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Abstract

We introduce and develop a class of Cantor-winning sets that share the same amenable
properties as the classical winning sets associated to Schmidt’s (α, β)-game: these in-
clude maximal Hausdorff dimension, invariance under countable intersections with other
Cantor-winning sets and invariance under bi-Lipschitz homeomorphisms. It is then
demonstrated that a wide variety of badly approximable sets appearing naturally in the
theory of Diophantine approximation fit nicely into our framework. As applications of
this phenomenon we answer several previously open questions, including some related to
the Mixed Littlewood conjecture and the ×2,×3 problem.

1 Introduction

1.1 Badly approximable sets

The set Bad of badly approximable real numbers plays an important role in the theory of
Diophantine approximation. Recall, a real number x is called badly approximable if there
exists a constant c(x) > 0 such that |x − p/q| > c(x)/q2 for all rational numbers p/q. It
is well known that the set of all badly approximable numbers is very small in the sense
that it has zero Lebesgue measure. However, a classical result of Jarńık [19] states that
this set is in some sense as large as it can be in that it is of full Hausdorff dimension, i.e.
dimBad = dimR = 1. In later works of Davenport [15], Pollington & Velani [26], and others,
this result was generalized to badly approximable points in RN , N > 1. In particular, the
result in [26] states that the set

Bad(i1, . . . , iN ) :=

{

(x1, . . . , xN ) ∈ RN : ∃ c > 0,max{||qx1||
1
i1 , . . . ||qxN ||

1
iN } >

c

q
∀q ∈ N

}

has full Hausdorff dimension N , where i1, . . . , iN are any strictly positive real numbers satis-
fying i1 + . . .+ iN = 1. Here, || . || denotes the distance to the nearest integer. Finally, in [21]
a quite general theory of badly approximable sets was constructed. It allows one to establish
full Hausdorff dimension results for a quite general class of sets living in arbitrary compact
metric spaces as long as certain structural conditions are satisfied. The framework developed
encompasses the results of both Jarńık and Pollington & Velani as described above. Broadly
speaking, the sets considered in [21] consist of points in a metric space that avoid a given
family of subsets of the metric space; that is, points which cannot be easily approximated by
this family of subsets. Naturally, such sets were also referred to as badly approximable. We
give further details of this theory in Section 6.
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Recently, various sets were introduced within the theory of Diophantine approximation
that on one hand could be naturally associated with the notion of badly approximable sets,
but on the other hand do not seem to be covered by the framework of [21]. For example,
in the landmark paper [6] the authors showed that the set Bad(i, j) intersected with any
vertical line in R2 is either empty or has Hausdorff dimension equal to one. Whether this
intersection is empty or has full dimension depends only upon a Diophantine property of the
vertical line parameter. Later, Beresnevich [9] showed that for any non-degenerate manifold
M ⊂ RN ,

dim(Bad(i1, . . . , iN ) ∩M) = dimM,

or in other words Bad(i1, . . . , iN ) ∩M has full Hausdorff dimension.

One of the aims of this paper is to develop a framework in the theory of badly approx-
imable sets which will cover these new results. In addition, we will show in detail (see Section
7) exactly how our theory can be used to attack various problems in the field of Diophantine
approximation, some of them old and some of them previously open.

Our methodology appeals to the idea of generalised Cantor sets in RN , which first ap-
peared within the proofs of [6] and whose concept was developed in the subsequent paper [7].
The construction of generalised Cantor sets has formed a basis for establishing various diffi-
cult problems in the field of Diophantine approximation. Many of these problems had proven
resistant to previous methods. For example, in [3] generalised Cantor sets were utilised to
show that the set of points (x, y) ∈ R2 satisfying

lim inf
q→∞

q · log q · log log q · ||qx|| · ||qy|| > 0 (1)

is of maximal Hausdorff dimension 2 - a set not falling within the scope of [21]. This result
represented significant progress in the investigation towards the famous Littlewood Conjec-
ture, which states that the set of (x, y) ∈ R2 satisfying (1), but with the ‘log q · log log q’ term
removed, is empty.

Whilst the Littlewood Conjecture is considered one of the most profound an evasive
problems in all of Diophantine approximation, in recent years there has been much interest
in a relatively new and related problem. In 2004, de Mathan and Teulié [24] proposed the
following. Let D = (dn)n∈N be a sequence of positive integers greater or equal to 2 and let

D0 := 1; Dn :=

n
∏

k=1

dk.

Then, define the ‘pseudo-norm’ function | · |D : N → R>0 by

|q|D = min{D−1
n : q ∈ DnZ}.

If D = (p)n∈N is a constant sequence for some prime number p then | · |D = | · |p is the usual
p−adic norm. The de Mathan-Teulié Conjecture, often referred to as the ‘Mixed’ Littlewood
Conjecture, is the assertion that for any sequence D and for every x ∈ R we have

lim inf
q→∞

q · |q|D · ||qx|| = 0. (2)

In [7] generalised Cantor sets were utilised to show that the set of real numbers x ∈ R

satisfying
lim inf
q→∞

q · log q · log log q · |q|D · ||qx|| > 0 (3)

is of maximal Hausdorff dimension and represents the state of the art in results of this type
(for arbitrary D). An application of the framework developed in our paper shows that for
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sequences D growing sufficiently quickly statement (3) can be significantly improved. In
particular, we show that for any monotonic function g : N → R>0 tending to infinity and
every sequence D = (di)i∈N such that

lim
i→∞

g(di+1)

g(di)
= ∞,

the set of real numbers x ∈ R satisfying

lim inf
q→∞

q · g(q) · |q|D · ||qx|| > 0 (4)

is of maximal Hausdorff dimension. Note that we may choose g tending to infinity as slowly
as we wish. The only previously known result of this type ‘beating’ the rate of approximation
in (3) was proved in [7], where it was shown that the set of x ∈ R satisfying (4) with g(q) =
log log q · log log log q has maximal Hausdorff dimension in the specific case D = {22

n}∞n=0.

Our paper also extends the concept of generalised Cantor sets to the setting of general
metric spaces. This allows us to utilise modern techniques in setups to which they did
not previously extend. As one of the applications considered in this paper we consider the
space Zp of p-adic integers. For N ∈ N, the set Badp(N) of so-called badly approximable
p-adic vectors is defined as the collection of points (x1, . . . , xN ) ∈ ZN

p for which there exists
a constant c > 0 satisfying

max{|qx1 − r1|p, . . . |qxN − rN |p} > c · max{|r1|, . . . , |rN |, |q|}−N+1
N (5)

for every (r1, · · · , rN , q) ∈ ZN × Z \ {0}. The set Badp(1) was shown to have maximal
Hausdorff dimension by Abercrombie [2] in 1995. In 2006, this result was extended using the
broad framework of [21], where it was shown that the set Badp(N) has maximal Hausdorff
dimension N . However, nothing is known about any stronger properties of Badp(N), such
as whether it is winning with respect to Schmidt’s game, which we now introduce. We show
that at the very least Badp(N) satisfies the amenable properties enjoyed by the ‘winning
sets’ occurring in Schmidt’s game. Establishing these properties had previously appeared
out of reach.

We also find answers to some other new problems from the field of Diophantine approx-
imation, such as questions relating to the ×2,×3 problem, and questions relating to the
behaviour of the Lagrange constant of multiples of a given real number as posed in [13].

1.2 Winning sets and countable intersections

Given a ball B we write rad(B) and diam(B) for the radius and the diameter of B respectively.
By cent(B) we denote the center of B.

Another remarkable property of the set Bad was discovered by Schmidt in a series of
works finalised in [27]. It can be described in terms of Schmidt’s so called (α, β)-game.
Suppose two players Alice (A) and Bob (B) play the following game with two fixed real
parameters 0 < α, β < 1. Bob starts by choosing an arbitrary closed ball B1 ⊂ RN . Then
Alice and Bob take turns in choosing closed balls in a nested sequence (Alice chooses balls
Ai and Bob chooses balls Bi),

B1 ⊃ A1 ⊃ B2 ⊃ A2 ⊃ · · · ,

whose radii satisfy

rad(Ai) = α · rad(Bi), rad(Bi+1) = β · rad(Ai), ∀i ∈ N.
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A set E ⊂ RN is called (α, β)-winning if Alice has a strategy that ensures that

∞
⋂

i=1

Bi = p ∈ E.

Finally, we say that E ⊂ RN is α-winning if it is (α, β)-winning for all 0 < β < 1 and winning
if it is α-winning for some α ∈ (0, 1).

Surprisingly, Schmidt was able to show that the set Bad is winning as a subset of R, and
further, that all winning sets in Euclidean space satisfy some remarkable properties:

(W1) Any winning set is dense and has full Hausdorff dimension.

(W2) Any countable intersection of α-winning sets is α-winning.

(W3) The image of any winning set under a bi-Lipschitz map is again winning.

Many other sets including Bad(1/N, 1/N, . . . , 1/N) (which for brevity we refer as BadN )
have been proven to be winning [28]. Most recently, in an exceptional paper by An [1] it
was shown that the set Bad(i, j) is winning. This provided a second proof of the Badziahin-
Pollington-Velani Theorem, the main result of [6], which in turn established a long standing
conjecture of Schmidt. It appears that many sets that according to [21] fall into the category
of badly approximable sets are indeed winning.

Several variations of Schmidt’s (α, β)-game have been suggested who’s analogous winning
sets still satisfy the properties (W1) – (W3) of classical winning sets. On the further devel-
opment of the subject we refer the reader to [20, 23, 28] and the references therein, and to
Section 5 of this paper for a partial overview. One disadvantage of working with topological
games of this type is that it is often quite difficult to prove a set is winning. A major aim
of this paper is to develop a variation of the category of winning sets such that properties
(W1) – (W3) are still satisfied for sets in this new category and the conditions for inclusion
this category are rather easier to check. In particular, we define so called Cantor-winning
sets in Section 4; a category of sets each of whom contain a generous supply of generalised
Cantor sets.

As examples, the set consisting of the points in Bad(i, j) lying on certain vertical lines
which appeared in [6] turns out to be Cantor-winning, and so does the set of points in
Bad(i1, . . . , iN ) lying on non-degenerate curves as described in [9]. Therefore, these sets
each satisfy properties (W1) – (W3). We discuss these results in more details in Section 7,
along with some other far reaching applications.

1.3 The idea of generalised Cantor sets

The basic premise for the construction of generalised Cantor sets in an arbitrary metric space
is the standard middle-third Cantor set construction. We now describe this process and then
discuss what requirements should be satisfied in order to generalize the construction to an
arbitrary metric space. The classical Cantor set is realised as follows. We start with the unit
interval I0 = [0, 1]. The first step of the process is to split the interval I0 into three intervals of
equal length and remove the open middle interval. This leaves a union I1 = [0, 1/3]∪[1/3, 1] of
two disjoint closed intervals which survive the first step. We recursively repeat this procedure
for each of the remaining intervals, each time removing the open middle third from every
interval in the union, to produce a sequence (I2, I3, . . .) of sets. Each In will consist precisely
of the disjoint union of the 2i closed intervals that survive the i-th step of the removal

4



procedure. The classical middle-third Cantor set K is then defined as

K :=

∞
⋂

n=0

In.

The set K is well known to be uncountable and have Hausdorff dimension log 2/ log 3. Surely
for I0 we can take any interval instead of [0, 1] and the final set K will still satisfy the same
properties.

In an arbitrary metric space X the (metric) balls will play the role of intervals in R. One
needs to define the rules describing how each surviving ball should be split into smaller pieces
in the next step of the construction. For example, when X = R we may generalise the set K
by splitting intervals into R closed pieces of equal length at each step for some R ≥ 3, or even
varying the number of intervals created during each step of the procedure. In RN we can take
square boxes (that is, balls in the sup-norm metrics) and split them into RN smaller boxes.
For a general metric space X we will need to describe how every ball is split into smaller
balls. In order for such a process to be meaningful (or even possible) we must enforce some
kind of structure on X which allows for such a splitting procedure to take place. In Section 2
we define an extremely general class of metric spaces possessing such a splitting structure.

Returning to K for a moment, we may also generalise its construction by varying the
number of intervals removed at each step. However, this should be done with care. For
example, if in a classical Cantor set construction instead of one interval we remove two of
them on each step (let’s say a middle and left one) then every step will leave just one interval:
I1 = [2/3, 1] , I2 = [8/9, 1] and so on. In this case

⋂∞
n=0 In is a single point, which is probably

not as interesting as K. For this reason we need to control the number of intervals produced
in the splitting process together with the number of removed intervals in each step in order
to get a non-trivial generalised Cantor set at the end. We provide reasonable restrictions on
these numbers in Section 3, although they are essentially the same as in [7]. The key point of
the described procedure is that we shall allow the number of intervals removed at each step
of the removal process to depend on the entirety of the construction thus far, not just upon
the specific step as in the classical Cantor set construction.

2 Splitting structure and metric spaces

We now describe sufficient conditions on a metric space X for a generalised Cantor construc-
tion to be possible. Denote by B(X) the set of all closed (metric) balls in X.

We define a splitting structure on a metric space X (with metric d) as a quadru-
ple (X,S, U, f), where

• U ⊂ N is an infinite multiplicatively closed set such that if u, v ∈ U and u | v then
v/u ∈ U ;

• f : U → N is an absolutely multiplicative arithmetic function;

• S : B(X) × U → B(X) is a map defined in such a way that for every ball B ∈ B(X)
and u ∈ U , the set S(B,u) consists solely of balls bi ⊂ B of radius rad(B)/u.

Additionally, we require all these objects to be linked by the following properties

(S1) #S(B,u) = f(u);
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(S2) If b1, b2 ∈ S(B,u) and b1 6= b2 then b1 and b2 may only intersect on the boundary; i.e.

d(cent(b1), cent(b2)) >
2 · rad(B)

u
;

(S3) For all u, v ∈ U ,

S(B,uv) =
⋃

b∈S(B,u)

S(b, v).

