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Abstract  

Many situations require people to acquire knowledge about, and learn how to 

control, complex dynamic systems of inter-connected variables. Numerous studies 

have found that most problem solvers are unable to acquire complete knowledge of 

the underlying structure of a system through an unguided exploration of the system 

variables; additional instruction or guidance is required. This paper examines whether 

providing structural information following an unguided exploration also improves 

control performance, and the extent to which any improvements are moderated by 

problem solvers’ fluid intelligence as measured via Raven’s APM. A sample of 98 

participants attempted to discover the underlying structure of a computer-simulated 

complex dynamic system. After initially controlling the system with their 

independently acquired knowledge, half of the sample received information and an 

explanation of the underlying structure of the system. All participants then controlled 

the system again.  In contrast to the results of previous studies, the provided 

information resulted in immediate improvements in control performance. Fluid 

intelligence as measured via APM moderated the extent to which participants 

benefited from the intervention. These results indicate that guidance in the form of 

structural information is critical in facilitating knowledge acquisition and subsequent 

use or application of such knowledge when controlling complex and dynamic 

systems.  

Key words: Complex problem solving; dynamic systems; knowledge acquisition; 

fluid intelligence; discovery learning 
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With a little help …: On the role of guidance in the acquisition and utilisation of 

knowledge in the control of complex, dynamic systems 

1. Introduction 

Many situations require us to acquire knowledge about, and learn to control, dynamic 

systems of causally connected variables. Learning how to heat food in a microwave, 

respond to emails and buy train tickets are just a few of the many examples that might 

be encountered in everyday life. A significant body of research has examined the 

conditions that facilitate the acquisition of knowledge about complex and dynamic 

systems (de Jong & van Joolingen, 1998; de Jong, Linn & Zacharia, 2013). A 

question that has been addressed less frequently is how is knowledge best acquired to 

most effectively control such systems? This paper examines whether structural 

information (i.e., an explanation of how each input affects each output with a diagram 

that depicts the system variables, the direction and strengths of their interrelation) 

confers any advantage over an unguided exploration of the system, its variables and 

their interconnectedness. We also investigate the role of fluid intelligence as measured 

via Raven’s Advanced Progressive Matrices (APM; Raven, Raven & Court, 1998) in 

utilising this information.   

1.1 The complex problem solving (CPS) approach 

 To investigate how people learn how to control complex and dynamic systems 

in the real world, a wide variety of computer-based problem-solving scenarios have 

been developed (e.g. Berry & Broadbent, 1984; Dörner, 1980; Funke, 1992; for a 

review see Osman, 2010). The study presented in this article was underpinned by the 

DYNAMIS or complex problem solving (CPS) approach, introduced by Funke (1992; 

2001; see Blech & Funke, 2005 for a review). CPS tasks consist of a number of inputs 

(variables that the problem solver intervenes on) and outputs (outcomes that are 

generated by the system) that are governed by a set of linear equations (this is referred 

to as the underlying structure of the system). The systems are dynamic in the sense 

that the current output value depends on the value of the input selected by the problem 

solver, and the previous value of the output. Some CPS tasks also include autonomic 

changes, so that the values of particular output variables change independently on 

each trial. A typical experimental procedure using this approach consists of an initial 
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exploration phase in which problem solvers are required to diagnose the underlying 

structure of the system. In a subsequent control phase they are instructed to control 

the system by manipulating the input variables to reach and maintain specific goal 

values of the output variables. This means that separate measures of structural 

knowledge and control performance can be derived, and the cognitive processes of 

knowledge acquisition and knowledge application can be studied independently.  

