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Robert Moritz, Hervé Rezeau, Maria Ovtcharova, Rodrik Tayan, Rafael
Melkonyan, Samvel Hovakimyan, Vagif Ramazanov, David Selby, Alexey
Ulianov, Massimo Chiaradia, Benita Putlitz

PII: S1342-937X(15)00255-5
DOI: doi: 10.1016/j.gr.2015.10.009
Reference: GR 1535

To appear in: Gondwana Research

Received date: 12 April 2015
Revised date: 22 September 2015
Accepted date: 8 October 2015

Please cite this article as: Moritz, Robert, Rezeau, Hervé, Ovtcharova, Maria, Tayan, Ro-
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Abstract 

The composite Meghri-Ordubad and Bargushat plutons of the Zangezur-Ordubad region in 

the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, 

and host two stages of porphyry Cu-Mo deposits. New high-precision TIMS U-Pb zircon ages 

confirm the magmatic sequence recognized by previous Rb-Sr isochron and whole-rock K-Ar 

dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an 

initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu-Mo 

formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic 

pulse was constrained by U-Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a 

monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse 

yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene 

magmatic evolution broadly coincides with the second porphyry-Cu-Mo ore deposit stage, 

including the major Kadjaran deposit at 26-27 Ma. 

Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support 

a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a 

normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic 

rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene 

rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Ragiogenic 

isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming 

more predominant during the Neogene. Trace element ratio and concentration patterns 

(Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They 

reveal combined amphibole and plagioclase fractionation during the Eocene and the early 

Oligocene, and amphibole fractionation in the absence of plagioclase during the late 

Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening 

of the crust or increasing pressure of magma differentiation. Characteristic trace element and 

isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 
206

Pb/
204

Pb vs. Th/Nb, Th/Nb vs. 
18

O, 

REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas 

Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, 

compositionally modified by subducted sediments. 

A two-stage magmatic and metallogenic evolution is proposed for the Zangezur-Ordubad 

region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with 

extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction 

resulted in the emplacement of small tonnage porphyry Cu-Mo deposits. Subsequent 

Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the 

second porphyry Cu-Mo deposit stage coincided with Arabia-Eurasia collision to post-

collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling 

along translithospheric, transpressional regional faults between the Gondwana-derived South 
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Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric 

mantle, metasomatised by sediment components during the previous Eocene subduction event. 

 

1. Introduction 

The Tethyan orogenic belt was formed during convergence of the African-Arabian and 

Eurasian plates, and included abundant microplates (e.g. Golonka, 2004; Barrier and 

Vrielynck, 2008; Adamia et al., 2011; Rolland et al., 2012). This complex converging system 

resulted in Jurassic-Cretaceous and Paleogene subduction-related magmatism and ore 

formation, followed by various collision to post-orogenic magmatic and ore forming events 

throughout the Cenozoic (e.g. Marchev et al., 2005; Von Quadt et al., 2005; Perelló et al., 

2008; Yigit, 2009; Moritz et al., 2014; Hou et al., 2015; Richards, 2015). 

The Zangezur-Ordubad region of the southernmost Lesser Caucasus, along the Armenian and 

Nakhitchevan borders with Iran (Fig. 1), is a unique location along the Tethyan orogenic belt 

where magmatism remained stationary from an Early Paleogene subduction setting to a 

Neogene post-collision environment, in a place where a Gondwana-derived terrane collided 

with the Eurasian margin (Fig. 2). This resulted in a long-lived, Eocene to Pliocene pulsed 

magmatic system generating the composite Meghri-Ordubad and Bargushat plutons at the 

contact of the Gondwana-derived South Armenian block with the Kapan zone (Fig. 3). With 

an area of about 1400 km
2
, they form the largest pluton cluster along the Lesser Caucasus 

(Karamyan et al., 1974; Tayan et al., 1976; Babazadeh et al., 1990; Melkonyan et al., 2008). 

The composite Meghri-Ordubad and Bargushat plutons are also exceptional because they host 

within a small area several stages of Eocene to Miocene precious and base metal epithermal 

and porphyry Cu-Mo deposits (Bagdasaryan et al., 1969; Babazadeh et al., 1990; Melkonyan 

et al. 2010; Moritz et al., 2013). The evolution and setting of the Zangezur-Ordubad region of 

the southernmost Lesser Caucasus is comparable to the Himalayan setting, where protracted 

Mesozoic to Cenozoic magmatism was also accompanied by pulsed porphyry deposit 

emplacement (e.g. Hou et al., 2015). 

The Lesser Caucasus is a key area to understand the lateral connection of the Western and 

Central Tethyan orogenic and metallogenic belt (Jankovic 1977, 1997; Richards, 2015), 

including the Balkans, Rhodopes and Taurides-Anatolides with the Iranian belts. In particular, 

the Meghri-Ordubad and Bargushat plutons, studied in this contribution in the southernmost 

Lesser Caucasus, constitute the northern extension of the Iranian Alborz and Urumieh-

Dokhtar magmatic and metallogenic belts (Fig. 1). The link of the Lesser Caucasus with the 

later magmatic arcs is still not well understood, as well as the nature of the widespread 

Eocene to recent magmatic activity along the Lesser Caucasus (Sosson et al., 2010).  
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This study is based on a comprehensive lithogeochemical study from the Zangezur-Ordubad 

region, spanning Eocene to Pliocene magmatic rocks, complemented by a whole-rock Sr, Nd, 

Pb and O isotope geochemistry investigation, and high-precision TIMS U-Pb zircon dating of 

selected and representative magmatic events. The new major, trace element, isotope and 

radiometric age data of this study allow us to reconstruct the Eocene to Pliocene magmatic 

evolution and its link to major, pulsed ore formation events in the Zangezur-Ordubad region. 

This evolution is discussed within the Tethyan framework, in particular, with respect to the 

Iranian magmatic belts and the overall geodynamic and metallogenic evolution during the 

final subduction stages of the Neotethys, and the ultimate collision between Arabia and 

Eurasia. 

 

2. Regional Geological Setting 

2.1. Geodynamic setting 

The Lesser Caucasus is a segment of the Tethyan orogenic belt (Fig. 1), and is the 

consequence of north- to northeast-verging Jurassic-Cretaceous subduction of the Neotethys 

beneath the Eurasian plate (Kazmin et al., 1986; Zonenshain and Le Pichon, 1986; Rolland et 

al., 2011), followed by Late Cretaceous collision with the Gondwana-derived South Armenian 

block (Rolland et al., 2009 a, b), and a jump of the active Neotethys subduction zone to the 

southwest of the Turkish Bitlis-Pütürge massif (Kazmin et al., 1986; Zonenshain and Le 

Pichon, 1986; Rolland et al., 2012). East-verging Neotethys subduction and final Cenozoic 

convergence of the Eurasian and Arabian plates resulted in an Eocene magmatic climax, and 

was followed by collisional to post-collisional tectonics and magmatism from the Oligocene 

to the Pliocene (Khain, 1975; Gamkrelidze, 1986; Kazmin et al., 1986; Lordkipnadze et al., 

1989; Sosson et al., 2010). An additional southwest-verging subduction zone of the Neotethys 

beneath the Gondwana-derived South Armenian block during the Middle-Late Jurassic to 

Early Cretaceous is also suggested by Melkonyan et al. (2000) and Hässig et al. (2015). The 

final collision between Arabia and Eurasia is widely debated and interpretations vary from 

Late Cretaceous (Mohajjel and Ferguson, 2000) to Miocene (McQuarrie et al., 2003; Guest et 

al., 2006; Okay et al., 2010). However, a majority of recent contributions favour an Upper 

Eocene-Lower Oligocene age (40-25 Ma) for the initial collision in the Caucasian-Zagros 

region (Vincent et al., 2005; Allen and Armstrong, 2008; Agard et al. 2011; Ballato et al., 

2011; Verdel et al., 2011, McQuarrie and van Hinsberger, 2013). 

Indentation tectonics has shaped the geometry of the Lesser Caucasus (Philip et al., 1989). 

According to paleotectonic maps of the Middle East published by Barrier and Vrielynck 

(2008; Fig. 2), the composite Meghri-Ordubad and Bargushat plutons are located along an 

indenter corner formed during Late Cretaceous collision of the South Armenian block with 
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the Eurasian margin (orange-filled black circle in Fig. 2a). The paleotectonic maps document 

a complex Early Cenozoic subduction geometry with an ~EW-trending subduction zone to the 

south of the Turkish Bitlis-Pütürge massif coexisting and merging with a NW-striking 

subduction zone located along the Iranian Sanandaj-Sirjan block (see BPM and SSB, 

respectively, in Figs 2b-c), before final Arabia-Eurasia collision (Figs 2d-e). 

 

2.2. Tectonic and geologic setting of the Lesser Caucasus 

The Lesser Caucasus consists of three main tectonic elements (Fig. 1), including: the Eurasian 

plate margin, the Sevan-Akera suture zone, and the South Armenian block (Sosson et al., 

2010; Adamia et al., 2011; Eppelbaum and Khesin, 2012). The Eurasian plate margin of the 

Lesser Caucasus is also known as the Transcaucasian microcontinent, and consists of the 

~350 km-long Somkheto-Karabakh belt (Fig. 1) or Bayburt-Karabakh belt; Yilmaz et al., 

2000) and the ~70 km-long Kapan zone or block (Fig. 3a; Gevorkyan and Aslanyan, 1997; 

Mederer et al., 2013). Both tectonic zones have similar geologic and tectonic characteristics 

and are interpreted as a discontinuous Jurassic to Cretaceous calc-alkaline island-arc during 

Neotethyan subduction (Sosson et al., 2010; Adamia et al., 2011), segmented by sublatitudinal 

strike-slip faults (Kazmin et al., 1986; Gabriyelyan et al. 1989; see SSF in Fig.1), and with 

paroxysmal volcanic activity during the Bajocian-Bathonian and the Kimmeridgian (Kazmin 

et al., 1986; Achikgiozyan et al. 1987; Lordkipanidze et al., 1989; Ismet et al., 2003; Mederer 

et al., 2013). Neoproterozoic to Paleozoic metamorphic and granitic basement rocks, covered 

by rare Jurassic sedimentary rocks, are exposed along the Somkheto-Karabagh range in the 

Loki, Khrami, Dzirula, and Akhum-Asrikchai massifs (Baghdasaryan et al., 1978; Shengelia 

et al., 2006; Zakariadze et al., 2007; Mayringer et al., 2011). Significant uplift and denudation 

during the Lower Cretaceous (Sosson et al., 2010) was followed by deposition of Upper 

Cretaceous and Paleogene sedimentary and volcanic rocks (Aslanyan, 1958; Achikgiozyan et 

al. 1987). In the north, the dominantly Upper Cretaceous extremity of the Somkheto-

Karabakh belt within Georgian territory is known as the Artvin-Bolnisi zone (Fig. 1; 

Gamkrelidze, 1986; Yilmaz et al., 2000), and documents progressive northeastward migration 

of magmatism during the Late Cretaceous (Roland et al., 2011). 

The Gondwana-derived South Armenian block is located to the southwest of the Somkheto-

Karabakh belt and the Kapan block (Kazmin et al., 1986; Sosson et al., 2010), and is mainly 

exposed in southwestern Armenia, Nakhitchevan and the Tsaghkuniats (or Miskhana) massif, 

north of Yerevan (Fig. 1; Shengelia et al., 2006; Hässig et al., 2015). This block is also 

known in earlier contributions as South Armenian subplatform (Eppelbaum and Khesin, 

2012), Nakhitchevan-South Armenia (Adamia et al., 2011) and Iran-Afghanian terrane 

(Gamkrelidze, 1997; Gamkrelidze and Shengelia, 2007). It includes the Miskhan-Zangezur, 
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Yerevan-Ordubad, Araks and Paleozoic-Triassic Daralagez tectonic zones described in other 

contributions (e.g. Khain, 1975; Gamkrelidze, 1986; Zonenshain and Le Pichon, 1986; 

Saintot et al., 2006). The Meghri-Ordubad and Bargushat composite plutons investigated in 

this study were emplaced within the Miskhan-Zangezur zone, in the easternmost part of the 

South Armenian block, along the boundary with the Kapan block (Fig. 3a). The South 

Armenian block consists of Proterozoic metamorphic basement rocks, and an incomplete 

succession of Devonian to Jurassic sedimentary and volcanogenic rocks, unconformably 

covered by Cretaceous sedimentary and volcanic rocks (Belov, 1968; Kazmin et al., 1986; 

Sosson et al., 2010). Palaeozoic stratigraphic and lithological characteristics of the South 

Armenian block differ from the ones of the Eurasian margin and support a Gondwanian 

origin  according to Sosson et al. (2010). Palaeomagnetic data indicate the presence of a 2700 

± 600 km wide ocean between both tectonic zones during the Early Jurassic (Bazhenov et al., 

1996; Gamkrelidze and Shengelia, 2007). Barrier and Vrielynck (2008), Sosson et al. (2010), 

and Hässig et al. (2013 a, b, 2015) group the South Armenian block together with the Eastern 

Anatolian platform (e.g. Figs 2a-c), and interpret it as the northeastern part of the Tauride 

microcontinent since the Jurassic. By contrast, Adamia et al. (1981; 2011) include the South 

Armenia terrane together with the Sanandaj-Sirjan zone into the Central Iranian platform 

since the Jurassic, an interpretation which is shared by Golonka (2004) and Alavi (2007).  

The ophiolite sequence of the Sevan-Akera zone outlines the suture zone between the 

Eurasian Somkheto-Karabakh belt and the Gondwana-derived South Armenian block (Fig. 1; 

Galoyan et al., 2009; Rolland et al., 2010; Hässig et al., 2013a). Obduction of the ophiolites 

was dated between 88 and 83 Ma (Galoyan et al., 2007; Rolland et al., 2010), and final 

collision between the Eurasian margin and the South Armenian block at 73-71 Ma (Rolland et 

al., 2009 a, b). The Sevan-Akera ophiolite is correlated with the Izmir-Ankara-Erzincan suture 

zone of northern Anatolia (IAES in Fig. 1; Yilmaz et al., 2000; Hässig et al., 2013b), and with 

ophiolites of the Iranian Zagros range (Fig. 1; Galoyan et al., 2009; Rolland et al., 2009a). 

Evidence for a suture zone is more equivocal in the southernmost Lesser Caucasus between 

the Kapan and the South Armenian blocks, where the composite Meghri-Ordubad and 

Bargushat plutons are located (Fig. 3). The tectonic zone separating both blocks from each 

other is known as Ankhavan-Zangezur fault, and also locally as Khustup-Giratakh fault (Fig 

3). It includes ultramafic rock, gabbro, spilite, andesite and radiolarite of the Zangezur 

tectonic mélange, which is imbricated with Late Precambrian to Early Cambrian metamorphic 

rocks and Devonian and Permian limestone and terrigenous rocks (Belov, 1969; Khain, 1975). 

Knipper and Khain (1980) and Burtman (1994) interpret the Zangezur tectonic mélange as 

remains of an ophiolite. Hässig et al. (2013a) correlate the Zangezur tectonic mélange zone 

with the Sevan-Akera ophiolite, although, relationships are hidden by Cenozoic molasse and 

volcanic rocks (Fig 1; Khain, 1975; Burtman, 1994). 
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2.3. Relationship of Iranian magmatic belts with the southernmost Lesser Caucasus  

The Zangezur-Ordubad region in the southernmost Lesser Caucasus is the merging location of 

the Cenozoic Iranian Urumieh-Dokhtar and Alborz magmatic belts (Figs 1 and 2c). 

Contrasting interpretations prevail about the geodynamic relationships of the Iranian belts. 

Vincent et al. (2005), Ballato et al. (2011), Verdel et al. (2011), Asiabanha and Foden (2012), 

and Chiu et al. (2013) link the Alborz and the Urumieh-Dokhtar magmatic belts to one single 

Neotethyan subduction, with the former being the back-arc and the later the main volcanic arc. 

By contrast, Alavi (2007), Azizi and Jahangiri (2008), Azizi and Moinevaziri (2009), 

Mokhtari et al. (2010) and Aghazadeh et al. (2011) attribute the Urumieh-Dokhtar and Alborz 

arcs to two separate, but parallel subduction zones, located on each side of the northwest-

striking Tabriz-Takestan fault (Fig. 1). According to the later scenario, the western Urumieh-

Dokhtar belt is the product of Neotethys subduction, whereas the eastern magmatic Alborz 

belt is linked to eastward subduction beneath the Alborz-Azerbaijan range of an oceanic plate, 

the remnant of which is the Khoy ophiolite in northwestern Iran (Fig. 1; Hassanipak and 

Mohamad Ghazi, 2000; Ghazi et al., 2003; Juteau, 2004; Khalatbari-Jafari et al., 2006).  

The continuity of the Iranian Cenozoic magmatic ranges into the southernmost Lesser 

Caucasus, where the Meghri-Ordubad and Bargushat plutons are located, is interrupted by the 

northeast-trending, orogeny-transverse and still active Araks strike-slip fault (Figs 1 and 3a; 

Zamani and Masson, 2014). The age of this fault is uncertain (Sosson et al., 2010), and it 

remains unknown whether it is a recent tectonic feature or if it was active before the onset of 

the collision between Eurasia and the South Armenian block (e.g. during the Upper 

Cretaceous, see Fig. 13 in Sosson et al., 2010, and Fig. 8 in Hässig et al., 2013a). Vincent et 

al. (2005) correlate the structures of the southernmost Lesser Caucasus with the ones of the 

Iranian Alborz range along the arcuate Talysh mountains. This interpretation is shared by 

Gamkrelidze (1986), Zonenshain and Le Pichon (1986), and Brunet et al. (2003), who link the 

Yerevan-Ordubad tectonic zone with the Talysh basin along the Caspian Sea (Fig. 1). 

The Talysh range, the Alborz and the Lesser Caucasus underwent similar tectonic evolutions 

during the Cenozoic. The Talysh mountains and the adjoining Alborz range are interpreted as 

back-arc systems during the Eocene, followed by Late Eocene to Early Oligocene basin 

inversion, uplift and transpression attributed to the initiation of the Arabian-Eurasian collision 

(Ismail-Zadeh et al., 1995; Brunet et al., 2003; Vincent et al., 2005; Adamia et al., 2010; 

Ballato et al., 2010; Verdel et al., 2011; Asiabanha and Foden, 2012). In the Lesser Caucasus, 

Paleocene to late-Middle Eocene thick molasse series were deposited in a foreland basin to 

the southwest of the Somkheto-Karabagh belt (Fig. 1), and subsequently underwent late-

Middle Eocene to Miocene shortening, producing northwest-trending folds and thrust belts 

(Sosson et al., 2010). The molasse basin was deformed along thrust and décollement faults, 

with pre-existing normal faults being reactivated as reverse faults (Sosson et al., 2010). 
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3. Tectonic and geological setting of the Zangezur-Ordubad region 

The Zangezur-Ordubad region sites astride on the territories of southern Armenia and 

Nakhitchevan (Fig. 3a). Its eastern boundary along the Kapan block is the northwest-trending, 

dextral strike-slip Khustup-Giratakh fault, which includes the Zangezur tectonic mélange 

(Tayan et al., 1976; Fig. 3). The Zangezur-Ordubad region includes the eastern uplifted 

Zangezur block and the western downthrown Nakhitchevan block, separated from each other 

by the northwest-trending dextral strike-slip Ordubad-Salvard fault (Fig. 3b). The later is a 

segment of the regional Yerevan-Ordubad fracture zone, which is active since the Eocene 

(Aslanyan, 1958; Tayan et al., 1976). 

Devonian, Permian, Jurassic and Lower Cretaceous sedimentary rocks outcrop in the eastern 

part of the Zangezur block (Belov, 1968), and Upper Cretaceous and Paleocene terrigenous 

sedimentary rocks are exposed in both Zangezur and Nakhitchevan blocks (Fig. 3b). An up to 

2.5 km thick sequence of (Paleocene? to) Lower Eocene terrigenous flysch of the Piramsar 

suite is overlain by Middle Eocene terrigenous sedimentary and pyroclastic rocks of the 

Dalichai and Bagatsar suites, and voluminous calc-alkaline to subalkaline basalt, andesite, and 

trachyandesite of the Kaputjugh suite. They are accompanied by sub-volcanic bodies, and are 

predominantly exposed within the uplifted Zangezur block. Upper Eocene to Oligocene 

olivine basalt to andesite of the Geghakar suite are mostly exposed in the downthrown 

Nakhitchevan block, and are overlain by Oligo-Miocene molasse-type rocks, and Mio-

Pliocene sandy carbonate, volcanic and terrigenous rocks of, respectively, the Nor-Arevik, 

Salvard and Sisian suites (Fig. 3b; Djrbashyan et al., 1976; Tayan et al., 1976). 

The composite Meghri-Ordubad and Bargushat plutons intrude pre-Middle Eocene rocks, and 

outcrop predominantly in the uplifted Zangezur block (Fig. 3b), with subordinate intrusions 

exposed in the downthrown Nakhitchevan block. Karamyan et al. (1974) and Tayan et al. 

