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Many situations require people to acquire knowledge
about, and learn how to control, complex dynamic sys-
tems of inter-connected variables. Numerous studies
have found that most problem solvers are unable to ac-
quire complete knowledge of the underlying structure of
a system through an unguided exploration of the system
variables; additional instruction or guidance is required.
This paper examines whether providing structural infor-
mation following an unguided exploration also improves
control performance, and the extent to which any im-
provements are moderated by problem solvers’ fluid intel-
ligence as measured via Raven’s APM. A sample of 98
participants attempted to discover the underlying struc-
ture of a computer-simulated complex dynamic system.
After initially controlling the system with their indepen-
dently acquired knowledge, half of the sample received in-
formation and an explanation of the underlying structure
of the system. All participants then controlled the system
again. In contrast to the results of previous studies, the
provided information resulted in immediate improvements
in control performance. Fluid intelligence as measured via
APM moderated the extent to which participants bene-
fited from the intervention. These results indicate that
guidance in the form of structural information is critical
in facilitating knowledge acquisition and subsequent use
or application of such knowledge when controlling com-
plex and dynamic systems.
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Many situations require us to acquire knowledge
about, and learn to control, dynamic systems

of causally connected variables. Learning how to heat
food in a microwave, respond to emails and buy train
tickets are just a few of the many examples that might
be encountered in everyday life. A significant body
of research has examined the conditions that facilitate
the acquisition of knowledge about complex and dy-
namic systems (de Jong & van Joolingen, 1998; de
Jong, Linn, & Zacharia, 2013). A question that has
been addressed less frequently is how is knowledge
best acquired to most effectively control such systems?
This paper examines whether structural information
(i.e., an explanation of how each input affects each

output with a diagram that depicts the system vari-
ables, the direction and strengths of their interrela-
tion) confers any advantage over an unguided explo-
ration of the system, its variables and their intercon-
nectedness. We also investigate the role of fluid intel-
ligence as measured via Raven’s Advanced Progressive
Matrices (APM; Raven, Raven, & Court, 1998) in util-
ising this information.

The complex problem solving (CPS) approach

To investigate how people learn how to control com-
plex and dynamic systems in the real world, a wide
variety of computer-based problem-solving scenarios
have been developed (e.g. Berry & Broadbent, 1984;
Dörner, 1980; Funke, 1992; for a review see Osman,
2010). The study presented in this article was under-
pinned by the DYNAMIS or complex problem solving
(CPS) approach, introduced by Funke (1992; 2001; see
Blech & Funke, 2005 for a review). CPS tasks con-
sist of a number of inputs (variables that the problem
solver intervenes on) and outputs (outcomes that are
generated by the system) that are governed by a set of
linear equations (this is referred to as the underlying
structure of the system). The systems are dynamic in
the sense that the current output value depends on the
value of the input selected by the problem solver, and
the previous value of the output. Some CPS tasks also
include autonomic changes, so that the values of par-
ticular output variables change independently on each
trial. A typical experimental procedure using this ap-
proach consists of an initial exploration phase in which
problem solvers are required to diagnose the underly-
ing structure of the system. In a subsequent control
phase they are instructed to control the system by ma-
nipulating the input variables to reach and maintain
specific goal values of the output variables. This means
that separate measures of structural knowledge and
control performance can be derived, and the cognitive
processes of knowledge acquisition and knowledge ap-
plication can be studied independently.
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The role of structural knowledge in controlling a
complex, dynamic system

The acquisition of knowledge through an unguided ex-
ploration of a system and its interrelated variables can
be characterised as discovery (De Jong & van Joolin-
gen, 1997; 1998) or inquiry-based learning (Lazonder
& Harmsen, 2016). In this approach, the learner is
seen as an independent and active agent in the pro-
cess of knowledge acquisition, as they must develop
hypotheses, design experiments to test them, and ap-
propriately interpret the data (De Jong & van Joolin-
gen, 1998).

In educational settings, the problems that learn-
ers experience with unguided inquiry-based learning
are well documented. A recent meta-analysis of 164
studies found that across domains, unguided inquiry-
based learning is less effective than explicit instruc-
tion for acquiring knowledge. However, the advantage
is reversed when learners receive adequate guidance
during inquiry-based learning; they learn more than
those taught using explicit instruction (Alfieri, Brooks,
Aldrich, & Tenenbaum, 2011). Numerous studies in
educational settings have also found that learners need
at least some guidance during exploration in order to
facilitate the acquisition of complete structural knowl-
edge (De Jong & van Joolingen, 1998; De Jong, 2005,
2006; Kirschner, Sweller & Clark, 2006; Lazonder &
Harmsen, 2016; Mayer, 2004).

Similarly, in research with CPS tasks, it has been
found that most problem solvers are unable to acquire
a complete or accurate representation of the underly-
ing structure of the system through an unguided explo-
ration of the system variables (Beckmann, 1994; Beck-
man & Guthke, 1995; Burns & Vollmeyer, 2002; Funke
& Müller, 1988; Kluge, 2008; Kröner, 2001; Kröner,
Plass & Leutner, 2005; Müller, 1993; Osman, 2008;
Schoppek, 2002; Vollmeyer, Burns, & Holyoak, 1996).
These studies also report a consistent positive relation-
ship between the amount of structural knowledge that
is acquired and the quality of problem solvers’ control
performance (see Knowledge Hypothesis).

It is worth noting that the majority of these studies
are correlational and therefore do not allow for causal
interpretations of the reported association between
knowledge and control performance. The study of
Goode and Beckmann (2010) is one of the rather rare
examples where an experimental design was adopted
to test the causal nature of this association. They
found that control performance improved systemati-
cally as the amount of structural information available
to participants increased, and that at least some struc-
tural knowledge was required to perform better than
simulated random control interventions. This study
illustrates that control performance is causally depen-
dent on the amount of knowledge that is acquired
about the underlying structure of the system.

