number of possible values of the ν

indices on the rhs of Eq. (2.2) is too small: for each choice
of ν1;…; νn there are necessarily duplicate indices and total
antisymmetrization is not possible. This implies that each
of the operators Rn vanishes when d ¼ 1; 2;…; n − 1.8

These are, then, examples of evanescent operators—
operators which are identically zero for certain integer
dimensions, but nontrivial for noninteger dimensions.
We hasten to add that Rn’s are not the only evanescents

of the theory. For example, multiplying an evanescent Rn
by any other operator gives again an evanescent. More
evanescents can be constructed by applying the same basic

6An analytic continuation of the algebra slðdÞ to general d has
been constructed in Ref. [15].

7Similar issues arise for OðNÞ models and Q-state Potts
models with noninteger N or Q, relevant for percolation and
self-avoiding walks. There is a wide statistical physics literature
on the partition function of such models where the coefficients are
polynomials of N or

ffiffiffiffi
Q

p
, interpreted as quantum dimensions of

quantum group representations. We just give two referen-
ces [17,18] as points of entry. We thank Jesper Jacobsen and
Hirohiko Shimada for the discussions.

8This can also be shown by expressing the Rn operators in
terms of the eigenvalues of the matrix M [1] or by applying the
Cayley-Hamilton theorem [19]. We thank Miguel Paulos for
suggesting to us a proof using antisymmetrization.
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antisymmetrization idea to other tensors. To give just
one example: one can replace some of the M’s in
Eq. (2.2) with M0

μν ¼ ∂μϕ∂νϕ. In Sec. II D we will see a
systematic approach to count and construct all the evan-
escent states below some cutoff in dimension, based on the
Gram matrix. A natural conjecture, which we checked
extensively, is that all the evanescents appear from anti-
symmetrizations of the above sort. It would be nice to
prove this.
Let us finally note that Rn’s are not primary operators, as

they can be represented as total derivatives:

Rn ¼ ∂μ1fδμ1½ν1δjμ2jν2…δjμnjνn�∶∂ν1ϕMμ2ν2 � � �Mμnνn∶g:
ð2:5Þ

Below we will further analyze the conformal multiplets to
which Rn belong.

B. Negative-norm states

We will now establish that the Hilbert space of local
operators of the free scalar theory is not positive definite,
and so the theory is not unitary, away from integer d.
Whether a Hilbert space is positive definite or not is

encoded in the Gram matrix, or the matrix of inner
products. In conformal field theory it is customary to work
in radial quantization, where the inner products are evalu-
ated by inserting the operators at zero and infinity. The
radial quantization Gram matrix is thus defined as

Gij ≡ hOijOjirad≔lim
x→0

h½OiðxÞ�†OjðxÞi; ð2:6Þ

where the conjugate operator ½OiðxÞ�† is inserted at the
point Rx ¼ xμ=x2 and is rescaled appropriately to have a
finite limit. We will extensively use the above Gram matrix
in the rest of the paper, and it will be discussed in more
detail in Sec. II D.
For now, it will however be convenient to introduce a

second inner product ~G. Here, one of the operators is
inserted at the point N with coordinates xd ¼ 1=2,
x1;…; xd−1 ¼ 0. Conjugate operators ½OðNÞ�þ are inserted
at the point S with coordinates xd ¼ −1=2,
x1;…; xd−1 ¼ 0, which is the reflection of N through the
plane xd ¼ 0.9 The Gram matrix ~Gij is then defined as

~Gij ≡ hOijOjiNS≔h½OiðNÞ�þOjðNÞi: ð2:7Þ

This inner product is adapted to the so-called North-South
(NS) quantization scheme [20,21], where states in the
Hilbert space are defined by inserting operators at N.

The two Gram matrices G and ~G are related to each
other, because there is a global conformal transformation
which maps 0 and ∞ to N, S respectively. If there is a
negative-norm state with respect to one norm, there will be
one with respect to the other. Notice however that descend-
ants transform nonhomogeneously under this transforma-
tion, and so it is not true in general that ~Gij is proportional
to Gij (it is only true for primaries).
Defining the norm via ~G is more intuitive because

of the relation to the reflection positivity in flat space,
and also because the NS conjugation acts simply in the
presence of derivatives. The G-norm is related to reflection
positivity on the cylinder Sd−1 ×R, and its evaluation is
slightly more complicated. In compensation it satisfies
various nice selection rules which will be described in
Sec. II D.
In this section we will exhibit operators in free massless

scalar theory which have negative ~G-norm. The existence
of such operators was first observed by us in Ref. [1], and
here we will give a slightly more detailed discussion. In the
simplest and most explicit examples, the negative-norm
operators will be Lorentz scalars. Recall that the two-point
function of a Hermitian scalar operator OðxÞ (not neces-
sarily a conformal primary) takes the form

hOðxÞOð0Þi ¼ cðOÞ=jxj2ΔO ; ð2:8Þ

where ΔO is the scaling dimension of O. For scalars the
coefficient cðOÞ is precisely the ~G-norm of O. This
coefficient must be positive in a unitary conformal field
theory (CFT), while our operators will have it negative.10

If one wants to look for negative-norm states, the
evanescent operators discussed in the previous section
are good candidates. Indeed, their ~G-norms cðOÞ will have
zeroes at (some) integer d’s, and so assuming that these
zeroes are first order, cðOÞ will be negative on one side of
each zero.
Consider thus the operators Rn. Since Rn is identically

zero for d ¼ 1; 2;…; n − 1, we know that any correlation
function hRnðxÞ…i will vanish for these d. In particular,
this will be true for the two-point function coefficient
cðRnÞ. Let us then write

cðRnÞ ¼ ĉðd; nÞ
Yn−1
i¼1

ðd − iÞ; ð2:9Þ

On general grounds, we can say that ĉðd; nÞ > 0 for all
integer d ≥ n, since the operator is then nontrivial, and the

9If O has nonzero spin, then ½OðNÞ�þ also contains a factor
Θ ¼ ð−1Þk, where k is the number of Lorentz indices
perpendicular to the plane xd ¼ 0.

10Since our understanding of field theory in noninteger
dimensions is somewhat incomplete, one may wonder what
precisely is meant by their “unitarity.” The conclusions of this
paper are based on the natural assumption that cðOÞ > 0 is a
necessary ingredient in any meaningful definition of a unitary
theory.
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theory unitary. An explicit computation gives the following
formula11:

ĉðd;nÞ ¼ n!ðn− 1Þ½dðn− 1Þþ 2n�dnðd− 2Þnðd−nþ 3Þn;
ð2:10Þ

where ðxÞn ≡ Γðxþ nÞ=ΓðxÞ is the Pochhammer
symbol.12

We thus see that ĉðd; nÞ is positive at d ¼ n − 1, so that
this zero of cðRnÞ remains first order. Consequently, cðRnÞ
is negative for n − 2 < d < n − 1; see Fig. 1. For example,
cðR4Þ is negative for 2 < d < 3, cðR5Þ is negative for
3 < d < 4 etc. We conclude that the free massless scalar
boson in any noninteger dimension d > 2 contains
negative-norm states and is therefore not unitary.13

The somewhat complicated form of the Rn operators
explains why the negative-norm states have never been
observed before our work [1]. We stress however that Rn
are nothing but linear combinations of normal-ordered
products of the derivatives of ϕ. They can be obtained
by taking repeated OPEs of Mμν. In this sense these
operators are not much different from, say, ∶ϕ2∶ or the
stress tensor. In particular, there is no way to throw them
out from the theory without destroying its consistency.
Above we discussed the two-point function of the Rn

operators. Other correlators involving Rn can be computed
similarly. Just like the two-point function, these correlators
will vanish at integer d ¼ 1…n − 1 but will be generally
nonzero for other d. Here is one example, for n ¼ 5, of a
nonzero three-point function:

hϕ2ðxÞϕ3ðyÞR5ð0Þi ¼−240ðd− 4Þðd− 3Þðd− 2Þ6d

×
ðdþ 2Þx2y2 − 3dðx · yÞ2

jxj2þ2djyj2þ3d : ð2:11Þ

As expected, the three-point function vanishes at d ¼ 1, 2,
3, 4 when R5 becomes null.14 Notice that the three-point
function does not have the standard Polyakov form of the
correlator of three scalar primaries, because as we observed
above Rn is not a primary.