(1976) recognized successive, pulsed Eocene to Miocene magmatic stages based essentially 

on field relationships and supported by radiometric dating (Fig. 4). Olivine gabbro is 

described as the first magmatic stage with a whole-rock K-Ar age of 41.4 ± 3.5 Ma 

(Ghukasyan, 1966). Two other stages were subdivided into, respectively, gabbro-monzonite-

syenite (alkaline and nepheline-bearing) and gabbro-diorite-granodiorite-syenogranite 

intrusive complexes, yielding Rb-Sr isochron ages between 45.3 ± 3.5 Ma and 38.3 ± 1.0 Ma 

(Ghukasyan et al., 2006; Melkonyan et al., 2008, 2010). A subsequent monzonitic stage was 

dated between 32.7 ± 5.7 and 30.0 ± 0.4 Ma by Rb-Sr isochrons (Ghukasyan et al., 2006; 

Melkonyan et al., 2008). The youngest stage consists of Miocene porphyritic granite-

granodioritic dated at 22.8 ± 2.1 Ma by a Rb-Sr isochron (Melkonyan et al., 2008), and 

includes abundant dike generations, mainly outcropping in the Kadjaran mining district (Fig. 

3b; Harutunyan et al., 2002). Abundant K-Ar mineral separate and whole-rock ages generally 

support the Rb-Sr ages and the successive magmatic pulses (Fig. 4; Melkonyan et al., 2008, 
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2010). Magmatic activity continued during the Pliocene as evidenced by clasts of Pliocene 

Nor-Arevik sedimentary rocks in dacite along the Meghri-Tey graben-synclinal (Tayan, 1998; 

Fig. 3b).  According to Tayan et al. (1976), emplacement of the composite Meghri-Ordubad 

and Bargushat plutons was contemporaneous with progressive uplift of the Zangezur block. 

North-south-, roughly east-west- and southwest-trending faults with both vertical and strike-

slip movements predominate within the Meghri-Ordubad and Bargushat plutons (Fig. 3b; 

Tayan et al., 1976; Tayan, 1984; Hovakimyan and Tayan, 2008; Hovakimyan et al., 2014a, b). 

They are interpreted as Oligocene in age, and were reactivated during the Mio-Pliocene. They 

controlled the formation of Cenozoic volcano-sedimentary basins, the emplacement of 

magmatic rocks, including dikes, and the location of molybdenum, copper and gold deposits 

(Mkrtchyan et al., 1969; Tayan et al., 1976; Tayan, 1998; Hovakimyan and Tayan, 2008; 

Hovakimyan et al., 2014a, b). The central, north-south-trending 3.5 to 4 km-wide Meghri-Tey 

graben-synclinal structure (Tayan et al., 1986, 2005; Tayan, 1998; Hovakimyan and Tayan, 

2008), bordered to the west by the north- to northwest-trending Tashtun fault, controls the 

majority of the ore deposits of the Meghri-Ordubad pluton (Hovakimyan et al., 2014a, b; Fig. 

3b). The present day graben geometry is mainly Mio-Pliocene in age, and was filled by 

Pliocene lacustrine-type sedimentary rocks of the Nor-Arevik formation. Hovakimyan and 

Tayan (2008) attribute the origin of the main tectonic structures of the Meghri-Ordubad 

pluton to southwest-striking compression and northwest-striking extension, which correlate 

with the regional orientation of structures in the Lesser Caucasus related to Arabia-Eurasia 

convergence (Avagyan et al., 2005). In the southern part of the Meghri pluton at Agarak (Fig. 

3b), Eocene magmatic rocks are overthrusted on Pliocene sedimentary rocks of the Nor 

Arevik formation along the north-south-striking Spetri fault, and is evidence for compression 

subsequent to Mio-Pliocene graben formation. 

 

4. Metallogenic setting of the Lesser Caucasus and the Zangezur-Ordubad region 

Ore deposits were formed during the different stages of the geodynamic evolution of the 

Lesser Caucasus. The initial metallogenic evolution is related to the long-lasting Jurassic-

Cretaceous subduction of the Tethys along the Eurasian margin.  Copper-pyrite, Cu-Au and 

polymetallic stratiform, vein-type and stockwork ore bodies are hosted by Middle Jurassic 

volcanic and volcano-sedimentary rocks of the Somkheto-Karabakh belt and the Kapan zone 

in the Alaverdi, Mehmana and Kapan mining districts (A, M and K in Fig.1). Their genetic 

interpretation is still open to question, and varies from volcanogenic massive sulphide (VMS) 

to porphyry-epithermal ore styles (Kekelia et al., 2004; Mederer et al., 2014). Early 

Cretaceous porphyry Cu and associated precious metal epithermal deposits, along the 

Somkheto-Karabakh belt, occur at Teghout next to the Alaverdi district (T in Fig.1; Amiryan 
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et al., 1987), at Gedabek, Gosha and Chovdar (G, Go and C in Fig.1; Babazadeh et al., 1990; 

Hemon et al., 2012), and in the Kapan district at the Shikahogh prospect (K in Fig. 1; 

Achikgiozyan et al., 1987). The major Dashkasan iron skarn deposit also belongs to this 

metallogenic event (D in Fig. 1). Re-Os molybdenite dating yielded porphyry Cu ages of 

145.9 Ma at Teghout and 133.3 Ma at Khar-Khar in the Gedabek district (Moritz et al., 2012). 

The youngest metallogenic event associated with subduction along the Somkheto-Karabagh 

belt includes copper, polymetallic and precious metal deposits of the Bolnisi district hosted by 

Late Cretaceous volcano-sedimentary rocks of the Artvin-Bolnisi volcanic arc (B in Fig. 1), 

and include the operating Cu-Au-polymetallic Madneuli deposit, the precious metal Sakdrisi 

deposit, and the polymetallic Beqtakari prospect (Gugushvili, 2004; Migineishvili, 2005; 

Popkhadze et al., 2014). To the west, the Artvin-Bolnisi volcanic arc extends into the VMS-

porphyry-epithermal districts of the Turkish Eastern Pontides (Fig. 1; Kekelia et al., 2004; 

Yigit, 2009; Delibas et al., in press). 

Following accretion of the South Armenian block with the Eurasian margin, ore deposit 

formation was associated with Eocene back-arc magmatism in the Adjara-Trialeti belt (Fig.1; 

e.g. Merisi, Me in Fig.1), and several important epithermal gold deposits are associated with 

Cenozoic magmatism of uncertain age. They occur along major tectonic zones, and include 

the Zod-Sotk (Kozerenko, 2004; Levitan, 2008), Amulsar (www.lydianinternational.co.ck) 

and Meghradzor (Amiryan and Karapetyan, 1964) deposits (Z, Am and Mg in Fig. 1). Their 

age, characteristics and the associated magmatism still remain to be fully studied. 

The major ore deposit cluster formed during the Cenozoic following collision of the South 

Armenian block with Eurasia is located in the Zangezur-Ordubad region (ZO in Fig. 1), of the 

southernmost Lesser Caucasus (Fig. 3b), and belongs to our study area. The major ore 

deposits and prospects hosted by the composite Meghri and Bargushat plutons are porphyry 

deposits (Karamyan, 1978; Babazadeh et al., 1990), and subsidiary epithermal prospects of 

lesser economic interest hosted by volcanic and plutonic rocks (Amiryan, 1984; Babazadeh et 

al., 1990). Their main characteristics, reserves and ore grades are summarized in Table 1. The 

Cenozoic porphyry deposits of the Zangezur-Ordubad region are significantly enriched in Mo 

with respect to the older Late Jurassic-Early Cretaceous porphyry deposits hosted by the 

Somkheto-Karabagh magmatic arc, such as Teghout or Gedabek (T and G in Fig. 1). 

Therefore, deposits of the Mesozoic Somkheto-Karabagh arc qualify as porphyry Cu deposits, 

whereas the Cenozoic ones of the Zangezur-Ordubad region are classified as porphyry Cu-Mo 

deposits (Fig. 5; Karamyan, 1978; Babazadeh et al., 1990). Re-Os molybdenite dating reveals 

two main porphyry events in the Zangezur-Ordubad region (Moritz et al., 2013). The first 

porphyry Cu-Mo event is associated with Eocene magmatic activity (Fig. 4), and includes the 

operating Agarak deposit (44.2 ± 0.2 Ma), and the Hankasar (43.14 ± 0.17 Ma), Aygedzor 

(42.62 ± 0.17 Ma) and Dastakert prospects (40.22 ± 0.16 to 39.97 ± 0.16 Ma). The second 
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event is late Oligocene in age, coeval with magmatism (Fig. 4), and includes the producing 

world-class Kadjaran deposit (27.2 ± 0.1 to 26.43 ± 0.11 Ma), and the past producing 

Paragachay deposit (26.78 ± 0.11 Ma). According to K-Ar ages published by Bagdasaryan et 

al. (1969), epithermal mineralization is associated with both Eocene and Oligocene magmatic 

activity, at 37.5 ± 0.5 and 38.0 ± 2.5 Ma at the Tey-Lichkvaz gold prospect, and at 24 ± 1 Ma 

at the Atkis polymetallic prospect near Kadjaran (Figs 3b and 4). On a world-wide 

comparison, the porphyry Cu-Mo deposits of the Zangezur-Ordubad region have modest 

metal contents, except the undated Eocene to Oligocene Misdag deposit and the 26-27 Ma-old 

Kadjaran deposit (Fig. 5). The ore deposit cluster of the Zangezur-Ordubad region of southern 

Armenia and Nakhitchevan extends to the south into the Cenozoic metallogenic 

Alborz/Arasbaran and Urumieh-Dokhtar/Kerman belts of Iran (Fig. 1), where porphyry Cu-

Mo deposits and subsidiary epithermal prospects are reported, including the major Miocene 

Sungun deposit (Jamili et al., 2010; Aghazadeh et al., 2015; Hassanpour et al., 2015; 

Simmonds and Moazzen, 2015). 

 

5. Analytical techniques 

A total of fifty-three magmatic rock samples from the Zangezur-Ordubad region were 

selected for whole rock geochemical analyses. Altered and weathered surfaces were removed 

by a diamond circular saw. The samples were crushed by a hydraulic press and subsequently 

powdered to <10µm using a mortar agate mill. Loss on ignition (LOI) was determined based 

on the mass difference of 2-3 grams of dried powdered rock before and after heating to 1050 
◦
C. Major and some trace elements (from Nb to Ba, Table 2) were analysed, respectively, on 

fused lithium tetraborate glass beads and pressed pellets using a Philips PW 2400 

spectrometer at the University of Lausanne, Switzerland. The 2σ uncertainties are <1% based 

on repeated measurements of the BHVO-1, NIM-N and NIM-G standards. Trace elements 

from Sc to U (marked by an asterisk in Table 2) were determined by laser ablation ICP-MS at 

the University of Lausanne on the same glass beads as used for major element analysis, using 

a sector-filed Element XR ICP mass spectrometer interfaced to an UP-193FX 193 nm excimer 

ablation system. The spectrometer was operated at low resolution; it was optimised for a 

maximum sensitivity at ThO
+
/Th

+
 and Ba

++
/Ba

+
 ratios of ~0.10 and <2.9%, respectively. The 

on-sample laser beam fluence was set at 5 J/cm
2
 at a laser pulse repetition rate of 10 Hz; the 

pit size was 100 m. Helium was used as a carrier gas. Background and signal were measured 

during about 90 and 50 seconds, respectively. Three points were measured on each sample 

and the results were averaged. Calcium previously determined by XRF was used as internal 

standard. The NIST 612 soda-lime-silica glass standard was used as external standard to 

calibrate the instrument mass fractionation. Concentration values were taken from Pearce et 

al. (1997). The raw data were reduced using LAMTRACE (Jackson, 2008). 
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Sixteen whole-rock samples were analysed for Pb, Sr and Nd isotopic compositions at the 

University of Geneva, Switzerland following the method described by Chiaradia et al. (2011). 

Powdered rock samples were dissolved in closed Teflon vials for 7 days on a hot plate at 

140°C with a mixture of 4ml concentrated HF and 1ml 15M HNO3. The samples were then 

dried on a hot plate, and re-dissolved in 3ml of 14M HNO3 in closed Teflon vials at 140°C 

and dried down again. Strontium, Nd and Pb separation was carried out using cascade 

columns with Sr-spec, TRU-spec and Ln-spec resins following a modified method after Pin et 

al. (1994). The analyses were carried out in static mode using a Thermo Triton thermal 

ionization mass spectrometer on Faraday cups. Pb was loaded on Re filaments using the silica 

gel technique. Samples and standards were measured at a pyrometer-controlled temperature of 

1220°C. Lead isotope ratios were corrected for instrumental fractionation by a factor of 

0.07% per a.m.u. based on the SRM981 standard and using the standard values of Todt et al. 

(1996). External reproducibility of the standard ratios are 0.08% for 
206

Pb/
204

Pb, 0.11% for 
207

Pb/
204

Pb and 0.15% for 
208

Pb/
204

Pb. Strontium was loaded on single Re filaments with a Ta 

oxide solution and measured at a pyrometer-controlled temperature of 1480°C in static mode. 
87

Sr/
86

Sr values were internally corrected for fractionation using a 
88

Sr/
86

Sr value of 8.375209. 

Raw values were further corrected for external fractionation by a value of +0.03%, 

determined by repeated measurements of the SRM987 standard (
87

Sr/
86

Sr=0.710250). 

External reproducibility of the 
87

Sr/
86

Sr ratio for the SRM987 standard is 7 ppm. Neodymium 

was loaded on double Re filaments with 1M HNO3 and measured in static mode. 
143

Nd/
144

Nd 

values were internally corrected for fractionation using a 
146

Nd/
144

Nd value of 0.7219 and the 
144

Sm interference on 
144

Nd was monitored on the mass 
147

Sm and corrected by using a 
144

Sm/
147

Sm value of 0.206700. External reproducibility of the JNdi-1 standard (Tanaka et al., 

2000) is <5 ppm. Corrections for time-integrated decay of radioactive parents to radiogenic 

daughters were carried out for the samples using parent and daughter element concentrations 

determined by LA-ICP-MS and appropriate age estimates. 

Fifteen oxygen isotope analyses of whole rock powders were carried out on a Finigan MAT 

253 at the University of Lausanne, Switzerland. The detailed analytical procedure is described 

in Jourdan et al. (2009). The laser fluorination technique was used to extract oxygen from 

whole rock samples (Sharp, 1992). Oxygen was analysed as O2 gas. An internal quartz 

standard (Lausanne Quartz: 18.1‰ V-SMOW) calibrated against NBS-28 quartz (9.64‰ V-

SMOW; Coplen et al., 1983) was used to monitor accuracy and reproducibility of oxygen 

isotope analyses. All data are reported in per mil notation (‰). The analytical reproduction 

obtained by daily standard measurements of Lausanne Quartz was routinely better than 0.1‰. 

Six samples were selected for U-Pb zircon dating, and were crushed and milled to <350µm, 

and then separated using a Wifley table, a Frantz magnetic separator and gravimetry using 

heavy liquids. Zircons from the non-magnetic fraction were selected for further treatment and 
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isotopic dating. In order to minimize the effects of secondary lead loss, the zircons were 

treated by “chemical abrasion” prior to analysis (Mattinson, 2005) involving high temperature 

annealing followed by a HF partial dissolution step similar to the procedure described in 

Barboni et al. (2013). For each sample various morphology zircon grains were selected (short 

and long prismatic, preferably clean, rarely with melt inclusions or channels). No correlation 

was observed between morphology and age. All zircon grains were dissolved after adding 

~0.0052g mixed EARTHTIME 
202

Pb-
205

Pb-
233

U-
235

U tracer (www.earth-time.org) in 170µl 

concentrated HF with a trace of 7N HNO3 at 206°C for 3 days, then evaporated and the 

residue re-dissolved overnight in 3N HCl at 206⁰C. Pb and U from zircons were separated by 

anion exchange chromatography (Krogh, 1973) in 40µl micro-columns, using minimal 

amounts of ultra-pure HCl and H2O, and finally dried down with 3µl of 0.02N H3PO4. 

Isotopic analyses were performed at the University of Geneva, Switzerland on a Thermo 

Triton thermal ionization mass spectrometer equipped with a MasCom electron multiplier. 

The linearity of the multiplier was calibrated using U500, SRM987, and Pb SRM982 and 

SRM983 solutions. Lead fractionation for all analyses was corrected offline assuming a 
202

Pb/
205
Pb of 0.99989±0.01%, 1σ. The U mass fractionation for the same analyses was 

calculated in real-time using the 
233

U-
235

U ratio of the double spike solution (0.99464 ± 0.01%, 

1σ). Both Pb and U were loaded with a silica gel–phosphoric acid mixture on outgassed single 

Re-filaments. Pb isotope compositions were measured on the electron multiplier, while U (as 

UO2) isotopic measurements were made in static Faraday mode (using amplifiers equipped 

with 10
12

 Ω resistors). Isobaric interference of 
233

U
18

O
16

O on 
235

U
16

O
16

O was corrected using 

a 
18

O/
16

O ratio of 0.00205. All common Pb for the zircon analyses was attributed to 

procedural blank and corrected with the following isotopic composition: 
206

Pb/
204

Pb = 18.30 ± 

0.71%; 
207

Pb/
204

Pb = 15.47± 1.03%; 
208

Pb/
204

Pb = 37.60 ± 0.98% (all 1σ). U blanks were <0.1 

pg and do not influence the degree of discordance at the age range of the studied samples, 

therefore a value of 0.05 pg +/−50% was used in all data reduction. Initial statistics were 

performed using TRIPOLI (Bowring et al., 2011), followed by data reduction and age 

calculation using the YourLab xls spreadsheet, all measured ratios being reduced using the 

algorithms of Schmitz and Schoene (2007) and Crowley et al. (2007). Generation of 

concordia plots and weighted means were performed with Isoplot (Ludwig, 2005). The 

reproducibility and accuracy of the data measured was assessed by repeated analysis of the 

100Ma synthetic solution (Condon et al., 2008) and international R33 standard zircon (Black 

et al., 2004), which was pre-treated by chemical abrasion. Both yielded an internal 

reproducibility in 
206

Pb/
238

U dates of better than 0.05%. The standard zircon R33 was 

measured with EARTHTIME 
202

Pb-
205

Pb-
235

U-
238

U tracer at an average 
206

Pb/
238

U age of 

419.58 ± 0.05 Ma (MSWD=1.5, n=22).  All uncertainties are reported at the 2-sigma level. 

All data are reported with internal errors only, including counting statistics, uncertainties in 

mass discrimination and the common Pb composition. The MSWD values of weighted mean 
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from all samples are within the range of acceptable values at 95% confidence level and for n-

1 degrees of freedom (Wendt and Carl, 1991).  

 

6. Results 

6.1. Whole-rock major and trace element geochemistry 

Major and trace element compositions are listed in Table 2. For petrologic classification and 

diagram presentation, major oxide data were normalized to a 100% volatile-free basis. 

Volcanic and sub-volcanic rocks were classified according to the total alkali-silica (TAS) 

diagram of Le Maître (2002), which also includes the equivalent names for coarse-grained 

intrusive rocks according to Middlemost (1994) (Fig. 6a). Plutonic rocks were also classified 

based on modal mineral proportions and plotted in the QAPF diagram (Fig. 6b; Streckeisen, 

1976). Thirteen out of fifty-three rock samples affected by hydrothermal alteration (see Table 

2), collected within main mineralized and mining areas, and/or revealing LOI above 2.2 wt% 

were not retained for plotting and interpretation using major and trace elements known to be 

mobile during hydrothermal alteration (e.g. K, Na, Sr, Rb). Therefore, data trends in diagrams 

have petrogenetic significance, and are devoid of potential hydrothermal alteration effects. 

There is a good agreement of the names of plutonic rocks when plotted both in the QAPF and 

TAS diagrams (Figs 6a-b), and are supported by our petrographic studies of representative 

samples (Fig 7; Table 3). The Eocene volcanic rocks from the Kaputjugh suite, one dike and a 

mafic enclave range in composition between basaltic and andesitic, and one volcanic rock 

sample yields a dacitic composition (DA-12-04, Table 2). The Eocene plutonic rocks vary 

mainly in composition between granitic and granodioritic (Fig 7; Table 3). A larger range in 

composition is displayed by Oligocene plutonic rocks with gabbro, monzonite, monzodiorite, 

quartz-monzonite, granite, syenite, quartz-syenite, and monzogabbro. Miocene rocks consist 

mainly of granite, granodiorite and quartz-monzonite (Fig 7; Table 3). The Pliocene volcanic 

rock is a dacite-trachydacite (Figs 6a-b, 7; Table 3). The diversity of Eocene to Pliocene rock 

types identified and analysed in this study (e.g. Fig .7; Table 3) broadly agree with the more 

detailed classification scheme published by Karamyan et al. (1974) and Tayan et al. (1976). 