The impact of providing structural information on
control performance

In this study we are interested in determining whether
supplementing problem solvers exploration of a CPS
task with structural information results in better con-
trol performance than an unguided exploration of the
system variables.

A study conducted by Süß (1996, p. 166-177) sug-
gested that providing structural information benefits
structural knowledge, but confers no advantage for
control performance. This study used a dynamic
decision-making task called "TAILORSHOP", which
is intended to simulate a small business that produces
and sells shirts. The system consists of 24 variables
inter-connected by 38 relations. The values of twenty-
one of these variables are represented on the user-
interface, and three are invisible. Twelve of the vari-
ables can be manipulated directly by participants, and
the goal is to increase the value of the variable "com-
pany value" (Danner et al., 2011). The underlying
structure is intended to reflect problem solvers’ prior
knowledge of similar "real world" scenarios (see Beck-
mann & Goode, 2014 for a discussion of the problems
associated with this assumption).

In Süß’s (1996) study, one group of participants ex-
plored "TAILORSHOP" while another group studied
a causal diagram for the same time period, before
both performing the control task. A control group
performed the control task without any prior explo-
ration or intervention. Structural knowledge was as-
sessed prior to, and after, interacting with the task.
The group that studied the causal diagram acquired
more structural knowledge than the exploration group;
there was no difference between the exploration and
control group. Surprisingly, there was no differences in
control performance across the conditions. Thus, the
causal diagram appeared to benefit structural knowl-
edge but not control performance. However, these re-
sults should be interpreted with caution, as a strong
associative link was found between structural knowl-
edge prior to interacting with the task and control per-
formance across all conditions. On the one hand, this
could be interpreted as an indicator of the "ecological
validity" of the system. On the other hand, the al-
ready substantial correlation between prior knowledge
and control performance limits the potential impact of
the interventions (i.e. knowledge acquisition through
causal diagram or exploration), and introduces a po-
tential source of individual differences among partici-
pants.

A number of studies using abstract systems (Putz-
Osterloh, 1993; Preußler, 1996, 1998) also report sim-
ilar results to Süß (1996). These studies suggest that
problem solvers require a period of active practice
applying structural information before they demon-
strate an advantage over knowledge acquired through
unguided exploration (Putz-Osterloh, 1993; Preußler,
1996; Preußler, 1998). These studies used the CPS
task "LINAS", which contains four inputs and seven
outputs interconnected by fifteen linear relations. The
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labels given to the system variables did not refer to
objects in the real world (e.g. "Bulmin", "Ordal", "Tri-
mol") to control for the influence of prior knowledge.
In Putz-Osterloh’s (1993) study an experimental group
(given a causal diagram) and a control group were first
instructed to diagnose the underlying structure of a
system by exploring the system variables. The causal
diagram illustrated the input and output variables as
rectangles linked by arrows to indicate the relation-
ships between them; the meaning of the diagram was
verbally explained by the experimenter. Against ex-
pectations, the experimental group performed no bet-
ter than the control group in a subsequent control task.
However, in a follow-up study six months later, the ex-
perimental group had better control performance than
the control group. Given that the advantage to per-
formance was only evident after participants had con-
siderable exposure to the task, Putz-Osterloh (1993)
suggested that problem solvers might need a period
of practice applying their knowledge in order to ben-
efit from structural information. However, caution is
urged in interpreting these findings due to the rela-
tively small sample size (N = 16 - 25 per condition).
Putz-Osterloh’s (1993) interpretation of her find-

ings found further support in a series of studies con-
ducted by Preußler (Preußler, 1996, 1998). In the
first experiment, participants in an experimental group
were instructed using standardised examples as to how
each input affected each output; a control group ex-
plored the system without assistance. No differences
in control performance were found. In line with Putz-
Osterloh’s (1993) study, it was argued that the struc-
tural information did not provide an advantage to con-
trol performance because participants did not have a
chance to practice applying it (Preußler, 1996). There-
fore, in a later experiment, Preußler (1998) gave an
experimental group a causal diagram, and in addition
they completed practice tasks in which goal values
had to be attained by manipulating the input vari-
ables. Each task was repeated until the problem solver
reached the target values. The control group had
to perform the same practice tasks, although with-
out having the diagram available and without having
the chance of retries until the correct response was
found. This time the experimental group had better
control performance (Preußler, 1998). These findings
have been interpreted as demonstrating that structural
knowledge needs to be either actively acquired or prac-
ticed in the context of application in order to benefit
control performance (Preußler, 1996, 1998; Schoppek,
2004), a notion that resonates with the broader liter-
ature on "learning by doing" and cognitive skill acqui-
sition (e.g. Anderson, 1993).

An alternative explanation is that the "guidance"
given to participants in these studies was not suf-
ficient to immediately promote structural knowledge
(Goode & Beckmann, 2010). Specifically, Goode and
Beckmann (2010) argue that in Putz-Osterloh’s (1993)
study participants may not have understood how the
diagram related to changing the input and output vari-
ables. In order to understand the meaning of the di-

agram, problem solvers may require a direct demon-
stration of how the inputs affect the output. Whilst
problem solvers in Preußler’s, (1996) study did receive
an explanation as to how the inputs affect the outputs,
they did not receive a structural diagram. It is likely
that they may have been unable to recall this informa-
tion during the control task. Goode and Beckmann
(2010) developed instructional material to overcome
these limitations, and compared control performance
under conditions of complete, partial or no structural
information. They used a CPS task with three in-
puts and three outputs, interconnected by six linear
relations. As in Putz-Osterloh’s (1993) and Preußler’s
(1996, 1998) studies, the labels given to the system
variables did not refer to objects in the real world (e.g.
"A", "B", "C"). The instructional material included an
audio-visual demonstration of how the inputs affect
the outputs, and the formation of a causal diagram as
a result of the interventions shown. This information
was then available on screen during the subsequent
control phase. They found that problem solvers who
received complete information were significantly bet-
ter at controlling the system than those who received
partial or no information. This study illustrates that
structural information can have an immediate positive
impact on the quality of control performance, without
a period of goal-orientated practice or prior exposure
to the system. The findings suggest that the effective-
ness of providing structural information is more a mat-
ter of accessibility (i.e., instructional design), rather
than practice.