1.2 The role of structural knowledge in controlling a complex, dynamic system 

The acquisition of knowledge through an unguided exploration of a system 

and its interrelated variables can be characterised as discovery (de Jong & van 

Joolingen, 1997; 1998) or inquiry-based learning (Lazonder & Harmsen, 2016). In 

this approach, the learner is seen as an independent and active agent in the process of 

knowledge acquisition, as they must develop hypotheses, design experiments to test 

them, and appropriately interpret the data (de Jong & van Joolingen, 1998). In 

educational settings, the problems that learners experience with unguided inquiry-

based learning are well documented. A recent meta-analysis of 164 studies found that 

across domains, unguided inquiry-based learning is less effective than explicit 

instruction for acquiring knowledge. However, the advantage is reversed when 

learners receive adequate guidance during inquiry-based learning; they learn more 

than those taught using explicit instruction (Alfieri et al., 2011). Numerous studies in 

educational settings have also found that learners need at least some guidance during 

exploration in order to facilitate the acquisition of complete structural knowledge (de 

Jong & van Jooligen, 1998; de Jong, 2005; 2006; Kirschner, Sweller & Clark, 2006; 

Lazonder & Harmsen, 2016; Mayer, 2004).  

Similarly, in research with CPS tasks, it has been found that most problem 

solvers are unable to acquire a complete or accurate representation of the underlying 

structure of the system through an unguided exploration of the system variables 

(Beckmann, 1994; Beckmann & Guthke, 1995; Burns & Vollmeyer 2002; Funke & 

Müller, 1988; Kluge, 2008; Kröner, 2001; Kröner, Plass & Leutner, 2005; Müller 

1993; Osman, 2008; Schoppek, 2002; Vollmeyer, Burns & Holyoak, 1996). These 

studies also report a consistent positive relationship between the amount of structural 

knowledge that is acquired and the quality of problem solvers’ control performance 

(see Knowledge Hypothesis).  
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It is worth noting that the majority of these studies are correlational and 

therefore do not allow for causal interpretations of the reported association between 

knowledge and control performance. The study of Goode and Beckmann (2010) is 

one of the rather rare examples where an experimental design was adopted to test the 

causal nature of this association. They found that control performance improved 

systematically as the amount of structural information available to participants 

increased, and that at least some structural knowledge was required to perform better 

than simulated random control interventions.  

1.3 The impact of providing structural information on control performance 

In this study we are interested in determining whether supplementing problem 

solvers exploration of a CPS task with structural information results in better control 

performance than an unguided exploration of the system variables.  

A study conducted by Süß (1996, p. 166 - 177) suggested that providing 

structural information benefits structural knowledge, but confers no advantage for 

control performance. This study used a dynamic decision-making task called 

“TAILORSHOP”, which is intended to simulate a small business that produces and 

sells shirts. The system consists of 24 variables inter-connected by 38 relations. The 

values of twenty-one of these variables are represented on the user-interface, and 

three are invisible. Twelve of the variables can be manipulated directly by 

participants, and the goal is to increase the value of the variable “company value” 

(Danner, Hagemann, Holt, Hager, Schankin, Wüstenberg & Funke, 2011). The 

underlying structure is intended to reflect problem solvers’ prior knowledge of similar 

“real world” scenarios (see Beckmann & Goode, 2014 for a discussion of the 

problems associated with this assumption).  

In Süß’s (1996) study, one group of participants explored “TAILORSHOP” 

while another group studied a causal diagram for the same time period, before both 

performing the control task. A control group performed the control task without any 

prior exploration or intervention. Structural knowledge was assessed prior to, and 

after, interacting with the task. The group that studied the causal diagram acquired 

more structural knowledge than the exploration group; there was no difference 

between the exploration and control group. Surprisingly, there was no differences in 
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control performance across the conditions. Thus, the causal diagram appeared to 

benefit structural knowledge but not control performance. However, these results 

should be interpreted with caution, as a strong associative link was found between 

structural knowledge prior to interacting with the task and control performance across 

all conditions. On the one hand, this could be interpreted as an indicator of 

the “ecological validity” of the system. On the other hand, the already substantial 

correlation between prior knowledge and control performance limits the potential 

impact of the interventions (i.e. knowledge acquisition through causal diagram or 

exploration), and introduces a potential source of individual differences among 

participants.  