Remark. Not all metric spaces possess a splitting structure. For example, it is easy to
check that if f 6≡ 1 then X must be infinite. On the other hand in the case f ≡ 1 we always
have that S(B,u) consists of one ball. This case is not very interesting and we call such a
splitting structure trivial. Furthermore, given a metric space X, there usually exist some
restrictions on the growth of f for the splitting structure (X,S, U, f) to exist. For example,
when X = RN properties (S1) and (S2) imply that we must have f(u) 6 uN .

Note also that S(B,u) does not necessarily form a cover of B. However in the cases we
are mostly interested in this property will be satisfied.

2.1 Some examples

(a) Let X = RN with d(x,y) := |x − y|∞, U = N, f(u) = uN and S(B,u) be defined
as follows: B is cut into uN equal square boxes which edges have length u times less
than the edges length of B. One can easily check that (RN ,S,N, f) satisfies properties
(S1) – (S3). We call this the canonical splitting structure for RN .

(b) Let X = QN
p with d(x,y) := max16i6N{|xi − yi|p}, U = {pk : k ∈ Z>0}, f(pk) = pNk

and S(B, pk) be defined as the set of all disjoint balls in B of radius rad(B)/pk. Again
properties (S1) – (S3) are easily verified, so (QN

p ,S, U, f) is a splitting structure. We

call this splitting structure canonical for QN
p .

(c) We give one more exotic example. Let X = R, U = {3k : k ∈ Z>0}, f(3k) = 2k. Define
S(B, 3) as follows: we divide the interval B into 3 pieces of equal length and remove
the open third in the middle. S(B, 3k) for k > 1 is constructed inductively with help of
property (S3). It is easily verified that (R,S, U, f) indeed forms a splitting structure.

We will refer to these examples throughout the paper.

2.2 The set A∞(B)

A splitting structure on a metric space naturally exhibits a Cantor-like structure. For u ∈ U
and B ∈ B(X) define the set

Au(B) :=
⋃

b∈S(B,u)

b.

By property (S2), if u, v ∈ U and u | v then Av(B) ⊂ Au(B). Moreover, if X is complete
then for every sequence (ui)i∈N with ui ∈ U such that ui | ui+1 the set

⋂∞
i=1Aui

(B) is
non-empty. Moreover, it has non-empty intersection with each ball from S(B,ui) and the
following property also holds.

Theorem 1. Let (X,S, U, f) be a splitting structure. Then for every two sequences (ui)i∈N

and (vi)i∈N with ui, vi ∈ U such that ui | ui+1, vi | vi+1 and ui, vi
i→∞−→ ∞ one has

∞
⋂

i=1

Aui
(B) =

∞
⋂

i=1

Avi(B).
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Proof. Suppose that the contrary is true; that is, suppose there exists x ∈ X such that

x ∈
∞
⋂

i=1

Aui
(B), but x 6∈

∞
⋂

i=1

Avi(B).

Since
⋂∞

i=1 Avi(B) is closed, there exists a real number δ > 0 and a ball B(x, δ) ∈ B(X)
around x such that

B(x, δ) ∩
∞
⋂

i=1

Avi(B) = ∅.

By the construction of the sets Aui
(B) there exists ui and a ball b ∈ S(B,ui) of radius

less than δ/2 such that x ∈ b. Therefore, b ⊂ B(x, δ). Finally, by property (S2), Aui·vj(B)
has non-empty intersection with b and is a subset of Avj (B) for every j ∈ N. Whence, by
taking intersection we get

∅ 6= b ∩
∞
⋂

j=1

Aui·vj (B) ⊂ B(x, δ) ∩
∞
⋂

j=1

Avj (B)

and reach a contradiction.

The crux of Theorem 1 is that an infinite intersection
⋂∞

i=1 Aui
(B) depends only on the

ball B and the splitting structure on X, but not on the particular sequence (ui). We denote
this intersection by A∞(B). In further discussion it will always be assumed that X is a
complete metric space and so the notion A∞(B) will be always correctly defined.

It is readily observed that for any trivial splitting structure A∞(B) consists of just a single
point. Also, one can easily check that for the canonical splitting structure on RN and for the
canonical splitting structure on QN

p (examples (a) and (b)), we have that A∞(B) = B. In
the case of more exotic splitting structure from example (c) one can check that A∞(B) is a
standard middle-third Cantor set K(B) whose construction starts with interval I0 = B. As
previously discussed, the set K(B) is compact. Indeed, the set A∞(B) is compact for each of
the examples (a) - (c). We now demonstrate that this property is actually ubiquitous.

Theorem 2. Let (X,S, U, f) be a splitting structure. Then, for any ball B ∈ B(X) the
set A∞(B) is compact.

Proof. For a trivial splitting structure the result is obvious. Therefore, assume that the
splitting structure is non-trivial. Fix parameter v ∈ U with v > 1. Consider a cover

⋃

α Oα

of A∞(B) by open sets Oα. To each Oα we may associate a subset of balls from
⋃∞

i=1 S(B, vi)
such that every ball b from this subset lies entirely inside Oα. In particular, let

D(Oα) :=

{

b ∈
⋃

i∈N

S(B, vi) : b ⊂ Oα

}

.

Obviously, if b ∈ D(Oα) then every ball b′ ∈ S(b, vj) for j ∈ N is also in D(Oα).

If for some i ∈ N every ball from S(B, vi) is in one of the sets D(Oα) (for some α) then
there is a finite subcover of A∞(B). Indeed, for every ball b from the finite set S(B, vi) we
associate one element Oα from the cover such that b ∈ D(Oα). Assume now that this is not
the case. Then there exists a sequence (bi)i∈N of balls such that bi ∈ S(B, vi), bi ⊃ bi+1 such
that none of these balls are in D(Oα) for any α. Since X is complete we have

⋂∞
i=1 bi = x is

a single point. It must be covered by one of the open sets Oα and so there must exist ǫ > 0
such that B(x, ǫ) ⊂ Oα. Moreover, for i large enough we must have bi ⊂ B(x, ǫ) ⊂ Oα, a
contradiction.
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As in the case of the middle-third Cantor set it is desirable to determine the Hausdorff
dimension of the set A∞(B). In order to compute this in general we require the metric space
X to satisfy one further condition.

(S4) There exists an absolute constant C(X) such that any ball B ∈ B(X) cannot intersect
more than C(X) disjoint open balls of the same radius as B.

It is easy to check that the metric spaces RN and QN
p satisfy Condition (S4), and so

all of the examples (a) - (c) satisfy it. This condition is sufficient to precisely calculate the
Hausdorff dimension of A∞(B).

Theorem 3. Let (X,S, U, f) be a splitting structure. Then for any B ∈ B(X) we have

dimA∞(B) 6 lim inf
u→∞;u∈U

log f(u)

log u
.

Moreover, if X satisfies condition (S4) then log f(u)/ log u must be a constant and

dimA∞(B) =
log f(u)

log u
.

Proof. Determining the upper bound for the Hausdorff dimension is relatively easy. We may
simply consider the trivial cover S(B,u) of A∞(B). We have

∑

b∈S(B,u)

(rad(b))d ≍ f(u) · u−d,

and so for d > lim inf log f(u)/ log u one can find a sequence of integers ui ∈ U and ǫ > 0
such that

log f(ui)

log ui
< d− ǫ.

Therefore,

f(ui) · u−d
i < f(ui) · u

−
log f(ui)

log ui
−ǫ

i = u−ǫ
i

i→∞−→ 0

and this gives us a required upper bound on dimA∞(B).

The inverse inequality requires a bit more effort. Consider u ∈ U and let d =
log f(u)/ log u. If we prove that

inf

{

∑

i

(rad(Bi))
d :

⋃

i

Bi is a cover of B

}

> 0 (6)

then we will have that dimA∞(B) > d as required.

Let
⋃

αBα be an arbitrary cover of A∞(B) by open balls Bα. Then, since A∞(B) is
compact one can choose a finite subcover

⋃n
i=1 Bi. This procedure only decreases the value

on the left hand side of (6) and so if we can show that

inf

{

∑

i

(rad(Bi))
d :

⋃

i

Bi is a finite cover of B

}

> 0 (7)

then we are done. Given a finite subcover
⋃n

i=1 Bi one may without loss of generality assume
that rad(Bi) 6 rad(B) for each 1 6 i 6 n, for otherwise (7) has an obvious positive infimum
equal to (rad(B))d.
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Consider an individual element Bi of the subcover. Let mi ∈ Z>0 take a value such that

rad(B)

umi+1
< rad(Bi) 6

rad(B)

umi
.

Then, take all balls Bi,1, Bi,2, . . . , Bi,si from the collection S(B,umi) which have non-empty
intersection with Bi. By condition (S4) we must have si 6 C(X) and so

(rad(Bi))
d
>

1

C(X) · ud
si
∑

s=1

(rad(Bi,si))
d.

Replacing each Bi by Bi,1, . . . , Bi,si one can easily check that

n
⋃

i=1

si
⋃

s=1

Bi,s (8)

is still a cover of A∞(B) and it solely consists of balls from
⋃∞

i=1 S(B,ui). The value in (7)
does not decrease more than C(X) · ud times compared to the initial cover

⋃n
i=1 Bi.

Now notice that by the definition of d, for every ball B′ one has

(rad(B′))d =
∑

b∈S(B′,u)

(rad(b))d.

In other words, if in a cover one replaces one ball B′ by all balls in S(B′, u), the value (6)
does not change. We use this observation and replace if necessary every ball Bi,s from (8)
by balls from S(Bs,i, u

ks,i) for some ks,i to guarantee that all balls in the resulting cover are
from S(B,uk) for some fixed k ∈ N. Since it is still a cover of B, all these balls together
comprise the whole set S(B,uk). Finally,

n
∑

i=1

(rad(Bi))
d
>

1

C(X) · ud ·
∑

b∈S(B,uk)

(rad(b))d =
(rad(B))d

C(X) · ud > 0.

The claim is achieved, therefore we get

dimA∞(B) 6
log f(u)

log u
.

To finish the proof we take an arbitrary u ∈ U and combine the last statement with the lower
bound for dimA∞(B) we got before.

Corollary 1. If X satisfies condition (S4) and U contains at least two multiplicatively inde-
pendent numbers then f(u) must be of the form: f(u) = ud where d ∈ Q, d > 0.

Proof. By Theorem 3,

d =
log f(u)

log u

is a constant. Therefore f(u) = ud. If u1, u2 are two multiplicatively independent elements
of U , then ud1 and ud2 can both be integer only if d ∈ Q. Finally d > 0 since otherwise
ud 6∈ Z.

Notice that if U is generated by one positive integer number u0 then for every u = un0 we

have f(u) = f(u0)n = ud where d = log f(u0)
log u0

. Again f is of the form f(u) = ud, however in
this case we do not necessarily have that d ∈ Q.
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3 Generalised Cantor sets

Let (X,S, U, f) be a splitting structure on X. We now introduce the precise definition of
generalised Cantor sets in the context of this splitting structure, for which we appeal heavily
to the ideas presented in [7].

Fix some closed ball B ∈ B(X), let

R := (Rn)n∈Z>0
, Rn ∈ U

be a sequence of natural numbers and let

r := (rm,n), m, n ∈ Z>0, m 6 n

be a two parameter sequence of real numbers.

Construction. We start by considering the set S(B,R0). The first step in the construction
of a generalised Cantor set involves the removal of at most r0,0 balls b from S(B,R0). We
call the resulting set B1. Balls in B1 will be referred as (level one) survivors. Note that we
do not specify the removed balls, just give an upper bound for their number. For consistency
we also define B0 := {B}.

In general, for n > 0, given a collection Bn we construct a nested collection Bn+1 using
the following two operations:

• Splitting procedure: Compute the collection of candidate balls

In+1 :=
⋃

Bn∈Bn

S(Bn, Rn).

• Removing procedure: For each ball Bn ∈ Bn we remove at most rn,n balls Bn+1 ∈
S(Bn, Rn) from In+1. Let In

n+1 ⊆ In+1 be the collection of balls that remain. Next, for
each ball Bn−1 ∈ Bn−1 we remove at most rn−1,n balls Bn+1 ∈ S(Bn−1, RnRn−1)∩In

n+1.
Let In−1

n+1 be the collection of balls that remain. In general for each Bn−k ∈ Bn−k

(1 6 k 6 n) we remove at most rn−k,n balls Bn+1 ∈ S(Bn−k,
∏k

i=0 Rn−i) ∩ In−k+1
n+1 and

define In−k
n+1 ⊆ In−k+1

n+1 to be the collection of balls that remain. Finally, Bn+1 := I0
n+1

then becomes the desired collection of (level n + 1) survivors.

The two operations above allow us to construct a nested sequence of collections Bn of
closed balls. Consider the limit set

K(B,R, r) :=

∞
⋂

i=1

⋃

b∈Bn

b.

The set K(B,R, r) will be referred to as a generalised (B,R, r)-Cantor set on X.

Note that the triple (B,R, r) does not uniquely determine K(B,R, r). There is a large
degree of freedom in the choice of balls Bn+1 removed in the construction procedure. Conse-
quently, one can look at the property of being a generalised (B,R, r)-Cantor set as a property
of the set K ⊂ X, rather than as a self contained definition: we say a set K is a generalised
Cantor set if it can be constructed by the procedure described above for some triple (B,R, r).
In this case, we may refer to K as being (B,R, r) −Cantor if we wish to make such a triple
explicit and write K = K(B,R, r).
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3.1 Properties of K(B,R, r)

Generalized (B,R, r)-Cantor sets in any complete metric space X satisfy the same desirable
properties as proved in [7]. Furthermore, many of the proofs translate from the Euclidean
setting to the case of arbitrary metric spaces with only slight modification. We now exhibit
these properties, but will provide the proof only if it significantly differs from the analogous
methods outlined in [7].