Another factor that appears to influence the ap-
plication of structural information is the complexity
of the underlying structure of the CPS task. In a
follow-up study to Goode and Beckmann (2010) using
the same methodology, Goode (2011) provided partic-
ipants with either complete, partial or no structural
information regarding the underlying structure of one
of four CPS tasks, which varied in system complex-
ity. The complexity of the tasks was manipulated by
increasing the number of relations that had to be pro-
cessed in parallel in order to make a decision about a
particular goal state (i.e., the connectivity of the goal
state). The study showed that it was more difficult
for subjects to understand and utilise information as
system complexity increased; floor effects on perfor-
mance were observed when three relations had to be
considered in parallel to make a decision about a goal
state. This may also explain why previous studies have
found that structural information did not benefit con-
trol performance (Putz-Osterloh, 1993; Preußler, 1996,
as "LINAS" is at this level of complexity. Süß’s (1996)
study employed a task with many more variables and
relations. This may have made it more difficult for
subjects to understand and utilise the information that
they were given.

Nevertheless, the issue of whether the provision of
structural information results in immediate improve-
ments for control performance after knowledge has al-
ready been acquired through an unguided exploration
remains unresolved. Goode and Beckmann’s (2010)
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and Goode’s (2011) studies did not include a compar-
ison with a group who acquired knowledge through an
unguided exploration of the system variables.
The aim of the current study is to determine

whether structural information can directly benefit
control performance. To allow direct comparisons to
control performance scores from Goode and Beckmann
(2010), this study will use the same CPS task, inter-
vention and performance goals. In our proposed de-
sign, participants will first explore a CPS task, and
try to independently acquire knowledge about its un-
derlying structure. They will then try to control the
system to reach specific goal values of the output vari-
ables. Participants in an experimental condition will
then watch an audio-visual demonstration of how the
inputs affect the outputs, and will observe the forma-
tion of a causal diagram as a result of the interven-
tions shown (as per the procedure reported in Goode
and Beckmann, 2010 and Goode, 2011). Both the ex-
perimental and the control group will then control the
system again. If structural information can be im-
mediately utilised, then problem solvers who receive
structural information should show an improvement in
their control performance, and should be better con-
trolling the system than those who have to rely on the
knowledge they acquired independently (see Informa-
tion Hypothesis).

The role of fluid intelligence in benefiting from
structural information

A second issue addressed by this study is whether ben-
efiting from structural information is dependent on
the cognitive abilities of the problem solver. Gold-
man (2009) has argued that learner characteristics,
such as prior knowledge and cognitive ability, deter-
mine whether benefits are derived from instructional
settings. The CPS task employed in the current study
uses abstract variable labels and a domain-neutral
cover story. This aims at minimising confounding ef-
fects of individual differences in domain-specific knowl-
edge on the results (for a detailed discussion of the ar-
gument for using abstract systems in complex problem
solving research see Beckmann & Goode, 2014). Con-
sequently, the guidance information provided (i.e., the
intervention) is expected to be relatively novel for all
participants, so that individual differences in utilising
it can largely be attributed to the cognitive abilities of
the problem solver.
Previous findings show that when explicit informa-

tion about system structure is provided, control per-
formance is consistently moderately to strongly cor-
related with fluid intelligence (Bühner, Kröner, &
Ziegler, 2008; Goode & Beckmann, 2010; Kröner et
al., 2005; Putz-Osterloh, 1981; Putz-Osterloh & Lüer,
1981; Wüstenberg et al., 2012). Therefore, in the
current study it is predicted that under conditions
where participants receive information, the extent of
improvements in control performance will be a func-
tion of their fluid intelligence as measured via APM.
In comparison, the extent of improvements in control

performance when participants do not receive addi-
tional information should be due to practice applying
their partial representations of the underlying struc-
ture, and therefore less strongly related to fluid intelli-
gence as measured via APM (see Intelligence Hypoth-
esis).

Aims and hypotheses

In summary, the main goal of this paper is to deter-
mine whether guidance in the form of structural infor-
mation results in an immediate improvement in con-
trolling a CPS task after knowledge has already been
acquired through an unguided exploration of the sys-
tem variables. A secondary aim is to examine whether
any improvements are moderated by fluid intelligence
as measured via APM. Firstly, it is hypothesised that
participants who acquire more knowledge during the
exploration phase about the underlying structure of
the system should show better control performance
prior to any instructional intervention (Knowledge Hy-
pothesis). Secondly, participants who receive struc-
tural information should improve their control perfor-
mance more than those who receive no additional in-
formation (Information Hypothesis). Thirdly, under
conditions where participants receive information, the
magnitude of this improvement will be a function of
their fluid intelligence as measured via APM (see In-
telligence Hypothesis).

Method

Participants

Ninety-eight first year psychology students at the Uni-
versity of Sydney, Australia, participated for course
credit. Nine participants failed to complete all tasks
therefore their data were excluded from further anal-
ysis. The available sample size of about 100 would
guarantee sufficient statistical power (1 − β ≥ .80) in
identifying at least medium effects (d = 0.50) at a sig-
nificance level of α ≤ .05 (one-tailed) in the planned
analyses.