C. Primary decomposition and negative norms

In the previous section we saw that the free massless
scalar in d > 2 contains negative-norm descendant states.
What does this means in terms of primaries? Clearly, there
should be either
Scenario (1): negative-norm primaries above the unitar-

ity bound,
or
Scenario (2): positive-norm primaries below the unitar-

ity bound,
or both. Recall that for primaries above the unitarity

bound the norm of the descendants is related to that of the
primary by a positive factor, so that if the norm of the
primary is negative, so will be the norm of the descendant.
For primaries below the unitarity bound there is at least one
descendant whose norm has the sign opposite to that of the
primary.
To decide between these scenarios, we would like to

decompose the operators Rn into a linear combination of
descendants of primaries. In principle, it is a straightfor-
ward exercise to find such a decomposition for any given
operator O. We start by acting on O with Kμ several times
until the result is zero. If, schematically, ðKμÞNO ¼ 0, then
ðKμÞN−1O is a linear combination of primaries, call them
Oi whose descendants Di contribute to O. Subtracting
these descendants with appropriate coefficients, we get
ðKμÞN−1ðO − ciDiÞ ¼ 0. We can then move one level up
and repeat the procedure recursively until the full decom-
position is obtained.
In practice however it is a bit tedious to carry this out for

the operators Rn, which contain many derivatives, and one
has to act many times with Kμ before hitting zero. We
performed the decomposition for n ≤ 4, and we will
describe here the result for R4. Its decomposition in general
d includes seven terms:

R4 ¼ c1□4Oð1Þ þ c2□2∂μ∂νO
ð2Þ
μν þ c3□2Oð3Þ

þ c4□∂μ∂νO
ð4Þ
μν þ c5∂μ∂ν∂λ∂σO

ð5Þ
μνλσ

þ c6□Oð6Þ þ c7∂μ∂νO
ð7Þ
μν ; ð2:12Þ

where

Oð1Þ ¼ ϕ4; Oð3Þ ¼ ½ð∂ϕÞ2�2 þ � � � ;
Oð6Þ ¼ ð∂ϕÞ2ð∂∂ϕÞ2 þ � � � ð2:13Þ

FIG. 1. The schematic behavior of cðRnÞ, n ≥ 4, as a function
of d in the range d ≥ 2. The norm vanishes for d ¼ 2;…; n − 1, is
negative in the interval n − 2 < d < n − 1, and is positive
otherwise.

11We have verified this formula n ¼ 2, 3, 4, 5, 6 and conjecture
that it holds for all n.

12We are working in the normalization in which hϕðxÞϕð0Þi ¼
1=jxj2Δϕ .

13Notice the similarity with the proof thatOðNÞmodels are not
unitary for noninteger N [22]. 14For d ¼ 1 we have to use the identity ðx · yÞ2 ¼ x2y2.
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are scalar primaries (the � � � terms are fixed by the primary
condition),

Oð2Þ ¼ ϕ2Tμν; Oð4Þ ¼ ∂μϕ∂νϕð∂ϕÞ2 þ � � � ;
Oð7Þ ¼ ∂μϕ∂νϕð∂∂ϕÞ2 þ � � � ð2:14Þ

are symmetric traceless spin-two primaries (the first of
these is a normal-ordered product of ϕ2 and the stress
tensor), and

Oð5Þ ¼ ∂μϕ∂νϕ∂λϕ∂σϕþ � � � ð2:15Þ

is a symmetric traceless primary of spin four.
The ~G-norm of R4 has a first-order zero at d ¼ 3, and

one may ask how this agrees with its decomposition. The
above primaries are normalized so that they do not contain
any explicit d-dependent factors which vanish or blow up at
d ¼ 3. In this normalization, the coefficients c1;…; c6 turn
out to be Oðd − 3Þ, and hence the operators Oð1Þ…Oð6Þ

only give a subleading Oðd − 3Þ2 contribution to the norm
of R4. On the other hand c7 remains finite as d → 3.
Therefore, at leading order in d − 3, the norm of R4 is
proportional to that of Oð7Þ. The proportionality coefficient
is expected15 to be positive, since Oð7Þ is well above the
spin-two unitarity bound. We therefore expect that the norm
of Oð7Þ, as that of R4, has a first-order zero at d ¼ 3 and is
negative at d just below 3. This corresponds to the above
scenario (1). We computed the norm of Oð7Þ explicitly and
checked that this interpretation is indeed correct. We do not
present the full details, except for the fact that Oð7Þ can be
written in the form

Oð7Þ
μν ¼ const δμ1½ν1δjμ2jν2δjμ3jν3δjμ4jν4�

× ðϕMμ2;ν2 − 9∂μ2ϕ∂ν2ϕÞMμ3;ν3Mμ4;ν4

þOðd − 3Þ; ð2:16Þ

and we can use the same antisymmetrization argument as
before to conclude that Oð7Þ vanishes in d ¼ 3.

D. The radial quantization Gram matrix

In the previous sections we produced a few examples of
negative-norm states in the free scalar theory. We would
now like to give a more systematic survey, and in particular
count how many states have negative norm. From now on
we will switch to using the radial quantization Gram matrix

G defined in Eq. (2.6). For the systematic analysis G is
more convenient than ~G because it satisfies various nice
selection rules (see below). Let us briefly review how G is
constructed in practice [1,19]. For us, the operators Oi, Oj

in Eq. (2.6) will be normal-ordered products of ϕ and its
derivatives, or linear combinations thereof. The action of
conjugation on ϕ is defined by

½ϕðxÞ�†≔jxj−2ΔϕϕðRxÞ: ð2:17Þ

It is extended to derivatives by (anti)linearity:

½∂n
xϕðxÞ�†≔∂n

xfjxj−2ΔϕϕðRxÞg: ð2:18Þ

It is also extended to the normal-ordered products of ϕ
and its derivatives in an obvious way. With these definitions
the Gram matrix will be Hermitian (in fact real and
symmetric if the basisOi involves only linear combinations
with real coefficients). Computing it is a problem of
symbolic algebra, which we realized in MATHEMATICA.
We will keep using the normalization from footnote 12, in
which hϕjϕi ¼ 1.
As mentioned, the radial quantization Gram matrix

respects various selection rules, which give it a block
structure. One basic rule is that only operators with the
same SOðdÞ symmetry and the same scaling dimensions
have nonzero inner product. This is in fact true for any
theory.
Our specific theory will have another, very powerful,

selection rule. To describe it, we define the ϕ-type of an
operator as the list of the number of derivatives for each
factor ϕ in the operator, sorted in increasing order. This list
thus has length nϕ defined as the number of ϕ’s in the
operator. When determining the ϕ-type, contractions are
unimportant. For example, the ϕ-type of ϕ2 is f0; 0g and
the ϕ-type of ϕ∂2ϕ∂ϕ∂3ϕ, no matter how the indices are
contracted, is f0; 1; 2; 3g. Clearly, if two operators have the
same ϕ-type they also have the same scaling dimension,
although the converse is not necessarily true.
With this definition, in the free massless scalar theory, a

Gram matrix element vanishes unless the two operators are
of the same ϕ-type. A very simple partial case of this rule is
that the matrix element vanishes unless nϕðOÞ ¼ nϕðO0Þ.
This is clear since otherwise one cannot form any con-
traction between O and O0, while the full rule may not
appear totally obvious starting from the definition of G in
terms of two-point functions.16 This rule however directly
follows from the oscillator picture of the free scalar Hilbert
space in the canonical quantization, where each factor ∂lϕ
corresponds to adding an oscillator of angular momentum
l; see Ref. [1], Eq. (3.13).

15We say “expected” since strictly speaking the standard
unitarity bounds have been derived for the integer dimensions.
We rely on the plausible assumption that nothing unexpected
happens with the unitarity bounds analytically continued to
noninteger d. At any fixed level of the conformal multiplet,
one could check this by an explicit computation, although we
have not done this. 16See however the discussion in Ref. [19], section C.3.
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The above discussion was for general d. Let us now
describe how the Gram matrix can be used to enumerate the
null states in 4D, which correspond to evanescent operators
when we move slightly away from 4D. This will be also
relevant for the subsequent discussion of the WF
fixed point.
Using our MATHEMATICA code we evaluated all matrix

elements for scalar parity-even operators up to Δ ¼ 23 in
d ¼ 4. This will be enough for the applications we have in
mind. The code becomes slower for longer operators but
with additional optimization one could go higher up in
dimension if needed.
More precisely, we split the operators into groups

having the same ϕ-type. Within each group we computed
the Gram matrix keeping the spacetime dimension d as a
free parameter. Setting d to 4 and counting the number of
zero eigenvalues we can then determine the number of
null states. We then set d to 4 − ϵ and determine the
eigenvalues of the Gram matrix to first order in ϵ > 0. We
found that up to the dimension that we are working all
eigenvalues are either Oð1Þ or OðϵÞ as ϵ → 0. In particular
there are no Oðϵ2Þ eigenvalues up to Δ ¼ 23.17 This fact
will play some role later in the WF fixed point discussion.
At still higher dimensions there might well be Oðϵ2Þ
eigenvalues.
Our results are summarized in Table I. The first null

state occurs at Δ ¼ 15; this is the operator R5. At Δ ¼ 16
we have two null states: the operator R0