Theorem 4 (See Theorem 3 in [7]). Given a generalised Cantor set K(B,R, r) in a complete
metric space X, let

t0 := f(R0) − r0,0 (9)

and for n > 1 let

tn := f(Rn) − rn,n −
n
∑

k=1

rn−k,n
∏k

i=1 tn−i

. (10)

Suppose that tn > 0 for all n ∈ Z>0. Then,

K(B,R, r) 6= ∅ .

Theorem 5 (See Theorem 4 in [7]). Let a complete metric space X satisfy condition (S4).
Given a generalised Cantor set K(B,R, r) ⊂ X, suppose that the parameters R and r satisfy
the following conditions:

• f(Rn) > 4 for all n ∈ Z>0;

• for every δ > 0 there exists n(δ) such that for every n > n(δ),

n
∏

i=0

Rδ
i > Rs

n, (11)

where s = lim inf
n→∞

(dimA∞(B) − logRn
2);

• For every n ∈ Z>0,

n
∑

k=0

(

rn−k,n

k
∏

i=1

(

4

f(Rn−i)

)

)

6
f(Rn)

4
. (12)

Then
dimK(B,R, r) > s.

Remark. It is unclear to the authors as to whether condition (11) is absolutely necessary.
For example, in the corresponding Theorem 4 from [7] this condition is not needed. On the
other hand it may be the property of the canonical splitting structure of R that makes (11)
superfluous. Whilst the proof of Theorem 5 is very similar to that in [7], we consider it to be
quite important, especially with regard to the need for condition (11). For this reason, and
for the sake of completeness, we briefly outline its proof here.

Prior the proof we give a definition of local Cantor sets, which provide the means by which
one can prove most of the results in this section. A generalised Cantor set K(B,R, r) is said
to be local if rm,n = 0 whenever m 6= n. Furthermore, we write LK(B,R, s) for K(B,R, r)
where

s := (sn)n∈Z>0
and sn := rn,n.

We will also need the following version of the mass distribution principle for general metric
spaces X, a powerful tool for calculating lower bounds for Hausdorff dimension.

11



Mass Distribution Principle. Let µ be a probability measure supported on a subset E of
a metric space X. Suppose there are positive constants a, s and l0 such that

µ(B) 6 a diam(B)s , (13)

for any closed set B with diam(B) 6 l0. Then, dimE > s.

One can check that it is sufficient to verify property (13) for all balls B ∈ B(X). Indeed,
assume that it is satisfied for balls. Consider an arbitrary set S ⊂ X of diameter diam(S) 6
l0/2. It is covered by a ball B with rad(B) 6 diam(S), so diam(B) 6 l0. Then we have

µ(S) 6 µ(B) 6 a · diam(B)s 6 a · 2s · diam(S)s.

Therefore Property (13) is satisfied then for an arbitrary set S with parameters a′ := a · 2s,
s′ := s and l′0 := l0/2. It follows that dimE > s′ = s.

The final prerequisites for the proof of Theorem 5 are a lower bound for the Hausdorff
dimension of local Cantor sets and a proof that certain generalised Cantor sets contain suffi-
ciently permeating local Cantor sets.

Lemma 1. Given LK(B,R, s), suppose that

tn := f(Rn) − sn > 0 ∀ n ∈ Z>0 .

Furthermore, suppose the values sn and Rn satisfy the following conditions: there are positive
constants s and n0 such that for all n > n0

Rs
n 6 tn (14)

and for every δ > 0 there exists n(δ) > 0 such that inequality (11) is satisfied. Then

dimLK(B,R, s) > s.

Proof. We construct a probability measure µ supported on LK(B,R, s) in the standard
manner. For any Bn ∈ Bn, we attach a weight µ(Bn) defined recursively as follows.

For n = 0 let

µ(B0) :=
1

#B0
= 1,

and for n > 1 define

µ(Bn) :=
µ(Bn−1)

#{B ∈ Bn : B ⊂ Bn−1}
, (15)

where Bn−1 ∈ Bn−1 is the unique ball such that Bn ⊂ Bn−1. This procedure inductively
defines a mass on any interval appearing in the construction of LK(B,R, s). In fact, it can
be easily demonstrated via induction that for every Bn ∈ Bn we have

µ(Bn) 6
n−1
∏

i=0

t−1
i . (16)

This measure can be further extended to all Borel subsets of X. We will call such a measure
a canonical measure on LK(B,R, s). It remains to show that µ satisfies (13). Consider
an arbitrary ball E of radius not bigger than rad(B). Then there exists a positive integer
parameter m such that

rad(B)
∏m

i=0Ri
< rad(E) 6

rad(B)
∏m−1

i=0 Ri

. (17)
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Now we estimate µ(E). First, notice that we have

µ(E) 6
∑

b∈Bm: b∩E 6= ∅

µ(b).

By Property (S4) there are at most C(X) balls b ∈ Bm such that b ∩ E 6= ∅. This, together
with (16), gives us the upper bound

µ(E) 6 C(X) ·
m−1
∏

i=0

t−1
i 6 C(X) ·

m−1
∏

i=0

Rs
i

ti

/

m−1
∏

i=0

Rs
i

(11)

6 C(X) · C1(δ)
rad(B)s−δ

∏m
i=0 R

s−δ
i

·
m−1
∏

i=0

Rs
i

ti
,

where

C1(δ) = rad(B)δ−s · max
16j6n(δ)

{

∏j
i=0 R

δ
i

Rs
j

, 1

}

is a constant independent of the choice of E. We continue with the chain of upper inequalities
to get

µ(E)
(17)

6 C(X) · C1(δ) · C2 · (rad(E))s−δ ,

where

C2 = max
16j6n0

{

j
∏

i=0

Rs
i

ti
, 1

}

is again independent on the choice of E. By applying the Mass Distribution Principle we
conclude that dimLK(B,R, s) > s− δ. Since δ is arbitrary the lemma is proven.

Lemma 2 (See Proposition 3 in [7]). Let K(I,R, r) be as in Theorem 5. Then there exists a
local Cantor set

LK(I,R, s) ⊂ K(I,R, r),

where
s := (sn)n∈Z>0

with sn := 1
2 f(Rn) .

Proof of Theorem 5.

By Lemma 2 we have that

dimK(B,R, r) > dimLK(B,R, s).

Now fix some positive s < lim inf
n→∞

(dimA∞(B)− logRn
2). Theorem 3 gives us that for every n,

dimA∞(B) =
log f(Rn)

logRn
=: d.

Then, there exists an integer n0 such that

s < d− logRn
2 for all n > n0 .

Also note that

tn = f(Rn) − sn =
f(Rn)

2
and

Rs
n <

f(Rn)

2
= tn for all n > n0 .

Therefore, Lemma 1 implies that

dimLK(I,R, s) > s .

The fact that this inequality is true for any s < lim inf
n→∞

(d − logRn
2) completes the proof of

Theorem 5.
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Finally we provide the theorem which shows that the intersection of generalised Cantor
sets on X is often again a Cantor set.

Theorem 6 (See Theorem 5 in [7]). For each integer 1 6 i 6 k, suppose we are given a
generalised Cantor set K(B,R, ri). Then

k
⋂

i=1

K(B,R, ri)

is a (B,R, r)-Cantor set, where

r := (rm,n) with rm,n :=
k
∑

i=1

r(i)m,n .

With almost the same proof one can extend this theorem to countable intersections of
generalized Cantor sets.

Theorem 6∗. For each integer i ∈ N, suppose we are given a generalised Cantor set
K(B,R, ri). Assume that the series

rm,n :=

∞
∑

i=1

r(i)m,n

converges for all pairs m,n ∈ N with m 6 n (or equivalently, only finitely many of r
(i)
m,n are

non-zero). Then
∞
⋂

i=1

K(B,R, ri)

is a (B,R, r)-Cantor set with r := (rm,n).

3.2 Images of generalized Cantor sets under bi-Lipschitz map

Let φ : X → X be a bi-Lipschitz homeomorphism; i.e there exists a constant K > 0 such
that

∀x1, x2 ∈ X, K−1d(x1, x2) 6 d(φ(x1), φ(x2)) 6 Kd(x1, x2).

One can easily check that then

B(φ(x), r/K) ⊂ φ(B(x, r)) ⊂ B(φ(x),Kr).

We denote the first (inscribed) ball by Iφ(B) and the second (escribed) ball by Eφ(B). We
will also need a slightly more restrictive packing condition than property (S4) enforced on
the metric space X:

(S5) For each K ∈ R>1 there exists a constant C(K,X) such that any ball B of radius Kr
cannot intersect more than C(K,X) disjoint open balls of radius r.

One can easily check that property (S4) of X follows from property (S5) with C(X) =
C(3,X). Finally, note that the spaces X appearing in examples (a) – (c) from Section 2
satisfy condition (S5).
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Theorem 7. Let (X,S, U, f) be a splitting structure on a complete metric space X satisfying
condition (S5). Assume also that A∞(B) = B for each ball B ∈ B(X). Then for every bi-
Lipschitz homeomorphism φ : X → X there exists a constant C > 0 such that φ(K(B,R, r))
contains some (Iφ(B),R, Cr)-Cantor set where

Cr := {Crm,n : m,n ∈ Z>0,m 6 n}.

Remark. Surely the condition A∞(B) = B is quite restrictive. However, it is absolutely
essential for the theorem. One can check that the canonical splitting structures for both Rn

and Qn
p satisfy that condition. On the other hand the splitting structure (R,S, U, f) from

example (c) does not satisfy it.

Proof. First, note that since A∞(B) = B then for every ball B ∈ B(X) and every R ∈ U we
have

B = A∞(B) ⊆
⋃

b∈S(B,R)

b ⇒
⋃

b∈S(B,R)

b = B.

Since K(B,R, r) is a generalized Cantor set we have collections Bn,In and Im
n (for m < n)

associated with it (see the Cantor set construction algorithm). We now outline the procedure

for the construction of the generalised Cantor set inside Iφ(B). Let Bφ
0 := {Iφ(B)}. We next

inductively construct a nested collection Bφ
1 ,B

φ
2 , . . . ,B

φ
n, . . .. Given a collection Bφ

n, construct

the subsequent collection Bφ
n+1 via the following operations:

• Splitting procedure: Compute the collection

Iφ
n+1 :=

⋃

Bφ
n∈B

φ
n

S(Bφ
n , Rn).

• Removing procedure: Remove all balls Bφ
n+1 ∈ Iφ

n+1 for which

∃Bn+1 ∈ In+1\Bn+1 s.t. Bφ
n+1 ∩ φ(Bn+1) 6= ∅.

By construction we have that

⋃

Bφ
n∈B

φ
n

Bφ
n ⊂ φ

(

⋃

Bn∈Bn

Bn

)

and therefore the set

Kφ :=
∞
⋂

i=0

⋃

Bφ∈Bφ
i

Bφ

is a subset of φ(K(B,R, r)).

We will show that the set Kφ is indeed (Iφ(B),R, Cr)-Cantor for some constant C > 0.

Consider a ball Bφ
n ∈ Bφ

n. By construction, its radius is K−1 ·∏n−1
i=0 R−1

i rad(B). If it intersects
φ(B∗

n) for some B∗
n ⊂ Bn then it also intersects Eφ(B∗

n), whose radius is

K ·
n−1
∏

i=0

R−1
i rad(B) = K2 · rad(Bφ

n).

Therefore,
d(cent(Bφ

n), cent(Eφ(B∗
n))) 6 (1 + K2)rad(Bφ

n).
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This in turn implies that
Iφ(B∗

n) ⊂ (2 + K2)Bφ
n .

Since
rad(Iφ(B∗

n)) = rad(Bφ
n),

it follows from condition (S5) that there are no more than C(K2 + 2,X) balls B∗
n ∈ Bn

such that φ(B∗
n) ∩ Bφ

n 6= ∅. By the same arguments we deduce that for a fixed ball

Bn+1 ∈ Bn+1\In+1 there are at most C(K2 + 2,X) balls Bφ
n+1 ∈ Iφ

n+1 which have nonempty
intersection with φ(Bn+1).

Now we construct Inφ
n+1 from Iφ

n+1 by removing all balls Bφ
n+1 ∈ Iφ

n+1 which have nonempty
intersection with at least one of the sets φ(Bn+1) where Bn+1 ∈ In+1\In

n+1. For a fixed ball
Bn ∈ Bn we have

#{Bφ
n+1∈ Iφ

n+1 : ∃Bn+1 ∈ S(Bn, Rn)∩(In+1\In
n+1), φ(Bn+1)∩Bφ

n+1 6= ∅}6 C(K2+2,X)rn,n.

As we have already shown for a fixed Bφ
n ∈ Bφ

n there are at most C(K2 + 2,X) balls Bn ∈ Bn

such that φ(Bn) intersects Bφ
n . Therefore, in total we have

#{Bφ
n+1 ∈ Iφ

n+1\I
nφ
n+1 : Bφ

n+1 ∈ S(Bφ
n , Rn)} 6 (C(K2 + 2,X))2rn,n.

We proceed further with the Cantor set construction by constructing the collection Imφ
n+1

from I
(m+1)φ
n+1 (0 6 m < n) by removing all balls Bφ

n+1 ∈ I
(m+1)φ
n+1 which have nonempty

intersection with at least one of the sets φ(Bn+1) where Bn+1 ∈ Im+1
n+1 \Im

n+1. The same

arguments as before yield for every ball Bφ
m ∈ Bφ

m the estimate

#

{

Bφ
n+1 ∈ I(m+1)φ

n+1 \Imφ
n+1 : Bφ

n+1 ∈ S
(

Bφ
m,

n−m
∏

i=0

Ri

)}

6 (C(K2 + 2,X))2rm,n.