Design

Participants were randomly assigned to one of two
conditions (45 participants in the Information condi-
tion, 44 participants in No Information condition). As
problem solvers were required to control the system on
two occasions this resulted in a 2 x 2 design. The
within-subjects factor was control performance (cy-
cle 1 and cycle 2). The between-subjects factor was
whether or not they received structural information
(Information and No Information). The aim of the
intervention in the information condition was to en-
courage participants to develop a complete and accu-
rate representation of the underlying structure of the
system. The no information condition represented a
passive control group. Participants were assessed on
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their structural knowledge, control performance for cy-
cle 1, control performance for cycle 2 and performance
in a test of fluid intelligence. Vary-one-thing-at-time
(VOTAT) strategy use during the exploration phase
was also assessed as part of this study; this measure
is not reported in this paper. Figure 1 displays the
procedure of the experiment for each condition and
indicates which performance measures were collected
in each phase of the experiment.

Figure 1. Diagram for the procedure of the experiment, illustrating
the phases of the experiment by condition and indicating which
performance measures were collected in each phase.

Description of CPS task

The CPS task was programmed using Adobe Flash
8 and Captivate 3, and administered on PCs (see
(Goode, 2011 for an extensive description of all of the
CPS task elements, including step-by-step screenshots
of the instructional intervention and CPS task, and
transcript of the explanation).

The underlying structure was originally developed
by Beckmann (1994, see also Beckmann & Goode,
2014; Goode & Beckmann, 2010; Goode, 2011), and
is based on the approach to complex problem solving
that was developed by Funke (1992) in his DYNAMIS
research project. It consists of three input and three
output variables that are connected by a set of linear
equations:

Xt+1 := 1.0 ∗Xt + 0.8 ∗At + 0.8 ∗Bt + 0.0 ∗ Ct

Yt+1 := 0.8 ∗ Yt + 1.6 ∗At + 0.0 ∗Bt + 0.0 ∗ Ct

Zt+1 := 1.2 ∗ Zt + 0.0 ∗At + 0.0 ∗Bt + a.0 ∗ Ct

Xt, Yt and Zt denote the values of the output vari-
ables and At, Bt and Ctdenote the values of the input
variables during the present trial whilstXt+1, Yt+1 and
Zt+1 denote the values of the output variables in the
subsequent trial.
Important for the operationalization of knowledge

acquisition, the system can be considered balanced,
i.e., from 12 possible relationships between variables
6 do exist and among the three output variables one
is subject to a "positive" eigendynamic (i.e., an au-
toregressive dependency that results in a monotone

increase), one is subject to a negative eigendynamic
(i.e., an autoregressive dependency that results in a
monotonic decrease) and one is subjected to no eigen-
dynamic and all three output variables have a double
dependency.
Previous research has found that the presence of a

semantically meaningful context has an unpredictable,
often negative, effect on acquisition of structural
knowledge (Beckmann, 1994, see also Beckmann &
Goode, 2014; Burns & Vollmeyer, 2002; Lazonder,
Wilhelm, & Hagemans, 2008; Lazonder, Wilhelm &
van Lieburg, 2009.) Therefore, in order to ensure that
the system was relatively novel for all participants and
thus control the potential influence of prior knowledge,
the input and output variables are labelled with let-
ters. As can be seen in Figure 2, the output variables
are labelled X, Y and Z, whilst the input variables are
labelled A, B, and C.
The user-interface is in a non-numerical graphical

format, in order to encourage the formation of mental
representations more aligned with the development of
causal diagrams. In accordance with the principles
of cognitive load theory (CLT), this should minimise
the cognitive activities that are not directly relevant
to the task (extraneous cognitive load, e.g. Sweller,
1994; for a review see Beckmann, 2010; Sweller, 2010).
Figure 2 shows that the values of the input variables
are represented as bars of varying heights in the boxes
on the input variables, where positive values are shown
above the input line and negative values are shown
below. Each box represents the value of the input
variable on a single trial, and in total seven trials can
be conducted before the values are reset (representing
a single cycle). Although the numerical values of the
inputs are not available to participants, the inputs are
varied in increments of one unit, within the range of
-10 to 10.
On each trial, participants have to set value of each

input variable. This is done step by step, such that
after they set the value for input A, they then have to
set the value for input B and finally input C before the
resulting values of the output variables are displayed
as line graphs below. Previous inputs and there subse-
quent effects remained on the screen (decision history)
for each cycle of seven trials. There was no time limit.
During the control phase of the task, the goals are

indicated as dotted lines on the graphs for the output
variables (as show in Figure 2). The target values used
for control cycle 1 and 2 were of comparable in diffi-
culty, i.e., the Euclidean Distance (see operationaliza-
tion of control performance) between start values and
target values was the same for both cycles.

Dependent variables and individual differences
measure

Structural knowledge

Participants’ structural knowledge was assessed by
asking them to create causal diagrams of the relation-
ships between the input and output variables at the
end of each trial during the exploration phase. The
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Figure 2. Screenshot of the system interface, as presented in the
information condition after the instructional phase. The goals are
indicated as dotted lines on the graphs for the output variables.
The underlying structure of the system is represented on screen as
a causal diagram, where the arrows represent the relationships be-
tween the variables, while the positive and negative signs denote the
direction of the relationship, and the letters the relative strength.
In this example, for the fifth trial of seven all input variables were
increased (A half the strength and B and C using the maximum);
as a result, Output X and Y increased whilst Output Y decreased
slightly.

diagram that was generated on the final exploration
trial (after 2 cycles of 7 trials), before the control phase
was used to derive a structural knowledge score. Us-
ing a procedure introduced by Beckmann (1994), the
operationalisation of the knowledge acquisition perfor-
mance is based on a threshold model for signal de-
tection (Snodgrass & Corwin, 1988). The proportion
of correctly identified relationships was adjusted for
guessing by subtracting the proportion of incorrectly
identified relationships. The final score has a theoret-
ical range from -.98 to .98, where a score below zero
indicates inaccurate knowledge, whilst a score above
zero indicates more accurate knowledge.