5 obtained by
replacing one of the M’s by M0 in R5, and the product
∶ϕR5∶. In fact the normal-ordered product of any state with
a null state is always a null state. The three null states at
Δ ¼ 17 are ∶ϕ2R5∶, ∶ϕR0

5∶ and R00
5 obtained by two

M → M0 replacements in R5. A similar analysis can be
done for Δ > 17. We see from the table that the majority
(although not all) of the null states acquire a negative norm
in d ¼ 4 − ϵ.
As an example, let us consider the block of scalar

operators of ϕ-type f2; 2; 2; 2; 2g. The space of operators
of this ϕ-type is two dimensional, with the basis naturally
chosen as

O1 ¼ ðtrM2ÞðtrM3Þ and O2 ¼ trM5 ð2:19Þ

where we recall that Mμν ¼ ∂μ∂νϕ. The Gram matrix
restricted to this subsector is

Gf2;2;2;2;2g
¼2ðd−2Þ6ðd−1Þd2ðdþ2Þðdþ4Þ

×

�
12d2ðd2þdþ10Þ 60dðd2þ2d−4Þ
60dðd2þ2d−4Þ 5ðd4þ7d3þ12d2−48dþ96Þ

�
:

ð2:20Þ

Diagonalizing, we find two positive eigenvalues for d > 4.
One of them crosses zero and becomes negative for d < 4.
The corresponding eigenvector is in d ¼ 4 precisely the
operator R5.
The number of physical states of dimension Δ in

the massless scalar theory for integer d can be counted
using the oscillator representation [16]; it grows as
expðCΔ1−1=dÞ.18 The number of null states will grow at
least that fast, since we can form high-dimension null states
by forming products of low-lying nulls with high-dimen-
sion normal states. It would be interesting to obtain a more
systematic counting of the null states in any integer d.

E. General tensorial operators19

Our discussion so far has focused on scalar operators,
with a brief mention of symmetric traceless tensor operators
in Sec. II C. This was clearly sufficient to demonstrate the
nonunitarity of the free boson in noninteger dimensions,
but for completeness let us now consider more general
tensorial operators.
As we mentioned above, the set of nontrivial local

operators for the free boson in d dimensions is generated
by symmetrized normal-ordered products of the form

∶ð∂μ1…∂μn1
ϕÞð∂ν1…∂νn2

ϕÞ…ð∂ρ1…∂ρnk
ϕÞ∶ ð2:21Þ

with k ≥ 1 and n1…nk ≥ 0, where some indices may be
contracted modulo the sole constraint that □ϕ ¼ 0. We
would like to find a way to classify these operators into
“irreducible representations of the Euclidean rotation group
in d dimensions.” In order to do so we can (1) contract the
indices with invariant tensors, and (2) symmetrize and/or
antisymmetrize the uncontracted indices.

TABLE I. N0 is the number of scalar parity-even null states in
d ¼ 4 with scaling dimension Δ. N− denotes how many of these
null states become negative-norm states slightly below four
dimensions (the rest of the null states acquire positive norm).

Δ 15 16 17 18 19 20 21 22 23

N0 1 2 3 6 12 24 46 93 181
N− 1 2 3 5 10 21 41 83 160

17There is no contradiction between this statement and the fact
that the ~G-norm of R7 vanishes as Oðϵ2Þ near d ¼ 4, see Fig. 1.
First of all, the G-norm discussed in this section is not propor-
tional to the ~G-norm except for the primaries, and in fact the G-
norm of R7 is OðϵÞ. Additionally, there is another evanescent
operator of the same ϕ-type as R7, namely ∶R2R5∶. These two
evanescents mix at OðϵÞ, and the resulting eigenvalues are both
OðϵÞ.

18The same growth rate is expected to hold in any CFT [23,24].
19This section is somewhat outside the main line of develop-

ment and may be skipped on the first reading, but it is helpful for
the discussion in Sec. V B.
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Let us first consider the invariant tensors. For any integer
d there are precisely two fundamental invariants: the
inverse metric δμν and the totally antisymmetric tensor
ϵμ1…μd . It is clear that our formalism for noninteger d can
include the former but not the latter. Indeed, the theory for
noninteger d should smoothly continue to any integer d. By
taking this integer d as large as we want we can banish the
epsilon tensor from appearing in any operator with finitely
many ϕ’s. We are therefore left with δμν as the sole
fundamental invariant.
The prescription to classify the operators is then the

following. We first remove all the traces from a general
tensor, which can be done in arbitrary d using δμνδμν ¼ d.
The indices on the resulting traceless operators are then
symmetrized or antisymmetrized according to Young
tableaux.20 This again can be done in a d-independent
manner, with one important peculiarity: the absence of an
epsilon tensor implies that there is no restriction on the
number of rows in the tableau. In other words, all the
different Young tableaux correspond to different irreducible
tensor structures in d dimensions. It should be clear that
antisymmetrization over k indices gives an evanescent
operator for any integer d < k, but a perfectly valid
operator otherwise.
Finally we discuss the nontrivial reflection operator P in

the OðdÞ group with determinant −1, which is the gener-
alization of parity to arbitrary d. For our purposes we can
define it to be a reflection in one of the d coordinates, say
coordinate number 1. Under this transformation

PϕðxÞP ¼ ϕðPxÞ ð2:22Þ

and therefore

P∂μϕðxÞP ¼ ∂μðϕðPxÞÞ ¼ ð−Þμð∂μϕÞðPxÞ ð2:23Þ

where ð−Þμ is shorthand for a sign that equals −1 if μ is the
reflected index and þ1 otherwise. This clearly extends to
higher derivatives, and for any tensorial operator con-
structed in general d as described above we have

PTμ1…μkðxÞP ¼ ð−1Þμ1…ð−1ÞμkTμ1…μkðPxÞ; ð2:24Þ

irrespectively of how this tensorial operator is constructed
from derivatives and ϕ’s, and irrespectively of the symmet-
rization and trace properties of the indices. Operators with
the above transformation properties are canonically defined
as “even” under the generalized parity operation.
We conclude that in a formalism that can be defined for

arbitrary d there is no room for parity-odd operators.

Indeed, for the free scalar theory in integer dimensions a
local operator is even/odd under parity precisely if we need
an even/odd number of epsilon tensors to define the
operator. Therefore, in our formalism the pseudoscalars
are replaced with d-index antisymmetric tensors, the
pseudovectors with (d − 1)-index antisymmetric tensors,
and so on: for every parity-odd operator in a given integer
dimension there exists a parity-even operator that extends
to arbitrary dimensions.21

Let us finally remark that the selection rules coming from
parity conservation in integer d will now have to follow
from ordinary Lorentz symmetry rules. As an example, the
fact that the OPE of two scalars does not contain anti-
symmetric tensors also implies that no pseudoscalars
appear.

III. REVIEW OF THE WILSON-FISHER
THEORY AT ONE LOOP

In the previous section, we have shown that the free
massless scalar in noninteger d is not unitarity. We will now
turn our attention to the WF fixed point in d ¼ 4 − ϵ
dimensions with ϵ ≪ 1. It is pretty clear that this theory will
also not be unitary. Indeed, its dynamics happens in the
same non-positive-definite Hilbert space as that of the free
theory. Barring unlikely coincidences and decouplings,
negative-norm states found in the free theory will persist
in the interacting theory. This fact and its consequences will
be studied in detail in Sec. IV.
In this section, we will do some preparatory work, by

reviewing the lowest-order computations of the WF critical
exponents. This material is completely standard. Unitarity
considerations will not play any role here. The main result
is that the leading anomalous dimensions are computed by
diagonalizing the matrix of the OPE coefficients of the
operator ϕ4, evaluated in the free 4D theory, Eq. (3.18). The
reader familiar with this can proceed straight to Sec. IV.

A. Anomalous dimension generalities

We will recall here some well-known facts about how
one computes in perturbation theory scaling dimensions of
local operators at the WF fixed point (or at any other
weakly coupled IR fixed point). We will work in the
minimal subtraction scheme. This is all standard, see e.g.
Refs. [25,26].
One starts with bare operators Oi which are the free

theory operators from Sec. II. When one computes pertur-
bative corrections to correlation functions of these

20To obtain a nontrivial operator these tableaux must of course
respect the permutation symmetries of the ϕ’s as well as those of
the derivatives on a single ϕ. For example, the antisymmetric
parts of both ∂μϕ∂νϕ and of ∂μ∂νϕ clearly vanish.