This completes the proof that K is (Iφ(B),R, Cr)-Cantor with C := (C(K2 + 2,X))2.

4 Cantor-winning sets

Theorems 4 – 6 show that under certain conditions on the sequences R and ri the finite
intersection

k
⋂

i=1

K(B,R, ri)

is non-empty or even has positive Hausdorff dimension. However they do not cover countable
intersections. Moreover, one can easily provide a finite collection of generalized Cantor sets
on X which have empty intersection. Theorem 6* on the other hand states that under even
stronger conditions we may deduce a similar statement for a countable intersection of Cantor
sets. However, all of these conditions are somewhat cumbersome and may be quite difficult
to check. The aim of this section is to define a collection of sets which satisfy properties
(W1) and (W2) of winning sets (that is, their Hausdorff dimension equals to dimA∞(B) and
their countable intersection has the same property) and whose qualifying conditions are much
more clear cut.

Consider the constant sequence R = R,R,R, . . .. In this case we will denote any as-
sociated generalised Cantor set K(B,R, r) (respectively local Cantor set LK(B,R, s)) by
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K(B,R, r) (respectively LK(B,R, s)). An easy inspection of the construction algorithm for
generalized Cantor sets on X precipitates the following proposition which will play a crucial
role in constructing our new class of sets.

Proposition 1. Let R ∈ U , k ∈ N. Then K(B,Rk, r) is also (B,R, t)-Cantor where

tm,n :=

{

rm/k,(n+1)/k−1 if m ≡ n + 1 ≡ 0 (mod k);

0 otherwise.
(18)

Now, we are prepared to give the formal definition of Cantor-winning set, the main object
of interest in this paper.

Definition. Fix a ball B ∈ B(X). Given a parameter ǫ0 > 0 we say a set K ∈ X is ǫ0-

Cantor-winning on B for the splitting structure (X,S,U, f) if for every 0 < ǫ < ǫ0
there exists Rǫ ∈ U such that for every R > Rǫ with R ∈ U the set K contains some
(B,R, r)-Cantor set where

rm,n = f(R)(n−m+1)(1−ǫ) for every m,n ∈ N,m 6 n. (19)

If the splitting structure (X,S, U, f) is fixed then for conciseness we omit its mention and
simply say K is ǫ0-Cantor-winning on B. Similarly, unless otherwise specified a set K ⊂ Rk

or K ⊂ Qk
p will be referred to as being ǫ0-Cantor-winning on B if K is ǫ0-Cantor-winning

on B with respect to the relevant canonical splitting structure.

Definition. If a set K ∈ X is ǫ0-Cantor-winning on B for every ball B ∈ B(X) then we say
that K is ǫ0-Cantor-winning, and simply Cantor-winning if K is ǫ0-Cantor-winning
for some ǫ0 > 0.

We may apply Theorem 5 to estimate the Hausdorff dimension of Cantor-winning sets.

Theorem 8. If the complete metric space X satisfies condition (S4). Then, for any B ∈
B(X) and any ǫ0 > 0 the Hausdorff dimension of an ǫ0-Cantor-winning set on B is at least
dimA∞(B).

Proof. If the splitting structure (X,S, U, f) is trivial then dimK(B,R, r) = dimA∞(B) = 0.
Otherwise, by taking if needed a power of R in place of R one can guarantee that f(R) > 4.
Also, condition (11) is obviously satisfied. Also, in this case the final condition (12) condenses
to the following:

n
∑

k=0

f(R)(k+1)(1−ǫ)

(

4

f(R)

)k

6
f(R)

4
.

One can easily check that it is true for f(R) large enough. So by again replacing R with a
proper integer power of R if necessary we get that (12) is satisfied. Thus, for any Cantor-
winning set E we have

dimE > dimA∞(B) − logR 2.

This estimate holds true with any integer power Rk in place of R, and the theorem is proven.

Corollary. Let K be a Cantor-winning set. Then, for any B ∈ B(X) we have

dim(K ∩A∞(B)) = dim(A∞(B)).

In particular, in the case that A∞(B) = B we have dim(K) = dim(X).
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Next, we will show that the countable intersection of ǫ0-Cantor-winning sets is again
ǫ0-Cantor-winning.

Theorem 9. Let a splitting structure (X,S, U, f) be nontrivial. Then, given ǫ0 > 0 and a
countable collection {Ki}i∈N of ǫ0-Cantor-winning sets, the intersection

∞
⋂

i=1

Ki

is also ǫ0-Cantor-winning.

Proof. Consider an arbitrary positive ǫ < ǫ0. By the definition of ǫ0-Cantor-winning sets

we have that K1 contains K(B,R, r1) for R large enough where r
(1)
m,n = f(R)(n−m+1)(1−ǫ).

Choose Rǫ such that t 6 f(Rǫ)
t(ǫ0−ǫ) for any positive integer t. Then for each i > 1 one can

inductively find ki ∈ N large enough such that ki+1 > ki and the set Ki contains K(B,Rki
ǫ , ri).

Here ri are defined by the formula (19):

r(i)m,n = f(Rǫ)
ki(n−m+1)(1−ǫ).

By the definition of generalised Cantor sets any (B,Rǫ, ri)-Cantor set is also (B,Rǫ, r̃i)-

Cantor as soon as r
(i)
m,n 6 r̃

(i)
m,n. Therefore, without loss of generality we can always assume

that ǫ > ǫ0/2. Next, we use Proposition 1 to deduce that Ki is also (B,Rǫ, ti)-Cantor,
where ti is computed from ri by formula (18). This enables us to implement Theorem 6∗,
which yields that

∞
⋂

i=1

Ki ⊃
∞
⋂

i=1

K(B,Rǫ, ti) = K(B,Rǫ, t),

where tm,n =
∑∞

i=1 t
(i)
m,n.

Finally, we must check that the values tm,n satisfy condition (19). Notice that t
(1)
m,n always

contributes the value f(Rǫ)
(n−m+1)(1−ǫ) to tm,n. For i > 1 this contribution comprises

f(Rǫ)
ki((n+1)/ki−1−m)/ki+1)(1−ǫ) = f(Rǫ)

(n−m+1)(1−ǫ)

if m ≡ n + 1 ≡ 0 (mod ki). Otherwise, t
(i)
m,n does not contribute anything to tn,m. In other

words, we have

tm,n = f(Rǫ)
(n−m+1)(1−ǫ) · #{i ∈ N : m ≡ n + 1 ≡ 0 (mod ki)}. (20)

Since all the numbers ki are distinct the cardinality of the set on the right hand side of (20)
is at most n−m + 1 and so we have

tm,n 6 (n−m + 1)f(Rǫ)
(n−m+1)(1−ǫ)

6 f(Rǫ)
(n−m+1)(1−2ǫ+ǫ0).

The final inequality holds due to the choice of Rǫ. As ǫ runs within the range (ǫ0/2, ǫ0),
the value 2ǫ− ǫ0 takes any value within (0, ǫ0). Therefore, the intersection

⋂∞
i=1 Ki contains

a generalised Cantor set K(B,Rǫ, t) satisfying property (19). Finally, the same arguments
apply if the parameter Rǫ is replaced by any other value of R ∈ U with R > Rǫ. This
completes the proof.

Theorem 10. Let (X,S, U, f) be a splitting structure on a complete metric space X satisfying
condition (S5). Assume also that A∞(B) = B for each ball B ∈ B(X) and let φ : X → X
be a bi-Lipschitz homeomorphism. If K ⊂ X is ǫ0-Cantor-winning on a ball B then φ(K) is
ǫ0-Cantor-winning on Iφ(B).

Moreover if K is ǫ0-Cantor-winning then so is its image φ(K).
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Proof. If suffices to combine the definition of an ǫ0-Cantor-winning set with Theorem 7.
Indeed, consider an arbitrary 0 < ǫ < ǫ0. Then, by definition there exists Rǫ ∈ U such that
for R ≥ Rǫ the set K contains K(B,R, r) where rm,n = f(R)(n−m+1)(1−ǫ). By Theorem 7,
the image φ(K) contains a (Iφ(B), R,Cr)-Cantor set for some absolute positive constant C
independent of R and ǫ. By choosing ǫ1 satisfying ǫ < ǫ′ < ǫ0 and Rǫ′ large enough so that
f(R1)

ǫ′−ǫ > C it follows that for R > max{Rǫ, Rǫ′} one has Crm,n 6 f(R)(n−m+1)(1−ǫ1).
Thus, the set φ(B) is ǫ0-Cantor-winning on Iφ(B).

To prove the final statement we take an arbitrary ball B ∈ B(X) and consider its preim-
age φ−1(B). Take the escribed ball Eφ−1(B). Since K is ǫ0-Cantor-winning it is in par-
ticular ǫ0-Cantor-winning on Eφ−1(B). Therefore, the image φ(K) is ǫ0-Cantor-winning on
Iφ(Eφ−1(B)). The final observation is that Iφ(Eφ−1(B)) = B. This shows that φ(B) is
indeed ǫ0-Cantor-winning.

Remark. In [9] the similar notion of Cantor rich sets in R was independently introduced.
With some effort this concept could also be generalised to RN and in turn arbitrary complete
metric spaces. Cantor rich sets are also known to satisfy conditions (W1) and (W2). However,
in the authors’ opinion the conditions of ǫ0-Cantor-winning sets are easier to check yet retain
the same desirable properties. Furthermore, the following section provides some reasoning
as to why our setup may be preferable in many cases (see the Remark at the close of §5.1
and [4]). It would be interesting to compare the two notions, to ask whether the two concepts
are equivalent, whether one of them includes another, or if neither of these two possibilities
hold, although this appears to be a quite difficult and nuanced question.

5 Relationship with classical winning sets

We have shown that under certain conditions Cantor-winning sets satisfy the same desirable
properties (W1) – (W3) as classical winning sets in RN . It is therefore natural to ask if and
how these two concepts are compatible.

In his original paper, Schmidt defined his game in the context of any complete metric
space X. For the (α, β)-game played on X, Alice and Bob pick successive nested balls in
the same manner as described in Section 1.2. The definitions of α-winning sets and winning
sets for gameplay in an arbitrary complete metric space are entirely analogous to those for
the game played in RN . Strictly speaking, since a generic ball in X may not necessarily
have a unique centre or radius, Alice and Bob should pick successive pairs of centres and
radii satisfying some partial ordering as opposed to simply picking successive nested balls.
However, for the sake of clarity one may simply assume that this nuance is accounted for in
each of Alice’s and Bob’s strategies.

Properties (W2) and (W3) are satisfied by winning sets for any (α, β)-game played in
an arbitrary complete metric space X (see [27] and [14] respectively). On the other hand,
winning sets need not satisfy property (W1) in general. Indeed, Proposition 5.2 of [20]
provides an example of a winning set of zero Hausdorff dimension. In [20] it is also shown
that if X supports a measure satisfying certain desirable rigidity properties then property
(W1) does indeed hold. We discuss one such property in a later section - see (23).

Comparing directly the property of being a winning set in X with the property of being a
Cantor-winning in X appears to be a very difficult problem and would likely require lengthy
and technical discussion. For this reason, and to help maintain the flow of this paper, we
only mention that the authors intend to return to this topic in the subsequent work [4]. It
is though much more feasible to place our framework within the hierarchy of various classes
of games related to those of Schmidt that exhibit a slightly higher level of rigidity. Indeed,
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as we will see the relationship between Cantor-winning sets and the ‘winning sets’ of these
classes of games is rather clear cut.

5.1 McMullen’s Game

In [23], McMullen proposed the following one-parameter variant of Schmidt’s game, defined
in such a way that instead of choosing a region where Bob must play, Alice must now choose
a region where he must not play. To be precise, first choose some parameter β ∈ (0, γ(X)),
where γ(X) > 0 is some absolute constant (to be determined later) depending on the metric
space X. McMullen’s β-absolute game begins with Bob picking some initial ball B1 ∈ B(X).
Alice and Bob then take it in turns to place successive balls in such a way that Ai ⊂ Bi and

B1 ⊃ B1 \ A1 ⊃ B2 ⊃ B2 \ A2 ⊃ B3 ⊃ · · · ,

subject to the conditions

rad(Bi+1) ≥ β · rad(Bi), rad(Ai+1) ≤ β · rad(Bi), ∀ i ∈ N.

We say a set E ⊂ X is β-absolute winning if Alice has a strategy which guarantees

⋂

i∈N

Bi ∩E 6= ∅ (21)

for the game with parameter β. The set E is said to be absolute winning if it is β-absolute
winning for every β ∈ (0, γ(X)). Note that in general

⋂

iBi may not necessarily be a single
point as in Schmidt’s (α, β)-game.

McMullen’s original definition of the β-absolute game exclusively involved the selection
of closed balls in RN . However, the mechanics described above make sense when outlining
the rules for play with (metric) balls in any complete metric space X.

The purpose of the upper bound γ(X) for the choice of β, as introduced above, is to
ensure that at every stage of a β-absolute game there is always a legal place for Bob to place
his ball wherever Alice may have placed her preceding ball. For the game played on X = RN

with Euclidean balls one may take γ(X) = 1/3 as per McMullen’s original definition. To see
that this condition is necessary, notice that for β ≥ 1/3 Alice may then at any stage choose
her ball Ai to simply be the ball Bi scaled down by β. In doing so she would leave no possible
choice of ball Bi+1 satisfying Bi \ Ai ⊃ Bi+1. However, for β < 1/3 such a choice is always
possible in RN .