Control performance

The scoring procedure used was based on Beckmann’s
(1994) scoring system. Control performance was calcu-
lated by determining the Euclidean Distance between
the vectors of actual and optimal values of the input
variables. The ideal values for each input variable, i.e.,
the intervention that would result in the system reach-
ing the goal state, were calculated by using the values
of the output variables on the previous trial and the
goal output values to solve the set of linear equations
underlying the system. As the range of possible input
values is restricted for the system used in this study
(i.e., between -10 and 10), it might not be possible to
bring the system into the goal state by a single inter-
vention. In cases as these, i.e., when the ideal values
fall outside this range, the values were adjusted to the
nearest possible values, which then constituted the op-
timal values. In cases when the ideal values are within
the range of possible inputs, the ideal values were used
as the optimal input.

For the system at hand the theoretical range of
this score is 0 to 34, where a lower score indicated
a smaller deviation from optimal control interventions
and therefore better performance.

Fluid intelligence

The percentage of correct responses on an abridged
version of the Raven’s APM (Raven et al., 1998) was
used as an indicator of fluid intelligence. This version
of the APM included 20 items from the original 36-
item test, created using the odd numbered items plus 2
additional even numbered ones from the most complex
items (i.e. items 34 and 36).

Procedure

The CPS task and the APM were presented to partic-
ipants on PCs, over two separate sessions. The CPS
task for each condition was installed on alternate com-
puters at the study venue. On arrival at the first ses-
sion, participants chose a computer, which determined
their condition.

The CPS task began with a set of instructions that
explained the user-interface, how to change the values
of the input variables and how to record and alter the
causal diagram. At the end of the instructions, par-
ticipants were informed that the task consists of two
phases. Firstly, they had to explore the system to dis-
cover the underlying structure of the system and then
control the system to reach certain values of the out-
put variables. The goal values were not revealed until
the beginning of each control cycle.

The exploration phase then began, in which par-
ticipants were prompted to explore the system for two
cycles of 7 trials each by changing any of the input vari-
ables and observing the effect on the output variables
displayed in the graphs. At the end of each trial, par-
ticipants had to record what they had learned about
the system using the causal diagram construction fea-
ture that was displayed on the screen.

The causal diagram could be altered using a set of
twelve buttons (one for each possible relationship in
the system) at the bottom of the screen. Each but-
ton referred to a particular relationship in the system.
Using these buttons, participants could record if they
thought there was a relationship between two variables
or not, or if they thought the output variables changed
independently (or not). They could also specify the di-
rection of the effect, and its perceived strength.

After the exploration phase, participants then had
to control the system by manipulating the inputs to
reach set values of the outputs for seven trials, which
were indicated as dotted lines on the output graphs
(Control Cycle 1). The causal diagrams they had
constructed during the exploration phase remained on
screen, providing access to the structural information
they had individually extracted.

In the information condition, participants then
watched an instructional video that explained the ac-
tual underlying structure of the system. The instruc-
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tions were designed in accordance with the principles
of CLT, and the aim was to reduce the amount of cog-
nitive activities that problem solvers would have to
undertake to translate the information provided into
knowledge about the system (minimising extraneous
cognitive load). In particular, previous research has
shown that learning is facilitated when explanations
of graphical information is presented aurally, rather
than as text (modality effect, Tabbers, Martens, & van
Merriënboer, 2004). Therefore, the instructions con-
sisted of a recording of seven intervention trials with
an accompanying audio narration, which explained the
actual underlying structure of the system. After each
trial, the narrator explained how each of the outputs
had changed, and how this reflected the underlying
structure of the system. The respective causal dia-
gram was constructed on screen in parallel, to record
this information. Participants in the no information
condition did not receive any additional information
during this phase; representing a passive control group.
All participants then had to control the system again

for seven trials, with different goals indicated on the
output variables (Control Cycle 2). In the informa-
tion condition the causal diagram displayed onscreen
was the correct and complete one. In the no informa-
tion condition, the causal diagram that participants
had constructed in the initial exploration cycles was
displayed onscreen.

In a subsequent session, approximately one week
later, participants completed the APM.

Data Analysis

To test our main hypotheses we conducted a series of
hierarchical linear modelling analyses using the HLM
software package (Raudenbush, Bryk, Cheong, & Con-
gdon, 2000). This approach allows us to model indi-
viduals’ change in performance from control cycle 1
to control cycle 2 as function of person-level variables
(see Raudenbush & Bryk, 2002)). We used a two level
model in which performance in control cycle 1 and con-
trol cycle 2 (level 1) were clustered within individuals
(level 2). The specific analyses that we performed to
test each hypothesis are discussed in the results sec-
tion.

Results

The following sections first present preliminary analy-
ses undertaken to test whether the random assignment
to condition was effective, and justify our treatment of
the variables in the following analyses. The findings
in relation to the three hypotheses are then presented.

Intercorrelations (Pearson) between the variables
used in this study as well as descriptive statistics and
distributions are presented in Table 1. The distribu-
tions of the variables indicate that assumptions of nor-
mality were met.

Equivalence between the conditions prior to the
intervention

To examine the effect of the intervention and fluid in-
telligence on control performance, firstly, it was nec-
essary to check whether the conditions differed prior
to the intervention. The amount of structural knowl-
edge acquired by participants during the exploration
phase did not differ by condition; t(87) = -.09, p =
.93, d = 0.02, nor did their control performance scores
in cycle 1; t(87) = -.05, p = .96, d = 0.01, or scores
on the APM; t(87) = 1.59, p = .12, d = 0.34. This
suggests that the procedure used to randomly allocate
participants to the conditions was effective.