21The precise recipe is the following: start with the definition
of the operator using ϕ’s, derivatives and invariant tensors. Now
replace pairs of epsilon tensors with products of the metric, for
example in two dimensions ϵabϵcd ¼ δacδbd − δadδbc. Repeat
until there is a single epsilon tensor. Simply cross that one out
from the definition of the operator, to obtain a parity-even
operator with some newly freed indices.
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operators, one encounters poles in ϵ which are subtracted
order by order to define the finite operators denoted ½Oi�.
The bare and finite operators are related by the mixing
matrix Z as follows:

Oi ¼ Zi
j½Oj�: ð3:1Þ

Then Z can be expanded order by order in g:

Z ¼ 1þ gZ1 þ � � � ; ð3:2Þ
where the omitted terms describe higher-order contribu-
tions in g. In minimal subtraction, the matrix elements Zi

j

are fixed to be poles in ϵ.
Of course, the action (1.1) also requires field and

coupling constant renormalizations of order g2 and higher.
These effects ensure that the theory reaches a fixed point at
g ¼ g� which at leading order is given in Eq. (1.2). Apart
from this, they will not play a role in our discussion.
The above renormalization prescription renders correla-

tion functions of the operators ½Oi� finite for any value of g.
In particular, correlators of these operators at the IR fixed
point can be computed by setting g → g�. Notice however
that the operators ½Oi� as defined above will usually not
have well-defined IR scaling dimensions, i.e. they will be
mixtures of operators with different dimensions. To get
operators with well-defined IR dimensions, an additional
change of basis is needed. Namely, consider the dilatation
operator acting in the space of operators:

D ¼ D0 þ Γðg�Þ: ð3:3Þ
We split D into the classical term D0 and a matrix of
anomalous dimensions Γ. We choose a basis of bare
operators Oi that have a well-defined classical dimension
Δ0 in d dimensions. In this basis D0 is diagonal22:

ðD0Þij ¼ Δ0;iδi
j: ð3:4Þ

By a standard renormalization group argument, the
anomalous dimension matrix ΓðgÞ is related to the mixing
matrix ZðgÞ in Eq. (3.1) as follows:

d
d log μ

Z ¼ Z · ΓðgÞ ð3:5Þ

where the derivative is taken holding the bare coupling
gB ≡ gμϵ fixed. The renormalizability of the ϕ4 theory
implies that Γ depends only on g and not on ϵ.
In terms of the dilatation matrix D, the operators which

have well-defined scaling dimensions at the fixed point are
linear combinations of finite operators of the form

ci½Oi� ð3:6Þ

where ci is a left eigenvector of the matrix D,

ciDi
j ¼ Δcj: ð3:7Þ

The scaling dimensions themselves are the eigenvalues Δ
corresponding to these eigenvectors.

B. Γ at one loop from the OPE

To compute the scaling dimensions, we need the
anomalous dimension matrix. At higher orders, the only
currently known systematic way of finding it is the full-
blown Feynman-diagrammatic perturbation theory. In this
paper we will only need Γ at one loop. There is then a
well-known simple alternative (see e.g. Ref. [27]) which
instead of Feynman diagrams uses the position space
OPE, and which we will now review. For us this method is
more convenient, since we have a well-developed machi-
nery to compute the OPEs efficiently, described in detail
in Ref. [1].
To avoid possible misunderstanding, we would like to

stress the difference between the approach adopted here
and the recent work [28–32] on how to compute the
dimensions of operators at the WF fixed point in the ϵ-
expansion without any reference to the Lagrangian but just
from the constraints of conformal symmetry. That work is
interesting and radical although still in its infancy. Here we
will be not at all radical: we will be relying as usual on the
UV Lagrangian and the path integral to define the theory
and do the computation, just phrasing it in the language of
the OPE rather than Feynman diagrams.
Let us then compute the one-loop matrix Z using the

OPE method. We will determine the matrix Z1 in
Eq. (3.2); the matrix Γ will then follow. As is well known,
in minimal subtraction operators can mix only if they have
the same 4D dimension. The matrix Z is therefore block
diagonal, with each block corresponding to operators with
the same 4D dimension. We call these “big blocks” to
distinguish them from smaller blocks that will be intro-
duced below. Within the big block, the classical dimen-
sions in d ¼ 4 − ϵ will differ by OðϵÞ, and it will be
convenient to introduce an antisymmetric matrix κij
measuring this difference:

Δ0;i − Δ0;j ¼ κijϵ: ð3:8Þ
Within a big block, we write the one-loop matrix Z1 as

ðZ1Þij ¼
1

ϵ
μκijϵzij; ð3:9Þ

where the power of μ is dictated by dimensional analysis,
and z is an order-one numerical matrix which we have to
compute.

22This simply means that each of the basis operators have to be
made of a fixed number of ϕ’s and derivatives. E.g. ϕ4 and ð∂ϕÞ2
are good basis elements. However, since the dimensions of these
operators are different at OðϵÞ, a basis containing their linear
combinations would not be a good basis for our purposes.
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Suppose that we want to determine the one-loop counter-
term for a generic scalar operator Oi. Consider the free
theory OPE of ϕ4 with this operator23:

ϕ4ðxÞOið0Þ ¼
X
j

Ci
jjxj−ðΔ0ðϕ4ÞþΔ0;i−Δ0;jÞOjð0Þ

þ nonscalar operators: ð3:10Þ

Here Δ0ðϕ4Þ ¼ d − ϵ is the classical dimension of the
operator ϕ4. The Ci

j is the free theory OPE coefficient
matrix. For simple operators it is easy to compute by
counting Wick contractions. For more complicated oper-
ators it makes sense to use symbolic algebra, as we will do
here following Ref. [1].
Now, the matrices C and z can be related by the

following path integral argument. The leading correction
to any free theory correlation function hOið0Þ…ifree is
given by

−
gμϵ

4!

Z
ddxhOið0Þϕ4ðxÞ…ifree: ð3:11Þ

The pole in ϵ that we need to subtract will come from the
short-distance part of the integration region, x → 0. In this
region the OPE is valid, and we can replace Oið0Þϕ4ðxÞ by
the rhs of Eq. (3.10). Since the x integral is spherically
symmetric, it picks out only the scalars, and gives rise to a
factor of Sd ¼ 2π2 þOðϵÞ. Next, we integrate over the
radial direction. If the result is order 1=ϵ, then it will have to
be compensated by counterterms. This occurs only if the
operator Oj is within the same “big block” as Oi—a
manifestation of the mentioned fact that only operators with
the same 4D dimensions mix. Doing the radial integral, the
pole part is then given by

−
g
4!

2π2

ð1 − κijÞϵ
Ci

jhOjð0Þ…ifree; ð3:12Þ

where on the rhs we have a sum over all j in the big block
of i.
To be a bit more precise, the OPE coefficientsCi

j depend
on ϵ, and the actual residue of the 1=ϵ pole in Eq. (3.12) is
obtained by replacing Ci

j with

C̄i
j ≡ Ci

jjd¼4: ð3:13Þ

We cancel the pole by adding to Oi the corresponding
counterterm, defining

½Oi� ¼ Oi þ gμκijϵ
π2=12

ð1 − κijÞϵ
C̄i

jOj: ð3:14Þ

Notice that the power of μ on the rhs of this expression is
not given by the above computation but is reconstructed by
dimensional analysis. Comparing to Eq. (3.1), we obtain
our final result:

zij ¼
(
− π2=12

1−κij
C̄i

j; i; j ∈ same big block;

0; otherwise:
ð3:15Þ

To summarize: to compute the one-loop mixing matrix Z1,
it is enough to evaluate the OPE with the operator ϕ4.
Moreover, we only need a small part of this OPE, namely
the part which involves scalars with the same 4D
dimension.
Notice that in deriving Eq. (3.12) we needed to assume

that κij ≠ 1, because otherwise the integral is logarithmic
and is not rendered finite in dimensional regularization. If
this occurred it would be paradoxical, signaling a break-
down of the minimal subtraction scheme. However, this
does not happen, because it can be shown that C̄i

j ¼ 0 for
all such pairs of operators.
In fact, an even stronger statement holds (see

Appendix A for the proof): for operators with the same
4D dimension, C̄i

j is zero unless κij ¼ 0. An equivalent
form of the latter condition is that Oj and Oi contain the
same number of ϕ’s. The set of all operators which have the
same 4D dimension and the same number of ϕ’s will be
called the “small block” of Oi. In other words, we are
saying that at one loop operators mix only within the small
blocks. This fact was already noticed in Ref. [9]. Examples
show that this rule does not extend to higher orders in
perturbation theory.24

Using Eqs. (3.5), (3.9), and (3.15), the one-loop anoma-
lous dimension matrix within a given big block is given by