For the game played on an arbitrary complete metric space such a constant γ(X) need not
exist. However, it was recently observed in [17] (see their Lemma 4.2, and also [25, 29]) that a
sufficient condition for the existence of γ(X) is that the metric space in question is uniformly
perfect. Recall that for 0 < c < 1 a metric space X is said to be c-uniformly perfect if for every
metric ball B(x, r) 6= X we have B(x, r) \B(x, cr) 6= ∅, and is said to be uniformly perfect if
it is c-uniformly perfect for some c. If the metric space X is uniformly perfect one may then
take γ(X) = c/5, although it should be noted that this is not necessarily the optimal (largest
possible) choice. It is easy to see that if X is endowed with a non-trivial splitting structure
and satisfies condition (S4) with constant C(X) then X is indeed uniformly perfect and so
in the setting of this paper McMullen’s game is always well defined. In particular, one may
take c = u−1

0 , where u0 ∈ U is the smallest natural number for which f(u0) > C(X).

It is well known that an absolute winning set in RN is α-winning for every α ∈ (0, 1/2), and
that for the game played on a c-uniformly perfect complete metric space an absolute winning
set is α-winning for every α ∈ (0, c/5] - see [23] and [17] respectively. In both cases it can be
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shown that the countable intersection of β-absolute winning sets is again β-absolute winning,
and that the image of an absolute winning set under a bi-Lipschitz homeomorphism is again
absolute winning. Thus, absolute winning sets also satisfy properties (W2) and (W3). In
fact, it is the case (see Proposition 4.3(v) of [17]) that absolute winning sets in any uniformly
perfect complete metric space satisfy the following slightly stronger version of the latter
property:

(W3∗) The image of any absolute winning set under a quasisymmetric homeomorphism is
again absolute winning.

As before, absolute winning sets do not in general satisfy condition (W1), although if X
supports a measure satisfying (23) it follows that property (W1) does hold. See [17] and the
references therein for further criterion.

The following theorem reveals that absolute winning sets have an extremely clear cut
relationship with Cantor-winning sets. We delay the proof to a later subsection.

Theorem 11. Assume a complete metric space X is endowed with a non-trivial splitting
structure (X,S, U, f) and that condition (S4) holds with constant C(X). If E ⊂ X is absolute
winning then E is 1-Cantor-winning.

Remark. Since completion of this project, the authors (in collaboration with with Ne-
sharim) [4] have been able to show that the converse statement is in fact true, at least in
the case of RN with canonical splitting structure. That is; remarkably, the property of being
1-Cantor-winning in RN is in fact equivalent to the property of being absolutely winning!

5.2 The Hyperplane Absolutely Winning game and its variants

In [11], a class of variants of McMullen’s game was introduced, the so-called k-dimensional
absolute winning games. The most commonly utilised of these games is the hyperplane
absolute winning (or HAW ) game. The class of games in [11] was specifically defined for
play on subsets of RN and relies upon the existence of an underlying vector space. For this
reason, in order to discuss k-dimensional absolute winning games in the full setting of this
paper we would first have to attach further structure to our complete metric space X. In
particular, if so inclined one could define the games for subsets of some given Banach space,
but since such an extension has not yet appeared in the literature we content ourselves with
the setting of RN (with metric d(x, y) = |x − y|∞ and canonical splitting structure) for the
sake of clarity. Accordingly, we will refer to the metric balls in RN as ‘boxes’. That said, one
should observe that an analogues method to the one we shall exhibit would be applicable to
questions concerning k-dimensional absolute winning games played on more exotic spaces.

Firstly, fix k ∈ {0, 1, . . . , N − 1} and some parameter 0 < β < 1/3. The k-dimensional
β-absolute winning game has the same premise as McMullen’s game in that Alice must choose
a region where Bob must not play, only now that region is defined by the neighbourhood of a
k-dimensional hyperplane of RN rather than the neighbourhood of a single point. The game
begins with Bob picking some initial box B1 ⊂ RN . Now, assume Bob has played his i-th
box Bi. Then the game proceeds with Alice choosing δi 6 β and an affine subspace Li of
dimension k and removing its (δi · rad(Bi))-neighbourhood

L(δi·rad(Bi))
i =

{

x ∈ RN : inf
y ∈Li

|x− y|∞ < δi · rad(Bi)

}

from the box Bi. In accordance with this procedure, set Ai := L(δi·rad(Bi))
i ∩Bi. Then, Bob for

his (i+1)-th move may choose any box Bi+1 ⊂ Bi\Ai satisfying rad(Bi+1) ≥ β ·rad(Bi). A set
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E ⊂ RN is said to be k-dimensionally β-absolute winning Alice has a strategy guaranteeing
that

∞
⋂

i=1

Bi ∩ E 6= ∅

for the game played with parameter β. We simply say that E is k-dimensionally absolute
winning if it is k-dimensionally β-absolute winning for every β ∈ (0, 1/3].

In the weakest case ‘k = N − 1’, the game is often referred to as the hyperplane absolute
winning game for obvious reasons. For simplicity, an (N −1)-dimensionally absolute winning
set is then referred to as being hyperplane absolute winning (HAW). One can readily observe
that the strongest case ‘k = 0’ coincides with McMullen’s original game on RN . For every k,
if a set is k-dimensionally absolute winning sets then it is α-winning with respect to Schmidt’s
game for any α ∈ (0, 1/2). We direct the reader to [11] for further discussion of the properties
of k-dimensionally absolute winning sets.

Theorem 12. Assume a subset E ⊂ RN is k-dimensionally absolute winning for some integer
k ∈ {0, 1, . . . , N − 1}. Then, the set E is N−k

N -Cantor-winning.

Note that the case ‘k = 0’ corresponding to McMullen’s game is contained within the
statement of Theorem 11. Broadly speaking, Theorems 11 & 12 demonstrate that the prop-
erty of being a Cantor-winning set is weaker than the property of being a k-dimensionally
absolute winning set (for any given k ∈ {0, 1, . . . , N − 1}). However, this weakening does not
come at the cost of losing properties (W1) - (W3).

5.3 Proof of Theorems 11 & 12

5.3.1 Preliminaries

In order to present our proofs we first require some terminology. For consistency we use the
notation originally introduced in [27]. Additionally, for k = 0, 1, . . . , N − 1 let Hk denote the
set of all affine k-dimensional hyperplanes in RN .

In each of the k-dimensionally absolute winning games (including McMullen’s game on a
metric space X), a set E is (k-dimensionally) absolute winning if however we choose to place
Bob’s balls Bi Alice has a ‘strategy’ for placing her moves Ai so that the set

⋂

iBi intersects E.
Formally, a strategy F := (f1, f2, . . .) is a sequence of functions fi : B(X)i → Hk×R>0. Given
a fixed parameter β, we say a strategy F is legal for the (k-dimensional) β-absolute game if it
satisfies the following property for any finite sequence (b1, . . . , bn) of balls, any hyperplane h,
and any s ∈ R>0:

if fn(b1, . . . , bn) = (h, s), then s ≤ β · rad(bn). (22)

For (h, s) ∈ Hk × R>0 denote by g(h, s) := h(s) the standard closed s-neighbourhood of
the hyperplane h. We say F is a winning strategy (for E) with respect to the game with
parameter β if firstly it is legal and secondly if it then determines where Alice should place
her moves Ai := g(fi(B1, B2, . . . , Bi)) in such a way that, however we choose to place Bob’s
balls B1 and Bi+1 ⊂ Bi \Ai (for i ∈ N) in the game, condition (21) holds. It is easily verified
that a set E is (k-dimensionally) β-absolute winning if and only if there exists a winning
strategy for E with respect to the (k-dimensionally) β-absolute game.

The following key observation made by Schmidt in [27] (his Theorem 7) allows us to
significantly simplify our notation: In any of the above games, the existence of a winning
strategy for a set E guarantees the existence of a ‘positional’ winning strategy for E. We
say a winning strategy F := (f1, f2, . . .) is positional if each function fi depends only upon
the ball in its final component; that is, the placement of each of Alice’s moves in the winning
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strategy depends only upon the position of Bob’s immediately preceding ball, not on the
entirety of the game so far. For this reason, if the ball b appears as Bob’s n-th move during
gameplay then we will without loss of generality write g(fn(b)) to denote Alice’s subsequent
move as determined by the strategy F .

As a final piece of terminology from [27], given a target set E we refer to a se-
quence (B1, B2, . . .) of balls as an F -chain if it consists of the moves Bob has made dur-
ing a (k-dimensional) β-absolute game in which Alice has followed the winning strategy F
for E. By definition we must have (21) holds for this sequence. Furthermore, we say a finite
sequence (B1, B2, . . . Bn) is an Fn-chain if there exist Bn+1, Bn+2, . . . for which the infinite
sequence (B1, B2, . . . Bn, Bn+1 . . .) is an F -chain.

5.3.2 Proof of Theorem 11

Recall that for any non-trivial splitting structure satisfying condition (S4) the quantity u0 ∈
U is defined to be the smallest number such that f(u0) > C(X). By assumption our set
E ⊂ X is β-absolute winning for every β < γ(X) := (5u0)−1. Fix some ball B ∈ B(X) and
ǫ ∈ (0, 1), and let R1 ∈ U be the smallest integer for which 5u0 < R1. Next, choose R2 ∈ U
large enough so that for any R ∈ U with R ≥ R2 we have f(R)(1−ǫ) ≥ C(X). This is always
possible for a non-trivial splitting structure by Corollary 1 and the multiplicativity of f . Now
set Rǫ := max(R1, R2). To prove the theorem it suffices to construct for each R ∈ U with
R ≥ Rǫ a local Cantor set LK(B,R, s) lying inside E for which sn ≤ f(R)(1−ǫ).

Fix some R ∈ U satisfying R ≥ Rǫ. Our method for constructing the set LK(B,R, s) is
as follows. We play as Bob in an iteration of McMullen’s game with parameter β = 1/R.
By assumption the set E is (1/R)-absolute winning and so there exists a winning strategy F
for E with respect to this game. Here, we have H0 = X and so {g(h, s) : (h, s) ∈ X × R>0}
coincides with the set of all closed balls B(X) in X.

Assume that Bob plays his first ball in position B1 = B and allow the strategy F =
(f1, f2, . . .) to determine Alice’s first ball A1 := g(f1(B)). Consider the set S(B,R). Since
by (22) we have rad(A1) ≤ 1

Rrad(B) = rad(b) for every b ∈ S(B,R), the ball A1 may intersect
at most C(X) balls from the collection S(B,R).

The construction of the local Cantor set LK(B,R, s) comprises the construction of sub-
collections Bi ⊂ S(B,Ri) and a sequence s = (sn)n∈Z>0

. As a first step in this procedure,
define B0 := {B} and

B1 := {b ∈ S(B,R) : g(f1(B)) ∩ b = ∅} .
Upon setting s0 := #(S(B,R) \ B1) we have s0 ≤ C(X) ≤ f(R)(1−ǫ) as required. Further-
more, any ball B2 ∈ B1 is a legal choice for Bob’s next move in the game; i.e., the finite
sequence (B,B2) is an F2-chain for any B2 ∈ B1.

Assume now that for some n ∈ N we have constructed the collections Bi and defined the
values si−1 for i = 1, . . . , n. Assume also that these collections satisfy the property that for
every b ∈ Bi we have g(fi(b

′)) ∩ b = ∅, where b′ is the unique ball in the collection Bi−1

containing b. It is immediate that any finite sequence (B1, . . . Bn+1) with Bi ∈ Bi−1 is an
Fn+1-chain. We construct the collection Bn+1 in the following way. Simply notice that for
any b′ ∈ Bn the ball g(fn+1(b′) may, by (22) and condition (S4), intersect at most C(X) of
the balls from the collection S(b′, R). Indeed, for b′ ∈ Bn let

Bb′

n+1 :=
{

b ∈ S(b′, R) : g(fn+1(b′)) ∩ b = ∅
}

,

and set
Bn+1 :=

⋃

b′∈Bn

Bb′
n+1 and sn := max

b′∈Bn

#
(

S(b′, R) \ Bb′
n+1

)

.
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Then, it follows that sn ≤ C(X) ≤ f(R)(1−ǫ) and by definition that for every b ∈ Bn+1

we have g(fn+1(b′)) ∩ b = ∅, where b′ is the unique ball in the collection Bn containing b.
Furthermore, if (B1, . . . Bn+1) with Bi ∈ Bi−1 is an Fn+1-chain then (B1, . . . Bn+1, b) is an
Fn+2-chain for any b ∈ Bn+1. This completes the inductive procedure.

Upon defining

LK(B,R, s) : =
⋂

i∈Z≥0

⋃

b∈Bi

b,

it only remains to show that LK(B,R, s) ⊆ E. With this in mind, choose some point
x ∈ LK(B,R, s) and let s = (bi)i∈N with bi ∈ Bi−1 be a sequence of balls for which

⋂

i∈N bi = x.
By construction, we have ensured that each finite subsequence (b1, . . . , bn) is an Fn-chain.
Moreover, it is readily verified that if (b1, b2, . . .) is a sequence of balls such that for every
n ∈ N the finite sequence (b1, . . . bn) is an Fn-chain, then (b1, b2, . . .) is an F -chain (c.f. [27,
Lemma 1]). It follows that condition (21) holds and, since rad(bi) → 0 as i → ∞ implies the
intersection x =

⋂

i∈N bi is a single point, that x ∈ E as required.

Finally, by the fact that the initial ball B and the quantity ǫ ∈ (0, 1) were arbitrary it
follows that the set E is 1-Cantor-winning.

5.3.3 Proof of Theorem 12

The proof follows very similar arguments to those in the proof of Theorem 11. For this reason
we only outline the modifications required. The key observation is that, given any box B of
sidelength diam(B) in RN and any R ∈ N, the rectangular neighbourhood

L(rad(B)/R) =

{

x ∈ RN : inf
y ∈L

|x− y|∞ <
rad(B)

R

}

of any k-dimensional hyperplane L passing through B may intersect at most c(k,N) · Rk of
the boxes b ∈ S(B,R). Here, the quantity c(k,N) ∈ R>0 is an absolute constant depending
only upon k and N .