Structural knowledge acquired during the
exploration phase

For both conditions, the amount of structural knowl-
edge that was acquired during the exploration phase
was significantly greater than zero; M = .22, SD = .34,
t(88) = 6.00, p < .01. This indicates that on average,
participants had acquired some knowledge of the un-
derlying structure of the system prior to the first con-
trol cycle. However, the range of structural knowledge
scores, -.49 to .98, indicates that participants differed
widely in the amount of knowledge that they were
able to acquire about the underlying structure of the
system during the initial exploration phase. That is,
while some participants were able to acquire complete
knowledge of the underlying structure of the system
(one participant in the no information condition, and
two participants in the information condition), oth-
ers acquired a rather incorrect representation of the
underlying structure. This also suggests that for the
majority of problem solvers the provision of structural
information could potentially represent a significant
source of new information about the underlying struc-
ture of the system.

Internal consistencies

Internal consistency analyses were conducted to de-
termine the variability in control performance scores
across the trials and for different goal states as an esti-
mate of the reliability of the dependent variables. In-
ternal consistency was good across the first control cy-
cle (ω = .85, 95% CI [.79, .89]) and the second control
cycle (ω =.93, 95% CI [.89, .95]) (Dunn, Baguley, &
Brunsden, 2014). This indicates that problem solvers
are rather consistent in their performance and it jus-
tifies averaging the scores across each control cycle.
A further analysis indicated that the reliability of

the APM scores was acceptable across the 20 items
(ω = .76, 95% CI [.59, .83]) (Dunn et al., 2014).

Knowledge Hypothesis

In support of the knowledge hypothesis, across the
conditions, there was a significant moderate negative
relationship between structural knowledge scores and
control performance in cycle 1 (r = -.34, p < .01).
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Table 1. Descriptive statistics, distributions and inter-correlations (Pearson) between the variables for each condition.

M Min. Max. Kurtosis Skewness 2 3 4
(SD) (SE) (SE)

No Information Condition 1. Structural Knowledge .21 -.49 .98 -.40 .38 -.38* -.51** .45**
(.33) (.70) (.36)

N = 44 2. Cycle 1 13.88 4.52 20.77 -.54 -.58 . . . .56** -.24
(4.20) (.70) (.36)

3. Cycle 2 13.21 2.50 25.01 -.58 -.31 . . . . . . -.18
(5.28) (.70) (.36)

4. APM 63.75 30 95 -.23 -.07 . . . . . . . . .
(16.32) (.70) (.36)

Information Condition 1. Structural Knowledge .22 -.33 .98 -.47 .29 -.31* -.36* .26
(.35) (.69) (.35)

N = 45 2. Cycle 1 13.92 2.82 24.09 .75 -.49 . . . .27 -.11
(4.14) (.69) (.35)

3. Cycle 2 10.24 2.10 22.33 -1.03 .35 . . . . . . -.52**
(5.29) (.70) (.35)

4. APM 58.00 30 95 -.85 .06 . . . . . . . . .
(17.75) (.69) (.35)

Note. ∗ p < .05. ∗∗ p < .01.

This indicates that participants who acquired more
knowledge about the underlying structure of the task
produced smaller deviations from the set of optimal
control interventions, and were therefore better at
controlling the system (i.e., reaching and maintain
the goal values). This advantage persisted in cycle
2 even when participants received additional instruc-
tions with regard to the underlying structure of the
system (r information = -.36, p < .01, rno information =
-.51, p < .01).

Information and Intelligence Hypotheses

In order to determine whether the provision of struc-
tural information facilitates control performance (In-
formation Hypothesis) and whether the extraction of
knowledge from information in this context is de-
termined by fluid intelligence (Intelligence Hypothe-
sis) we conducted a series of two-level HLM analy-
ses. Firstly, a random coefficient regression analy-
sis was conducted to assess whether control perfor-
mance changed across the two control cycles. At level
1, each participant’s performance was represented by
an intercept term, which denoted their mean perfor-
mance across control cycle 1 and control cycle 2, and
a slope, that represented their change in performance
from control cycle 1 to 2. Control cycle (1 or 2, effect
coded as -.5 and .5, respectively) was entered as an
independent variable at this level. The mean control
performance scores and the change in control perfor-
mance then became the outcome variables in a level-2
model, in which they were modelled as random ef-
fects. The results of this analysis are presented in
the top section of Table 2. This analysis indicated
that the mean control performance score was 12.81
across control cycle 1 and 2 and on average, control
performance scores improved by 2.19 points from con-
trol cycle 1 to 2. The change in control performance
was significantly different from zero; t(88) = -3.86,
p < .001. There was significant differences between
problem solvers in terms of their mean control perfor-

mance scores and the change in their control perfor-
mance; χ2 = 2867895259.6, df = 88, p < .001 and
χ2 = 1274245149.4, df= 88, p < .001, respectively.
Variability in problem solvers’ change in control per-
formance from control cycle 1 to 2 accounted for 64%
of the total variability in control performance scores.
These findings are an important prerequisite for the
subsequent analyses, as they indicate that individu-
als show substantial variability in their mean control
performance and the extent to which their control per-
formance changed across the two cycles.

We conducted an intercept- and slope-as-outcomes
regression analysis in which mean control performance
and the change in control performance from control cy-
cle 1 to 2 were modelled as a function of condition (as
an effect coded variable indicating condition: -.5 = no
information, .5 = information) and scores on the APM
at level 2. The level 1 model was the same as in the
random coefficients regression analysis. The results of
this analysis are presented in the middle panel of Table
2.