Γi
jðgÞ ¼ gð−1þ κijÞzij

¼ g
π2

12
C̄i

j ðcanonical normalizationÞ: ð3:16Þ

The specification in parentheses reflects that in the above
discussion we used the OPE coefficients computed using
the canonically normalized scalar field as in Eq. (1.1).
We will now pass to the CFT normalization of footnote 12
used elsewhere in the paper. The two normalizations are
related by

ϕcan ¼ k1=2d ϕCFT; kd ¼ 1=½ðd − 2ÞSd�: ð3:17Þ

For the matrix of OPE coefficients of the ϕ4 operator this
introduces an extra factor k2d, which in 4D becomes
k24 ¼ 16π4. Taking into account this factor and substituting
the critical coupling (1.2), we find

23We do not distinguish between conformal primaries and
descendants here. 24For example ϕ4 mixes with ∂2ðϕ2Þ at Oðg2Þ.
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Γi
jðg�Þ ¼

ϵ

36
C̄i

j ðCFT normalizationÞ; ð3:18Þ

which is our final master formula for the one-loop
anomalous dimension matrix. To avoid any possible con-
fusion, we emphasize that this formula is valid when
operators i, j are within the same big block. In addition,
within a given big block C̄i

j ¼ 0 unless the two operators
are in the same small block. For i, j not in the same big
block we have Γi

j ¼ 0 no matter what C̄i
j is (it may be

nonzero in this case).

C. Examples

Here are a few examples of anomalous dimensions
computed in this formalism. Let us consider scalar oper-
ators that are even under the Z2 symmetry ϕ → −ϕ. The
OPEs will be written schematically, indicating the coef-
ficient C̄i

j in the CFT normalization but leaving the
dependence on x implicit. Nonscalar operators and oper-
ators from different big blocks will be omitted. With γO we
denote the eigenvalue of the anomalous dimension matrix
Γðg�Þ corresponding to the operator ½O�.
For the ϕ2 operator we have

ϕ4 × ϕ2 ¼ 12ϕ2: ð3:19Þ

We recover the known result for the leading anomalous
dimension γϕ2 ¼ ϵ=3.
We next consider the big block of operators of 4D

dimension four, whose basis is formed by ϕ4 and ∂2ϕ2. The
OPE turns out to be diagonal:

ϕ4 × ϕ4 ¼ 72ϕ4; ϕ4 × ∂2ϕ2 ¼ 12∂2ϕ2: ð3:20Þ

This is in agreement with the small block selection rule.
The leading anomalous dimension γϕ4 ¼ 2ϵ agrees with the
well-known result, while for ∂2ϕ2 we find γ ¼ γϕ2 as it
should be.
The big block of dimension six consists of ϕ6, ∂2ϕ4 and

∂2∂2ϕ2. The ϕ4 OPE coefficients are again diagonal: 180,
72, 12, and there is only one new anomalous dimension.
The situation at dimension eight is more interesting. The

big block has six operators. Three operators, ϕ8, ∂2ϕ6 and
∂2∂2∂2ϕ2, form three small blocks by themselves. The ϕ4

OPE matrix in this sector is diagonal: 336, 180, 12. We get
one new eigenvalue as expected. The three remaining
operators have four derivatives and four ϕ’s each, and
thus form a separate small block. In the basis

A1 ¼ ϕ2ð∂μ∂νϕÞ2;
A2 ¼ ϕð∂μ∂νϕÞð∂μϕÞð∂νϕÞ;
A3 ¼ ð∂ϕÞ2ð∂ϕÞ2; ð3:21Þ

the ϕ4 OPE matrix in this sector is

0
BB@

56 32 0

4 60 6

0 16 48

1
CCA: ð3:22Þ

The eigenvalues are 72, 52, 40, and the corresponding left
eigenvectors are

c1 ¼ ð1; 4; 1Þ; c2 ¼ ð−2; 2; 3Þ;
c3 ¼ ð1;−4; 3Þ: ð3:23Þ

In fact, the operator c1 ·A is proportional to ∂2∂2ϕ4 and
indeed has the same anomalous dimension. The other two
linear combinations, c2 ·A and c3 ·A, are not derivatives
of previously considered operators, and give two new
anomalous dimensions. The two eigenvalues and eigen-
states we report are in agreement with Ref. [10].

IV. NONUNITARITY AT THE WILSON-FISHER
FIXED POINT

In the previous section we reviewed the standard facts
about the leading anomalous dimensions at the WF fixed
point. The considered examples concerned low-dimension
operators. We know from Sec. II that once we move to
sufficiently high dimension we will encounter evanescent
operators and the related issue of nonunitarity. This raises
several questions, such as:

(i) Do the negative-norm states persist when we pass
from the free theory to the WF fixed point?

(ii) Should the above recipe for computing anomalous
dimensions be modified in the presence of evan-
escent operators/negative norms?

(iii) Is there any smoking-gun consequence of the non-
unitarity at the level of the anomalous dimensions?

These and related questions will be discussed in this
section.

A. Robustness of negative-norm states

One potentially confusing issue is as follows. If we write
evanescent operators in the most natural parametrization in
terms of ϕ and its derivatives, without any d-dependent
factors, like in the examples considered in Sec. II, their
norm vanishes for ϵ → 0. This may create a feeling that the
evanescent operators are “fragile,” in the sense that even
small perturbative corrections could dramatically change
their properties, e.g. change the sign of their norm, or
perhaps decouple them completely from the theory. For the
same reason one could worry that one has to be especially
careful when computing their anomalous dimensions, and
that the recipe from Sec. III would require modifications.
As we will now explain, this is not the case.
Basically what happens is that although correlators

involving evanescent operators are small (order ϵ), correc-
tions to them are still one power of ϵ smaller. Indeed, these
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corrections involve correlators of the same evanescent
operator with insertions of ϕ4, which are again order ϵ,
times the coupling g which provides an extra suppression;
see Eq. (3.11).
A more systematic way to explain the same is to observe

that the magnitude of the norm of an operator is unphysical,
and once it is nonzero we can always rescale the operators
to have order-one positive or negative norm. This would
require multiplying evanescent operators by a factor 1=

ffiffiffi
ϵ

p
.

After the rescaling all Gram matrix eigenvalues will be
Oð1Þ. In detail, the Gram matrix before the rescaling has
the schematic form

Gij ∼
�
1 ϵ

ϵ ϵ

�
; ð4:1Þ

where we indicate the order of magnitude of the matrix
elements; the first column stays for the normal states,
whose norm remains Oð1Þ as ϵ → 0, and the second for the
evanescents. After the rescaling this becomes

GR
ij ∼

�
1

ffiffiffi
ϵ

p
ffiffiffi
ϵ

p
1

�
: ð4:2Þ

We see that at leading order in ϵ, the mixing between the
two groups of states, described by the off-diagonal matrix
elements, is a subleading effect. The orthonormal basis of
the Hilbert space can be determined by ignoring this mixing
and diagonalizing the Gram matrix separately in the normal
and evanescent sectors. It is important for this last statement
that all eigenvalues in the evanescent sector beOðϵÞ and not
higher order. As mentioned in Sec. II D, this is true up to the
dimension that we are working.
Let us now apply the same rescaling to the OPE matrix

Ci
j. Before rescaling we have

Ci
j ∼

�
1 1

ϵ 1

�
: ð4:3Þ

Here we took into account that if Oi is an evanescent, all
operators appearing on the rhs of Eq. (3.10) are necessarily
evanescents. This is because the three-point functions
hðevanescentÞϕ4ðanyÞi have to vanish as d → 4. Thus
we have a selection rule Cevanescent

normal ¼ OðϵÞ, reflected
in Eq. (4.3). After rescaling, paying attention to the lower
and upper indices, we have

CR
i

j ∼
�

1
ffiffiffi
ϵ

p
ffiffiffi
ϵ

p
1

�
: ð4:4Þ

This has the same structure as the rescaled Gram matrix
(4.2). We conclude that at leading order the anomalous
dimensions in the evanescent and the normal operator
sectors can be computed independently. Mixing between

the two sectors is a higher-order effect. Leading anomalous
dimensions in the evanescent sector are generically OðϵÞ,
just as in the normal sector. They are described by the
order-ϵ master formula (3.18), where C̄i

j is the OPE matrix
in the evanescent sector with ϵ set to zero.
When we work in the rescaled frame, the distinction

between the normal and evanescent operators fades away
(except that some evanescent operators have negative
norm). For the normal operators, the most important effect
of turning on the interaction is to induce anomalous
dimensions which change the long-distance scaling of
the correlation functions. On the other hand the numerical
coefficient of the two-point correlation function obtains
only finite corrections of relative size OðϵÞ between its UV
and IR values. This is manifest in the standard solution of
the Callan-Symanzik equation in terms of the running
coupling. This argument does not depend on the sign of the
coefficient and applies also to the negative-norm states. We
conclude that the states which had negative norm in the UV
will remain negative-norm at the WF fixed point for ϵ ≪ 1.
The negative-norm states are robust.