A number of studies using abstract systems (Putz-Osterloh, 1993; Preußler, 

1996; 1998) also report similar results to Süß (1996). These studies suggest that 

problem solvers require a period of active practice applying structural information 

before they demonstrate an advantage over knowledge acquired through unguided 

exploration (Putz-Osterloh, 1993; Preußler, 1996; 1998). These studies used the CPS 

task “LINAS”, which contains four inputs and seven outputs interconnected by fifteen 

linear relations. The labels given to the system variables did not refer to objects in the 

real world (e.g. “Bulmin”, “Ordal”, “Trimol”) to control for the influence of prior 

knowledge.  In Putz-Osterloh’s (1993) study an experimental group (given a causal 

diagram) and a control group were first instructed to diagnose the underlying structure 

of a system by exploring the system variables. The causal diagram illustrated the input 

and output variables as rectangles linked by arrows to indicate the relationships 

between them; the meaning of the diagram was verbally explained by the 

experimenter. Against expectations, the experimental group performed no better than 

the control group in a subsequent control task. However, in a follow-up study six 

months later, the experimental group had better control performance than the control 

group. Given that the advantage to performance was only evident after participants 

had considerable exposure to the task, Putz-Osterloh (1993) suggested that problem 

solvers might need a period of practice applying their knowledge in order to benefit 

from structural information. However, caution is urged in interpreting these findings 

due to the relatively small sample size (N = 16 – 25 per condition). 
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Putz-Osterloh’s (1993) interpretation of her findings found further support in a 

series of studies conducted by Preußler (1996; 1998). In the first experiment, 

participants in an experimental group were instructed using standardised examples as 

to how each input affected each output; a control group explored the system without 

assistance. No differences in control performance were found. In line with Putz-

Osterloh’s (1993) study, it was argued that the structural information did not provide 

an advantage to control performance because participants did not have a chance to 

practice applying it (Preußler, 1996). Therefore, in a later experiment, Preußler (1998) 

gave an experimental group a causal diagram, and in addition they completed practice 

tasks in which goal values had to be attained by manipulating the input variables. 

Each task was repeated until the problem solver reached the target values. The control 

group had to perform the same practice tasks, although without having the diagram 

available and without having the chance of retries until the correct response was 

found. This time the experimental group had better control performance (Preußler, 

1998). These findings have been interpreted as demonstrating that structural 

knowledge needs to be either actively acquired or practiced in the context of 

application in order to benefit control performance (Preußler, 1996, 1998; Schoppek, 

2004), a notion that resonates with the broader literature on “learning by doing” and 

cognitive skill acquisition (e.g. Anderson, 1993). 

An alternative explanation is that the “guidance” given to participants in these 

studies was not sufficient to immediately promote structural knowledge (Goode & 

Beckmann, 2010). Specifically, Goode and Beckmann (2010) argue that in Putz-

Osterloh’s (1993) study participants may not have understood how the diagram 

related to changing the input and output variables. In order to understand the meaning 

of the diagram, problem solvers may require a direct demonstration of how the inputs 

affect the output. Whilst problem solvers in Preußler’s (1996) study did receive an 

explanation as to how the inputs affect the outputs, they did not receive a structural 

diagram. It is likely that they may have been unable to recall this information during 

the control task. Goode and Beckmann (2010) developed instructional material to 

overcome these limitations, and compared control performance under conditions of 

complete, partial or no structural information. They used a CPS task with three inputs 

and three outputs, interconnected by six linear relations. As in Putz-Osterloh’s (1993) 

and Preußler’s (1996; 1998) studies, the labels given to the system variables did not 
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refer to objects in the real world (e.g. “A”, “B”, “C”).  The instructional material 

included an audio-visual demonstration of how the inputs affect the outputs, and the 

formation of a causal diagram as a result of the interventions shown. This information 

was then available on screen during the subsequent control phase. They found that 

problem solvers who received complete information were significantly better at 

controlling the system than those who received partial or no information. This study 

illustrates that structural information can have an immediate positive impact on the 

quality of control performance, without a period of goal-orientated practice or prior 

exposure to the system. The findings suggest that the effectiveness of providing 

structural information is more a matter of accessibility (i.e., instructional design), 

rather than practice.  