Based on the K2O vs SiO2 classification diagram, Eocene magmatic rocks of the Meghri-

Ordubat and Bergushat plutons have the lowest K2O contents and belong essentially to a calc-

alkaline to high-K calc-alkaline trend, with two outliers in the tholeiitic field (Fig. 6c). By 

contrast, the Oligocene samples include the most K2O-enriched rocks and display high-K 

calc-alkaline and shoshonitic affinities. Except one sample, the Miocene and Pliocene rock 

samples fall along the high-K calc-alkaline trend (Fig. 6c).  
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Harker diagrams of major elements show mostly good correlations (Figs 8a-g), which can be 

attributed to varying degrees of fractional crystallization as a first approximation. In contrast 

to major elements, Harker diagrams using selected trace elements show distinct differences 

among magmatic rocks of different ages (Figs 9a-h). Thorium, niobium and strontium 

concentrations of Eocene magmatic rocks are relatively constant despite variations in SiO2 

wt%, in contrast Oligocene to Pliocene rock samples yield a broad positive correlation of Th 

concentrations, and a negative one for Sr with respect to SiO2 (Figs 9a-c). The Eocene 

magmatic rocks have in general lower concentrations of Th, Nb and Sr compared to 

Oligocene, Miocene and Pliocene magmatic rocks for similar SiO2 contents (Figs 9a-c), 

except two Eocene intrusive rocks samples having an adakitic-like composition (see below) 

according to Figure 9c, with distinctly higher Sr concentration above 600 ppm. Yttrium and 

ytterbium display the highest concentrations in Eocene and Oligocene rocks, and the lowest 

concentrations in Miocene and Pliocene rock samples (Figs 9d-e). Zirconium contents 

increase with more differentiated rocks, but with a distinct scatter for samples with SiO2 

above 60 wt% regardless of their age, and distinct elevated Zr concentrations exceeding 200 

ppm for some Oligocene shoshonitic samples (Fig. 9f). Nickel and chromium concentrations 

are predominantly below 10 ppm in most samples (Figs 9g-h). Notable exceptions are five 

Miocene and one Pliocene rock samples displaying elevated Ni and Cr concentrations above, 

respectively, 30 and 40 ppm for SiO2 contents between 65 and 70 wt% (Figs 9g-h), which are 

clearly inconsistent with typical fractionation trends in magmatic suites. 

In primitive, mantle-normalized extended trace element spider diagrams, all rocks of this 

study display similar patterns, with negative Nb-Ta anomalies relative to LILE, and variably 

pronounced, negative Ti anomalies (Figs 10a-c). The marked, negative P anomalies reveal the 

potential role of apatite fractionation in the Eocene to Pliocene magmatic rocks (Figs 10a-c). 

A significant difference is that most Oligocene, and all Mio-Pliocene rock samples are 

typically enriched in the most incompatible elements with respect to the Eocene samples (Cs 

to Nd, left hand-side of spider diagrams, Figs 10a-c). Two samples among the Eocene 

magmatic rocks have distinctly higher Th, U, Zr and Hf, and lower Ba and Rb concentrations 

in contrast to rocks of the same age (Fig. 10a; samples AG-10-03 and AG-10-06A in Table 2). 

Chondrite-normalized REE diagrams show that most of the Oligocene magmatic rocks, and 

all of the Miocene and Pliocene rock samples are enriched in LREE with respect to the 

Eocene ones, and that Miocene and Pliocene rocks are depleted in HREE with respect to 

Eocene and Oligocene samples (Figs 11a-c). The progressively more intense LREE and 

MREE to HREE fractionation from the oldest to youngest rocks in the Meghri pluton is 

documented, respectively, by progressively higher (La/Yb)n and (Dy/Yb)n ratios (Fig. 12a), 

with the exception of the more mafic Eocene rocks, which display flatter, less fractionated 

REE patterns when compared to the more felsic Eocene rocks (Fig. 11a). 
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According to the Sr/Y vs Y, La/Yb vs Yb, Sr/Y vs SiO2 and La/Yb vs SiO2 discrimination 

plots (Fig. 13), all analysed Miocene and Pliocene, and a few  Oligocene magmatic rocks 

qualify as adakites, based on the classification criteria summarized by Martin et al. (2005). 

Eocene magmatic rocks typically have low Sr/Y and La/Yb ratios, and fall in the normal arc 

andesite-dacite-rhyolite domain (Fig. 13), except two intrusions with high adakitic-like Sr/Y 

ratios (Figs 13a, c), but non-adakitic La/Yb vs Yb and La/Yb vs SiO2 relationships (Figs 13b, 

d). The MgO vs SiO2 diagram (Fig. 8g) indicates that the adakites are of the high-silica type 

according to the classification scheme of Martin et al. (2005). 

 

6.2. Sr, Nd, Pb, and O isotope geochemistry 

Isotopic compositions of selected samples are listed in Table 4. All samples from the Meghri-

Ordubad and Bargushat plutons have primitive, mantle-dominated Sr and Nd isotopic 

compositions (Fig. 14a). There is a typical negative correlation of Sr and Nd isotopic 

compositions of Eocene and Oligocene magmatic rocks from the Meghri-Ordubad and 

Bargushat plutons (Fig. 14b). Except one sample published by Mederer et al. (2013), the 

Eocene magmatic rocks yield the highest 
87

Sr/
86

Sr ratios (0.704206-0.704629) and the lowest 
143

Nd/
144

Nd ratios (0.512740-0.512785), and the three analysed Oligocene samples have 

lower 
87

Sr/
86

Sr ratios (0.703926-0.704027) and higher 
143

Nd/
144

Nd ratios (0.512774-

0.512817). By contrast, Sr and Nd isotopic compositions of the Miocene and Pliocene 

magmatic rocks define a positive correlation, discordant with respect to the trend revealed by 

the Eocene and Oligocene rocks, with 
87

Sr/
86

Sr ratios between 0.704037 and 0.704354 and 
143

Nd/
144

Nd ratios between 0.512799 and 0.512845 (Fig. 14b, Table 4). Strontium and Nd 

isotopic compositions of the magmatic rocks of the Meghri-Ordubad and Bargushat plutons 

correlate with Sr and Nd concentrations. The most radiogenic Sr compositions correlate with 

the highest 1/Sr ratios, i.e. the lowest Sr concentrations, which characterise the Eocene 

magmatic rocks (Fig. 15a). By contrast, the least radiogenic Nd values correspond to the 

highest 1/Nd ratios, i.e. the lowest Nd concentrations, which are also characteristic of the 

Eocene magmatic rocks. Based on the 
143

Nd/
144

Nd vs 1/Nd diagram, the Plio-Miocene 

magmatic rocks are distinct from the Oligocene ones, and are shifted towards higher 1/Nd 

ratios and more radiogenic Nd compositions (Fig. 15b). 

There is a general, consistent trend of increasing 
206

Pb/
204

Pb (from 18.44 to 19.09) and 
208

Pb/
204

Pb ratios (from 38.43 to 39.13) from the Eocene to the Mio-Pliocene magmatic rocks 

of the Meghri-Ordubad and Bargushat plutons, whereas the 
207

Pb/
204

Pb ratios remain broadly 

constant between 15.52 and 15.60 (Fig. 16, Table 3). The samples from the Meghri-Ordubad 

and Bargushat plutons plot below the orogenic Pb isotope evolutionary curve of Zartman and 

Doe (1981) in the 
207

Pb/
204

Pb vs 
206

Pb/
204

Pb plot (Fig. 16a), revealing a mantle-dominated 
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reservoir, consistent with the Sr and Nd isotope data. In the 
208

Pb/
204

Pb vs 
206

Pb/
204

Pb plot 

(Fig. 16b), the samples from the Meghri-Ordubad and Bargushat plutons fall on a trend that is 

clearly discordant with respect to the Pb isotope evolutionary curves of Zartman and Doe 

(1981), revealing an evolution from a more thorogenic composition during the Eocene to a 

more upper crustal-dominated composition during the Mio-Pliocene (Fig. 16b). 

The oxygen isotopic compositions of most of the Eocene to Pliocene magmatic rocks from the 

Meghri-Ordubad and Bargushat plutons fall in a +5.5 to +8.3 ‰ range, with the exception of 

two Eocene volcanic rocks samples at +3.7 and +3.8 ‰ (Fig. 17). 

 

6.3. U-Pb ID-TIMS dating 

All U-Pb data are presented in Table 5. Sample AG-10-06A is a granodiorite sampled in the 

area of Agarak (Fig 3b). Six zircon grains were analysed. All of them are concordant within 

analytical error but show a scater between 48.99 ± 0.07 and 49.41 ± 0.09 Ma in 
206

Pb/
238

U 

dates (Fig. 18a; Table 5). Since the chemical abrasion technique is eliminating the lead loss 

effect extremely efficiently, we assume that the observed scater is a result of minor inherited 

lead component or reflects a real age variation of zircon crystalisation. Therefore, we interpret 

the youngest age of 48.99 ± 0.07 Ma as the best proximate of the end of zircon crystalisation 

in this granodiorite. Sample AG-10-07 is a granite sampled in the area of Agarak (Fig. 3b). 

Six zircon grains were analysed. All of them are analyticaly concordant yielding a cluster with 

a weighted mean age of 
206

Pb/
238

U age of 44.03 ± 0.02 Ma, MSWD=0.76 (Fig. 18b; Table 5). 

Sample KJ-12-07 is a gabbro collected on the Meghri ridge (Fig. 3b). Six zircon grains were 

analysed. The data are concordant within analytical error and yield a weighted mean 
206

Pb/
238

U age of 33.49 ± 0.02 Ma, MSWD=2.4, 95% confidence level (Fig. 18c; Table 5). 

Sample KJ-10-02 is a monzonite collected at Atkis in the Kadjaran area (Fig. 3b). Five zircon 

grains were analysed. The data are concordant within analytical error and yield a weighted 

mean 
206

Pb/
238

U age of 31.82 ± 0.02 Ma, MSWD=1.7 (Fig. 18d; Table 5). Sample KJ-12-11A 

is an altered porphyritic granodioritic dike collected in the Kadjaran open pit (Fig. 3b). Six 

zircon grains were analysed, scatering between 
206

Pb/
238

U dates of 22.46 ± 0.02 and 31.07 ± 

0.04 Ma. The youngest date of 22.46 ± 0.02 Ma is considered to be the best proximate of the 

end of zircon cristallisation  (Fig. 18e; Table 5). Sample LI-10-03 is a granite sample in the 

Lichk area, south of Kadjaran (Fig. 3b). Nine zircon grains were analysed. Four of them are 

clustering and yield a weighted mean 
206

Pb/
238

U age of 22.22 ± 0.01 Ma, MSWD=0.66. The 

remaining five grains are older and scater up to 22.56 ± 0.02 Ma. (Fig. 18f; Table 5). 
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7. Discussion 

7.1. Protracted Eocene to Pliocene magmatism in the Zangezur-Ordubad region 

The U-Pb ID-TIMS ages obtained in this study confirm the pulsed magmatic activity from the 

Eocene to the Miocene in the composite Meghri-Ordubad and Bargushat plutons (Fig. 4). The 

Eocene calc-alkaline to high-K calc-alkaline intrusive rocks dated in this study (AG-10-06A 

granodiorite and AG-10-07 granite) agree with the Rb-Sr isochron ages obtained previously 

by Melkonyan et al. (2008, 2010). In addition, the oldest age of 48.99 ± 0.07 Ma of sample 

AG-10-06A (Fig. 18) is close to the age of one gabbro sample from the Kapan block 

(immediately east of the Meghri-Ordubad pluton, Fig. 3b) dated by Mederer et al. (2013) at 

50.82 ± 0.51 Ma. The similar early Cenozoic ages of magmatic rocks of both the Meghri-

Ordubad pluton and the Kapan zone (Fig. 3a) indicate that the later was already accreted with 

the South Armenian block during the Eocene, and support the geodynamic model of Rolland 

et al. (2009a,b) and Sosson et al. (2010) for the Lesser Caucasus.  

The two Oligocene magmatic rocks dated in our study (KJ-12-07 gabbro and KJ-10-02 

monzonite) are also consistent with previous Rb-Sr isochron dating (Melkonyan et al., 2008, 

2010). Our new ages show that this high-K calc-alcaline to shoshonitic magmatic event 

started close to the Eocene-Oligocene transition (Fig. 4). In addition, the 33.49 ± 0.02 Ma age 

obtained for one gabbro sample (KJ-12-07, Fig. 18) reveals that gabbroic rocks were also 

emplaced during the Oligocene, and not only during the Eocene event, as concluded before by 

by Ghukasyan (1966) based on whole-rock K-Ar dating at 41.4 ± 3.5 Ma. Finally, there is an 

excellent overlap of our new TIMS U-Pb Miocene ages for the adakitic magmatism (KJ-12-

11A porphyritic granodiorite dike and LI-10-03 granite) and the Rb-Sr isochron ages obtained 

by Melkonyan et al. (2008, 2010; Fig. 4). 

 

7.2. Eocene to Pliocene subduction-like and mantle-dominated magmas in the Zangezur-

Ordubad region 

The similar, primitive mantle-normalized spider diagrams of the Eocene to Pliocene 

magmatic rocks, with negative Nb, Ta and Ti anomalies (Figs 10a-c), are consistent with a 

subduction-related signature during the entire Cenozoic evolution of the Meghri-Ordubad and 

Bargushat plutons, with the magmas generally evolving from a normal calc-alkaline to high-K 

calc-alklaine arc composition during the Eocene through an early Oligocene shoshonitic to a 

Mio-Pliocene adakitic-like composition (Figs 6c, 13a-d). Strontium and neodymium isotopic 

compositions reveal a mantle-dominated magmatism, with the mantle component becoming 

progressively more predominant from the Eocene to the Oligocene and Plio-Miocene (Figs 14 

and 15). The mantle-dominated nature of the magmas that produced the Meghri-Ordubad and 
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Bargushat plutons is also supported by Pb isotope data, In the 
207

Pb/
204

Pb vs 
206

Pb/
204

Pb plot 

(Fig. 16a), samples from the Meghri-Ordubad and Bargushat plutons plot below the orogenic 

Pb isotope evolutionary curve of Zartman and Doe (1981), towards a mantle-dominated 

reservoir. 

 

7.3. Magmatic fractionation processes and Eocene to Pliocene crustal thickness evolution 

Negative correlation between Dy/Yb ratios and increasing SiO2 contents (Fig. 19a) reflects 

amphibole/clinopyroxene fractionation (Davidson et al., 2007) in all Eocene and Oligocene 

magmatic rocks of the Meghri-Ordubad and Bargushat plutons. The diagonal trend with a 

negative slope of most Eocene and Oligocene samples in the CaO/Al2O3 vs FeOtot/MgO 

diagram (Fig. 8h) also supports a differentiation trend dominated by amphibole, possibly 

together with pyroxene. This interpretation is also consistent with the U-shaped REE patterns 

of many samples, especially the Plio-Miocene ones (Fig. 11c), since amphibole preferentially 

incorporates middle REE (Davidson et al., 2007; Chiaradia, 2009; Richards, 2011). 

The slight to pronounced negative Eu anomaly of most Eocene and Oligocene magmatic 

rocks from the Meghri-Ordubad and Bargushat plutons, and the negative Eu/Eu* vs SiO2 

correlation of the Eocene rock samples is attributed to plagioclase fractionation during their 

formation (Fig. 12b). With the exception of the adakitic Oligocene rocks, the negative 

correlation of the Sr/Y ratio against increasing SiO2 concentrations of the Oligocene rocks 

(Fig. 13c) also reflects plagioclase crystallization during fractionation, as this process depletes 

Sr in melts, leading to typically low Sr/Y ratios of normal arc magmas (Fig. 13a). 

Pliocene and Miocene magmatic rocks reveal only minimal to positive Eu anomalies, which is 

attributed to a suppression of plagioclase fractionation, as a consequence of high magmatic 

water contents, high magmatic oxidation state, plagioclase accumulation in the rock or 

fractionation of hornblende (Frey et al., 1978; Hanson, 1980; Green and Pearson, 1985). The 

positive correlation of Sr/Y ratios and SiO2 concentrations of the Pliocene and Miocene rocks 

is consistent with amphibole fractionation (Fig. 13c), which confers to these rocks their 

typical adakitic composition (Figs 13a-d). A group of Oligocene rocks falls at the lower end-

member of the adakitic trend in Figures 13c-d, indicating that the onset of Neogene adakitic 

evolution started during the Oligocene and continued during the Plio-Miocene. 

A few Eocene and Oligocene magmatic rocks have Eu/Eu* ratios that deviate from the 

general trend described above. Two younger (44 Ma-old), more evolved Eocene samples, 

which diplay adakitic-like compositions according to their elevated Sr/Y ratios (Figs. 13a-c), 

have only minimal to no Eu anomalies (Fig. 12b), and two mafic Eocene rock samples from 

the Kapan block have positive Eu anomalies (Mederer et al., 2013). The distinct elevated 
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Eu/Eu* ratios of some Eocene mafic rocks emplaced in the Kapan block (Fig. 3a; Mederer et 

al., 2013), possibly reflects distinct differences in crustal thickness or variations of physico-

chemical conditions during Eocene magma generation in the two tectonic zones. 

In mafic magmas, amphibole is typically stable at about 0.8 GPa (~30-35 km), garnet only 

crystallizes at pressures generally greater than 1.2 GPa (~45 km), and plagioclase is typically 

suppressed at high pressures above about 1.0 GPa (Rapp and Watson, 1995; Müntener et al., 

2001; Alonso-Perez et al., 2009; Maksimov, 2009). The depths stated in brackets are rough 

approximations, since mineral breakdown pressures are a function of bulk composition, water 

concentration and temperature. In the Zangezur-Ordubad region, the Eocene and high-K calc-

alkaline early Oligocene rocks are characterised by combined amphibole and plagioclase 

fractionation, which indicates that the parental melts underwent low-pressure magma 

differentiation, at approximately 0.8-1.0 GPa. By contrast, amphibole fractionation in the 

absence of plagioclase and garnet fractionation is characteristic of the adakitic Oligocene, 

Miocene and Pliocene magmatic rocks, and is evidence for high-pressure magma fractional 

crystallization at approximately 1.0-1.2 GPa during the more recent magmatic evolution. The 

shoshonitic Oligocene magmatic rocks display highly variable Eu anomalies for a narrow 

range of SiO2 contents (Fig. 13b), therefore revealing the full spectrum of plagioclase 

behaviour, from plagioclase fractionation to its suppression. This may reflect a transitory state 

of instability, with abrupt changes in time and/or space during the early Oligocene (at about 

32 Ma) of crustal depth and/or physico-chemical conditions governing plagioclase 

fractionation/precipitation processes when shoshonitic magmas were generated. 

The Zangezur-Ordubad magmatic rocks reveal a broad trend of decreasing Y concentrations, 

and increasing Sr/Y and Sm/Yb ratios as the rocks become younger (Figs 19b-d), which is 

also consistent with progressive Cenozoic crustal thickening or increasing pressure of magma 

differentiation (e.g. Hildreth and Moorbath, 1988; Tulloch and Kimbrough, 2003; Bachmann 

et al., 2005). The Sm/Yb ratios remain moderate, below a value of 5 to 6 (Fig. 19b), which 

can be considered as a rough threshold diagnostic for the on-set of garnet fractionation in arc 

magmas (Kay and Mpodozis, 2001; Haschke et al., 2006; Shafiei et al., 2009). The apparent 

absence of garnet during Cenozoic magma evolution is consistent with the reduced crustal 

thickness estimate of 42-44 km for the southernmost Lesser Caucasus documented by 

geophysical data (see Fig. 5 in Gök et al., 2011). Increasing Y concentrations (Fig. 19d), and 

to a lesser extent flattening of the Sr/Y ratio evolution (Fig. 19c), during early Oligocene 

magmatism, including shoshonitic magmas, may reflect a transitory state of shallower 

pressure magma differentiation and thinning/extension of the crust at 31.8-33.5 Ma.  
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7.4. Evolution from Eocene normal arc, calc-alkaline magmatism to Mio-Pliocene adakitic 

magmatism, and melting of sub-continental metasomatised lithospheric mantle 

The spider diagrams and Sr and Nd isotope data reveal that the magmas, which produced the 

composite Meghri-Ordubad and Bargushat plutons were tapped from the same source from 

the Eocene to the Pliocene (Figs 10 and 14). However, characteristic trace element data trends 

vary from the Eocene through Oligocene to Plio-Miocene rocks. They record progressive 

compositional modification of a subduction-related environment during the Cenozoic. The 

oblique trends from Eocene magmatic rocks to Oligocene and Mio-Pliocene rocks in the 
87

Sr/
86

Sr vs. 1/Sr and 
143

Nd/
144

Nd vs. 1/Nd reflects progressively higher mantle input into the 

source of the magmatic rocks (Fig. 15). The HREE-depleted patterns of the Mio-Pliocene 

rocks with respect to Oligocene and Eocene samples also indicate that the mantle source 

became more depleted with time (Fig. 11). 