Suppose the set E ⊂ RN is k-dimensionally absolute winning. Fix some box B ⊂ RN and
some ǫ ∈ (0, (N − k)/N). Next, choose Rǫ > 3 large enough so that for any R ≥ Rǫ we have
RN(1−ǫ) ≥ c(k,N) ·Rk. This is always possibly since

1 − ǫ > 1 − N − k

N
=

k

N
.

Fix some R ≥ Rǫ and set consider a β-absolute game with β = 1/R. By assumption there
exists a winning strategy F = (f1, f2, . . . , ) associated with the parameter β and the set E.
Let Bob initially play the box B1 := B and set B0 := {B}. As in the proof of Theorem 11 one
must construct collections Bn ∈ S(B,Rn) and a sequence s = (si)i∈N in an iterative fashion
in order to define some local Cantor set LK(B,R, s). Given n ≥ 0, for every box b ∈ Bn

played by Bob during gameplay the strategy F determines the position and a neighbourhood
of a k-dimensional affine hyperplane instructing Alice where to play her next move. By the
above observation any such neighbourhood may intersect at most c(k,N) · Rk boxes from
the collection S(b,R). Following exactly the method of Theorem 11 one may analogously
construct the required collections

Bb′
n+1 := {b ∈ S(b′, R) : g(fn+1(b′)) ∩ b = ∅} for b′ ∈ Bn and Bn+1 :=

⋃

b′∈Bn

Bb′
n .

Furthermore, we may choose sn := c(k,N) · Rk ≤ RN(1−ǫ) as required. As before, since F is
a winning strategy it is ensured that the resulting local (B,R, s)-Cantor set falls inside E.
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6 Generalized badly approximable sets

In [21] the authors introduced a broad notion of badly approximable sets. We now discuss
how their setup is related to ours, and more importantly, how we are able to generalise their
results. We begin by giving a brief outline of the framework outlined in [21], tailored to our
needs.

Let X be a complete metric space (with metric d) and let R be a family of subsets
R := {Rα ⊂ X : α ∈ S} indexed by an infinite countable set S. In most of the applications
we will discuss, the subsets Rα will consist simply of points in X. The subsets Rα will be
referred to as resonant sets. We attach a ‘weight’ to each resonant set by introducing a
function h : S → R>0. For convenience we will always assume that h is bounded above by
some absolute constant; in other words, there exists a constant C > 0 such that for every
α ∈ S we have h(α) 6 C. Next, for any set R ⊂ X, let

∆(R, δ) := {x ∈ X : d(x, R) 6 δ}

denote the δ-neighbourhood of R. Finally, we say a set of the form

Bad(R, h) := {x ∈ X : ∃c > 0,∀α ∈ S, x 6∈ ∆(Rα, c · h(α))}.

is a generalised bad set.

Remark. Our definition slightly differs to that given in [21]. For simplicity we have
combined the two functions βα and ρ present in [21] into one function h. With reference to
the notation of [21], if we take βα = (h(α))−1, ρ(x) = x−1 and Ω = X then Bad∗(R, β, ρ)
defined in [21] is precisely our set Bad(R, h). Furthermore, since there is a bijection between
S and our sequences R, in applications we will often use the notation h(R) for R ∈ R instead
of h(α).

The following all provide basic examples of generalised bad sets:

• The standard set Bad of badly approximable numbers. In this case an easy inspection
shows that Bad = Bad(R, h) where R consists of rational points and h(p/q) := 1/q2

for every p ∈ Z, q ∈ N, gcd(p, q) = 1.

• The set BadN of badly approximable points in RN (see subsection 1.2 for precise
definition). Again one can check that BadN is a generalised bad set for

R = {p/q : p ∈ ZN , q ∈ N, gcd(p1, . . . , pN , q) = 1}

and h(p/q) = q−1−1/N .

• The set Badp := Badp(1) of p-adically badly approximable numbers as defined in (5).
The implicit inequality in the definition of Badp is clearly satisfied for q = 0. We
can also without loss of generality assume that gcd(q, r) = 1. Then, by dividing both
sides of the inequality in (5) by |q|p one can check that it is a generalised bad set for
R = Q ⊂ Qp and

h(r/q) = (max{|r|2, |q|2} · |q|p)−1.

In [21] the authors give quite general conditions on R and h which guarantee that a
generalised bad set Bad(R, h) has full Hausdorff dimension. Namely they prove the following.

Theorem KTV (Theorem 1 in [21]). Let X support a measure m for which there exist
strictly positive constants δ and r0 such that for any x ∈ X and r 6 r0,

arδ 6 m(B(x, r)) 6 brδ, (23)
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where 0 < a 6 1 6 b are constants independent of the ball. Define J(n) := {α ∈ J : Rn−1 6

(h(α))−1 < Rn}.

Assume that for R large enough there exists θ ∈ R+ so that for n > 1 and any ball
Bn = B(x, h(Rn)) there exists a collection C(θBn) of disjoint balls such that

∀Bn+1 ∈ C(θBn), rad(Bn+1) = 2θh(Rn+1); Bn+1 ⊂ B(x, θh(Rn));

#C(θBn) > κ1R
δ

and

#{Bn+1 ∈ C(θBn) : ∃α ∈ J(n + 1) s.t. cent(Bn+1) ∈ ∆(Rα, 2θh(Rn+1))} 6 κ2R
δ,

where 0 < κ2 < κ1 are absolute constants independent of k and n. Furthermore, suppose that
dim(∪α∈JRα) < δ. Then, dim(R, h) = δ = dimX.

This theorem provides the Hausdorff dimension for Bad(R, h) in a wide ranging setup in
which relatively mild (but rather technical) conditions on R,X and m are assumed. However,
we show that some sets Bad(R, h) which do not satisfy certain conditions of Theorem KTV
can still be shown to satisfy properties (W1) – (W3), as do many sets which do fall within the
scope of [21]. In this sense our framework is more far reaching than that presented in [21].
On the other hand, in order to do this we will need to impose slightly more structure on the
balls Bn and classes C(θBn), which in turn makes some of our conditions slightly stronger
than those imposed in Theorem KTV.

Observe that one may consider the sets Bad(R, h) as the set of points surviving after
the removal of every neighborhood ∆(Rα, c · h(α)) from X. On adopting this point of view
one may appreciate the similarity between general bad sets and generalized Cantor sets. To
further illustrate this connection we now provide an algorithm, which will be referred as a
bad to Cantor set construction, demonstrating that the intersection of every generalised bad
set Bad(R, h) with any set A∞(B) contains some generalized Cantor set K(B,R, r).

Bad to Cantor Set Construction:

1. Fix R large enough and choose c small enough such that

sup
α

{c · h(α)} 6 diam(B) ·R−1. (24)

This can be done since h(α) is always bounded above by an absolute constant.

2. Split the collection R into classes C(n), for n ∈ N, in the following way. Let

C(n) := {Rα ∈ R : diam(B)R−n−1 < c · h(α) 6 diam(B)R−n}. (25)

3. Define K0 := {B}. This constitutes the 0’th layer for generalized Cantor construction.

4. On step n (n ∈ N) we start with a collection Kn−1 of balls. Define

Ln :=
⋃

b∈Kn−1

S(b,R).

Then, remove every ball from Ln that intersects ∆(Rα, c · h(α)) for at least one Rα ∈
C(n). Denote by Kn the collection balls that survive.
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5. Finally, construct

K∞ = K∞(R) :=

∞
⋂

n=0

⋃

B∈Kn

B.

By the construction K∞ is surely (B,R, r)-Cantor for some parameter r. At the moment
we do not have any restrictions on the values of r, so theoretically rn,n could equal R and
K∞ = ∅. We must impose some conditions on a pair (R, h) in order to produce non-trivial
generalized Cantor sets. Note that K∞ can be constructed for all (sufficiently large) values R.

Assume next that every class C(n) can be further split into subclasses C(n,m), 1 6 m 6 n
such that for every ball b ∈ Kn−m we have

#{D ∈ S(b,Rm) ∩ Ln : ∃Rα ∈ C(n,m), D ∩ ∆(Rα, c · h(α)) 6= ∅} ≪ f(R)m(1−ǫ0), (26)

where 0 < ǫ0 < 1 is some absolute constant. Then, one can make Step 4 of the above
algorithm more specific:

4.1. Remove every ball from Ln which intersects with ∆(Rα, c · h(α)) for at least one Rα ∈
C(n, 1). By (26) it will remove at most C1f(R)1−ǫ0 balls from each set S(b,R), b ∈
Kn−1. Here C1 is some absolute positive constant.

4.m. (for 1 < m 6 n). In general, for each m ∈ {2, . . . , n} remove every ball from Ln that
intersects ∆(Rα, c · h(α)) for at least one Rα ∈ C(n,m). By (26) this process will
remove at most C1f(R)m(1−ǫ0) balls from each set S(b,Rm), b ∈ Kn−m.

This updated procedure ensures that K∞ is a (B,R, r)-Cantor set with rm,n satisfying (19)
for every ǫ < ǫ0 and R large enough.

Finally, we establish that each set K∞(R) produced using the bad to Cantor construction
lies inside Bad(R, h). By the construction of each Kn we have

∆(Rα, c · h(α)) ∩
m
⋂

n=0

⋃

B∈Kn

B = ∅

for every Rα ∈ ⋃m
n=1C(n). By letting m tend to infinity we find K∞(R) ⊂ Bad(R, h).

In other words for each R large enough there exists a (B,R, r)-Cantor subset K∞(R) of
Bad(R, h) with rm,n satisfying (19). This in turn implies that Bad(R, h) is ǫ0-Cantor win-
ning.

To summarize, we have proved the following theorem.

Theorem 13. Let (X,S, U, f) be a splitting structure on X and Bad(R, h) ⊂ X be a gen-
eralized bad set. If Bad(R, h) adopts a bad to Cantor set construction with Condition (26)
satisfied for some ǫ0 > 0 and some B ∈ B(x) then it is ǫ0-Cantor-winning on B. In particular
if X satisfies property (S4) then

dim(Bad(R, h) ∩A∞(B)) = dimA∞(B).

Moreover, if the former conditions are satisfied for any ball B ∈ B(X) and fixed ǫ0 > 0
then Bad(R, h) is ǫ0-Cantor-winning. If additionally X satisfies Property (S5) and for any
B ∈ B(x) we have A∞(B) = B then for any bi-Lipshitz homeomorphism φ : X → X,
φ(Bad(R, h)) is also ǫ0-Cantor-winning.

Theorem 13 is in some sense quite cumbersome. One needs to go through the whole
bad to Cantor set construction in order to check its conditions. In particular, one needs to
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construct the sets Kn and Ln. However, via a minor sacrifice in generality one can improve
the accessibility of Theorem 13 and make it independent of any particular bad to Cantor
set construction. Moreover, one can ensure the conditions are independent on the particular
splitting structure. This potentially provides the means to simultaneously establish a Cantor-
winning property of a set Bad(R, h) for various splitting structures (X,S, U, f) of the metric
space X.

We first require some further notation. For some R and c satisfying (24), assume we are
given a class C(n) defined by (25) and a collection of subclasses C(n,m) for 1 6 m 6 n. For
any ball b ∈ B(X) let qn,m(b) denote the maximum number of balls D ⊂ b of radius rad(b)R−m

such that they may intersect only on their boundaries and there exists Rα ∈ C(n,m) satisfying
D ∩ ∆(Rα, c · h(α)) 6= ∅. Then, define

qn,m := sup{qn,m(b) : b ∈ B(X), rad(b) = rad(B)Rm−n}.

We may now introduce our simplification of Theorem 13.

Corollary (C1). Fix B ∈ B(X) and let the parameters R and c satisfy (24). Also, assume
that for n ∈ N we have classes C(n) defined by (25), each associated with a collection of
subclasses C(n,m) for 1 6 m 6 n. If for all pairs m,n and for some ǫ > 0 a splitting
structure (X,S, U, f) satisfies qn,m 6 Rm(1−ǫ), then Bad(R, h) is ǫ-Cantor-winning on B
with respect to (X,S, U, f). In particular, we have

dim(Bad(R, h) ∩A∞(B)) = dimA∞(B).

Proof. We must simply apply the bad to Cantor set construction. Every ball b in Kn−m has
radius rad(b) = rad(B) · Rm−n and all balls in S(b,Rm) ∩ Ln are disjoint and have radius
rad(b)R−m. Therefore, the expression on l.h.s. of (26) does not exceed qn,m(b). In turn, this
is at most qn,m. Finally, the inequality qn,m 6 Rm(1−ǫ) assures that (26) is satisfied and so
Theorem 13 can be readily applied.

As a conclusion, Theorem 13 and its corollary suggest the following procedure to check
the Cantor-winning property for a given set Bad(R, h).

• Take any large enough R ∈ N and a small fixed c > 0 in such a way that (24) is satisfied.

• Construct the classes C(n) defined by (25). This constitutes a more or less straightfor-
ward task. Then, split each C(n) into suitable subclasses C(n,m). This often proves
trickier. For ‘classical’ sets Bad(R, h) it is often sufficient to take C(n, 1) := C(n) and
C(n,m) := ∅ for m > 2. However, for various more ‘modern’ badly approximable sets
more care is needed in the dividing process.

• Compute an upper estimate for qn,m; i.e., for each small ball b of radius rad(B)R−n+m

consider the set
⋃

Rα∈C(n,m)

∆(Rα, c · h(α)) ∩ b

and estimate the number of disjoint balls of smaller radius rad(B)R−n that may inter-
sect this set.