With regard to the Information Hypothesis, this
analysis indicated that information had a significant
impact on average control performance scores, and the
change in control performance from control cycle 1
to 2, controlling for the effects of fluid intelligence;
t(86) = -2.32, p < .05, ∆R2 = 5% and t(86) = -3.19,
p < .01, ∆R2 = 9%, respectively. Participants in the
information condition had an average control perfor-
mance score 1.91 points better than those in the no
information condition. Similarly, the change in control
performance for participants in the information condi-
tion was 3.42 points better than those in the no infor-
mation condition. In support of the Information Hy-
pothesis, these results indicate that participants who
received additional information with regard to the un-
derlying structure of the system performed better on
average, and improved at a greater rate from control
cycle 1 to control cycle 2 than those who did not re-
ceive information.
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With regard to the Intelligence Hypothesis, the
analysis also indicated that APM scores were signif-
icantly linked to control performance scores as well as
to their change from control cycle 1 to 2, controlling
for the effects of condition; t(86) = -3.21, p < .01,
∆R2 = 7% and t(86) = -2.17, p < .05, ∆R2 = 2%, re-
spectively. On average, a one-point increase in scores
on the APM was associated with a 0.08 better score on
average control performance, and a 0.07 better score
on the change in performance scores from control cycle
1 to 2. These results indicate that on average, partic-
ipants with a higher APM scores, tended to perform
better overall, and improved more from control cycle
1 to 2.
In order to determine whether the effect of fluid in-

telligence on control performance differed by condition
a third analysis was conducted in which an interaction
term (APM x Condition) was added to the main effects
of the variables at level 2. The results are presented in
the bottom panel of Table 2. There was no evidence
that fluid intelligence (as measured via APM scores)
has an effect on mean control performance scores var-
ied by condition, as the interaction term was small
and insignificant; t(85) = -.68, p = .50, ∆R2 = 0%.
However, the effect of fluid intelligence on the change
in performance from control cycle 1 to control cycle
2 did vary significantly by condition; t(85) = -2.48,
p < .05, ∆R2 = 3%. In further support of the In-
telligence Hypothesis, this suggests that the change in
performance scores for participants who received infor-
mation was more strongly related to fluid intelligence
than for participants who did not receive information.

Discussion

This study examined whether: (1) providing guidance
in the form of structural information results in an im-
mediate improvement in controlling a CPS task after
knowledge has already been acquired through an un-
guided exploration of the system variables; and (2)
any improvements are moderated by fluid intelligence
as measured via APM. In summary, support was found
for the Knowledge Hypothesis, as participants who ac-
quired more structural knowledge during the explo-
ration phase had better control performance in con-
trol cycle 1. Support was also found for the Informa-
tion Hypothesis, as participants who received struc-
tural information improved their control performance
more than those who received no information. Finally,
support was found for the Intelligence Hypothesis, as
when participants received information, their change
in control performance scores from control cycle 1 to 2
was more strongly related to APM performance scores
than the change in control performance scores in par-
ticipants who did not receive structural information.
These results suggest that guidance in the form of
structural information does confer an additional ad-
vantage in controlling a complex system over indepen-
dently acquired knowledge, and that problem solvers
can translate such information into effective control ac-

tions without practice. However, the extent to which
problem solvers can benefit from such information ap-
pears to be moderated by their fluid intelligence as
measured via APM.

As in previous studies, it was found that the amount
of structural knowledge acquired by participants is
strongly related to the quality of their control per-
formance. In addition, in line with other studies,
few participants were able to acquire complete knowl-
edge of the underlying structure of the system during
the exploration phase (Beckmann, 1994; Beckmann
& Guthke, 1995; Burns & Vollmeyer, 2002; Funke &
Müller, 1988; Müller, 1993; Kröner, 2001; Kröner et
al., 2005; Kluge, 2008; Osman, 2008; Schoppek, 2002;
Vollmeyer et al., 1996). These findings provide fur-
ther evidence that learners require additional support
or guidance to acquire complete and accurate knowl-
edge about complex and dynamic systems; they are
unlikely to do so through unguided discovery learning.

This study also found that guidance in form of pro-
viding structural information resulted in an immediate
improvement in control performance. In contrast to
previous studies (Preußler, 1998; Putz-Osterloh, 1993;
Süß, 1996), these findings suggest that a period of ac-
tive practice is not required to translate knowledge
into effective control actions. One caveat to this con-
clusion is, however, that the task used in other studies
could be considered more complex than the task used
in the current study. Further studies are required to
determine whether the findings observed in this study
generalise to more complex tasks.

Nevertheless, the results support and extend upon
the findings of Goode and Beckmann (2010) in impor-
tant ways. As in Goode and Beckmann’s (2010) study,
the results of the present study show that if problem
solvers receive a direct demonstration as to how each
input affects each output, and have access to this in-
formation in form of a causal diagram during control
performance, then they will be able to immediately
translate this information into the appropriate actions
for controlling the system. This provides further sup-
port for the claim that supporting information should
be available throughout the task (Berry & Broadbent,
1987; Gardner & Berry, 1995; Leutner, 1993).

Indeed, comparing the findings from the current
study with Goode and Beckmann’s (2010) study,
which employed the same CPS task, instructional
method and participants drawn from the same uni-
versity student population, suggests that an unguided,
albeit "active" exploration of the system variables pro-
vides no advantage for control performance whatso-
ever. In Goode and Beckmann’s (2010) study, par-
ticipants received structural information and then
were required to immediately control the system vari-
ables; mean control performance scores were 10.33
(SD = 5.25) in the comparable control cycle. In the
current study, mean control performance scores were
10.24 (SD = 5.29). This suggests that the actively
acquired knowledge and practice controlling the sys-
tem variables resulted in no net advantage for control
performance over simply providing structural informa-
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Table 2. Results of the Random Coefficients Regression (RCR) Analysis and the Intercept- and Slope-As-Outcome Regression (ISAOR)
Analyses

Variable Parameter Estimate SE t ∆R2

RCR Analysis

Mean control performance (β00) 12.81 0.43 30.10**
Mean change in control performance (β10) -2.19 0.57 -3.86**