The normal-arc, calc-alkaline to high-K calc-alcaline Eocene and Oligocene magmatic rocks 

display a small variation of Nb/Y ratios for a wide range of Ba concentrations, whereas the 

shoshonitic Oligocene and the adakitic Oligocene, Miocene and Pliocene rocks cover a wider 

range of Nb/Y ratios for a small range of Ba concentrations (Fig. 20a). The variable Ba 

contents vs. narrow Nb/Y ratios trend displayed by the normal arc Eocene to Oligocene 

magmatic rocks reflects fluid-related enrichment as a consequence of dehydration of the 

subducted slab, whereas the trend of narrow Ba contents vs. wide Nb/Y ratios of the 

shoshonitic to adakitic Oligocene to Pliocene magmatic rocks can be attributed to mantle-

derived melt enrichments (Kepezhinskas et al., 1997). The dominating subducted slab-derived 

fluid component during Eocene magmatism is also documented by the horizontal trend of 

Ba/La ratios for constant Th/Yb ratios, whereas the adakitic Oligocene and Mio-Pliocene 

rocks reveal slab-derived enrichment, with the remaining Oligocene rocks occupying 

intermediate compositions between the two extremes (Fig. 20b). In brief, the trace element 

data document progressive compositional modification with time of the source of the Meghri-

Ordubad and Bargushat magmatic rocks, with dominantly fluid-mobile components during 

the Eocene and more mantle melt-enriched and metasomatic components during the Neogene. 

In Figure 20b, the elevated Th/Yb ratios of the Mio-Pliocene and the majority of the 

Oligocene magmatic rocks (including the adakitic ones) with respect to the Eocene magmatic 

rocks is consistent with metasomatism of the mantle source by subducted sediments (e.g. 

Planck, 2005; Hermann and Rubatto, 2009; Behn et al., 2011). All Mio-Pliocene rock samples, 

and most Oligocene samples, in particular the adakitic ones, have marked enrichment in the 

most incompatible elements (left hand-side of spider diagrams from Cs to Nd, Figs 10a-c) and 

LREE-enrichments (Fig. 11) with respect to the Eocene rocks, documenting a mantle source 

that became progressively enriched, and metasomatised by subducted sediments. Increasing 
206

Pb/
204

Pb ratios of the Cenozoic magmatic rocks also correlate with increasing Th/Nb ratios 
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(Fig. 20c), and support the increasing sedimentary component in the magmas that sourced the 

Mio-Pliocene intrusions. Metasomatism of the mantle source by a sedimentary component 

also explains the distinct positive correlation of 
87

Sr/
86

Sr and 
143

Nd/
144

Nd ratios of the 

Miocene and Pliocene magmatic rocks, which is discordant with respect to the general trend 

revealed by Eocene and Oligocene rocks (Fig. 14b). The distinct increase of 
87

Sr/
86

Sr ratios 

with slightly increasing 1/Sr ratios, and concomitant increase of 
143

Nd/
144

Nd and 1/Nd ratios 

from Oligocene to Mio-Pliocene samples reflects metasomatism of a mantle source by 

addition of a sedimentary 
87

Sr-enriched component (Fig. 15). The distinct shoshonitic 

composition of some Oligocene magmatic rocks (Fig. 6c) is further support for a mantle 

source compositionally modified by subducted sediments (e.g. Feldstein and Lange, 1999; 

Wang et al., 2006, 2014). 

The 
18

O values of most whole-rock samples from the Meghri-Ordubad and Bargushat 

plutons range from +5.5 to +8.3 ‰  (V-SMOW). The lowest value at +5.5 ‰ (V-SMOW) is 

consistent with a typical mantle value (Eiler, 1991; Mattey et al., 1994; Fig. 17). The 
18

O 

values of the Oligocene, Miocene and Pliocene whole-rock samples display a positive 

correlation when plotted against Th/Nb ratios (Fig. 17). This suggests that elevated 
18

O 

values of the adakitic rocks also reflect a sedimentary component added to the mantle source 

during Neogene evolution. Indeed, the high 
18

O values between +7 and +9 ‰ (V-SMOW) 

overlap with those of adakites from other parts of the world, containing variable amounts of 

partial melts of subducted sediments or crustal contaminants derived from an over-riding plate 

(Bindeman et al., 2005).  Two Eocene rock samples have 
18

O values of +3.68 and +3.80 ‰ 

(V-SMOW), below typical mantle values of +5.5 ‰ (V-SMOW) (Fig. 17). One sample (KJ-

10-03, Table 4) is a mafic volcanic rock from the Kadjaran area and belongs to the Eocene 

Kaputjugh suite, and the second sample comes from an Eocene mafic dike (AG-10-04, Table 

4) at Agarak (Fig. 3c). Such anomalous low 
18

O values can be attributed to the presence of 

meteoric water in magmatic environments, which could have been introduced by melting of 

hydrothermally altered volcanic rocks (e.g. Watts et al., 2011; Simakin and Bindeman, 2012). 

 

7.5. Magmatic, metallogenic and geodynamic evolution of the Zangezur-Ordubad region 

The available radiometric age data allow us to subdivide the magmatic and metallogenic 

evolution of the Zangezur-Ordubad region into an Eocene and an Oligo-Miocene stage, which 

fit well with the regional geodynamic evolution of the Tethyan belt (Fig. 4). The Eocene 

normal arc, calc-alkaline to high-K calc-alkaline magmatism coincided with extensive 

magmatic activity in Iran attributed to Neotethys subduction (Fig. 4), and it resulted in the 

first metallogenic event with the emplacement of small tonnage porphyry Cu-Mo deposits in 

the Zangezur-Ordubad region (Fig. 21a). It is during the Eocene subduction event that the 
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mantle wedge was metasomatised by subducted sediments, and that the crust was 

progressively thickened, as evidenced by Sr/Y and Y data (Figs 19c-d).  

The subsequent Oligocene and Miocene magmatic and porphyry Cu-Mo event coincided with 

the 40 to 25 Ma-old Arabian-Eurasian collision to post-collision tectonics in the Caucasian-

Zagros region (Fig. 4; e.g. Vincent et al., 2005; Allen and Armstrong, 2008; Agard et al. 

2011; Ballato et al., 2011; Verdel et al., 2011, McQuarrie and van Hinsberger, 2013). In the 

Lesser Caucasus, Alborz and Talysh ranges, collision tectonics was associated with strong 

deformation along the accreted terranes as documented by basin inversion, transpression and 

shortening after the late Eocene (e.g. Brunet et al., 2003; Vincent et al., 2005; Sosson et al., 

2010). In general, collision tectonics provides an adequate environment for continental 

delamination and asthenospheric upwelling (e.g. Bird, 1979; Meissner and Mooner, 1998). In 

transpressional tectonic regimes, translithospheric faults are favourable channels for 

asthenospheric upwelling (e.g. Zheng et al. 2008), accompanied by increased heat flow, and 

localised decompression melting of thickened juvenile lower crust and metasomatised 

lithospheric mantle, typically resulting in high-K calc-alkaline, shoshonitic and/or adakitic 

magmatism (e.g. Wang et al., 2006; Hou et al. 2011; Lu et al., 2013). We propose a similar 

interpretation for the collision to post-collision evolution of the Zangezur-Ordubad region. 

The Zangezur-Ordubad region hosting the composite Meghri-Ordubad and Bargushat plutons 

is bordered by the Khustup-Giratakh and Ordubad-Salvard dextral strike-slip faults (Fig. 3b), 

which are local segments of major regional faults, which can be traced along the entire Lesser 

Caucasus up to northern Armenia, and which were active at least since the Eocene (Aslanyan, 

1958; Tayan et al., 1976). This long-lived fault system at the contact between the Kapan and 

the South Armenian blocks (Fig. 3) certainly provided the adequate zone of translithospheric 

weakness for repeated magma ascent from a deep source (Fig. 21), and explains the long-

lasting Eocene to Pliocene stationary magmatic and metallogenic activity in the southernmost 

Lesser Caucasus. 

The radiogenic isotope data indicate a more important mantle input during Neogene 

magmatism in comparison to the Eocene (Fig. 14b), which supports asthenospheric mantle 

upwelling and increased heat flow in the Zangezur-Ordubad region, and explains localised 

decompression melting of juvenile lower crust and lithospheric mantle (Figs 21b-c). Our trace 

element data also reveal that it was an increasingly higher metasomatised lithospheric mantle 

component, which was involved in Oligocene to Pliocene magmatim (Fig. 21b). Conceição 

and Green (2004) demonstrated that decompression is the most favourable mechanism for 

melting a metasomatised mantle source by asthenospheric upwelling and for producing 

shoshonitic magmatism. Therefore, we conclude that the early Oligocene high-K calc-alkaline 

and shoshonitic magmatism was the result of such decompression melting affecting 

metasomatised lithospheric mantle at depth along the Ordubad-Savard and Khustup-Giratakh 
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fault system, followed by storage and differentiation in a low-pressure crustal environment 

(Fig. 21b). Contemporaneous Cenozoic uplift of the Zangezur block during emplacement of 

the Meghri-Ordubad and Bargushat plutons (Fig. 3b), reported by Tayan et al. (1976), also 

supports our interpretation of continental delamination and asthenospheric upwelling. Indeed, 

regional uplift is a typical isostatic response to the thinking of subcontinental lithospheric 

mantle and replacement by hotter asthenosphere (e.g. Bird, 1979; Meissner and Mooner, 

1998). 

In comparison to the early Oligocene high-K calc-alkaline to shoshonitic magmatism, the 

younger Oligocene to Mio-Pliocene adakitic magmatism originated from a more depleted and 

more intensely metasomatised lithospheric mantle, and from magmas that underwent 

fractional crystallization at deeper levels in the crust, as suggested by our trace element data 

(Figs 19b-d), possibly during continuous compression. In addition, several adakitic Miocene 

magmatic rocks and the Pliocene sample have high Ni and Cr concentrations above, 

respectively, 30 and 40 ppm for similar SiO2 contents between 65 and 70 wt% (Figs 9g-h). 

These samples also have high Mg numbers at about 55, falling close or within the field of 

experimental hybrid melts (Fig. 20d). This suggests that some of the Mio-Pliocene adakitic 

melts interacted and partly equilibrated with lithospheric mantle through which they ascended 

(e.g. Kelemen et al., 2003; Liu et al., 2010). It is unlikely that the source was mantle 

metasomatised by adakitic slab melts (e.g. Rapp et al., 1999; Castro et al., 2013), because it 

would have required slab melting in the garnet stability field, for which there is no evidence 

based on magmatic rock data of this study. More realistic explanations (Fig. 21c), consistent 

with the chemical characteristics of the Mio-Pliocene adakitic rocks, are either partial melting 

of a thickened juvenile lower crust intruded by diapirs of hot metasomatised and depleted 

lithospheric mantle (e.g. Wang et al., 2006), or partial foundering and melting of thickened 

lower crust in the underlying metasomatised lithospheric mantle (e.g. Hou et al., 2011). 

The Re-Os molybdenite and U-Pb zircon TIMS age data indicate that Oligocene porphyry Cu-

Mo ore formation, including the giant Kadjaran deposit at 26-27 Ma, took place during 

collision to post-collision tectonic evolution of the Zangezur-Ordubad region, as early 

Oligocene high-K calc-alkaline and shoshonitic magmatism evolved to late Oligocene and 

Mio-Pliocene adakitic magmatism (Figs 4, 21b-c). Further studies are under way to clarify the 

exact temporal relationship of the Oligocene porphyry Cu-Mo event with either the early 

shoshonitic or the younger adakitic magmatic events, or alternatively during the transition 

from one to the other. 
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7.6. Relationships between the magmatic-geodynamic evolution and metal endowment of 

porphyry deposits in the Zangezur-Ordubad region 

Porphyry Cu-Mo deposits are typically associated with calc-alkaline magmatic subduction-

related arc settings (eg. Sinclair, 2007; Richards, 2015). By contrast, several studies have 

pointed out that porphyry Cu-Au deposits would be generally expected in collision to post-

collision settings characterized by alkaline magmatism (e.g. Wang et al., 2006; Richards, 

2009). The Eocene Agarak and Aygedzor porphyry deposits have Au grades, respectively, of 

0.025 and 0.05 g/t (Table 1; Fig. 5c), and Au grades vary between 0.02 to 1 g/t for the 

Oligocene Lichk, Kadjaran and Paragachay deposits (Table 1; Fig. 5c), although the quality 

and accuracy of Au data must be treated with caution. For instance at Kadjaran, depending on 

the source of data (Table 1), the reported Au contents vary from 0.65 g/t (Singer et al, 2002) 

to 0.02 g/t (data communicated by the mine staff). In addition, further studies are required to 

understand if the reported Au grades are intimately associated with the porphyry event or 

result from a younger epithermal overprint, as recognized for instance at the Kadjaran deposit 

(e.g. Hovakimyan et al., 2015). In brief, although the highest Au grades are associated with 

Oligocene deposits, the data are too scarce and too unreliable to confidently conclude that 

collision to post-collision porphyry deposits associated with shoshonitic to adakitic 

magmatism in the Zangezur-Ordubad region are truly Au-enriched with respect to the 

subduction-related Eocene deposits. Based on the Mo and Cu grades, all deposits essentially 

qualify as porphyry Cu-Mo deposits, regardless of their age (Fig. 5c), and none can be coined 

as a typical porphyry Cu-Au deposit based on the Au grades. 

The essentially Cu-Mo-enriched signature of the porphyry deposits related to collision to 

post-collision tectonics and alkaline magmatism in the Zangezur-Ordubad region, involving a 

metasomatised lithospheric mantle source, is not unique. For instance, porphyry Cu-Mo 

deposits are also reported during the collision-related metallogenic evolution of the Tibetan 

orogenic belt, which is characterized by alkaline magmatism (Hou et al., 2011, 2015). Some 

of the Tibetan porphyry deposits are associated with large-scale, regional strike-slip faults 

(Hou et al., 2003), which is analogous to the fault-controlled metallogenic setting of the 

Zangezur-Ordubad region (e.g. Fig. 3b). The reported high-grade Au zones in the Tibetan 

deposits postdate and are unrelated to porphyry Cu-Mo emplacement, and are attributed to 

overprinting high-sulphidation Cu-Au mineralization (Hou et al., 2011). In a review on the 

metallogenic evolution of the Tethyan orogeny, Richards (2015) also includes porphyry 

Cu±Mo±Au in post-collisional settings (see Fig. 4D in Richards, 2015). This review points 

out that in fact the nature of porphyry deposits does not change significantly with different 

tectonic settings, i.e. Miocene post-collision Tibetan porphyry Cu-Mo deposits are similar to 

Mesozoic subduction-related ones from the same region and from the Balkans and Chile. 
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As discussed by Audétat (2010) in the case of the porphyry Mo deposit at Cave Peaks, Texas, 

U.S.A., the origin of Mo-enrichment in porphyry deposits is still a matter of debate. It is 

attributed either to assimilation of Mo-enriched crustal, basement rocks during magmatic 

evolution or, alternatively, to Mo-enrichment during progressive fractional crystallisation of 

mafic magmas. In the Zangezur-Ordubad region under study, the extensive range from mafic 

(gabbroic compositions) to felsic (granitic compositions) end-member rock types during the 

successive magmatic events is permissive with Audétat‟s model (2010), favouring Mo-

enrichment in both Eocene and Oligocene porphyry deposits due to increasing degrees of 

magma fractionation. In addition, our radiogenic isotope data document that there is 

negligeable or no involvement of crustal, basement sources during Cenozoic magma 

evolution in the Zangezur-Ordubad region (Fig. 14). In another study, Pettke et al. (2010) 

concluded that the elevated Mo-endowment of porphyry deposits with alkaline magmatic 

affinities generated during post-subduction, late Eocene extension in the western U.S.A., 

including the Bingham Canyon deposit, was related to magmas originating from ancient, Mo-

enriched lithospheric mantle metasomatised during a Proterozoic subduction event. In the 

light of the previous examples and our study in the Zangezur-Ordubad region, we conclude 

that porphyry Cu-Mo deposits can also be generated in alkaline magmatic and collision to 

post-collision settings. In brief, the general inference that porphyry Cu-Au deposits, rather 

than porphyry Cu-Mo deposits, are associated with collision to post-collision settings and 

alkaline magmatism should be applied with caution, and requires further studies. 

 

7.7. Regional magmatic, geodynamic and metallogenic comparison of the southernmost 

Lesser Caucasus with the Cenozoic Alborz and Urumieh-Dokhtar belts of Iran 

Primitive-normalized spider diagrams with negative Nb, Ta and Ti anomalies (Fig. 22) 

indicate a subduction-like magmatic source in the Lesser Caucasus, and the Iranian Alborz 

and northern Urumieh-Dokhtar belts throughout the Cenozoic. It is consistent with Eocene 

subduction-related magmatism along the Lesser Caucasus and Iran, and subsequent magma 

generation from a subduction-modified and subduction-inherited mantle wedge, following 

late Eocene-Oligocene Arabia-Eurasia/Iran collision, with collision progressively younging 

southwards along Iran (Agard et al., 2011). Verdel et al. (2011) document oceanic island arc-

like compositions during Oligo-Miocene magmatism in the Alborz segment north of Teheran 

(see area IV in Fig. 1). This suggests tapping of different proportions of subduction-modified 

mantle and unmodified asthenopsheric mantle reservoirs during Neogene magmatism along 

the Alborz. 

By contrast, trace element diagrams reveal distinct differences of the Urumieh-Dokhtar belt 

with respect to the Alborz and the Zangezur-Ordubad region under study (Fig. 23). Magmatic 
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rocks from the Urumieh-Dokhtar belt have an essentially normal arc, calk-alkaline 

composition, and are dominated by fluid-mobile components with only moderate slab-derived 

and mantle melt-derived components throughout the entire Cenozoic (Figs 23d, d, f, h). The 

exception are a few Miocene and Pliocene adakitic magmatic rocks, with a distinct slab-

enriched geochemistry, and characteristics of high-pressure magmatic evolution, attributed to 

slab melting and slab break-off following plate collision (Omrani et al., 2008; Yeganefahr et 

al., 2013). 

The Alborz range and the Zangezur-Ordubad region have broadly similar magmatic 

evolutions during the Cenozoic. In both tectonic zones, Eocene magmatic rocks have a normal 

arc composition, dominated by fluid-mobile components and magmatic evolution in a low-

pressure environment (Figs 23a, c, e, g). Akin to the Zangezur-Ordubad region, the Oligocene 

and Miocene magmatic rocks from the Alborz evolved towards adakitic compositions 

dominated by mantle melt-related enrichments and magmatic evolution in a higher-pressure 

environment (Figs 23a, c, e, g). According to Castro et al. (2013), adakitic magmatism started 

during early Oligocene in the Alborz. Oligocene shoshonitic magmatism is also documented 

by Aghazadeh et al. (2011) and Castro et al. (2013) in the western Alborz along the Caspian 

sea (see area III in Fig. 1). In contrast to the Zangezur-Ordubad region, melt-enrichment is 

more pronounced (Fig. 23c, high Nb/Y ratios), and magmas evolved in a deeper storage 

environment (Fig. 23e, elevated Sm/Yb ratios) during the Oligocene in the Alborz. The later 

may reflect a thicker crustal environment along the Alborz. This is supported by crustal 

thickness estimates of ~42-44 km in the southernmost Lesser Caucasus by Gök et al. (2011), 

compared to slightly thicker estimates of ~50-55 km in Central Iran, and the Urumieh-

Dokhtar and Alborz belts by Mohammadi et al. (2013) and Motaghi et al. (2015). 

The Nd and Sr isotope data reveal that the Meghri-Ordubad and Bargushat plutons, in 

particular the Neogene rock samples, have a more primitive, mantle-dominated composition 

in comparison to the majority of the Cenozoic magmatic rocks from the Urumieh-Dokhtar and 

Alborz belts, with generally lower 
143

Nd/
144

Nd and higher 
87

Sr/
86

Sr ratios reflecting more 

important crustal inputs in the Iranian belts (Fig. 14). Likewise, in the 
207

Pb/
204

Pb vs 
206

Pb/
204

Pb plot (Fig. 16a), Iranian magmatic rocks have an upper crust-dominated signature, 

falling predominantly above the orogenic Pb isotope evolutionary curve, whereas samples 

from the Meghri-Ordubad and Bargushat plutons plot below it, towards a more mantle-

dominated reservoir. In the 
208

Pb/
204

Pb vs 
206

Pb/
204

Pb plot (Fig. 16b), the Iranian magmatic 

rocks plot well above the orogenic Pb isotope evolutionary curve towards the lower crust Pb 

isotope evolutionary curve, and have a distinct thorogenic signature when compared to 

samples from the Meghri-Ordubad and Bargushat plutons. In brief, the more radiogenic and 

thorogenic composition of Iranian Cenozoic magmatic rocks reflects more extensive 
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assimilation of crustal rocks and/or the presence of older lower crustal basement in 

comparison to the magmatic rocks from the southernmost Lesser Caucasus. 