• If this estimate is tight enough so that qn,m ≪ f(R)m(1−ǫ) then for the splitting structure
(X,S, U, f) the set Bad(R, h) is ǫ-Cantor-winning.
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We give examples of how this procedure may be implemented for various badly approx-
imable sets in the next section. Beforehand, we conclude this section with a treatment of the
special case that R consists only of points. Here, every ∆(Rα, c · h(α)) is simply a ball of
radius c · h(α) and the conditions one must check to establish the Cantor-winning property
of a set become even simpler.

By the definition of class C(n), for each Rα ∈ C(n) and for each ball D of radius rad(D) =
rad(B)R−n one has

rad(∆(Rα, c · h(α))) 6 rad(D).

Therefore, if X satisfies condition (S4) then the ball ∆(Rα, c · h(α)) can intersect at most
C(X) such disjoint balls D of radius rad(B)R−n. Hence we have qn,m(b) 6 C(X)q̃n,m(b)
where

q̃n,m(b) := #{Rα ∈ C(n,m) : b ∩ ∆(Rα, c · h(α)) 6= ∅}, (27)

and let
q̃n,m := sup{q̃n,m(b) : b ∈ B(X), rad(b) = rad(B)Rm−n}.

We have proved the following corollary.

Corollary (C2). Fix B ∈ B(X) and let the parameters R and c satisfy (24). Also, assume
that for n ∈ N we have classes C(n) defined by (25), each associated with a collection of
subclasses C(n,m) for 1 6 m 6 n. If for all pairs m,n and for some ǫ > 0 a splitting
structure (X,S, U, f) satisfies q̃n,m 6 Rm(1−ǫ) then Bad(R, h) is ǫ-Cantor-winning on B
with respect to (X,S, U, f).

The values q̃n,m(b) are usually easier to compute than qn,m(b). However, in some cases
q̃n,m may become much larger than qn,m and so Corollary C2 will not be applicable. In
that case, we will have to appeal to Corollary C1. As an example, we will encounter this
phenomenon when we consider the standard set BadN and the p-adic set Badp(N) in the
following section. The conditions in both Corollaries C1 & C2 should be compared with the
conditions required in Theorem KTV

7 Applications

7.1 Classical badly approximable points

We start this section with the model example of classical set BadN of N -dimensional badly
approximable points and describe how one can show it is Cantor-winning. As previously
mentioned the set BadN can be written in the form of a generalized bad set with

R = {p/q : p ∈ ZN , q ∈ N, gcd(p1, . . . , pN , q) = 1}

and h(p/q) = q−1−1/N . Let B be the unit box B = [0, 1]N . Next, choose an arbitrarily
large R and a real number c such that c−1 > N

√
N !3R2 (since h(p/q) 6 1 the condition

supα(c · h(α)) 6 1 is satisfied). It follows that

C(n) := {p/q ∈ R : cRn
6 q1+1/N < cRn+1}. (28)

Now, fix a ball b of rad(b) = R−n+1. If ∆(Rα, c · h(α)) intersects b then we have

d(cent(b), Rα) 6 rad(b) + c · h(α) < 3/2R−n+1.

In other words, every element Rα ∈ C(n) for which the neighbourhood ∆(Rα, c · h(α))
intersects b must lie inside a ball of diameter 3R−n+1 centred at cent(b).
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Assume that there are at least N+1 points Ra1 , . . . , RαN+1
such that their neighbourhoods

∆(Rαi
, c · h(αi)) intersect b. We compute the volume of the simplex with vertices at points

Rα1 , . . . , RαN+1
. On one hand this volume must be less than 3NR−N(n−1) since every vertex

lies inside some box of side length 3R−n+1. On the other hand the volume is either zero or
is bounded below by (N ! · q1q2 · · · qN+1)

−1 where Rαi
= pi/qi. By (28) we have

1

N !
(q1q2 · · · qN+1)

−1
>

1

N !
c−NR−N(n+1) > 3NR−N(n−1),

which is impossible. Therefore, the area of the simplex must be zero; in other words, all
points Rα1 , . . . , RαN+1

must lie on some (N − 1)-dimensional affine hyperplane in RN . If
there are less than N + 1 points Rα ∈ C(n) with ∆(Rα, c · h(α)) ∩ b 6= ∅ then we can easily
find a hyperplane containing all of them.

The upshot is that for each b of radius R−n+1 there exists a hyperplane Hb which contains
all the points Rα ∈ C(n) such that ∆(Rα, c · h(α)) ∩ b 6= ∅. Thus, define C(n, 1) := C(n) and
for 2 6 m 6 n, C(n,m) := ∅ and consider the set

Eb := {E ∈ B(Rk) : E ⊂ b, rad(E) = R−n, ∃Rα ∈ C(n), E ∩ ∆(Rα, c · h(α)) 6= ∅}.

It follows that every E ∈ Eb must intersect the c ·h(α)-neighbourhood of Hb. By construction
we have that qn,m(b) represents the maximal number of disjoint balls in Eb. The definition of
C(n) yields that c ·h(α) 6 R−n, and so qn,1(b) ≪ RN−1. Furthermore, we have qn,1 ≪ RN−1.
Note that for m > 2, the value of qn,m is surely zero.

Consider an arbitrary splitting structure (RN ,S, U, f). By Corollary 1, if d =
dimA∞(B) > N − 1 then f(R) = Rd and

qn,1 ≪ f(R)
N−1

d = f(R)1−
d−N+1

d .

This verifies the conditions of Corollary C1 for ǫ = d−N+1
d and therefore BadN is d−N+1

d -
Cantor-winning for (RN ,S, U, f). In particular for the canonical splitting structure of RN ,
BadN is 1/N -Cantor winning. This straightforwardly implies the following proposition.

Proposition 2. The set BadN has full Hausdorff dimension; i.e., dimBadN = N . More-
over, if for some splitting structure of RN one has dimA∞(B) > N − 1 then

dim(BadN ∩A∞(B)) = dimA∞(B).

For a large collection of sets A∞(B) this result is not new. For example for A∞(B) = B
this is simply the classical Jarnik theorem. Many other cases are covered by the general
framework in [21, Theorem 8] discussed in the previous section. However, a construction of
Cantor-winning sets for more complicated generalized bad sets provides the answers to some
open problems.

7.2 p-adically badly approximable numbers

In this subsection we demonstrate that our broad framework allows us to prove new results
in spaces different to RN . To be precise, we consider the set Badp(N) of p-adically badly
approximable vectors.

Theorem 14. The set Badp(N) is d−N+1
d -Cantor-winning on any given ball B ∈ B(ZN

p ) for

any non-trivial splitting structure of ZN
p satisfying d = dimA∞(B) > N − 1. In particular,

the set Badp(N) is 1
N -Cantor-winning with respect to the canonical splitting structure of ZN

p

induced from QN
p .
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In particular, for the canonical splitting structure of ZN
p Theorem 14 shows that the

set Badp(N) has maximal Hausdorff dimension N , reproducing the results of [2] and [21].
However, to the best of the authors’ knowledge, no winning-type results for Badp(N) was
previously known.

Proof. Note that the radius of any ball in QN
p is an integer power of p. Therefore without loss

of generality we will assume that in the proof the parameter R is always an integer power of p.
Recall that ZN

p comes equipped with a normalized Haar measure m such that the measure

of each ball b is m(b) = (rad(b))N .

As discussed earlier, one can readily verify that the set Badp(N) is a generalised badly
approximable set with

R = {r/q ∈ ZN
p : r = (r1, . . . , rN ) ∈ ZN , q ∈ N}

and h(r/q) = (max{|r1|, . . . , |rN |, |q|})−
N+1
N · |q|−1

p . For simplicity we provide the proof for the

particular ball B = ZN
p , the proof for other balls follow the same arguments. We therefore

assume from here on that diam(B) = 1 and that q is always coprime with p which simplifies
the formula for the height:

h(r/q) = (max{|r1|, . . . , |rN |, |q|})−
N+1
N .

Choose an arbitrarily large R, which is a power of p, and a sufficiently small c to be specified
later. It follows that

C(n) = {r/q ∈ R : c−1R−n−1 < h(r/q) 6 c−1R−n}.

Now, fix a ball b of rad(b) = R−n+1. If for some r/q ∈ C(n) the neighbourhood ∆(r/q, c ·
h(r/q)) intersects b, then since c · h(r/q) < R−n+1 it follows from the ultra-metric inequality
that this neighbourhood must in fact be contained in b. In other words, every element
r/q ∈ C(n) for which ∆(r/q, c · h(r/q)) intersects b must lie inside b.

Assume as in §7.1 that there are at least N + 1 points r(1)/q(1), . . . , r(N+1)/q(N+1) not all
lying on some (N −1)-dimensional affine subspace of ZN

p and such that their neighbourhoods

∆(r(i)/q(i), c · h(r(i)/q(i))) all intersect b. These N + 1 points therefore span a p-adic simplex
in ZN

p contained in b. Furthermore, by Lutz [22] the Haar measure of this simplex is non-zero
and bounded below by

c1 ·

∣
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(1)
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∣

∣

∣

∣

p

, (29)

where c1 > 0 is some absolute constant depending only upon N . It is easy to check using
the definitions of C(n) and the height function h that the above determinant takes the form
of a non-zero rational number M/Q with denominator Q =

∏N+1
i=1 q(i) and numerator M

satisfying

|M | <
(

c
N

N+1R
(n+1)N
N+1 ·

)N+1

· #SN+1 ≤ (N + 1)! · cN · R(n+1)N ,

where SN+1 is the symmetric group on N + 1 symbols. Indeed, since we are assuming
|q(i)|p = 1 for i = 1, . . . , N + 1 it follows that |Q|p = 1 and so the quantity (29) is bounded
below by

c1 · |M |p > c1|M |−1 >
c1

(N + 1)! · cN ·R(n+1)N
.

31



Taking c 6 N
√

((N + 1)!)−1 · c1 · R−2 we reach a contradiction since the of the ball b, which
contains the simplex, equals R−(n−1)N . Moreover, it is easy to see that criterion (24) is
satisfied for this choice so long as R is sufficiently large.

We deduce that all of the points r(1)/q(1), . . . , r(N+1)/q(N+1) must lie on some (N − 1)-
dimensional affine hyperplane in ZN

p . If there are less than N + 1 points r/q ∈ C(n) with
∆(r/q, c · h(r/q)) ∩ b 6= ∅ then we can easily find a hyperplane containing all of them.
Thus, setting C(n, 1) := C(n) and C(n,m) := ∅ for 2 6 m 6 n, it follows from geometric
arguments analogous to those exhibited in §7.1 that qn,1(b) ≪ RN−1. Furthermore, we have
qn,1 ≪ RN−1 and for m > 2 that qn,m = 0. As before, this is enough to show that for any non-
trivial splitting structure on ZN

p with d = dimA∞(B) > N−1 the conditions of Corollary C1

are satisfied with ǫ = d−N+1
d . Therefore, the set Badp(N) is d−N+1

d -Cantor-winning on the
ball B.

7.3 The mixed Littlewood conjecture and the behavior of the Lagrange

constant for multiples of a fixed irrational number

Recall that the Lagrange constant c(α) of an irrational number α is defined as the quantity

c(α) := lim inf
q→∞

q · ||qα||.

Obviously, c(α) > 0 if and only if α ∈ Bad. On the other hand, a classical theorem of
Dirichlet in the theory of Diophantine approximation implies that c(α) cannot exceed 1. In
recent years there has been a surge of interest in investigating the behaviour of the Lagrange
constant of multiples of α; that is, the behaviour of the sequence of real numbers c(nα) for
n ∈ N.

By denoting q′ = qn one can easily observe that

lim inf
q→∞

qn · ||qα|| > lim inf
q′→∞

q′ · ||q′nα|| = 1/n · lim inf
q′→∞

q′n · ||q′nα||,

which in turn shows that for any positive integer n and any badly approximable α we always
have

c(α)

n
6 c(nα) 6 nc(α).

In [5] the authors posed the following problem.

Problem A. Is it true that every badly approximable real number α satisfies

lim
n→∞

c(nα) = 0 ?

By replacing n with powers of a prime number p the answer to this problem is equivalent
to the well known p-adic Littlewood conjecture. It is the belief of the first author that the
answer to Problem A is negative, although at the moment this problem remains open. The
strongest related result currently found in the literature is due to Einsiedler, Fishman &
Shapira [16]. They answered positively a weaker version of Problem A:

Theorem EFS. Every badly approximable real number α satisfies

inf
n>1

c(nα) = 0.
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Using the framework layed out in this paper we can show that there are a multitude of
numbers α ∈ R for which the sequence c(nα) either does not tend to zero or tends to zero as
slow as you wish.

Theorem 15. For any function g : N → R>0 such that limq→∞ g(q) = ∞, the set of real
numbers α ∈ [0, 1] satisfying the inequality

lim sup
k→∞

g(k) · c(kα) > 0

is 1-Cantor-winning for any non-trivial splitting structure of R.

Remark. It was recently pointed out in [12] that this result answers the dimension one
case of the second part Problem 4.4 of Bugeaud’s paper [13].

Proof. For any function g and large parameter R we will provide the sequence (ki)i∈N of
positive integers such that g(ki) · c(kiα) > c for some positive constant c, possibly dependent
on α. Then one can easily see that the set of interest

{α ∈ R : ∃c > 0,∀(i, p, q) ∈ N× Z× N, g(ki) · q · |qkiα− p| > c} (30)

is indeed a generalized bad set with R = {Ri,p,q, = p/kiq : (i, p, q) ∈ N × Z × N} and
h(i, p, q) = (g(ki)kiq

2)−1. The authors do not see a possibility to apply Theorem KTV for
this set Bad(R, h), however we will show that Corollary C2 is applicable.