ISAOR Analysis 1

Intercept-as-outcome
Condition (β01) -1.91 0.82 -2.32* 5%
APM (β02) -0.08 0.02 -3.21** 7%

Slope-as-outcome
Condition (β11) -3.42 1.07 -3.19** 9%
APM (β12) -.07 0.03 -2.17* 2%

ISAOR Analysis 2

Intercept-as-outcome
Condition (β01) -1.89 .82 -2.33* 5%
APM (β02) -0.08 .02 -3.32** 7%
Condition x APM (β03) -0.03 .04 -0.68 0%

Slope-as-outcome
Condition (β11) -3.38 1.03 -3.29** 9%
APM (β12) -0.06 .03 -2.37* 2%
Condition x APM (β13) -0.13 0.05 -2.48* 3%

Note. ∗ p < .05. ∗∗ p < .01.
Level 1 model (for all analyses):
Yti = π0i + πli(Control Cycle),
where Yti is person i’s control performance score at time t, π0i is their mean control performance score and πli is their change
in control performance from control cycle 1 to control cycle 2.
Level 2 model for RCR Analysis:
π0i = β00 + r0i

and
πli = β10 + rli
Level 2 model for ISAOR Analysis 1:
π0i = β00 + β01(Condition) + β02(APM) + r0i

and
πli = β10 + β11(Condition) + β12(APM) + rli
Level 2 model for ISAOR Analysis 2:
π0i = β00 + β01(Condition) + β02(APM) + β03(Condition x APM) + r0i

and
πli = β10 + β11(Condition) + β12(APM) + β13(Condition x APM) + rli
Note: When intercepts are outcomes, ∆R2 is expressed as a percentage of the variability in mean control performance scores.
When slopes are outcomes, ∆R2 is expressed as a percentage of the variability in the change in control performance.
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tion. The finding that participants in the no informa-
tion condition showed little improvement across the
control cycles further reinforces this claim. This sug-
gests that practice at controlling the system does not
have a significant impact upon the quality of problem
solvers’ control performance, especially if the control
goals change.
Indeed, under both conditions the high level of in-

ternal consistency in control performance scores fur-
ther suggests that problem solvers do not dramatically
change their control behaviours through practice. Sub-
sequently, improvements in control performance with
practice are rather limited. In other words, these re-
sults seem to suggest that no spontaneous optimisa-
tion of control behaviour (i.e. learning by doing) takes
place. The question, however, of whether longer peri-
ods of active practice after exposure to guiding infor-
mation, would lead to further improvements, could be
of interest in future studies.

These findings are consistent with recent findings
regarding CPS training. Kretzschmar and Süß (2015)
trained participants using five different computer-
based complex dynamic systems, and their perfor-
mance was tested in a sixth system. Interacting with
each system involved a goal-free exploration phase and
a control phase. They found that trained participants
were able to acquire more knowledge about the final
system than an untrained control group. However,
there was no difference in control performance. In line
with the findings from our study, this suggests that
for each control intervention, the problem solver must
apply their knowledge to generate the correct action
for that specific situation.

With regard to the relationship between fluid in-
telligence and control performance, it should first be
acknowledged that the generalisability of the results
from this study may be limited by the narrow opera-
tionalisation of fluid intelligence via APM. Whilst the
APM has been traditionally seen as the empirical refer-
ence point of fluid intelligence, more recent discussions
(e.g., Gignac, 2015) are critical of studies that rely on
this single test score. This on-going debate should be
kept in mind while reading the following interpretation
of the findings.

The results of this study are in line with previous
studies that have shown that when structural infor-
mation is provided, control performance is moderately
to strongly correlated with fluid intelligence (Bühner
et al., 2008; Goode & Beckmann, 2010; Kröner et
al., 2005; Putz-Osterloh, 1981; Putz-Osterloh & Lüer,
1981; Wüstenberg et al., 2012). This suggests that
more intellectually capable problem solvers are able
to make use of structural information more effectively
than individuals who are less so. This study extends
on these previous findings, as it was also found that
fluid intelligence as measured via APM had an impact
on the acquisition of structural knowledge during the
exploration phase, and subsequently in controlling the
system when only incomplete knowledge was available.
These results suggest that intellectually more capable
problem solvers are at a double advantage in compari-

son to those who score lower on fluid intelligence with
regard to acquiring and utilising structural knowledge:
they are able to acquire more knowledge without as-
sistance, and they also benefit more from guidance.
This implies a necessity to tailor instructions to prob-
lem solvers’ intellectual capacity, an aspect often ne-
glected in educational contexts. In other words, and
as frequently advanced by Snow (1986; 1989; Snow
& Lohman, 1989; Snow & Yallow, 1982), individual
differences among learners still "...present a pervasive
and profound problem to educators" (Snow, 1989, p.
1029).
The results with regard to the role of fluid intelli-

gence also provide support for the claim that in pre-
vious studies (Preußler, 1996; Putz-Osterloh & Lüer,
1981; Putz-Osterloh, 1993), the effect of structural
information on control performance may have been
masked by individual differences in the ability to un-
derstand and utilise the information. In addition,
Preußler’s (1998) finding that all of her participants
were able to effectively utilise information after a pe-
riod of active practice, may now be interpreted in a
different light. It may be that practice per se is not
the essential component, but rather that some prob-
lem solvers require more extensive guidance in order
to be able to make sense of the information that is
provided.
Overall, our results imply that guidance in the form

of structural information has the potential to provide
benefits over and above the effects of discovery learn-
ing. The crucial aspect of guidance, however, is that it
is well designed. These findings are in line with those
from other domains that show that learners experience
many difficulties when they are required to indepen-
dently acquire knowledge without guidance (de Jong
& van Joolingen, 1998; Mayer, 2004; de Jong, 2005;
2006; Kirschner et al., 2006).
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