Neogene shoshonitic and adakitic magmatism of the Alborz range, immediately to the south 

of our study area in the Zangezur-Ordubad region (area III in Fig. 1), is attributed to 

decompression melting of metasomatised lithospheric mantle during extension and thinning 

of the crust, and the adakitic composition is interpreted in terms of mantle metasomatism by 

slab-derived adakitic melts (Aghazadeh et al., 2011; Castro et al., 2013). This geodynamic 

evolution is comparable with the extensional flare-up evolution and asthenospheric upwelling 

scenario proposed by Verdel et al. (2011) for the late Eocene to Miocene evolution of 

northern and central Iran. However, the Oligo-Miocene extensional geodynamic evolution 

suggested for the Alborz region contrasts with the dominantly compressional tectonic 

environment, including crustal thickening, transpression, and translithospheric strike-slip 

faulting proposed in this study for the Zangezur-Ordubad region (Figs 21b-c). Although, as 

we stated above, Sr/Y ratio and Y content patterns during early Oligocene shoshonitic 

magmatism at about 31.8-33.5 Ma (Figs 19c-d), may reflect a transient state of crustal 

thinning/extension in the Zangezur-Ordubad region. The reasons for the contrasting 

geodynamic evolutions of the two neighbouring tectonic zones are still unclear. The 

Zangezur-Ordubad region and the Alborz range are separated by the regional, orogen-

transverse Araks fault (Fig. 1), the geodynamic significance and the age of which remain 

uncertain (Sosson et al., 2010). Unlike the orogen-parallel Khustup-Giratakh and Ordubad-

Salvard dextral strike-slip faults (Figs 3b and 21), the Araks fault appears to have had little to 

no control on the Cenozoic magmatic and metallogenic evolution. However, the Araks fault 

constitutes the oriental border of the South Armenian and the Kapan blocks, i.e. the 

southernmost Lesser Caucasus (Figs 1 and 3), where the Eastern Anatolian platform has 

indented the Eurasian margin (Fig. 2). This strong indentation tectonics, which is confined to 

the Lesser Caucasus, i.e. the Zangezur-Ordubad region, and its weaker impact along the 

Alborz (Fig. 2) may partly explain the, respectively, contrasting transpressive vs. extensional 

geodynamic evolutions. 

Iranian porphyry deposits were emplaced during the Oligocene and Miocene along the 

Alborz/Arasbaran and Urumieh-Dokhtar belts, and the earliest reported porphyry deposits are 

27-28 Ma old (Fig. 15 in Aghazadeh et al., 2015; see also Simmonds and Moazzen, 2015), 

which is comparable in age to the Oligocene Paragachay and Kadjaran deposits of the 

Zangezur-Ordubad region (Figs 3b and 4). The Iranian porphyry deposits are also interpreted 

as post-collisional (e.g. Shafiei et al., 2009; Aghazadeh et al., 2015; Simmonds and Moazzen, 

2015), and are related to post-collisional extension and lithospheric mantle delamination (see 

Fig. 16b in Aghazadeh et al., 2015). Like the divergent geodynamic evolutions discussed 

above, the extensional Iranian metallogenic setting constrasts with the transpressional setting 
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proposed in our study for the Neogene porphyry deposits in the Zangezur-Ordubad region 

(Figs 20b-c). Another difference with respect to the metallogenic evolution of the Lesser 

Caucasus is the apparent absence of subduction-related Eocene porphyry deposits in the 

Iranian Alborz/Arasbaran and Urumieh-Dokhtar belts. Thus, we conclude that in contrast to 

the southernmost Lesser Caucasus, Eocene subduction tectonics and magmatism were not 

favourable for the generation of porphyry deposits along the Iranian Alborz/Arasbaran and 

Urumieh-Dokhtar belts. 

 

8. Conclusions 

This study have allowed us to clarify the magmatic, geodynamic and metallogenic evolution 

of the Zangezur-Ordubad region of the southernmost Lesser Caucasus, which links the 

Western and Central segments of the Tethyan orogenic and metallogenic belt with its Iranian 

extensions. Lithogeochemical and radiogenic isotope rock data together with U-Pb zircon 

TIMS dating, and published Re-Os molybdenite ages allow us to subdivide the magmatic and 

metallogenic evolution of the Zangezur-Ordubad region in two broad stages. Eocene normal 

arc, calc-alkaline to high-K calc-alkaline magmatism was dominated by fluid-mobile 

components, and was coeval with Neotethys subduction and extensive Eocene magmatism in 

Iran. Small tonnage porphyry Cu-Mo deposits were emplaced during Eocene subduction. 

Subsequent Oligocene and Mio-Pliocene magmatism coincided with Arabia-Eurasia collision 

to post-collision tectonics. Neogene magmatism was dominated by a depleted mantle 

component, compositionally modified by subducted sediments, added to the lithospheric 

mantle during the previous Eocene subduction event. Neogeone collision to post-collision 

magmatism was linked to asthenospheric upwelling along translithospheric, transpressional 

regional and orogen-parallel faults, located between the Gondwana-derived South Armenian 

and the Eurasian Kapan blocks. Decompression melting of metasomatised lithospheric mantle, 

and possibly juvenile lower crust, resulted in high-K calc-alkaline and shoshonitic to adakitic 

magmas, the ascent of which was favoured by the presence of long-lived translithospheric 

faults. Oligocene porphyry Cu-Mo ore deposit formation, including the major Kadjaran and 

the Paragachay deposits at 26-27 Ma, took place during the collision to post-collision tectonic 

evolution of the Zangezur-Ordubad region. Further studies are required to clarify the exact 

temporal relationship of the Oligocene porphyry Cu-Mo event with the early Oligocene 

shoshonitic and/or the late Oligocene to Mio-Pliocene adakitic magmatism. 

The evolution and setting of the Zangezur-Ordubad region is comparable to the Tibetan 

geodynamic environment along the Asian segment of the Tethyan belt, where protracted 

Mesozoic to Cenozoic magmatism also resulted in the emplacement of successive generations 

of porphyry Cu-Mo deposits. In parallel to the Tibetan case, our study in the Zangezur-
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Ordubad region demonstrates that porphyry Cu-Mo deposits can also be generated by alkaline 

magmatism in collision to post-collision settings. 

The southernmost Lesser Caucasus represents a unique and particularly fertile, long-lived 

geological environment along the Central Tethys orogenic and metallogenic belt, where long-

lived Cenozoic magmatism, and repeated Eocene and Oligocene porphyry-emplacement took 

place in successive subduction-related and collision to post-collision settings. This contrasts 

with the Iranian Alborz and Urumieh-Dokhtar Cenozoic magmatic and metallogenic belts, 

where only post-collisional Neogene porphyry Cu-Mo deposits are reported. 
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Figure captions 

Figure 1. Geological map from eastern Turkey to Iran highlighting the Lesser Caucasus area. 

From Mederer et al. (2014), and additional information from Azizi and Moinevaziri (2009), 

Hässig et al. (2013a, b) and Zamani and Masson (2014). The Lesser Caucasus consists of the 

Somkheto-Karabagh belt along the Eurasian margin, the ophiolites of the Sevan-Akera suture 

zone and the South Armenian block. The South Armenian block and the Eastern Anatolian 

platform are of Gondwanian origin. Location of Figure 3a is centred on the Zangezur-

Ordubad region in the southernmost Lesser Caucasus, which hosts the composite Meghri-

Ordubad and Bargushat plutons. Tectonic zones and faults: ABV - Artvin-Bolnisi volcanic-

arc; IAES – Izmir-Ankara-Erzinkan suture; KGF – Khustup-Giratagh fault; KP – Kapan 

block; MOP – Meghri-Ordubad pluton of the Zangezur-Ordubad region; SSF – sublatudinal 

strike slip fault (based on Hässig et al., 2013a, and previously suggested by Kazmin et al., 

1986, and Gabriyelyan et al., 1989). Major ore districts, deposits and prospects: A – Alaverdi 

district (including the Alaverdi, Shamlugh and Akhtala deposits); Am – Amulsar epithermal 

prospect; B – Bolnisi district (including the Madneuli, Sakdrisi and Beqtakari deposits); C – 

Chovdar epithermal deposit; D – Dashkasan iron skarn deposit; G – Gedabek district 

(including the Gedabek, Khar Khar, Kharadagh, and Bitibulak deposits and prospects); Go – 

Gosha epithermal deposit; K – Kapan district (including the Shahumyan, Centralni west and 

east deposits); M – Mehmana district; Me – Merisi district; Mg – Meghradzor epithermal 

prospect; T – Teghut porphyry deposit; Z – Zod-Sotk epithermal deposit; ZO – Zangezur-

Ordubad district (see Fig. 3b). Location of areas selected for the comparison of the 

geochemistry of Cenozoic magmatic rocks in Figures 22 and 23: I – Miocene rocks from the 

central Lesser Caucasus (Dilek et al., 2009), II – Eocene rocks from the Talysh basin (Vincent 

et al., 2005), III – Eocene to Oligocene rocks from western Alborz (Aghazadeh et al., 2010, 

2011; Asiabanha and Foden, 2012; Castro et al., 2013), IV – Eocene rocks from central 

Alborz (Verdel et al., 2011), V – Eocene to Mio-Pliocene rocks from the northern Urumieh-

Dokhtar belt (Omrani et al., 2008; Rezaei-Kahkhaei et al., 2011; Sarjoughian et al., 2012; 

Yeganehfar et al., 2013; Honarmand et al., 2014). 

Figure 2. Geodynamic reconstruction of the Tethyan belt centred on the Lesser Caucasus 

(LCR) for Late Maastrichtian (a), Ypresian (b), Lutetian (c), Rupelian (d) and Early 

Burdigalian (e) times (modified from Barrier and Vrielynck, 2008). Orange-filled black circle 

indicates location of the composite Meghri-Ordubad and Bargushat plutons of the Zangezur-

Ordubad region. ABV - Artvin-Bolnisi volcanic-arc; AR – Alborz range; ATB – Adjara-

Trialeti basin; BFB – Balkan fold-belt; BPM – Bitlis-Pütürge massif; EAP – Eastern 

Anatolian platform (including the South Armenian block in its eastern extremity); GCB – 

Great Caucasus basin; GKF – Great Kevir fault; IAM – Izmir-Ankara-Erzinkan massif; KOM 

– Khoy ophiolite massif; KON – Khoy ophiolite nappe; LCR – Lesser Caucasus range; MeM 
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– Menderes massif; MeP – Menderes platform; MsO – Mesogea ocean; MZT – Main Zagros 

thrust; NAM – North Anatolian massif; PAM – Peri-Arabian massif; PoR – Pontides range; 

RSM – Rhodopes-Srandja massif; SAM – Sevan-Akera ophiolitic massif; SCB – South-

Caspian basin; SFB – Srednogorie fold-belt; SrB – Sirjan block; SSB – Sanandaj-Sirjan 

block; TaP - Taurus platform; UDV – Urumieh-Dokhtar volcanic-arc; ZDF – Zagros 

deformation front (all abbreviations and domain names from Barrier and Vrielynck, 2008).  

Figure 3. a – Simplified geological map of the Zangezur-Ordubad region and the Kapan 

block of the southernmost Lesser Caucasus, and northern Iran (from Mederer et al., 2013, 

2014), A - Agarak deposit; D - Dastakert deposit; K - Kadjaran deposit; P - Paragachay 

deposit; KGF: Khustup-Giratakh fault. Location of Araks fault after Zamani and Masson 

(2014). See Figure 1 for location of Figure 3a. b – Simplified geological map of the 

composite Meghri-Ordubad and Bargushat plutons, including major ore deposits and 

prospects of the Zangezur-Ordubad region (after Tayan et al., 1976, 2005; Babazadeh et al., 

1990). The Re-Os ages obtained for molybdenites are indicated next to the dated porphyries 

(Dastakert, Hankasar, Kadjaran, Paragachay, Aygedzor and Agarak; see Moritz et al., 2013). 

The Zangezur and Nakhitchevan blocks belong to the South Armenian block of Gondwanian 

origin. Only the major faults are included, the abundant subsidiary faults have been omitted 

for the sake of clarity. Sample locations for U-Pb zircon dating (see Table 5 and Figure 18): 1 

– KJ-12-11A (Kadjaran open pit); 2 – KJ-10-02 (near Atkis); 3 – KJ-12-07 (Meghri ridge); 4 

– LI-10-03 (Lichk area); 5 – AG-10-06A and AG-10-07 (east of Agarak deposit). 

Figure 4. Summary of major magmatic and ore-forming events within the composite Meghri-

Ordubad and Bargushat plutons of the Zangezur-Ordubad region, Lesser Caucasus, including 

in blue the new high precision TIMS U-Pb dating of magmatic rocks described in this study, 

and comparison with major, regional tectonic and magmatic events during Arabia-Eurasia 

convergence recorded in the Lesser Caucasus, the Talysh basin in Azerbaijan, and Iran. 

Source of data and interpretations: 1 – Djrbashyan et al. (1976); 2 – K-Ar whole rock age 

from Ghukasyan (1966); 3, 4, 5 – Rb-Sr isochron ages, respectively, by Ghukasyan et al. 

(2006), and Melkonyan et al. (2008, 2010); 6 – New high precision U-Pb TIMS dating of 

magmatic zircons (this study); 7 – Tayan et al. (1976); 8 – Re-Os molybdenite age (Moritz et 

al., 2013); 9 – K-Ar sericite age (Bagdasaryan et al., 1969); 10 – Roland et al. (2009b); 11 – 

Roland et al. (2010); 12 – Oberhänsli et al. (2011); 13 – Rolland et al. (2012); 14 – McQuarrie 

et al. (2003); 15 – Ballato et al. (2011); 16 – Vincent et al. (2005); 17 – Allen and Armstrong 

(2008); 18 – McQuarrie and van Hinsbergen (2013); 19 – Okay et al. (2010). 
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Figure 5. Metal grades and tonnages of porphyry Cu-Mo deposits from the Zangezur-

Ordubad region, Lesser Caucasus (see details of deposits in Table 1 and location in Figure 3b) 

compared with porphyry deposits from other parts of the world. a – Copper grades vs. 

tonnage; b – Molybdenum grades vs. tonnage c - Molybdenum vs copper grades, and Au 

grades when available. Fields of copper and molybdenum grades and tonnages of different 

types of porphyry deposits (Cu, Cu-Mo, Mo, Cu-Au, Au) from other parts of the world after 

Sinclair (2007). Two data sources exist for metal grades and tonnages at Kadjaran: grades and 

tonnage of Kadjaran* are from the local Armenian mine staff, and grades and tonnage of 

Kadjaran** are from Singer et al. (2002). 

Figure 6. a – TAS classification of magmatic rocks (Le Maître, 2002) including names of 

equivalent names for coarse-grained intrusive rocks (Middlemost, 1994). b – QAPF diagram 

(Streckeisen, 1976). c – K2O (wt%) vs SiO2 (wt%) diagram (Pecerillo and Taylor, 1976). 

Figure 7. Petrographic features of representative magmatic rocks from the composite Meghri-

Ordubad pluton. See detailed petrographic descriptions and locations in Table 3 and Figure 3b. 

a – Equigranular Eocene granodiorite from the Agarak area with quartz, plagioclase and K-

feldspar (sample AG-10-03). b – Equigranular Eocene granite from the Agarak area with 

quartz, plagioclase, amphibole, and subsidiary biotite and K-feldspar (sample AG-10-07, 

dated at 44.03 Ma see Table 5 and Figure 18). c – Eocene porphyritic trachybasalt from the 

Agarak area with plagioclase phenocrysts in a plagioclase-pyroxene matrix (sample AG-10-

04). d – Equigranular Oligocene hornblende gabbro from the Meghri ridge with resorbed 

pyroxene surrounded by amphibole, plagioclase, biotite and subsidiary apatite (sample KJ-12-

07, dated at 33.49 Ma see Table 5 and Figure 18).  e – Equigranular Oligocene monzonite 

sampled east of the Kadjaran-Atkis area, with myrmekitic K-feldspar, plagioclase and 

amphibole surrounding cores of pyroxene (sample KJ-10-06A).  f – Equigranular Miocene 

granite sampled along Katudjur river, west of Kadjaran, with quartz, K-feldspar, plagioclase, 

amphibole, and subsidiary biotite and sphene (sample KJ-09-02). g – Porphyritic Miocene 

monzonite sampled along the Vogchi section, along the road from Kadjaran to Kapan, with 

phenocrysts of plagioclase, amphibole, biotite and quartz in an aphanitic matrix (sample KJ-

09-04B). h – Porphyritic Pliocene dacite near Lichk area, with phenocrysts of plagioclase, 

amphibole, and biotite and quartz in a microcrystalline quartz-plagioclase (sample LI-10-04). 

Abbreviations: amph – amphibole; ap – apatite; bt – biotite; kfs – K-feldspar; plag – 

plagioclase; px – pyroxene; tit – sphene; qtz – quartz. 

Figure 8. Representative major element Harker diagrams. High- and low-silica adakite fields 

in Figure 8g from Martin et al. (2005). 

Figure 9. Representative trace element Harker diagrams. Same symbols as in Figure 8. 
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Figure 10. Primitive, mantle-normalized extended trace element spider diagrams. 

Normalization with respect to Sun and McDonough (1989). 

Figure 11. Rare Earth element chondrite-normalized diagrams. Normalization with respect to 

Sun and McDonough (1989). 

Figure 12. a - (La/Yb)n and (Dy/Yb)n diagram with normalization with respect to Sun and 

McDonough (1989). b – Eu*/Eu vs SiO2 (wt%) diagram depicting europium anomalies. 

Figure 13. a-d - Sr/Y vs Y (ppm), La/Yb vs Yb (ppm), Sr/Y vs SiO2 (wt%) and La/Yb vs 

SiO2 (wt%) discrimination plots. 

Figure 14. Nd and Sr isotopic compositions of magmatic whole rock samples from the 

Meghri-Ordubad pluton, and comparison with magmatic rocks from the Kapan block (Fig. 3) 

and Cenozoic Iranian magmatic arcs. b is a detailed view of a. Nd and Sr initial isotopic ratios 

of magmatic rocks from the Meghri-Ordubad pluton, Lesser Caucasus, compared to initial 

isotopic compositions of Cenozoic magmatic rocks from the Alborz and Urumieh-Dokhtar 

ranges in Iran, and the Turkish-Iranian high plateau and Sanandaj-Sirjan range, Iran. All 

isotope data were age-corrected to account for Rb and Sm decay. Oceanic mantle end-

member fields (HIMU, EM1, EM2) are from Zindler and Hart (1986). The present-day 

CHUR and bulk Earth UR are from Wasserburg et al. (1981) and DePaolo (1988), 

respectively. Black diamonds with grey filling: Eocene Urumieh-Dokhtar rocks from Omrani 

et al. (2008). References in brackets next to the compositional fields: 1 - Ahmadian et al. 

(2009), 2 - Aghazadeh et al. (2011), 3 - Asiabanha and Foden (2012), 4 - Azizi et al. (2014), 5 

- Haschke et al. (2010), 6 -  Honarmand et al. (2014) , 7 - Nabatian et al. (2014), , 8 -  Omrani 

et al. (2008), , 9 - Pang et al. (2013), 10 - Rezaei-Kahkhaei et al. (2011), 11 - Sarjoughian et al. 

(2012), 12 -  Shafaii Moghadam et al. (2014), 13 - Shafiei et al. (2009), 14 - Yeganehfar et al. 

(2013).   

Figure 15. a – Initial 
87

Sr/
86

Sr vs 1/Sr (1/ppm). b – Initial 
143

Nd/
144

Nd vs 1/Nd (1/ppm). 

Figure 16. Lead isotopic compositions of magmatic whole rock samples from the Meghri-

Ordubad pluton and comparison with Iranian Cenozoic magmatic arcs. The isotope data were 

age-corrected to account for U and Th decay. UD: Urumieh-Dokhtar belt. Light blue 

compositional fields: Eocene Alborz and Urumieh-Dokhtar from Honarmand et al. (2014) and 

Nabatian et al. (2014). Light orange Oligocene and light green Miocene compositional fields: 

from Yeganehfar et al. (2013) and Honarmand et al. (2014). Upper crust and orogene lead 

isotopic evolution curves generated by the plumbotectonics model of Zartman and Doe (1981). 

Figure 17. Oxygen isotopic compositions of magmatic whole rock samples from the Meghri-

Ordubad and Bargushat plutons plotted against Th/Nb. The typical 
18

O range of 5.5 ‰ ± 

0.2 ‰ (V-SMOW) of mantle peridotites is from Eiler (1991) and Mattey et al. (1994). 
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Figure 18. Concordia diagrams and 
206

Pb/
238

U age plots with U-Pb dates of weighted mean 

clusters of zircon samples from the Meghri-Ordubad and Bargushat plutons. 

Figure 19. a – Dy/Yb vs SiO2 (wt%) diagram of magmatic whole rock samples from the 

Meghri-Ordubad and Bargushta plutons, and displaying amphibole and garnet fractionation 

trends according to Davidson et al. (2007). b – La/Sm vs Sm/Yb displaying approximate 

stability thresholds of clinopyroxene, amphibole and garnet stabilities in mantle melt residues 

according to Kay and Mpodozis (2001), Haschke et al. (2006), Shafiei et al. (2009) and 

Mamani et al. (2010). CPx: clinopyroxene; Amph: amphibole; Gn: garnet. Source enrichment 

and increasing pressure trends from Shafiei et al. (2009). c and d – Sr/Y and Y (ppm) vs age 

diagram displaying variations attributed to progressive differences in pressure differentiation. 