B. Complex anomalous dimensions

Unitarity puts well-known constraints on the spectrum of
scaling dimensions in CFTs [33,34]. In particular, the
spectrum of scaling dimensions in a unitary CFT is always
real and bounded from below. One expects that nonunitary
interacting theories should generically violate these proper-
ties, although sometimes they are preserved even without
unitarity.25

In this section we will show that, as a dramatic
repercussion of nonunitarity, the WF fixed point contains
states whose dimensions become complex at order ϵ.
First of all let us see how the complex eigenvalues

can appear in our language. As explained above, the order-ϵ
dimensions are computed by solving the eigenvalue
problem

viC̄i
j ¼ λvj: ð4:5Þ

This can be solved in each small block separately, as
different small blocks do not mix. We can also multiply
both sides by the Gram matrix and obtain the generalized
eigenvalue problem

viC̄ij ¼ λviGij: ð4:6Þ

Here the matrix appearing on the lhs is the matrix of
three-point functions:

25One example is the iϕ3 Lee-Yang critical point in 2 ≤ d < 6
which is PT symmetric and the spectrum is real, although the
unitarity bounds are violated. For d ¼ 2 this is theM2;5 minimal
model.
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C̄ij ≡ C̄i
kGkj ¼

1

Sd

Z
jxj¼1

ddxhijϕ4ðxÞjji: ð4:7Þ

As such it is a real and symmetric matrix in our basis, while
C̄i

j did not have any symmetry properties. Notice that the
Gram matrix ϕ-type selection rule is stronger than the small
block selection rule, and so the small blocks remain
decoupled even in the generalized eigenvalue problem
formulation.
Now, if the theory is unitary then the Gram matrix is

positive definite. It can then be orthonormalized, reducing
the generalized eigenvalue problem to a standard one which
can have only real eigenvalues. Thus the anomalous
dimensions will be real in unitary theories.
In our problem, the normal and evanescent sector are

decoupled at order ϵ, and the normal sector is unitary. Thus
the anomalous dimensions in the normal sector are all real.
Turning to the evanescent sector, it contains negative-

norm states, so there is potential for complex eigenvalues.
Notice however that if a decoupled sector contains only
negative-norm states, the eigenvalues will be again real by
the same argument as above.
On the other hand generalized eigenvalue problems with

both negative- and positive-norm states can lead to complex
eigenvalues, provided the off-diagonal mixing is suffi-
ciently large. As the simplest 2 × 2 example, consider

C̄ij ¼
�
1 σ

σ 1

�
; G ¼ diagf1;−1g; ð4:8Þ

which has two eigenvalues �ð1 − σ2Þ1=2, that are complex
for σ > 1. Complex eigenvalues, if they exist, will always
form complex-conjugate pairs as in this example.
In Table II, which is a more detailed version of Table I,

we show the distribution of evanescent states in small
blocks. Recall that for a given Δ the small blocks are
characterized by nϕ—the number of ϕ’s inside the operator.
We see that the first small block with both negative- and
positive-norm evanescents is the one at Δ ¼ 18 with

nϕ ¼ 6. However the off-diagonal mixing turns out to be
insufficient, so the anomalous dimensions are still real. This
situation persists untilΔ ¼ 22.26 Finally, at Δ ¼ 23 we find
complex anomalous dimensions, which appear in the small
block with nϕ ¼ 7.
This finding is important and we will document it here in

detail. Here is how the computation proceeds:
1. Compute the Gram matrix of dimension Δ ¼ 23

parity-even scalar operators in d ¼ 4, and identify all the
null states. The null states are zero-eigenvalue eigenvectors
viðaÞ of the 4D Gram matrix

Ḡij ¼ Gijjd¼4: ð4:9Þ

Here i runs over all Δ ¼ 23 basis states, and a numbers the
null states. This step is simplified by the fact that the Gram
matrix satisfies the ϕ-type selection rule, and is block
diagonal. There are 2814 operators at Δ ¼ 23, and the
largest Gram matrix block has size 97, corresponding to the
ϕ-type f1; 1; 2; 2; 3; 3; 4g.27
2. The previous step results in 181 null states forΔ ¼ 23,

which split into five small blocks (see Table II). The nϕ ¼ 7

small block contains 110 states. Although this is not strictly
speaking necessary, let us check that it has both positive-
and negative-norm states when we move away from 4D,

TABLE II. Distribution of the evanescent states from Table I into small blocks characterized by a given nϕ. Complex eigenvalues first
occur in the small block shown in boldface.

Δ 15 16 17 17 18 18 19 19 19 20 20 20

nϕ 5 6 5 7 6 8 5 7 9 6 8 10
N0 1 2 1 2 4 2 3 7 2 14 8 2
Nþ 0 0 0 0 1 0 0 2 0 1 2 0
N− 1 2 1 2 3 2 3 5 2 13 6 2

Δ 21 21 21 21 22 22 22 22 23 23 23 23 23

nϕ 5 7 9 11 6 8 10 12 5 7 9 11 13
N0 7 29 8 2 43 40 8 2 17 110 44 8 2
Nþ 0 3 2 0 3 5 2 0 0 13 6 2 0
N− 7 26 6 2 40 35 6 2 17 97 38 6 2

26Although this is not essential, there is another circumstance
which contributes to the rarity of complex anomalous dimension.
We will demonstrate it by an example. Take the small block with
Δ ¼ 20, nϕ ¼ 6, which contains one positive- and 13 negative-
norm evanescents, so one could hope to find complex eigenvalues
here. However in fact four of these states will be of the form ∂2

acting on the evanescents in the Δ ¼ 18, nϕ ¼ 6 small block, and
thus have the same anomalous dimensions, which as we said are
real because the off-diagonal mixing is small. Thus we only have
ten really new evanescents in the Δ ¼ 20, nϕ ¼ 6 small block,
and they are all negative-norm, so their anomalous dimensions
are bound to be real.

27This 97 is not the same as the boldface 97 in Table II—in fact
this block contains only 13 null states.
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which is the necessary condition to find complex
dimensions.
The (4 − ϵ)-dimensional Gram matrix restricted to the

evanescent sector is

Gab ¼ viðaÞGijv
j
ðbÞ: ð4:10Þ

Here on the rhs we have the (4 − ϵ)-dimensional G but the
4D null state eigenvectors. I.e. we just use the same 4D null
vectors viðaÞ as a basis of evanescent states in (4 − ϵ)-

dimensions.28 The so-defined matrix Gab is the lower-right
corner in the schematic Gram matrix (4.1). We can then
diagonalize Gab expanded to first order in ϵ, and count how
many of its eigenstates have positive and negative norm. In
the nϕ ¼ 7 small block we find 13 positive- and 97
negative-norm states below 4D, as reported in the table.
3. To find the anomalous dimensions, we have to

diagonalize the matrix C̄i
j within each small block. As

explained above, the normal and evanescent operators
decouple at order ϵ. Anomalous dimensions of the evan-
escent operators are computed by diagonalizing the matrix
C̄i

j restricted to the corresponding subspace. This is the
lower-right corner matrix in the schematic equation (4.3).
This matrix can be isolated in several ways; one that we used
is as follows. Take a 4Dnull operator described by the vector
viðaÞ and act on it with the 4D OPE matrix C̄i

j (which we

know). We know that we should get a linear combination of
evanescents. Thus we simply solve the linear equation

viðaÞC̄i
j ¼ Cabv

j
ðbÞ ð4:11Þ

for an unknown matrix Cab.
The order-ϵ anomalous dimensions of the evanescents

are the eigenvalues of Cab. For the Δ ¼ 23, nϕ ¼ 7 sector it
is a 110 × 110 matrix with rational coefficients which we
do not report here. The matrix can be diagonalized numeri-
cally and one sees two complex-conjugate eigenvalue pairs:

λ ≈ 16.93372103� 5.59469106i; 42.88540243

� 1.07557547i: ð4:12Þ

As a matter of fact the characteristic polynomial of Cab has
a degree 26 factor which is irreducible over Q and has the
above complex eigenvalues as its roots. The expression for
this factor is not particularly illuminating; it is included as a
comment in the TeX source file of the arXiv version of
this paper.
We conclude that there are two pairs of scalar operators

in the Wilson-Fisher fixed point in 4 − ϵ dimensions

with complex-conjugate IR scaling dimensions. By the
master formula (3.18), their dimensions are related to the
above λ’s by

Δ ¼ 23 −
7

2
ϵþ γ; γ ¼ λ

36
ϵþOðϵ2Þ: ð4:13Þ

We have checked that the eigenoperators corresponding to
these complex dimensions can be represented as total
derivatives and thus are not primaries. It should be possible
to determine the primaries from which they originate acting
along the lines of Sec. II C, but we have not done this
exercise.