Consider the ball B = [0, 1], choose an arbitrary large parameter R and take c = R−2.
Then choose the values ki such that g(ki) > Ri−1 for every i ∈ N. We can surely do this
since g(k) → ∞ as k → ∞. Then let

C(n) =

{

p

kiq
∈ R : Rn−2

6 g(ki)kiq
2 < Rn−1

}

.

We split the class C(n) into subclasses in the following way. Set

C(n,m) := {Ri,p,q ∈ C(n) : i = m}.
Then, for any two different values p1/kmq1, p2/kmq2 from the same subclass C(n,m) we have

∣

∣

∣

∣

p1
kmq1

− p2
kmq2

∣

∣

∣

∣

>
1

kmq1q2
>

g(km)

Rn−1
> R−n+m.

The final inequality automatically implies that for any ball b of radius R−n+m we have

#{Rα ∈ C(n,m) : b ∩ ∆(Rα, c · h(α)) 6= ∅} ≪ 1;

or, in other words, in view of (27) we have q̃n,m ≪ 1. Thus, for any non-trivial splitting
structure (X,S, U, f) we have q̃n,m ≪ f(R)1−1, the conditions of Corollary C2 are fulfilled
and so the set Bad(R, h) exhibited in (30) is 1-Cantor-winning.

The proof of Theorem 15 suggests that its statement remains valid even if we make more
restrictive conditions on α.

Theorem 16. Let g be a function as in Theorem 15. Let (ki)i∈N be a sequence such that

lim
i→∞

g(ki+1)

g(ki)
= ∞.

Then the set of α ∈ [0, 1] such that

inf
i∈N

g(ki)c(kiα) > 0 (31)

is 1-Cantor-winning for any non-trivial splitting structure of R.
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Proof. Denote by W the set of α satisfying condition (31) and fix an arbitrary R. Then,
there exists a value i0 = i0(R) such that for every i > i0 one has

g(ki+1)

g(ki)
> R.

Next, as in the previous proof we take B = [0, 1], c = R−2 and k′i := ki0+i (i ∈ N), so the
condition g(k′i) > Ri−1 is satisfied. Next, we split R into classes C(n) and then into C(n,m)
as in the previous proof; that is, let

C(n) =

{

p

kiq
∈ R : Rn−2

6 g(ki)kiq
2 < Rn−1

}

and
C(n,m) := {Ri,p,q ∈ C(n) : i = m}.

Finally, by following the same arguments as in Theorem 15 we deduce that q̃n,m ≪ 1, which in
turn implies that for any non-trivial splitting structure (X,S, U, f) we have q̃n,m ≪ f(R)1−1.
Whence, the set

WR := {α ∈ R : ∃c > 0,∀i ∈ N, g(k′i) · c(k′iα) > c}
is in fact 1-Cantor-winning for any non-trivial splitting structure on R. Finally notice that
for any α ∈ WR,

inf
i∈N

g(ki)c(kiα) = min
16i6i0

{g(ki)c(kiα), inf
j>i0

{g(kj)c(kjα)}} = min
16i6i0

{g(ki)c(kiα), c} > 0

and so each set WR is contained in W . This shows that W , as a supset of 1-Cantor-winning
set, is itself 1-Cantor-winning.

An important application of Theorem 16 is that it can be applied to certain sets related
to the Mixed Littlewood Conjecture introduced in Section 1.1. For a given function g : N →
R>0 and a sequence D = (Dn)n>0 we define the set

MadD(g) := {x ∈ R : lim inf
q→∞

q · g(q) · |q|D · ||qx|| > 0}.

The Mixed Littlewood Conjecture is then precisely the statement that MadD(g) is empty
when g ≡ 1 for any sequence D. Very recently [7], the following result was proven.

Theorem BV. Let D = (22
n
)n∈N. Then, the set MadD(g) has full Hausdorff dimension for

g(q) = log log q · log log log q.

With help of Theorem 16 we show that for a suitably chosen sequences D one may take
even slower growing function g(q) than log log q · log log log q. In fact, one may choose a
function g(q) that grows arbitrarily slowly and MadD(g) is still of full Hausdorff dimension.

Corollary (to Theorem 16). Let g : N → R>0 be a function which monotonically tends to
infinity. Then for every sequence D = (di)i∈N such that

lim
i→∞

g(di+1)

g(di)
= ∞

the set MadD(g) is 1-Cantor-winning.

Unfortunately, the condition g(q) → ∞ is crucial for the proof and so this corollary
does not provide any counterexample to mixed Littlewood conjecture itself. That said, the
first author does believe that the conjecture is indeed false for sufficiently rapidly growing
sequences D.
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Proof. For a given function g we take the sequence (ki)i∈N = {di}i∈N and consider the set
W as in the proof of Theorem 16. It follows that the set W is 1-Cantor-winning. Finally, it
suffices to check that MadD(g) contains W . Indeed, consider α ∈ W and an arbitrary number
q, and let |q|D = k−1

i . This implies that q = kiq
′ and by the definition of the pseudo-norm it

immediately follows that q > ki. Therefore,

g(q) · q · |q|D · ||qα|| > g(q′) · q′ · ||q′ · (kiα)||.

The proof is complete upon application of condition (31).

7.4 The ×a, ×b problem

In his remarkable work [18], Furstenberg showed that if a and b are multiplicatively indepen-
dent positive integer numbers then for every irrational α the set

{anbmα (mod 1) : n,m ∈ N}

is dense in the unit interval. Later, Bourgain, Lindenstrauss, Michel & Venkatesh [10]
achieved a quantitative version of this result, which we formulate in the following way.

Theorem BLMV. Let Σ := {anbm : n,m ∈ Z>0} be a multiplicative semigroup. Then for
each pair a, b of multiplicatively independent integers there exists a positive constant c = c(a, b)
such that the inequality

||qα|| < (log log log q)−c

is satisfied for infinitely many q ∈ Σ.

We will show that there are numbers for which ||qα|| can not be made too small. To be
precise, given a function g : N → R>0 we define

Bad×a,×b(g) := {α ∈ R : ∃c > 0 s.t. ∀q ∈ Σ, ||qα|| > c · (g(q))−1}.

Before stating the theorem we define a modified logarithm function (in order to avoid the
cases when log q = 0). Let

log∗ q :=

{

1, if q < e.
log q, otherwise.

Theorem 17. For any pair a, b of multiplicatively independent positive integers the set
Bad×a,×b(g) ∩ [0, 1] is ǫ

1+ǫ -Cantor-winning for g(q) = (log∗ q)1+ǫ, where ǫ is an arbitrary
positive constant.

Remark. By using similar methods to those used in [7] one can show that for g1(q) =
log∗ q · log∗ log q the set Bad×a,×b(g1) ∩ [0, 1] has in fact full Hausdorff dimension. However,
this would not give us the Cantor winning property for Bad×a,×b(g1).

Proof. As before, we first represent the set Bad×a,×b(g) as a generalized bad set. For this
reason let

R =

{

p

q
; p ∈ N, q ∈ Σ

}

and h(p/q) = (q · g(q))−1. Consider the values

r(q) :=
g(q)

g(q · g(q))
.
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for q ∈ Σ. Obviously one has r(q) < 1, but on the other hand g(q) < q for all q > q0(ǫ). For
these q > q0(ǫ) we have

g(q)

g(q · g(q))
>

g(q)

g(q2)
=

g(q)

21+ǫg(q)
=

1

21+ǫ
.

Therefore, r(q) is bounded from below by a positive constant which depends only on ǫ. Define
constants c1 = c1(ǫ) and c2 = c2(ǫ) such that

c1 := min
q∈N

{1/r(q)}; c2 = max
q∈N

{1/r(q)}.

For sufficiently large R the class C(n) will take the form

C(n) := {p/q ∈ R : cRn
6 q · g(q) < cRn+1},

for some constant c to be specified later. It can be readily verified that C(n) is contained
within the possibly slightly larger class

C∗(n) :=

{

p/q ∈ R :
c1 · cRn

g(cRn)
6 q <

c2 · cRn+1

g(cRn+1)

}

. (32)

Now we split C∗(n) into subclasses C∗(n, s) in the following way (note that these are not the
subclasses C(n,m) from the bad to Cantor set construction). Let

C∗(n, s) := {p/(asbt) ∈ C∗(n) : t ∈ Z>0}.

It is certainly the case that s is bounded below by zero. On the other hand, by (32) we have
that

s log a 6 log
c2c · Rn+1

g(cRn+1)
.

By choosing c small enough we can guarantee that s 6
logR
log a · n − 1. This means that for a

fixed n there are at most logR
log a · n various non-empty classes C∗(n, s).

Next, consider two different elements p1/(asbt1) and p2/(asbt2) from C∗(n, s). We have

∣

∣

∣

p1
asbt1

− p2
asbt2

∣

∣

∣
>

1

asbmax{t1,t2}

(32)
>

g(cRn+1)

c2 · cRn+1
.

By taking c small enough we can guarantee that the distance between two neighbouring
numbers from C∗(n, s) is at least g(Rn)R−n+2ǫ.

For convenience denote k := R2ǫ, and let m be the minimal positive integer satisfying

Rm
> Rk · g(Rn). (33)

Then, it is surely the case that Rm < R2k · g(Rn) and so

(n logR)ǫ >

(

Rm

R2k

)
ǫ

1+ǫ

. (34)

There must exist a natural number n0(R) (or more exactly n0(R, ǫ)) such that for each
n > n0(R) the value m is no larger than n. Again, by choosing c small enough we are able to
guarantee that C(n) = ∅ for all n < n0(R) and therefore can assume here-on that n > n0(R).

Consider any ball b of radius R−n+m. Then,

#{Rα ∈ C∗(n, s) : b ∩ ∆(Rα, c · h(α)) 6= ∅} 6
diam(b)

kg(Rn)R−n
+ 2.
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Since diam(b) = R−n+m, and by the choice of m, the first summand on the r.h.s. is at least
R and therefore for R large enough (namely R > 3) we have that the r.h.s is bounded above
by

2diam(b)

kg(Rn)R−n
.

Now, by collecting all classes C∗(n, s) together we have

#{Rα ∈ C(n) : b ∩ ∆(Rα, c · h(α)) 6= ∅} 6
2Rm

k(n logR)1+ǫ
· n logR

log a

(34)
<

2(R2k)
ǫ

1+ǫ

k log a
Rm(1− ǫ

1+ǫ
) ≪ Rm(1− ǫ

1+ǫ
). (35)

Finally, we are ready to split C(n) into subclasses to finish the proof. Define C(n,m)
to be the empty set for every n < n0(R) and for every m 6= m0 for m0 given by (33). Let
C(n,m0) = C(n). Then, inequality (35) implies that q̃n,m ≪ Rm(1−ǫ/(1+ǫ)) and application
of Corollary C2 yields that the set Bad×a×b(g) is ǫ

1+ǫ -Cantor-winning.

7.5 Further examples

In several recent papers constructions similar to generalized Cantor sets were made inside
other sets falling into the category of generalized bad sets. With a bit of effort one can prove
a Cantor-winning property for the sets in question.

The set of points in Bad(i, j) lying on vertical lines.

Consider the pair (i, j) of non-negative real numbers such that i + j = 1. Let  Lx be a
vertical line passing through the point (x, 0), where x satisfies the condition

lim inf
q→∞

q1/i · ||qx|| > 0. (36)

To proof of Schmidt’s conjecture in [6] the authors essentially applied a generalized Cantor
set construction. To be exact, Theorem 4 and statement (26) from [6] immediately imply the
following.

Proposition BPV. The projection of Bad(i, j) ∩  Lx onto y-axis is ǫ-Cantor-winning for
ǫ = 1

32 (ij)2.

Once Proposition BPV is established one can immediately prove a result concerning the
non-empty intersection of sets Bad(i, j) for various pairs (i, j). This was essentially the
statement of Schmidt’s conjecture.

Theorem BPV. Let ((iα, jα))α∈S be a sequence of pairs of positive real numbers indexed by
a finite or countable set S such that iα + jα = 1. Define

i := inf{iα : α ∈ S} and ǫ := inf

{

1

32
(iαjα)2 : α ∈ S

}

.

Assume that ǫ > 0. Then for every x ∈ R satisfying (36), the projection of

⋂

α∈S

Bad(iα, jα) ∩  Lx

onto y axis is ǫ-Cantor-winning.
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Sets Bad(i1, i2, . . . , iN ) on non-degenerate curves

Later, in [8], the authors demonstrated that a result similar to Theorem BPV holds for
the sets Bad(i, j) ∩ C for any non-degenerate planar curve. Independently [9] Beresnevich
proved more general result in higher dimensions:

Let a curve C be parameterized by a map

f : I → RN ; f ∈ Cn(I),

where I ⊂ R is some interval. We assume that f is non-degenerate at every point on I
or, equivalently, that the Wronskian of f ′

1, . . . , f
′
n is not zero at every point x ∈ I. Let

i1, i2, . . . , iN be positive real numbers such that i1 + . . . + iN = 1. Proposition 3 from [9]
implies the following.

Theorem B. The set
{x ∈ I : f(x) ∈ Bad(i1, . . . , iN )}

is ǫ-Cantor-winning where

ǫ = min

{

(2N)−4,
1 − (1 + min{ik : 1 6 k 6 N})−1

2

}

.

Theorem B immediately gives a positive answer to a problem raised by Davenport: that
there are uncountably many points from Bad(i1, . . . , iN ) on any non-degenerate curve. In
fact, the set of such points has full Hausdorff dimension. Moreover with some effort (see the
section of [9] entitled ‘Theorem 2 implies Theorem 1’) Theorem B implies that the dimen-
sion of points from Bad(i1, . . . , iN ) on any non-degenerate manifold M is of full Hausdorff
dimension; i.e.

dim(Bad(i1, . . . , iN ) ∩M) = dimM.
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