The ages quoted in c and d were obtained in this study for the successive magmatic events by 

U-Pb TIMS dating of zircons (see Figure 18 and Table 5). The depicted porphyry Cu-Mo 

events are: the first porphyry event at 40-44 Ma, during Eocene subduction of the Neotethys 

(Figs 4 and 21), including the Agarak, Hankasar, Aygedzor and Dastakert deposits (Table 1), 

and the second porphyry event at 26-27 Ma, during Oligocene collision to post-collision 

evolution of the Zangezur-Ordubad region (Figs 4 and 21), including the Kadjaran and 

Paragachay deposits (Table 1). 

Figure 20. a – Ba (ppm) vs Nb/Y diagram of magmatic whole rock samples from the Meghri-

Ordubad pluton, and displaying variable fluid- and melt-related enrichment in subduction 

settings (from Kepezhinskas et al., 1977). b – Th/Yb vs Ba/La diagram displaying variable 

fluid- and melt-related enrichment in subduction settings (from Woodhead et al., 2001). c - 
206

Pb/
204

Pb correlation with Th/Nb. d - SiO2 (wt%) variation with respect to Mg# (100 * 

Mg/(Mg + Fe
2+

)) of magmatic whole rock samples from the Meghri-Ordubad pluton. 

Experimental melt fields from Kamvong et al. (2014): experimental basalt melt field at 1-4 

GPa from Rapp (1995), Rapp and Watson (1995) and Sen and Dunn (1994), and experimental 

hybrid melts from Rapp et al. (1999). 

Figure 21. Cenozoic evolution of the Zangezur-Ordubad region, southernmost Lesser 

Caucasus, and progressive construction of the composite Meghri-Ordubad and Bargushat 

plutons. a – Eocene subduction: converging tectonics between Arabia and the amalgamated 

terranes along the Eurasian margin, including the Eastern Anatolian platform, the South 

Armenian block, and the Jurassic-Cretaceous Kapan block. The Zangezur-Ordubad region is 

bounded by the Ordubad-Salvard and the Khustup-Giratagh faults at the contact between the 

South Armenian block and the Kapan block. Eocene evolution is characterized by calc-

alkaline to high-K calc-alkaline arc magmatism related to subduction of the Neotythys. Slab 

dehydration dominates the magmatic evolution, and the lithospheric mantle wedge is 

progressively metasomatised. Small tonnage porphyry Cu-Mo deposits were emplaced during 

arc magmatism, including the Agarak, Hankasar, Aygedzor and Dastakert deposits between 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 48 

about 44 and 40 Ma (Fig. 4). b –Arabia-Eurasia collision at the Eocene-Oligocene transition 

resulted in strong deformation along the accreted terranes, including transpression, with 

translithospheric faults providing favourable channels for asthenospheric upwelling, increased 

heat flow. Shoshonitic magmatism during the early Oligocene (32-33 Ma) was sourced by 

decompression melting of metasomatised lithospheric mantle. c – Late Oligocene to Mio-

Pliocene adakitic magmatism originated from a more depleted and more intensely 

metasomatised lithospheric mantle, and from magmas that underwent fractional 

crystallization at deeper levels in the crust, possibly due to continuous compression in the 

collision setting. Adakitic rocks were generated by partial melting of a thickened juvenile 

lower crust intruded by diapirs of hot metasomatised and depleted lithospheric mantle, or 

partial foundering and melting of thickened lower crust in the underlying metasomatised and 

depleted lithospheric mantle. The second and major Oligocene porphyry Cu-Mo event 

resulted in the emplacement of the large tonnage Kadjaran and the Paragachay deposits at 

about 26-27 Ma, during evolution from early Oligocene high-K calc-alkaline and shoshonitic 

magmatism to late Oligocene and Mio-Pliocene adakitic magmatism (Fig. 4). Slab roll-back 

as depicted in b and c is possible in the context of the collision tectonics evolution during the 

Oligo-Miocene, and would have also favoured asthenospheric upwelling. 

Figure 22. Comparison of primitive, mantle-normalized extended trace element spider 

diagrams for magmatic rocks from the composite Meghri-Bergushat plutons from the 

Zangezur-Ordubad region, Lesser Caucasus, and the Cenozoic Alborz and Urumieh-Dokhtar 

belts of Iran. Normalization with respect to Sun and McDonough (1989). a Eocene magmatic 

rocks. b Oligocene magmatic rocks. c Mio-Pliocene magmatic rocks. Meghri-Bergushat 

plutons compositional fields based on data from this study, see Figure 10. Alborz data: 

Eocene (35-49 Ma) from Vincent et al. (2005), Verdel et al. (2011), Asiabanha and Foden 

(2012) and Castro et al. (2013); Oligocene from Aghazadeh et al. (2010, 2011) and Castro et 

al. (2013). Central Lesser Caucasus data: Miocene (~10 Ma) from Dilek et al. (2009). 

Northern Urumieh-Dokhtar data: Eocene from Omrani et al. (2008), Rezaei-Kahkhaei et al. 

(2011) and Sarjoughian et al. (2012); Oligocene from Yeganehfar et al. (2013); Mio-Pliocene 

from Omrani et al. (2008), Yeganehfar et al. (2013) and Honarmand et al. (2014). Oceanic 

island basalt data from Sun and McDonough (1989). See Figure 1 for location of data from 

Alborz and northern Urumieh-Dokhtar. 
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Figure 23. Comparison of data from magmatic rocks of the composite Meghri-Bergushat 

plutons from the Zangezur-Ordubad region (this study), Miocene rocks from the central 

Lesser Caucasus, and the Cenozoic Alborz and the northern Urumieh-Dokhtar belts. a and b  

– Th/Yb vs Ba/La for Alborz and Urumieh-Dokhtar, respectively. c and d  – Ba vs Nb/Y for 

Alborz and Urumieh-Dokhtar, respectively. e and f  – La/Sm vs Sm/Yb for Alborz and 

Urumieh-Dokhtar, respectively. g and h  – La/Y vs Y (ppm) for Alborz and Urumieh-Dokhtar, 

respectively. Meghri-Bergushat plutons compositional fields based on data from this study, 

see Figures 13b, 19b and 20a-b. Alborz data: Eocene (35-49 Ma) from Vincent et al. (2005), 

Verdel et al. (2011), Asiabanha and Foden (2012) and Castro et al. (2013); Lower Oligocene 

(29-31 Ma) from Aghazadeh et al. (2010, 2011); Upper Oligocene (~24 Ma) from Aghazadeh 

et al. (2011) and Castro et al. (2013). Central Lesser Caucasus data: Miocene (~10 Ma) from 

Dilek et al. (2009). Urumieh-Dokhtar data: Eocene (including 38 and 47 Ma) from Omrani et 

al. (2008), Rezaei-Kahkhaei et al. (2011) and Sarjoughian et al. (2012); Lower Oligocene (27 

Ma) from Yeganehfar et al. (2013); Lower Miocene (18-21 Ma) from Yeganehfar et al. 

(2013) and Honarmand et al. (2014); Mio-Pliocene from Omrani et al. (2008). See Figure 1 

for location of data from Alborz and northern Urumieh-Dokhtar.  
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Table 1 - Main ore deposits and prospects of the Zangezur-Ordubad region, southern Armenia and Nakhitchevan 

Deposit 
Deposit 

type 

Reserves-

ore grade 
Status Age 

Host rock 

geology 
Main mineralogy Alteration 

Ore body 

geometry 
References 

Dastakert 
Porphyry-

Cu-Mo 

9.6 Mt @ 

0.95% Cu 

- 0.043% 

Mo 

In 

developme

nt 

40.22 ± 

0.16 Ma to 

39.97 ± 

0.16 Ma 

(Molybdenit

e Re-Os 

age)  

Eocene 

granodiorite 

and 

andesite-

basalte 

Molybdenite, 

chalcopyrite, 

pyrite, bornite, 

chalcocite, 

covellite, 

emplectite, 

enargite, 

luzonite, 

magnetite, gold, 

pyrrhotite, 

sphalerite, 

tetrahedrite / 

tennantite, 

alabandite. 

Gangue: quartz, 

carbonates, K-

feldspar. 

Silicification, 

sericite, argillic 

alteration 

(kaolinite), 

carbonates 

NW-

oriented 

fracture 

zone. 

Stockwork 

and 

breccia 

(ore 

minerals 

in matrix 

of 

breccia) 

Karamyan 

(1962, 

1978), 

Pijyan 

(1975). Re-

Os ages 

from Moritz 

et al. 

(2013) 

Hankasar 
Porphyry-

Cu-Mo 

10.4 Mt @ 

0.45% Cu 

- 0.038% 

Mo 

In 

developme

nt 

43.14 ± 

0.17 Ma  

(Molybdenit

e Re-Os 

age)  

Upper 

Eocene 

granodiorite 

and quartz-

diorite 

Molybdenite, 

chalcopyrite, 

pyrite, galena, 

sphalerite. 

Gangue: quartz, 

sericite, chlorite, 

carbonates, K-

feldspar, biotite. 

Silicification, 

sericite, 

carbonates 

Veins 

Karamyan 

(1978). Re-

Os age 

from Moritz 

et al. 

(2013) 

Paragacha

y 

Porphyry-

Cu-Mo 

Past 

production

: 460 tons 

of Mo. Ore 

grades: 

Closed - 

Prospect 

26.78 ± 

0.11 Ma  

(Molybdenit

e Re-Os 

Quartz-

diorite, 

quartz 

syenodiorite 

Chalcopyrite, 

pyrite, 

molybdenite, 

magnetite 

Silicification, 

sericite, K-

feldspar,  

argillic 

alteration 

Vein, 

stockwork 

Babazadeh 

et al. 

(1990).  

Re-Os age 

from Moritz 
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0.01-

2.50 % 

Mo - 0.1-

21.5% Cu 

- 1 g/t Au 

age)  (kaolinite) et al. 

(2013) 

Qapujuk 
Porphyry-

Cu-Mo 

0.95 Mt @ 

1.14% Cu 

-0.17% 

Mo - 0.3 

g/t Au - 

4.0 g/t Ag 

Prospect 
Eocene-

Oligocene 

Gabbrodiorit

e, diorite, 

quartz 

syenodiorite 

Molybdenite, 

chalcopyrite  

Silicification, 

sericite, K-

feldspar,  

argillic 

alteration 

(kaolinite) 

Stockwork 

Babazadeh 

et al. 

(1990) 

Kadjaran 

Porphyry-

Cu-Mo, 

and 

younger 

epithermal 

overprint 

181 Mt @ 

0.65% Cu 

-0.057% 

Mo - 0.65 

g/t Au 

(Armenian 

source: 

2244 Mt 

@ 0.18% 

Cu - 

0.021% 

Mo - 0.02 

g/t  Au; 

Proven 

and 

probable 

reserves, 

and 

indicated 

resources) 

In 

production 

27.2 ± 0.1 

Ma to 26.43 

± 0.11 Ma 

(Molybdenit

e Re-Os 

age)  

Oligocene 

monzonite, 

quartz-

monzonite, 

monzodiorite 

Pyrite, 

molybdenite, 

chalcopyrite, 

magnetite, 

sphalerite, 

galena, 

subsidiary 

covellite, 

enargite, 

luzonite, bornite, 

chalcocite, gold, 

tellurides, 

tetrahedrite / 

tennantite. 

Gangue: quartz, 

carbonates, 

sericite, biotite, 

adularia, 

gypsum, K-

feldspar. 

Sericite, 

quartz, 

disseminated 

pyrite, argillic 

alteration 

(kaolinite), 

carbonate 

Stockwork

, veins 

Mkrtchyan 

et al. 

(1969), 

Movsesyan 

an Isaenko  

(1974), 

Karamyan 

(1978), 

Tayan 

(1984, 

1998). Re-

Os ages 

from Moritz 

et al. 

(2013). Ore 

grades and 

tonnage 

from Singer 

et al. 

(2002) 
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Atkis 

Epithermal

, 

polymetalli

c 

1.71 g/t 

Au - 29.4 

g/t Ag - 

0.79% Cu. 

No 

reported 

tonnage. 

Prospect 

24 ± 1 Ma 

(K-Ar age 

of sericite 

from 

altered host 

rock) 

Monzonite-

hornfels 

contact 

Chalcopyrite, 

pyrite, 

sphalerite, 

galena, 

molybdenite. 

Gangue: quartz, 

calcite 

Silicification, 

sericite, pyrite, 

kaolinite, 

chlorite, 

carbonate 

Veins 

Mkrtchyan 

et al. 

(1969). Age 

from 

Bagdasarya

n et al. 

(1969) 

Misdag 
Porphyry-

Cu-Mo 

350 Mt @ 

0.43% Cu 

(Inferred 

resources) 

Prospect 
Eocene-

Oligocene 

Granodiorite, 

quartz-

syenodiorite 

Chalcopyrite, 

pyrite, 

molybdenite, 

magnetite, 

quartz 

Silicification, 

sericite, K-

feldspar,  

argillic 

alteration 

(kaolinite) 

Vein, 

stockwork 

Babazadeh 

et al. 

(1990) 

Agyurt Epithermal 

1.13 Mt @ 

1.28% Cu 

- 6.39 g/t 

Au - 23.4 

g/t Ag 

(Probable 

reserves 

to inferred 

resources) 

Prospect 
Eocene-

Oligocene 

Granodiorite, 

diorite, 

quartz 

syenodiorite 

Native gold and 

silver, 

sulphosalts,pyrit

e,  chalcopyrite, 

molybdenite, 

galena, 

sphalerite, 

magnetite, 

quartz 

 

NS-

oriented 

veins 

dipping 

steeply to 

the W 

Babazadeh 

et al. 

(1990) 

Piyazbashi Epithermal 

1.7 Mt 

@8.6 g/t 

Au - 3.4 

g/t Ag 

(Proven 

and 

probable 

reserves, 

and 

inferred to 

indicated 

resources) 

Prospect 
Eocene-

Oligocene 

Andesitic tuff 

and flow 

Native gold, 

various 

sulphides, quartz 

Silicification, 

argillic 

alteration 

(kaolinite) 

Veins 

Ramazanov 

and Kerimli 

(2012) 
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Table 1 - Continued 

Deposit 
Deposit 

type 

Reserves-

ore grade 
Status Age 

Host rock 

geology 
Main mineralogy Alteration 

Ore body 

geometry 
References 

Lichk 
Porphyry-

Cu-Mo 

34 Mt @ 

0.63% Cu 

- 0.033% 

Mo - 0.05 

g/t Au - 

0.11 g/t 

Ag 

(Proven 

and 

probable 

reserves)  

Prospect 
Oligocene-

Miocene? 

Early 

Miocene 

porphyritic 

granodiorite 

Chalcopyrite, 

bornite, pyrite, 

molybdenite, 

hematite, 

magnetite.   

Gangue: quartz, 

sericite, 

carbonates         

Silicification, 

sericite, argillic 

alteration 

(kaolinite), 

carbonates 

Stockwork 

Pijyan 

(1975), 

Karamyan 

(1978), 

Tayan 

(1998) and 

Hovakimya

n (2008) 

Diakhchay 
Porphyry-

Cu-Mo 

14.4 Mt 

@0.44% 

Cu - 

0.015% 

Mo 

Prospect 
Eocene-

Oligocene 

Quartz-

diorite 

Chalcopyrite, 

pyrite, 

molybdenite, 

magnetite, 

quartz 

Silicification, 

sericite, K-

feldspar,  

argillic 

alteration 

(kaolinite) 

Vein, 

stockwork

, along 

main 

Ordubad 

fault 

Babazadeh 

et al. 

(1990) 

Tey-

Lichkvaz 

Epithermal

, 

polymetalli

c 

3.5 Mt @ 

0.44% Cu 

- 5.93 g/t 

Au - 35.12 

g/t Ag 

(Proven 

and 

probable 

reserves). 

Prospect 

37.5 ± 0.5 

Ma and 

38.0 ± 2.5 

Ma  (K-Ar 

age of 

sericite 

from 

altered host 

rock) 

Eocene 

granodiorite 

and 

syenodiorite 

and Middle 

Eocene 

basalt and 

andesite 

Native gold, 

chalcopyrite, 

arsenopyrite, 

tellurides, pyrite 

Silicification, 

sericite, 

carbonates 

Stockwork 

and vein 

Amiryan 

(1984) and  

Hovakimya

n (2010). 

Ages from 

Bagdasarya

n et al. 

(1969) 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 78 

Terterasar 

Epithermal

, 

polymetalli

c 

0.5 Mt @ 

11 g/t Au 

- 74.8 g/t 

Ag - 

0.45% Cu 

(Proven 

and 

probable 

reserves) 

Prospect 
Upper 

Eocene? 

Eocene 

granodiorite 

and 

syenodiorite 

and Middle 

Eocene 

basalt and 

andesite 

Native gold, 

base metal 

sulphides, pyrite 

chalcopyrite, 

arsenopyrite, 

tellurides. 

Gangue: quartz, 

carbonates 

Sericite, 

carbonates,  

argillic 

alteration 

(kaolinite), 

carbonates 

tourmalinizatio

n, silicification 

 

Veins and 

veinlets  

Amiryan 

(1984), 

Hovakimya

n and 

Tayan 

(2008) 

Aygedzor 
Porphyry-

Cu-Mo 

51.6 Mt @ 

0.172% 

Cu - 

0.042% 

Mo - 0.05 

g/t Au - 

0.11 g/t 

Ag 

(Proven 

and 

probable 

reserves 

and 

indicated 

resources) 

Prospect 

42.62 ± 

0.17 Ma  

(Molybdenit

e Re-Os 

age)  

Eocene 

granodiorite, 

syenogranite 

Molybdenite, 

chalcopyrite, 

galena, 

sphalerite, 

pyrite, enargite, 

quartz 

Silicification, 

sericite, argillic 

alteration 

(kaolinite), 

carbonates 

Stockwork 

and vein 

Pijyan 

(1975), 

Karamyan 

(1978), 

Tayan 

(1998) and 

Hovakimya

n and 

Tayan 

(2008). Re-

Os age 

from Moritz 

et al. 

(2013) 

Agarak 
Porphyry-

Cu-Mo 

45 Mt @ 

0.5% Cu - 

0.029% 

Mo- 0.025 

g/t Au - 

1.19 g/t 

Ag 

(Proven 

and 

probable 

In 

production 

44.2 ± 0.2 

Ma  

(Molybdenit

e Re-Os 

age)  

Eocene 

porphyritic 

leucocratic 

granodiorite, 

syenogranite 

Pyrite, 

molybdenite, 

chalcopyrite, 

bornite, 

magnetite, 

sphalerite, 

galena, covellite, 

subsidiary 

covellite, 

enargite. 

Gangue: quartz, 

Sericite, 

quartz, 

disseminated 

pyrite, argillic 

alteration 

(kaolinite), 

carbonate, 

albite, chlorite, 

biotite 

Stockwork 

Pijyan 

(1975), 

Karamyan 

(1978), 

Tayan 

(1998) and 

Tayan et al. 