C. Comparison to the work of Kehrein et al.

The spectrum of Wilson-Fisher fixed points in 4 − ϵ
dimensions has been previously studied in a series of
remarkable papers by Kehrein et al. [9–11] Here we would
like to review their work and to compare it with our results.
In particular we would like to explain why they have not
observed any complex dimensions or negative-norm states.
They considered the general OðNÞ case, but we will

specialize to N ¼ 1 in this comparison. We will focus on
the first two papers [9,10] which were devoted to the one-
loop anomalous dimensions.29

Kehrein et al. built their composite operators by multi-
plying the elementary “letters”

Φðl;m1;m2Þ ¼ hðm1;m2Þ
α1…αl ∂α1…∂αlϕ; ð4:14Þ

obtained by contracting the derivatives of ϕ with constant

symmetric traceless rank-l tensors. These tensors hðm1;m2Þ
α1…αl ,

m1, m2 ¼ − 1
2
l… 1

2
l were chosen to form a basis for the

ð1
2
l; 1

2
lÞ representation of soð4Þ ¼ soð3Þ⊕soð3Þ. This is in

4D, and when they move to d ¼ 4 − ϵ, they continue using
the same 4D operator basis. In fact, ϵ enters in their
computation only to produce the 1=ϵ pole in the one-loop
integral, and to supply the value of the fixed point coupling.
Since Kehrein et al. worked only with 4D tensors, it is

not surprising that they have not observed the evanescent
operators whose very existence is due to peculiarities of
tensor algebra in noninteger dimensions. A fortiori they
could not observe nonunitarity and complex dimensions.
Their way of proceeding amounts to restricting from the
start to the subspace of normal operators, and neglecting the
evanescents. Within this subspace, their results about order-
ϵ anomalous dimensions are correct and in agreement with
ours (see e.g. examples in Sec. III C).30

28There is arbitrariness in how to extend the null state from 4D,
since we can always add any other state with an explicit ϵ factor,
and it will still be an evanescent. It is easy to see that this
arbitrariness does not affect the results.

29The third paper [11] studied two-loop anomalous dimensions
for N > 1 and for a particular subclass of operators, transforming
as symmetric traceless tensors in all internal and derivative
indices [i.e. without any OðNÞ or Lorentz index contractions].

30They computed their anomalous dimension matrix in a rather
different-looking, but in fact equivalent, way.
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D. Higher-order effects

Given that at order ϵ the evanescent operators decouple
from the normal ones, it may be tempting to dismiss them
as a curiosity which will never affect anything physically
relevant. This would be wrong. In fact, already at order ϵ2

the effects of evanescent operators are expected to change
the anomalous dimensions of physical operators. To make
this precise, we will work in a basis where we separate
normal operators and evanescents and write the anoma-
lous dimension matrix as follows:

ΓðgÞ ¼
�
γ11 γ12

γ21 γ22

�
: ð4:15Þ

The blocks γ11, γ12 and γ22 are nonzero at order g, whereas
we explained above that the order-g contribution to γ21
vanishes. There is however no selection rule that forbids
contributions of order g2 and higher to γ21. This means
that starting at two loops, scaling operators in the Wilson-
Fisher theory are generically a mixture of normal oper-
ators and evanescents in the 4D free theory.
In order to distinguish between normal operators and

evanescents at higher loops, we can apply a field redefi-
nition to the evanescents. This means that we are modifying
the renormalization scheme. The mixing matrix in this new
scheme [5] is schematically given by

Z ¼ 1þ g
�
Z1;0 þ

1

ϵ
Z1;1

�
þ g2

�
Z2;0 þ

1

ϵ
Z2;1 þ

1

ϵ2
Z2;2

�
þOðg3Þ: ð4:16Þ

The 1=ϵn counterterms cancel UV divergences as before,
whereas the finite counterterms Zn;0 are added to ensure
that γ21 vanishes order by order in g. At this stage, the
matrix Γ is block triangular, so it can be diagonalized
separately for normal operators and evanescents.
However, the matrix γ11 now gets an explicit contribution
at order g2 from the evanescents, via the finite counter-
terms Z1;0. An example of this phenomenon applied to
four-fermion operators is described in Refs. [5,35].
It would be interesting to exhibit such two-loop contri-
butions coming from evanescent operators in the
Wilson-Fisher theory as well. We stress that in the scalar
sector of WF, such contributions can appear only for
operators of classical dimension Δ ≥ 15. In particular,
they will not affect the dimensions of ϕ, ϕ2 and ϕ4 at any
order in ϵ.
However, since high-dimension operators appear in the

OPE of low-dimension ones, the four-point functions of
low-dimension physical operators will be affected. In
Appendix B we discuss these four-point functions, and

in particular how the effects of unitary violation could in
principle be observed in them.

V. FINAL COMMENTS

A. Some open problems

It would be worthwhile to extend our analysis to other
theories, and to more systematically enumerate all the
causes of unitarity violation in noninteger dimensions.
In particular, we would like to know if nonunitarity is
always related to evanescent operators or whether other
mechanisms exist that make the continuation of a theory
to noninteger d violate unitarity. It would also be inter-
esting to understand the implications of nonunitarity
for other observables in the theory, in particular the
recent work [36–40] on the extension of the a central
charge and the free energy F to theories in noninteger
dimensions.

B. Spectrum continuity

The standard lore says that the Wilson-Fisher fixed point
in d dimensions provides an “analytic continuation” which
interpolates between the free theory in 4D and the Ising
model critical point in 3D and 2D.31 The nature of this
analytic continuation is still not fully understood. We will
now describe how one might think about it, and how the
results of this paper fit into the picture.
The WF fixed points in d ¼ 2, 3, 4 are bona fide

unitary CFTs, and are nonperturbatively defined.32 The
interpolating fixed points in noninteger dimensions were
initially defined only perturbatively, by analytically con-
tinuing Feynman diagrams. It is not a priori clear if they
make sense nonperturbatively. However in much of the
literature it is tacitly assumed that they do.
For example it is assumed that the dimensions of the

most important scalar operators ϕ, ϕ2 are analytic functions
of d which reduce to the free theory values in d ¼ 4 and to
the dimensions of the leading Z2-odd and -even scalar
primaries σ, ε in 3D and 2D.
Furthermore, it seems reasonable to assume that this is

true not just for ϕ, ϕ2 but that the whole CFT spectrum is
well defined for noninteger d and interpolates continuously
the spectra for d ¼ 2, 3, 4 (“spectrum continuity”). E.g. for
the low-dimension scalar operators we expect to see curves
as in Fig. 2.
The spectrum continuity hypothesis seems reasonable

both for primaries and for their descendants, i.e. if a
primary interpolates then its whole conformal multiplet
can be assumed to interpolate. Notice that the “number of
states” in a multiplet, to the extent this concept makes sense
in noninteger dimensions, has to change continuously with

31Or even down to d ¼ 1; see footnote 1.
32For d ¼ 3 this has not yet been proved, although the evidence,

recently reviewed in section IV of Ref. [41], is overwhelming.
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d. E.g. if O is a scalar primary then on the first descendant
level ∂μO we have d states.33

There are some states which are primaries in 4D but
become descendants below 4D. One such state is ϕ3 which
becomes a descendant of ϕ below 4D; see Fig. 2. In
perturbation theory this is a consequence of the equation of
motion, but more abstractly it can be seen as the phe-
nomenon of conformal multiplet recombination, which
takes place whenever a field which saturates the unitarity
bound in 4D moves above the bound below 4D. The same

happens for the spin-l currents ϕ∂l
↔

ϕ − traces, l ¼ 4; 6;…,
which are conserved in 4D but not in d < 4. In d ¼ 2 one
acquires again infinitely many conserved currents as a
consequence of the Virasoro algebra. How this algebra gets
broken in d ¼ 2þ ϵ is also an interesting open question.
The results in this paper add the following ingredients to

this story. First of all we have proven the existence of
evanescent operators. Pictorially speaking, these appear in
Fig. 2 as new “evanescent” lines that correspond to addi-
tional states beyond those in the physical theories in integer
dimensions. We do not see any consistent way which would
allow one to exclude these states for noninteger d. Second,
the anomalous dimensions are no longer guaranteed to be
real; in Fig. 2 there will be scaling dimensions of high-
dimension evanescent operators with a nonzero imaginary
part. These operators have vanishing norms in integer
dimensions, so then (and only then) we can consistently
remove these states and recover a unitary theory. The
hypothesis of spectrum continuity gets modified accord-
ingly: the most natural assumption is that spectrum

continuity is still true in the enlarged Hilbert space which
includes the evanescent operators with their potentially
complex dimensions.