Another factor that appears to influence the application of structural 

information is the complexity of the underlying structure of the CPS task. In a follow-

up study to Goode and Beckmann (2010) using the same methodology, Goode (2011) 

provided participants with either complete, partial or no structural information 

regarding the underlying structure of one of four CPS tasks, which varied in system 

complexity. The complexity of the tasks was manipulated by increasing the number of 

relations that had to be processed in parallel in order to make a decision about a 

particular goal state (i.e., the connectivity of the goal state). The study showed that it 

was more difficult for subjects to understand and utilise information as system 

complexity increased; floor effects on performance were observed when three 

relations had to be considered in parallel to make a decision about a goal state. This 

may also explain why previous studies have found that structural information did not 

benefit control performance (Putz-Osterloh, 1993; Preußler, 1996), as “LINAS” is at 

this level of complexity. Süß’s (1996) study employed a task with many more 

variables and relations. This may have made it more difficult for subjects to 

understand and utilise the information that they were given. 

Nevertheless, the issue of whether the provision of structural information 

results in immediate improvements for control performance after knowledge has 

already been acquired through an unguided exploration remains unresolved. Goode 

and Beckmann’s (2010) and Goode’s (2011) studies did not include a comparison 
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with a group who acquired knowledge through an unguided exploration of the system 

variables.  

The aim of the current study is to determine whether structural information 

can directly benefit control performance. To allow direct comparisons to control 

performance scores from Goode and Beckmann (2010), this study will use the same 

CPS task, intervention and performance goals. In our proposed design, participants 

will first explore a CPS task, and try to independently acquire knowledge about its 

underlying structure.  They will then try to control the system to reach specific goal 

values of the output variables.  Participants in an experimental condition will then 

watch an audio-visual demonstration of how the inputs affect the outputs, and will 

observe the formation of a causal diagram as a result of the interventions shown (as 

per the procedure reported in Goode & Beckmann, 2010 and Goode, 2011). Both the 

experimental and the control group will then control the system again. If structural 

information can be immediately utilised, then problem solvers who receive structural 

information should show an improvement in their control performance, and should be 

better controlling the system than those who have to rely on the knowledge they 

acquired independently (see Information Hypothesis).  

1.4 The role of fluid intelligence in benefiting from structural information  

A second issue addressed by this study is whether benefiting from structural 

information is dependent on the cognitive abilities of the problem solver. Goldman 

(2009) has argued that learner characteristics, such as prior knowledge and cognitive 

ability, determine whether benefits are derived from instructional settings. The CPS 

task employed in the current study uses abstract variable labels and a domain-neutral 

cover story. This aims at minimising confounding effects of individual differences in 

domain-specific knowledge on the results (for a detailed discussion of the argument 

for using abstract systems in complex problem solving research see Beckmann & 

Goode, 2014). Consequently, the guidance information provided (i.e., the 

intervention) is expected to be relatively novel for all participants, so that inter-

individual differences in utilising it can largely be attributed to the cognitive abilities 

of the problem solver.  
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Previous findings show that when explicit information about system structure 

is provided, control performance is consistently moderately to strongly correlated 

with fluid intelligence (Bühner, Kröner & Ziegler, 2008; Goode & Beckmann, 2010; 

Kröner et al., 2005; Putz-Osterloh, 1981; Putz-Osterloh & Lüer, 1981; Wüstenberg et 

al., 2012). Therefore, in the current study it is predicted that under conditions where 

participants receive information, the extent of improvements in control performance 

will be a function of their fluid intelligence as measured via APM. In comparison, the 

extent of improvements in control performance when participants do not receive 

additional information should be due to practice applying their partial representations 

of the underlying structure, and therefore less strongly related to fluid intelligence as 

measured via APM (see Intelligence Hypothesis). 