(2007). Re-

Os age 

from Moritz 

et al. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 79 

reserves) sericite, chlorite, 

carbonates, K-

feldspar, biotite 

(2013) 
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Table 2 - Geochemical whole rock data for magmatic rocks from the composite Meghri-Ordubad and Bargushat plutons 

Sample AG-10-03 AG-10-04 AG-10-05B AG-10-06A AG-10-07 DA-10-04 DA-12-03 KJ-10-03 KJ-10-10 NAK-14 NAK-15 

Location 
Agarak, next 
to open pit 

Agarak, next 
to open pit 

Agarak, next 
to open pit 

Agarak, next 
to open pit 

Agarak, next 
to open pit 

Dastakert Dastakert Atkis 
Kadjaran, 
Voghchi 

sec. 
Nakhitchevan Nakhitchevan 

Latitude (N) 38 53.844 38 53.831 38 53.759 38 53.735 38 53.862 39 21.238 39 21.647 39 09.584 39 09.797 39 00.360 39 01.245 

Longitude 
(E) 

46 11.684 46 11.705 46 11.756 46 11.780 46 13.274 46 01.863 46 01.656 46 09.528 46 12.471 45 58.448 45 57.959 

Rock type Granodiorite Trachybasalt 
Bas. 

andesite 
enclave  

Granodiorite Granite Basalt 
Quartz 

monzonite 
Basalt 

(Kaputjugh) 

Bas. 
andesite 

(Kaputjugh) 

Altered 
andesite 

Altered 
andesite 

Age (Ma) Eocene Eocene Eocene 48.99±0.07** 44.03±0.02** Eocene Eocene Eocene Eocene Eocene Eocene 

            SiO2 71.04 50.42 56.24 71.20 69.40 62.65 64.20 48.30 53.62 55.92 49.15 

TiO2 0.35 1.12 0.85 0.35 0.28 0.79 0.43 0.98 1.18 0.62 0.99 

Al2O3 15.54 19.90 16.90 15.51 16.51 16.22 16.95 14.51 17.36 18.21 16.03 

Fe2O3 2.74 9.68 9.35 2.77 2.39 6.28 4.52 11.01 10.95 6.49 8.72 

MnO 0.01 0.09 0.14 0.01 0.09 0.11 0.14 0.20 0.21 0.09 0.43 

MgO 0.87 4.01 3.52 0.91 0.46 2.08 1.46 7.97 3.12 2.86 3.61 

CaO 2.57 7.85 6.59 2.58 3.22 3.98 5.17 11.08 7.08 7.21 5.85 

Na2O 5.40 4.22 4.18 5.30 5.12 5.01 4.06 2.37 3.23 3.66 4.74 

K2O 0.53 1.22 0.80 0.72 2.01 1.95 2.36 1.83 1.61 0.60 3.24 

P2O5 0.10 0.24 0.21 0.11 0.08 0.34 0.19 0.31 0.45 0.19 0.26 

LOI 0.69 0.93 0.73 0.67 0.38 0.63 0.42 0.63 0.88 3.49 6.31 

Total 99.84 99.67 99.52 100.13 99.93 100.03 99.90 99.23 99.68 99.33 99.34 
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Nb 8 5.5 4.6 7.1 5.7 4 5 4.2 6.5 4 6 

Zr 209 70 102 222 113 129 96 61 123 92 119 

Y 17 27 21 17 7.7 36 13 20 32 16 24 

Sr 332 358 431 380 635 265 615 385 419 409 156 

Rb 14 57 28 17 37 44 67 41 40 11 54 

Pb 4 <2 3 3 8 6 6 5 4 2 3 

Zn 11 51 43 10 40 91 49 87 126 49 197 

Cu 4 6 10 <2 6 6 65 78 210 8 28 

Ni <2 8 5 <2 <2 1 4 72 <2 6 19 

Cr 3 7 5 13 10 <2 1 183 3 4 19 

Ba 151 130 303 174 754 570 896 403 468 287 1438 

            Sc* 4.8 

 

28 <1.8 <1.8 11 2.6 44 24 13 25 

V* 55 

 

294 49 45 96 97 312 262 197 238 

Co* 5.6 

 

18 5.3 2.86 8.7 7.2 38 23 15 23 

Mo* 1.9 

 

1.6 0.6 0.7 0.7 1.1 0.7 0.8 1.0 0.7 

Cs* 0.4 

 

0.7 0.4 0.6 1.2 0.7 1.8 1.2 3.3 0.3 

La* 19 

 

15 22 15 16 20 14 17 10 13 

Ce* 33 

 

29 36 25 37 38 29 38 21 27 

Pr* 3.5 

 

3.7 4.0 2.6 5.0 4.3 4.1 5.1 2.8 3.5 

Nd* 13 

 

15 15 11 23 16 19 24 13 16 

Sm* 2.8 

 

3.9 3.2 2.2 5.9 3.6 5.0 5.8 3.0 4.0 

Eu* 0.6 

 

1.0 0.8 0.6 1.6 1.0 1.5 1.7 1.0 1.2 

Gd* 2.7 

 

4.2 3.2 1.7 5.9 2.8 4.9 5.8 3.1 4.1 
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Tb* 0.4 

 

0.6 0.5 0.3 1.0 0.4 0.6 0.9 0.5 0.7 

Dy* 2.8 

 

3.8 3.6 1.5 6.3 2.4 3.8 5.7 3.3 4.7 

Ho* 0.6 

 

0.8 0.7 0.3 1.3 0.5 0.7 1.2 0.6 1.0 

Er* 1.9 

 

2.2 2.3 0.9 4.1 1.4 2.1 3.5 2.1 2.9 

Tm* 0.3 

 

0.4 0.4 0.2 0.6 0.2 0.3 0.5 0.3 0.5 

Yb* 2.3 

 

2.4 2.9 1.3 4.1 1.6 2.1 3.5 2.1 3.0 

Lu* 0.4 

 

0.4 0.5 0.2 0.6 0.3 0.3 0.5 0.3 0.5 

Hf* 5.4 

 

2.7 6.4 3.2 3.5 2.7 2.1 3.3 2.6 3.0 

Ta* 0.7 

 

0.3 0.6 0.3 0.3 0.5 0.2 0.3 0.3 0.4 

W* 1.5 

 

1.9 2.3 0.8 0.6 1.0 0.4 0.7 0.3 1.0 

Th* 14 

 

5.2 13 2.9 3.1 4.3 2.5 3.8 1.8 2.7 

U* 2.6   1.7 2.8 0.8 1.0 1.3 0.8 1.2 0.6 0.7 

Major elements in wt% and trace elements in ppm. Major elements and trace elements from Nb to Ba were analysed by XRF, trace elements 

 from Sc to U, marked with an asterisk (*) were analysed by LA-ICP-MS. The ages of samples AG-10-06A, AG-10-07, KJ-12-07, KJ-10-02,  

KJ-12-11A and LI-10-03 identified by two asterisks (**) were obtained by U-Pb dating in this study. See Table 5 and Figure 18. 

 Sample in italics were not used for petrogenetic classifications, because they were affected by hydrothermal alteration. 
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Table 2: continued                   

NAK-23 DA-12-01 KJ-09-1A KJ-10-02 KJ-10-06A KJ-12-06 KJ-12-07 KJ-12-09 C NAK-9A NAK-9B NAK-10 

Nakhitchevan Dastakert Kadjaran Atkis 
Khustup-

Giratakh    fault, 
Kadjaran 

Meghri ridge Meghri ridge Meghri ridge Nakhitchevan Nakhitchevan Nakhitchevan 

39 02.434 39 11.939 39 08.647 39 09.584 39 09.076 39 06.169 39 06.158 39 07.547 39 01.307 39 01.307 39 14.225 

46 01.876 46 15.609 46 08.182 46 09.528 46 12.745 46 13.283 46 13.286 46 09.804 45 59.509 45 59.509 45 49.386 

Quartz 
monzonite 

Qrtz syenite 
(shoshonitic) 

Monzonite 
(shoshonitic) 

Monzonite 
(shoshonitic) 

Monzonite 
(shoshonitic) 

Granite 
Hornblende 

gabbro 
Monzonite 

(shoshonitic) 
Monzodiorite 

Qrtz 
monzonite 
(adakitic) 

Granite 

Eocene Oligocene Oligocene 31.83±0.02** Oligocene Oligocene 33.49±0.02** Oligocene Oligocene Oligocene Oligocene 

           60.87 64.48 55.55 56.86 57.09 68.76 42.07 55.63 52.46 61.97 64.97 

0.57 0.60 0.77 0.85 0.82 0.29 1.67 0.77 0.92 0.50 0.39 

17.45 17.06 19.50 17.66 18.62 15.33 18.50 19.09 17.82 16.74 17.01 

5.41 3.78 5.63 6.50 5.29 2.71 12.94 4.93 8.86 4.82 3.83 

0.12 0.12 0.09 0.13 0.12 0.05 0.20 0.09 0.16 0.10 0.02 

1.87 0.97 2.13 2.69 2.02 0.79 6.55 1.82 3.84 1.95 1.43 

4.89 2.91 6.07 4.97 4.00 2.78 12.84 5.65 8.40 5.34 2.90 

4.28 5.01 3.62 3.85 4.28 3.85 2.62 4.39 3.94 4.17 4.23 

2.91 4.34 4.58 4.63 6.05 4.60 0.64 4.76 1.95 3.07 3.13 

0.28 0.23 0.38 0.39 0.41 0.17 1.24 0.34 0.50 0.26 0.22 

0.62 0.39 0.71 0.55 0.71 0.27 0.68 2.07 0.46 0.21 1.00 

99.26 99.88 99.03 99.09 99.40 99.60 99.96 99.54 99.31 99.13 99.11 

           4 12 8 37 39 21 11 14 10 9 10 
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122 209 105 236 234 171 81 390 112 120 126 

23 26 24 25 21 19 40 16 24 14 24 

470 430 1083 749 706 707 1606 877 897 867 729 

62 109 123 162 206 133 15 99 57 102 81 

5 18 11 12 25 11 5 14 8 9 32 

34 44 47 66 78 23 100 52 55 34 38 

58 16 412 113 125 19 652 102 441 38 2527 

2 1 3 8 6 4 9 8 7 7 11 

<2 0 7 11 8 <2 2 11 6 13 7 

547 1099 2529 1066 903 1016 449 1484 614 860 1315 

           8.4 <1.8 11 12 6.5 2.7 31 9.0 23 6.1 4.6 

111 86 181 156 130 63 488 123 238 110 90 

9.3 6.70 13 13 11 4.9 43 12 19 10 8.3 

1.0 3.6 3.9 2.6 5.2 1.4 0.8 2.1 5.8 2.8 21 

0.5 1.7 2.0 2.5 3.3 1.5 0.7 1.2 0.7 1.3 2.2 

19 58 42 75 77 44 63 55 51 41 54 

38 98 71 130 129 90 135 87 95 71 99 

4.5 11 7.3 14 13 9.7 17 9.5 10 7.3 11 

19 38 28 52 50 34 73 36 41 27 46 

4.3 6.6 4.9 8.3 7.9 5.7 15 6.3 8.0 5.1 9.2 

1.3 1.7 2.1 1.9 2.1 1.3 3.5 2.0 1.8 1.2 2.4 

3.9 5.6 4.0 6.2 5.6 4.2 12 4.4 6.2 4.0 7.0 

0.6 0.9 0.5 0.8 0.7 0.6 1.4 0.6 0.8 0.5 1.0 
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3.7 5.0 3.0 4.8 4.4 3.4 8.3 3.4 5.1 3.0 5.7 

0.8 1.1 0.6 1.0 0.8 0.7 1.5 0.7 1.0 0.6 1.2 

2.4 3.2 1.5 2.6 2.2 2.0 3.6 1.9 2.7 1.7 2.8 

0.3 0.5 0.2 0.4 0.4 0.4 0.5 0.3 0.4 0.2 0.5 

2.6 3.5 1.4 2.8 2.4 2.4 2.9 2.0 2.8 1.7 2.8 

0.4 0.6 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.3 0.4 

3.0 6.0 2.2 5.9 5.3 5.4 2.5 9.9 4.2 4.0 3.9 

0.3 1.0 0.4 1.8 1.8 1.8 0.5 0.6 0.6 0.8 0.8 

0.6 1.3 12.5 3.0 6.3 0.7 0.6 0.6 16.1 1.6 1.7 

5.4 18 5.2 34 20 36 3.7 6.3 9.3 15 20 

1.5 3.3 1.5 6.5 5.3 5.5 0.9 2.3 2.4 4.0 6.7 
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Table 2: continued                   

NAK-11 NAK-12 NAK-13 NAK-16 NAK-17 NAK-18A NAK-18C NAK-19 NAK-20 NAK-22 ROD7400 

Nakhitchevan Nakhitchevan Nakhitchevan Nakhitchevan Nakhitchevan Nakhitchevan Nakhitchevan Nakhitchevan Nakhitchevan Nakhitchevan 
Northern 
Meghri 
pluton 

39 14.171 39 12.935 39 11.534 39 02.408 39 02.458 39 03.477 39 03.477 39 03.561 39 03.442 39 02.840 

 

45 49.276 45 44.478 45 42.293 46 01.925 46 01.855 46 02.665 46 02.665 46 02.828 46 02.799 46 01.834 

 

Altered 
granite 

Qrtz 
monzonite 
(adakitic) 

Qrtz 
monzonite 
(adakitic) 

Granite 
Quartz 

monzonite 
Monzodiorite 

enclave 
Quartz 

monzonite 

Qrtz 
monzonite 
(adakitic) 

Monzodiorite 
enclave 

Altered mafic 
dike 

Monzonite 
(shoshonitic) 

Oligocene Oligocene Oligocene Oligocene Oligocene Oligocene Oligocene Oligocene Oligocene Oligocene Oligocene 

           64.16 60.63 62.09 69.51 62.53 49.18 61.87 61.94 49.66 59.41 54.72 

0.43 0.54 0.44 0.29 0.55 1.15 0.57 0.53 0.86 0.72 0.75 

16.11 16.44 16.94 14.64 17.61 17.36 16.17 16.75 19.14 14.47 19.64 

4.47 4.83 4.67 2.65 5.02 9.54 5.26 4.68 10.61 5.44 7.32 

0.07 0.11 0.11 0.11 0.17 0.19 0.11 0.10 0.22 0.21 0.13 

1.82 2.83 2.12 0.79 1.78 6.17 2.26 2.04 3.53 4.75 2.50 

2.08 5.82 4.88 1.87 3.42 10.67 5.16 4.81 9.59 3.89 6.80 

2.98 4.29 4.49 3.34 4.97 3.31 3.82 4.07 4.08 3.42 3.55 

3.75 2.79 2.70 5.57 2.38 0.69 3.65 4.02 0.88 4.07 3.43 

0.31 0.30 0.25 0.09 0.28 0.24 0.28 0.25 0.46 0.41 0.44 

2.98 0.76 0.50 0.38 0.76 0.78 0.30 0.27 0.44 2.36 0.17 

99.17 99.34 99.17 99.24 99.47 99.30 99.46 99.46 99.47 99.20 99.44 

           12 9 9 4 4 4 16 14 7 10 12 
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130 109 113 100 130 97 175 203 90 139 119 

18 14 15 13 20 20 17 16 24 23 22 

554 860 850 291 355 924 613 736 1352 955 865 

92 79 85 100 45 19 91 116 17 93 92 

14 22 25 5 3 1 6 6 <2 10 18 

44 47 47 48 70 62 33 31 73 108 84 

2095 40 22 4 5 71 25 13 38 72 121 

13 22 7 1 1 18 7 9 7 139 5 

30 48 7 1 <2 16 8 17 4 195 6 

1417 1453 1438 1071 644 426 827 1049 570 1127 1422 

           6.1 9.5 8.2 

   

9.8 9.8 

 

11 15 

98 124 111 

   

137 112 

 

121 182 

11 13 11 

   

12 10 

 

19 17 

63 0.8 1.1 

   

2.5 3.1 

 

1.3 3.2 

4.6 4.3 5.0 

   

0.8 1.3 

 

1.4 1.6 

66 44 44 

   

58 53 

 

49 37 

106 72 76 

   

92 85 

 

88 65 

11 7.7 8.0 

   

9.1 8.7 

 

10 7.8 

41 30 31 

   

32 31 

 

41 31 

6.8 5.3 5.1 

   

5.0 4.9 

 

7.4 6.5 

1.6 1.4 1.4 

   

1.3 1.3 

 

1.9 1.8 

5.4 3.9 4.2 

   

4.2 3.9 

 

5.2 5.5 

0.7 0.5 0.5 

   

0.6 0.5 

 

0.7 0.7 
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3.9 3.0 3.2 

   

3.5 3.1 

 

4.1 4.4 

0.7 0.6 0.6 

   

0.7 0.7 

 

0.8 0.9 

2.1 1.6 1.8 

   

2.0 1.9 

 

2.2 2.5 

0.3 0.2 0.3 

   

0.3 0.3 

 

0.3 0.4 

1.9 1.6 1.9 

   

2.2 2.0 

 

2.5 2.3 

0.3 0.2 0.3 

   

0.4 0.3 

 

0.4 0.4 

4.2 3.1 3.4 

   

6.1 6.1 

 

3.8 3.5 

0.8 0.6 0.7 

   

1.3 1.0 

 

0.8 0.8 

7.0 1.8 1.5 

   

2.0 6.1 

 

1.1 1.0 

21 15 16 

   

38 26 

 

18 15 

4.3 5.4 6.1       5.6 5.0   5.0 4.3 
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Table 2: continued                   

KJ-09-1B KJ-10-06B KJ-12-02 C KJ-12-03 KJ-12-04 KJ-12-05 KJ-12-09A KJ-12-09B KJ-09-02 KJ-09-04A KJ-09-04B 

Kadjaran 
Khustup-

Giratakh    fault, 
Kadjaran 

Kadjaran 
open pit 

Kadjaran 
open pit 

Kadjaran 
open pit 

Kadjaran 
open pit 

Meghri ridge Meghri ridge Kadjaran 
Kadjaran, 

Voghchi sec. 
Kadjaran, 

Voghchi sec. 

39 08.647 39 06.169 39 08.647 39 08.643 39 08.634 39 08.610 39 07.547 39 07.547 39 09.465 39 09.578 39 09.578 

46 08.182 46 13.283 46 08.182 46 08.206 46 08.235 46 08.316 46 09.804 46 09.804 46 06.855 46 12.196 46 12.196 

Porphyritic qtz 
monzonitic 

dike 

Porphyritic qtz 
monzonitic dike 

Altered dike 
Porphyritic qtz 

monzonitic 
dike 

Porphyritic qtz 
monzonitic 

dike 

Porphyritic qtz 
monzonitic 

dike 

Porphyritic qtz 
monzonitic 

dike 

Porphyritic qtz 
monzonitic 

dike 
Granite 

Porphyritic qtz 
monzonitic 

dike 

Porphyritic qtz 
monzonitic 

dike 

Oligo-Miocene Oligo-Miocene 
Oligo-

Miocene Oligo-Miocene Oligo-Miocene Oligo-Miocene Oligo-Miocene Oligo-Miocene Miocene Miocene Miocene 

           64.49 53.21 58.76 62.46 63.16 61.64 56.76 51.53 70.24 64.95 52.49 

0.41 1.29 0.69 0.45 0.42 0.49 0.68 1.02 0.26 0.52 1.05 

14.58 14.61 18.04 14.23 14.34 14.57 14.87 14.14 14.69 15.52 18.82 

2.92 7.05 4.68 3.36 3.04 3.18 5.39 6.23 2.02 3.66 9.46 

0.06 0.10 0.04 0.06 0.06 0.08 0.10 0.11 0.05 0.07 0.19 

1.45 5.07 1.09 1.67 1.76 2.18 4.46 6.06 0.72 2.36 5.20 

3.07 6.04 2.21 3.63 3.41 4.86 5.92 6.78 2.25 3.18 4.85 

0.00 3.60 3.40 2.65 2.55 0.07 4.10 3.08 3.97 4.18 4.83 

5.30 3.67 8.02 3.63 4.62 1.02 3.00 3.57 4.30 3.94 0.35 

0.19 0.41 0.23 0.21 0.21 0.25 0.33 0.58 0.13 0.28 0.23 

7.26 4.54 2.28 7.25 6.70 11.54 3.99 6.80 0.47 0.96 1.94 

99.73 99.63 99.45 99.62 100.27 99.87 99.63 99.93 99.09 99.64 99.40 
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11 20 15 10 10 10 9 19 13 14 15 

144 209 1031 113 105 113 122 155 105 109 112 

15 15 16 10 9 10 13 17 12 15 16 

230 790 375 345 394 248 711 588 653 718 653 

219 122 182 118 153 46 71 81 163 113 103 

24 6 14 36 61 17 12 13 15 18 10 

63 69 26 77 74 49 54 61 28 56 45 

32 73 308 23 45 24 66 42 <2 29 27 

21 117 2 30 27 24 84 125 6 34 40 

39 418 0 40 40 44 144 188 10 68 100 

852 788 904 658 670 435 744 633 998 869 838 

           6.8 11 5.4 5.4 5.8 5.6 6.7 13 3.7 7.9 

 81 160 95 77 77 88 137 158 60 97 

 8.0 27 9.9 9.3 9.1 10 20 25 4.0 12 

 1.1 1.7 11 4.1 2.4 3.1 1.0 3.4 1.0 1.1 

 6.9 2.0 3.9 7.5 9.6 3.5 1.0 2.3 2.1 1.1 

 32 38 41 33 35 35 41 51 39 37 

 49 73 74 58 58 58 69 89 56 58 

 4.6 8.2 7.9 5.7 5.6 5.8 7.5 9.8 5.1 6.1 

 16 32 29 20 19 20 30 39 18 20 

 2.8 5.9 5.1 3.2 3.2 3.4 5.6 6.6 2.7 3.6 

 0.7 1.6 1.6 0.9 0.8 0.9 1.4 1.9 0.8 1.0 

 2.0 4.9 3.9 2.5 2.4 2.6 4.0 5.4 1.7 2.6 
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0.3 0.6 0.5 0.3 0.3 0.3 0.6 0.7 0.2 0.4 

 1.6 3.2 3.1 2.1 1.8 1.9 3.0 3.7 1.3 1.9 

 0.3 0.6 0.6 0.4 0.4 0.4 0.5 0.7 0.3 0.3 

 0.8 1.6 1.9 1.0 0.9 1.0 1.5 1.8 0.6 0.9 

 0.1 0.2 0.3 0.2 0.1 0.1 0.2 0.3 0.1 0.1 

 1.0 1.5 2.6 1.2 1.0 1.1 1.5 1.7 0.7 0.9 

 0.1 0.2 0.4 0.2 0.2 0.2 0.2 0.3 0.1 0.2 

 2.9 4.4 26 3.3 3.3 3.1 3.6 4.3 3.5 3.0 

 0.8 1.2 0.5 0.9 0.9 0.9 0.8 1.4 0.8 0.9 

 7.4 1.5 9.2 8.5 4.4 5.4 0.9 1.1 1.1 1.6 

 17 13 7.9 18 19 18 16 15 23 19 

 4.2 4.3 5.7 4.2 6.4 3.9 5.5 5.0 8.1 5.2   
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Table 2: continued             

 KJ-10-04 KJ-10-05 KJ-10-09 KJ-12-11A LI-10-01 LI-10-02A LI-10-03 NAK-18D LI-10-04 

Kadjaran, 
Katudjur 

river 

Kadjaran, 
Katudjur 

river 

Khustup-
Giratakh    fault, 

Kadjaran 

Kadjaran 
open pit 

Djband 
Lichk 

prospect 
Lichk 

prospect 
Nakhitchevan Lichk area 

39 09.432 39 09.460 39 08.381 39 08.610 39 05.637 39 02.889 39 02.777 39 03.477 39 02.310 