C. Numerical bootstrap in noninteger dimensions

Let us finally discuss the effects of nonunitarity for the
analysis in Ref. [42] of the Wilson-Fisher fixed point using
conformal bootstrap methods [43] in 2 < d < 4. Such an
analysis requires only a definition of the conformal blocks
in noninteger d, which is relatively straightforward: one
defines the blocks as a solution of the conformal Casimir
equation [44], where d enters simply as a parameter. In
Refs. [45–47] it was found that scaling dimension bounds
in d ¼ 2 and d ¼ 3 exhibit kinks that essentially coincide
with the location of the Ising CFT. In Ref. [42] it was
shown that these kinks continue to exist in noninteger d and
that their location agrees with resummed perturbative
results obtained from the 4 − ϵ expansions.
Reference [42] assumed that the WF theories in 4 − ϵ

dimensions are unitary. This assumption was crucial for the
bootstrap analysis, as it implied that all squared OPE
coefficients were positive, and all scaling dimensions were
real and consistent with unitarity bounds. We have now
shown that these assumptions are in fact untrue. In spite of
this fact, the results of Ref. [42] produced entirely reason-
able-looking results for the dimensions of ϕ and ϕ2. This
may seem at first paradoxical. The explanation of the
paradox, already given in Ref. [1], must have to do with
the fact that the unitarity violation effects occur only at
relatively high dimension. In a four-point function the high-
dimension operators decouple exponentially fast [24] and
consequently the numerical bootstrap methods are rather
insensitive to their behavior. Also, there are many positive-
norm operators which live at about the same dimension as
the negative-norm ones, which leads to further suppression
of unitarity-violating effects (see also Appendix B).
There are other cases when the numerical bootstrap

applied to nonunitary theories gave reasonable results,
probably for the same reason of the mildness of the
unitarity-violating effects [e.g. theories with four super-
charges in noninteger dimensions [48,49], and the OðNÞ
model at d ¼ 5.95 [50]]. Surprisingly, even the 3D OðNÞ
model with noninteger 0 < N < 2 seems to be in this
class [51].
In other nonunitary theories the unitarity violation

strength is order one and the numerical bootstrap assuming
positive OPE coefficients is inadequate. This is what may
have been observed for 1 < d < 2 in Ref. [3]. The severe
truncation methods of Gliozzi and collaborators [52–54]
are currently the only ones applicable in such situations.
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APPENDIX A: SMALL BLOCK
SELECTION RULE

Let us recall the small block selection rule stated in
Sec. III B: suppose that scalars A and B have the same 4D
dimension, and that ϕ4ðxÞ ×Að0Þ ⊃ Bð0Þ. Then A and B
have the same number of ϕ’s.
We first observed this rule empirically, and then found

the following proof. The same result was obtained by
different means in Ref. [9].
Proof.—The OPE is obtained by Wick contracting k out

of four ϕ’s inside ϕ4ðxÞ with ϕ’s inside A, expanding the
remaining part of ϕ4ðxÞ in Taylor series around zero, and
contracting indices to get a scalar. The number of ϕ’s inside
B will be the same if k ¼ 2.
We thus have to show that any other k cannot give a

scalar B of the same 4D dimension as A. Notice that every
Wick contraction strikes out fields out of A, lowering the
remaining dimension by the number of contracted fields
plus the number of derivatives they carried. Once Wick
contractions are finished, the dimension is raised by
multiplying with what remains of ϕ4ðxÞ and by all
derivatives we put on it when Taylor expanding. The
challenge is to show that these two procedures cannot
compensate each other.
The simplest cases are then k ¼ 0 and k ¼ 4. For k ¼ 0

the dimension is not lowered as there are no Wick
contractions, while in the second step it is raised by at
least four units. Analogously, for k ¼ 4 the dimension is
only lowered by Wick contractions, by at least four units,
but cannot be subsequently raised since nothing is left
of ϕ4ðxÞ.
The cases k ¼ 1 and k ¼ 3 require more work. We start

with k ¼ 1. Let us write A in the schematic form A0∂lϕ1,
where ϕ1 is the ϕ insideAwhich gets Wick contracted, and
the notation shows that it carries l derivatives. When these
derivatives fall on the propagator hϕðxÞϕ1ð0Þi, they pro-
duce a rank-l traceless symmetric tensor made out of x. To
generate a scalar operator, the ϕ3ðxÞ which remained after
the Wick contraction must be Taylor expanded to the same
order l, or higher. The generated B state is of the schematic
form ð∂2Þn∂lðϕ3ÞA0. Its 4D dimension is thus larger than
that of A by at least two units. The crux of this argument is
that the extra dimension lost in the first step due to
derivatives carried by ϕ1 is necessarily recovered in the
second step if we want to get a scalar state.

Finally let us consider k ¼ 3. We write A in the form
A0∂lðϕ1ϕ2ϕ3Þ, where ϕi get Wick contracted. The notation
means that ϕi’s carry l derivatives in total, but they can be
arbitrarily distributed among these fields. Let l0 ≤ l denote
the number of these derivatives which are contracted with
ϕ’s inside A0. The rest of them are contracted among
themselves. After Wick contractions, we are left with
ϕðxÞA0ð0Þ where A0 has l0 open indices. To get a scalar
B, we must Taylor expand ϕðxÞ to order exactly l0. We thus
get B of the form ∂l0ϕA0. The resulting 4D dimension is
lower than that of A by at least two units. The equation of
motion of ϕ was important here, preventing us from
considering the states of the form ð∂2Þn∂l0ϕA0.

APPENDIX B: NONUNITARITY
AND FOUR-POINT FUNCTIONS

The nonunitarity of the theory in noninteger d is
intrinsically linked to operators of high dimension.
However, because of the OPE, we should be able to
observe the nonunitarity also by considering higher-point
correlation functions of “simple” low-dimension operators
like ϕ2ðxÞ and ϕ3ðxÞ. In this appendix we briefly discuss
the consequences of nonunitarity in the specific example
of a four-point function of identical Hermitian scalar
operators OðxÞ.
Conformal invariance dictates that

hOðx1Þ…Oðx4Þi ¼
1

x2ΔO
12 x2ΔO

34

Gðu; vÞ ðB1Þ

where u and v are the familiar cross ratios. The appearance
of a primary operator KðxÞ of dimension Δ and spin l in
theOðx1ÞOðx2Þ OPE leads to a term in Gðu; vÞ of the form

Gðu; vÞ ¼ � � � þ auðΔ−lÞ=2ð1 − vÞl þ � � � ðB2Þ

which is the leading term corresponding to this multiplet as
u → 0 and (subsequently) v → 1. IfKðxÞ is Hermitian with
a positive/negative norm then a is positive/negative. IfKðxÞ
is not Hermitian then its conjugate also appears in the OPE,
with conjugate coefficient, leading to

Gðu; vÞ ¼ � � � þ ðauðΔ−lÞ=2 þ āuðΔ̄−lÞ=2Þð1 − vÞl þ � � �
¼ � � � þ 2jajuðΔ1−lÞ=2 cosðΔ2 logðuÞ=2þ θÞ
× ð1 − vÞl þ � � � ðB3Þ

with Δ ¼ Δ1 þ iΔ2 and a ¼ jaj expðiθÞ. Clearly, both
negative-norm states as well as complex dimensions lead
to very distinct behavior in the OPE limit.
The nonunitarity might be harder to detect in perturba-

tion theory. In that case both the coefficient a and the
dimension Δ will have perturbative expansions. We write
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a ¼ a0 þ δa;

Δ ¼ Δ0 þ γ: ðB4Þ

Unfortunately there are in general other primary operators
with the same spin and Δ0 that appear in the conformal
block decomposition. Let us assume that there are K of
them, and denote them with a subscript i. We then find

Gðu; vÞ ¼ � � � þ uðΔ0−lÞ=2ð1 − vÞl
X∞
n¼0

Xn logðuÞn þ � � �

ðB5Þ

with

Xn ¼
XK
i¼1

ða0i þ δaiÞðγiÞn: ðB6Þ

In the epsilon expansion the γi are OðϵÞ and therefore the
coefficients Xn are OðϵnÞ. On the right-hand side of
Eq. (B6) we have 2K independent parameters, so in general
the Xn≥2K can be expressed in terms of the X0≤n<2K .
Conversely, in order to resolve even the one-loop correc-
tions to δai and γi we need to know the leading-order
behavior of X0≤n<2K , which requires knowledge of the
correction at order ϵ2K−1. We conclude that the nonunitarity
might show up only at relatively high loop order in the four-
point functions.
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