46 06.707 46 06.850 46 12.859 46 08.316 46 10.192 46 10.699 46 10.375 46 02.665 46 12.174 

Granite Granite Monzonite 
Granodioritic 

dike 

Porphyritic qtz 
monzonitic 

dike 
Granite Granite 

Porphyritic qtz 
monzonitic 

dike 
Dacite 

Miocene Miocene Miocene 22.46±0.02** Miocene Miocene 22.22±0.01** Miocene Pliocene 

         70.78 70.14 62.86 54.26 65.09 64.69 66.97 65.03 65.04 

0.24 0.27 0.31 0.54 0.50 0.46 0.48 0.54 0.59 

14.83 15.41 19.99 15.06 15.07 15.21 15.26 15.02 15.81 

1.95 2.20 2.13 3.92 3.54 3.01 3.35 3.87 4.12 

0.04 0.05 0.03 0.11 0.06 0.03 0.05 0.06 0.08 

0.73 0.92 0.53 2.82 2.15 1.69 2.06 2.55 2.20 

2.13 2.61 4.34 5.98 3.28 3.83 3.19 2.92 3.52 

4.00 4.09 4.41 0.17 3.54 3.75 3.88 4.10 3.78 

4.11 3.63 4.19 4.59 4.18 3.52 3.50 3.63 3.72 

0.11 0.13 0.13 0.28 0.25 0.21 0.21 0.27 0.28 

0.20 0.32 0.49 11.95 1.92 2.75 0.60 1.12 0.73 

99.11 99.77 99.40 99.69 99.59 99.17 99.55 99.12 99.90 

         12 10 16 11 13 11 15 12 14 
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130 135 181 102 135 137 111 111 154 

7.1 7.6 13 11 10 9.2 10 11 12 

668 735 719 274 678 837 670 701 799 

156 120 120 149 131 79 100 97 101 

17 18 16 29 11 8 9 11 16 

27 31 31 71 42 46 40 42 62 

5 5 28 42 25 912 18 48 43 

7 8 2 28 49 37 39 44 50 

8 10 3 60 80 48 58 65 70 

998 960 1167 778 770 729 725 717 927 

         <1.08 <1.08 6.4 4.5 4.9 5.9 5.6 8.3 6.5 

51 53 60 98 88 83 86 93 101 

4.7 4.6 5.3 12 11 8.4 9.7 12 13 

0.8 1.4 1.6 6.8 3.3 11 2.0 0.7 0.9 

1.9 1.6 2.3 2.9 3.7 0.7 1.3 0.7 1.3 

38 31 43 40 41 31 38 42 39 

57 51 69 59 61 53 61 65 64 

5.5 5.0 6.5 6.4 6.9 5.9 6.6 6.8 7.3 

19 18 21 24 25 22 23 25 26 

3.3 3.0 4.7 4.2 4.2 3.9 4.0 3.9 4.6 

0.8 0.8 1.6 1.2 1.1 1.1 1.0 1.1 1.2 

2.3 2.2 3.6 3.2 3.0 2.8 3.0 3.0 3.3 

0.3 0.3 0.5 0.4 0.4 0.3 0.4 0.4 0.4 
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1.7 1.6 2.7 2.6 2.3 1.9 2.2 2.5 2.3 

0.3 0.3 0.5 0.5 0.4 0.3 0.4 0.5 0.4 

0.9 0.8 1.7 1.2 1.1 1.0 1.1 1.3 1.2 

0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 

0.9 1.0 1.8 1.4 1.3 1.0 1.3 1.4 1.2 

0.2 0.2 0.3 0.2 0.2 0.1 0.2 0.2 0.2 

4.1 3.2 5.8 3.7 4.1 3.3 3.7 3.9 3.9 

1.0 0.7 1.2 1.0 1.3 0.8 1.2 1.1 1.1 

0.5 0.6 10.8 7.6 2.6 8.1 0.9 1.3 0.8 

24 22 23 19 25 17 23 23 19 

3.9 4.5 5.9 14.5 5.9 6.1 6.7 5.7 6.3 

         
         
         
          

Table 3 - Detailed petrographic descriptions of representative magmatic rocks from the composite Meghri-Ordubad pluton (see thin-section plates in Figure 7 
and locations in Figure 3b) 

         
Sample Location Longitude Latitude 

Altitude 
(m) 

Age (Ma) 
Rock type 

(TAS) 
Texture Mineralogy and percentage (vol%) 

AG-10-
03 

Agarak area 
E46 

11.684 
N38 

53.844  
947 Eocene Granodiorite Equigranular 

35% quartz, 20% plagioclase, 25% K-feldspar, 5% 
interstitial schredy biotite and chlorite. 
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AG-10-
07 

Agarak area 
E46 

13.274 
N38 

53.862  
849 

44.03 ± 
0.02 

Granite Equigranular 
35% quartz, 35% plagioclase, 15% amphibole, 2% 

biotite, 2% K-feldspar (myrmekitic). Accessory 
minerals: apatite, sphene, zircons, oxides 

AG-10-
04 

Agarak area 
E46 

11.705 
N38 

53.831  
949 Eocene Trachybasalt Porphyritic 

Phenocrysts: 10% plagioclase; Matrix: 70% 
plagioclase (fine laths), 10-15% pyroxene. Accessory 

mineral: oxide (magnetite) 

KJ-12-
07 

Meghri ridge 
E46 

13.286 
N39 

06.158  
2693 

33.49 ± 
0.02  

Hornblende 
gabbro 

Equigranular 
40% amphibole with resorbed clinopyroxene core, 
35% plagioclase, 5% biotite, 2% apatite. Accessory 

minerals: sphene, zircons, rutile, oxides 

KJ-10-
06A 

East of 
Kadjaran and 

Atkis area 

E46 
12.745 

N39 
09.076  

1662 Oligocene Monzonite Equigranular 

30% K-feldspar (myrmekitic), 15% amphibole 
surrounding clinopyroxene, 10% plagioclase, and 

20 % interstitial quartz and schredy biotite. 
Accessory minerals: apatite, sphene, zircons, rutile, 

oxides 

KJ-09-
02 

Kadjaran area, 
Katudjur river 

E46 
06.850 

N39 
09.460  

1975 Miocene Granite Equigranular 

30% quartz, 35% K-feldspar with poekilitic texture 
and coarse grains, 5% plagioclase, 5% amphibole, 
2% biotite, 1% sphene. Accessory minerals: oxides, 

zircons 

KJ-09-
04B 

Vogchi section, 
road Kadjaran 

to Kapan 

E46 
12.196 

N39 
09.578  

1547 Miocene Monzonite Porphyritic 
Phenocryst: 20% plagioclase (sericitized), 15% 

amphibole (biotitized-chloritized), 5% biotite 
(chloritized), 5% quartz; aphanitic matrix (55%) 

LI-10-04 Lichk area 
E46 

12.174 
N39 

02.310  
1509 Pliocene Dacite Porphyritic 

Phenocryst: 20% plagioclase, 10% amphibole, and 
5% biotite (with opaque rim). Accessory minerals: 
apatite, zircons, oxides. Microcrystalline quartz-

plagioclase matrix(60%) 
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Table 4 - Isotope data of magmatic whole rock samples from the composite Meghri-Ordubad pluton 

             
Sample Age (Ma) 

87
Sr/

86
Sr 

87
Sr/

86
Sri 

143
Nd/

144
Nd 

143
Nd/

144
Ndi 

206
Pb/

204
Pb 

207
Pb/

204
Pb 

208
Pb/

204
Pb 

206
Pb/

204
Pbi 

207
Pb/

204
Pbi 

208
Pb/

204
Pbi 

18
O (‰) 

             
AG-10-06A* 48.99 0.704721 0.704629 0.512791 0.512754 19.034 15.581 39.187 18.995 15.579 39.134 5.70 

AG-10-07* 44.03 0.704356 0.704252 0.512772 0.512740 18.617 15.578 38.645 18.583 15.576 38.596 7.02 

AG-10-03** Eocene 0.704648 0.704571 0.512789 0.512756 19.012 15.602 39.267 18.751 15.590 38.608 6.20 

AG-10-04** Eocene 0.704897 0.704608 0.512789 0.512743 18.671 15.557 38.494 18.492 15.549 38.429 3.68 

KJ-10-03** Eocene 0.704401 0.704206 0.512827 0.512785 18.503 15.579 38.555 18.437 15.576 38.483 3.80 

KJ-10-10** Eocene 0.704505 0.704335 0.512794 0.512753 18.708 15.584 38.660 18.608 15.579 38.539 
 

KJ-10-06A** Oligocene 0.704309 0.703926 0.512810 0.512790 18.869 15.575 38.863 18.812 15.572 38.793 5.55 

ROD 7400** Oligocene 0.704167 0.704027 0.512797 0.512774 18.665 15.523 38.612 18.596 15.520 38.527 6.49 

KJ-10-02* 31.82 0.704248 0.703965 0.512837 0.512817 
      

6.17 

LI-10-03* 22.22 0.704292 0.704155 0.512814 0.512799 19.094 15.561 38.902 18.988 15.556 38.759 7.62 

KJ-10-04** Miocene 0.704363 0.704152 0.512820 0.512807 19.128 15.603 39.048 19.087 15.602 38.954 6.91 

KJ-09-04A** Miocene 0.704496 0.704354 0.512845 0.512831 18.999 15.586 38.934 18.936 15.583 38.853 6.15 

KJ-10-09** Miocene 0.704187 0.704037 0.512814 0.512800 18.899 15.540 38.783 18.804 15.536 38.664 6.89 

LI-10-01** Miocene 0.704338 0.704164 0.512860 0.512845 19.062 15.540 38.867 18.968 15.536 38.727 8.34 

LI-10-02A** Miocene 0.704178 0.704097 0.512824 0.512810 19.032 15.539 38.833 18.899 15.532 38.694 
 

LI-10-04** Pliocene 0.704223 0.704202 0.512841 0.512838 18.983 15.546 38.822 18.969 15.546 38.807 6.03 

* The ages of samples AG-10-06A, AG-10-07, KJ-10-02 and LI-10-03 were obtained by U-Pb dating in this study. See Table 5 and Figure 18. 

** Ages of 44 Ma, 32 Ma, 22 Ma, and 4 Ma were used for age corrections of the Eocene, Oligocene, Miocene and Pliocene magmatic rocks, respectively.  

Trace element data used for age corrections of radiogenic isotope ratios can be found in Table 2 (Sr, Rb, Sm, Nd, Pb, U and Th). 
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Table 5 - TIMS zircon dating of samples from the composite Meghri-Ordubad pluton (see Figure 3b for sample 

location and Figure 18 for Concordia diagrams and 
206

Pb/
238

U plots) 

                     

  

Compositional Parameters Radiogenic Isotope Ratios Isotopic Ages 

 

Wt. U Th Pb Pb* Pbc 

206
P

b 
207

Pb 

 

207
Pb 

 

206
Pb 

 

cor

r. 
207

Pb 

 

207
P

b 

 

206
P

b 

 

Sample mg ppm 

U ppm 

Pbc 

(pg

) 

204
P

b 

206
Pb % 

err 

235
U % 

err 

238
U % 

err 

coe

f. 

206
Pb ±  

235
U ±  238

U ±  

(a) (b) (c) (d) (c) (e) (e) (f) (g) (h) (g) (h) (g) (h)   (i) (h) (i) (h) (i) (h) 

                     granodiorite 

AG-10-06A 

                   AG-10-

06A/1 

0.000

7 514 

0.7

8 5.69 3.30 

0.9

3 203 

0.04

70 1.25 

0.049

44 1.35 0.007629 0.14 

0.7

7 

49.3

7 

29.7

2 

49.0

0 

0.6

4 

48.9

9 

0.0

7 

AG-10-

06A/5 

0.002

0 315 

0.7

1 3.11 5.90 

0.9

0 355 

0.04

71 0.78 

0.049

89 0.82 0.007691 0.09 

0.4

4 

51.9

5 

18.6

5 

49.4

4 

0.3

9 

49.3

9 

0.0

5 

AG-10-

06A/6 

0.001

0 242 

0.8

5 3.30 1.80 

1.1

8 118 

0.04

73 2.09 

0.050

28 2.16 0.007711 0.23 

0.3

6 

63.8

4 

49.8

4 

49.8

1 

1.0

5 

49.5

2 

0.1

1 

AG-10-

06A/2 

0.000

1 

422

3 

1.0

7 

47.1

7 4.74 

0.8

2 266 

0.04

75 1.09 

0.050

45 1.13 0.007696 0.14 

0.3

3 

76.7

5 

25.8

9 

49.9

8 

0.5

5 

49.4

2 

0.0

7 

AG-10-

06A/3 

0.000

1 

183

5 

1.3

9 

27.8

4 1.93 

0.9

5 112 

0.04

73 3.01 

0.050

63 3.13 0.007764 0.34 

0.3

9 

64.3

9 

71.7

4 

50.1

5 

1.5

3 

49.8

6 

0.1

7 

AG-10-

06A/4 

0.000

1 

462

7 

0.9

9 

53.5

1 3.62 

1.1

6 211 

0.04

76 1.26 

0.050

54 1.35 0.007694 0.17 

0.5

5 

81.5

5 

29.8

8 

50.0

6 

0.6

6 

49.4

1 

0.0

8 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 98 

                     granite AG-

10-07 

                   AG-10-

07/3 

0.002

9 75 

0.6

2 2.27 0.32 

5.0

0 37 

0.04

71 8.30 

0.044

21 8.63 0.006815 1.36 

0.3

2 

51.9

9 

197.

87 

43.9

3 

3.7

1 

43.7

8 

0.5

9 

AG-10-

07/6 

0.001

0 65 

0.5

8 1.08 0.78 

0.6

1 64 

0.04

88 

15.1

6 

0.045

95 

15.9

1 0.006823 0.82 

0.9

2 

140.

26 

355.

66 

45.6

2 

7.1

0 

43.8

4 

0.3

6 

AG-10-

07/1 

0.005

7 49 

0.5

2 1.10 0.47 

4.2

6 47 

0.04

83 6.22 

0.045

47 6.53 0.006832 0.90 

0.4

1 

112.

77 

146.

59 

45.1

5 

2.8

8 

43.8

9 

0.3

9 

AG-10-

07/4 

0.005

5 54 

0.5

3 0.50 3.33 

0.6

4 216 

0.04

72 3.11 

0.044

57 3.28 0.006847 0.20 

0.9

0 

60.0

2 

74.0

3 

44.2

8 

1.4

2 

43.9

9 

0.0

9 

AG-10-

07/2 

0.006

7 96 

0.7

1 1.10 1.89 

2.5

5 127 

0.04

71 2.38 

0.044

53 2.53 0.006853 0.26 

0.5

9 

55.5

0 

56.7

1 

44.2

4 

1.0

9 

44.0

3 

0.1

1 

AG-10-

07/5 

0.024

5 64 

0.6

6 0.50 

16.3

4 

0.7

1 961 

0.04

70 0.54 

0.044

42 0.58 0.006855 0.05 

0.7

3 

49.2

5 

12.9

4 

44.1

3 

0.2

5 

44.0

4 

0.0

2 

                     gabbro KJ-

12-07 

                   

KJ-12-07/6 

0.005

0 660 

1.1

9 4.36 

27.9

3 

0.7

5 

143

9 

0.04

68 0.37 

0.033

56 0.40 

0.005202

025 0.10 

0.4

4 

38.1

7 8.84 

33.5

1 

0.1

3 

33.4

5 

0.0

3 

KJ-12-07/3 

0.005

0 280 

0.9

7 1.81 

16.2

4 

0.5

2 886 

0.04

69 0.63 

0.033

66 0.67 0.005207 0.07 

0.5

8 

43.6

8 

15.1

2 

33.6

2 

0.2

2 

33.4

8 

0.0

2 

KJ-12-07/5 

0.004

0 

126

5 

1.1

7 8.23 

49.5

1 

0.6

5 

254

1 

0.04

69 0.21 

0.033

67 0.23 0.005208 0.06 

0.4

4 

43.9

4 5.12 

33.6

3 

0.0

8 

33.4

8 

0.0

2 

KJ-12-07/1 
0.005

387 
1.1

2.53 
25.0 0.4 131 0.04

0.41 
0.033

0.43 0.005209 0.05 
0.5 47.1

9.69 
33.6 0.1 33.4 0.0
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0 0 7 8 5 70 72 7 3 8 4 9 2 

KJ-12-07/2 

0.005

0 338 

1.1

5 2.24 

22.6

1 

0.4

8 

117

5 

0.04

70 0.46 

0.033

76 0.49 0.005209 0.06 

0.5

7 

49.3

3 

10.9

3 

33.7

1 

0.1

6 

33.4

9 

0.0

2 

KJ-12-07/4 

0.005

0 406 

1.1

5 2.68 

24.4

1 

0.5

3 

126

9 

0.04

69 0.47 

0.033

72 0.50 0.005213 0.07 

0.4

7 

44.8

4 

11.2

1 

33.6

7 

0.1

7 

33.5

2 

0.0

2 

                     monzonite 

KJ-10-02 

                   

KJ-10-02/5 

0.128

0 88 

0.4

6 0.45 

114.

49 

0.5

0 

698

8 

0.04

67 0.08 

0.031

83 0.14 0.004944 0.12 

0.8

3 

33.9

8 1.89 

31.8

2 

0.0

4 

31.7

9 

0.0

4 

KJ-10-02/4 

0.116

0 186 

0.7

1 1.02 

107.

97 

1.0

8 

617

9 

0.04

67 0.08 

0.031

81 0.14 0.004944 0.10 

0.8

1 

32.1

6 1.91 

31.8

0 

0.0

4 

31.8

0 

0.0

3 

KJ-10-02/3 

0.031

6 372 

0.6

1 2.07 

18.6

8 

3.3

2 

112

5 

0.04

68 0.22 

0.031

95 0.27 0.004947 0.09 

0.6

6 

40.9

0 5.18 

31.9

3 

0.0

8 

31.8

1 

0.0

3 

KJ-10-02/1 

0.103

1 460 

0.6

9 2.52 

81.4

5 

3.1

5 

474

3 

0.04

68 0.10 

0.031

93 0.20 0.004949 0.15 

0.8

9 

38.8

5 2.33 

31.9

2 

0.0

6 

31.8

3 

0.0

5 

KJ-10-02/2 

0.074

7 101 

0.8

7 0.61 

15.5

4 

2.7

5 880 

0.04

67 0.28 

0.031

91 0.33 0.004952 0.09 

0.6

3 

35.7

9 6.74 

31.8

9 

0.1

0 

31.8

4 

0.0

3 

                     porphyritic granodiorite 

KJ-12-11A 

                 KJ-12-

11A/5 

0.004

0 331 

0.6

9 1.39 9.15 

0.5

5 542 

0.04

68 1.05 

0.022

51 1.12 0.003490 0.10 

0.6

5 

37.8

8 

25.2

0 

22.6

0 

0.2

5 

22.4

6 

0.0

2 
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8 8 6 4 66 31 7 7 1 6 4 2 
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                     (a) AG-10-06/1, 2 etc. are labels for single zircon grains or fragments; all zircons annealed and 

chemically abraded after Mattinson (2005). 

         (b) Nominal fraction weights 

measured after chemical abrasion. 

                

   

(c) Nominal U and total Pb concentrations subject to 

uncertainty in weighting zircons. 

              

 

(d) Model Th/U ratio calculated from radiogenic 
208

Pb/
206

Pb ratio 

and 
207

Pb/
235

U age. 

             

 

(e) Pb* and Pbc represent radiogenic and common Pb, 

respectively;  

               

 

(f) Measured ratio corrected for spike and fractionation only. Mass fractionation correction for Pb and U was done using the 
202

Pb/
205

Pb and  
233

U/
235

U ratio of the double spike. 

      (g) Corrected for fractionation, spike, and common Pb; all common Pb was assumed to be procedural blank: 
206

Pb/
204

Pb = 18.30 

± 0.71%; 
207

Pb/
204

Pb = 15.47± 1.03%; 
208

Pb/
204

Pb = 37.60 ± 0.98%  

          (all uncertainties 1-sigma). 
206

Pb/
238

U and 
207

Pb/
206

Pb ratios corrected for initial disequilibrium in 
230

Th/
238

U using Th/U [magma] = 4. 

         (h) Errors are 2-sigma, propagated using the algorithms of Schmitz and Schoene (2007) and 
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Crowley et al. (2007). 

(i) Calculations are based on the decay constants of Jaffey et al. (1971). 
206

Pb/
238

U and 
207

Pb/
206

Pb ages corrected for initial 

disequilibrium in 
230

Th/
238

U using Th/U [magma] = 4. 
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Research highlights : 

 

- Geodynamics, magmatism and metallogeny of the Tethys belt, southern Lesser 
Caucasus 

- Eocene subduction to Oligo-Miocene post-collision magmatism in a stationary 
setting 

- Subduction and collision/post-collision porphyry deposits in a composite pluton 