1.5 Aims and hypotheses 

In summary, the main goal of this paper is to determine whether guidance in 

the form of structural information results in an immediate improvement in controlling 

a CPS task after knowledge has already been acquired through an unguided 

exploration of the system variables. A secondary aim is to examine whether any 

improvements are moderated by fluid intelligence as measured via APM. Firstly, it is 

hypothesised that participants who acquire more knowledge during the exploration 

phase about the underlying structure of the system should show better control 

performance prior to any instructional intervention (Knowledge Hypothesis). 

Secondly, participants who receive structural information should improve their 

control performance more than those who receive no additional information 

(Information Hypothesis). Thirdly, under conditions where participants receive 

information, the magnitude of this improvement will be a function of their fluid 

intelligence as measured via APM (Intelligence Hypothesis). 

2. Method 

2.1 Participants 

 Ninety-eight first year psychology students at the University of Sydney, 

Australia, participated for course credit. Nine participants failed to complete all tasks 

therefore their data were excluded from further analysis.  The available sample size of 

about 100 would guarantee sufficient statistical power (1 – β ≥ .80) in identifying at 
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least medium effects (d = 0.50) at a significance level of α ≤ .05 (one-tailed) in the 

planned analyses. 

2.2 Design 

 Participants were randomly assigned to one of two conditions (45 participants 

in the Information condition, 44 participants in No Information condition). As 

problem solvers were required to control the system on two occasions this resulted in 

a (2) x 2 design. The within-subjects factor was control performance (cycle 1 and 

cycle 2). The between-subjects factor was whether or not they received structural 

information (Information and No Information). The aim of the intervention in the 

information condition was to encourage participants to develop a complete and 

accurate representation of the underlying structure of the system.  The no information 

condition represented a passive control group. Participants were assessed on their 

structural knowledge, control performance for cycle 1, control performance for cycle 

2 and performance in a test of fluid intelligence. Vary-one-thing-at-time (VOTAT) 

strategy use during the exploration phase was also assessed as part of this study; this 

measure is not reported in this paper. Figure 1 displays the procedure of the 

experiment for each condition and indicates which performance measures were 

collected in each phase of the experiment.  
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Figure 1: Diagram for the procedure of the experiment, illustrating the phases of the 

experiment by condition and indicating which performance measures were collected 

in each phase. 

2.3 Description of CPS task 

The CPS task was programmed using Adobe Flash 8 and Captivate 3, and 

administered on PCs (see Goode, 2011 for an extensive description of all of the CPS 

task elements, including step-by-step screenshots of the instructional intervention and 

CPS task, and transcript of the explanation). 

The underlying structure was originally developed by Beckmann (1994; see 

also Beckmann & Goode, 2014; Goode & Beckmann, 2010; Goode, 2011), and is 

based on the approach to complex problem solving that was developed by Funke 

(1992) in his DYNAMIS research project. It consists of three input and three output 

variables that are connected by a set of linear equations: 

Xt+1:= 1.0 * Xt  +  0.8 * At +  0.8 * Bt +  0.0 * Ct  

Yt+1:= 0.8 * Yt +  1.6 * At +  0.0 * Bt +  0.0 * Ct  

Information 
Condition 

No Information 
Condition 

Dependent Variables 

Control Cycle 1 
(7 trials) 

Control Cycle 1 
(7 trials) 

	

Control Performance 

Structural Information 
(instructional video and 

causal diagram) 

Control Cycle 2 with causal 
diagram (7 trials) 

Control Cycle 2 
(7 trials) 

	

Control Performance 

Exploration Phase 
(2 cycles of 7 trials each) 

Exploration Phase 
(2 cycles of 7 trials each) 

	

Structural knowledge 
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Zt+1:= 1.2 * Zt   +  0.0 * At  +  0.0 * Bt - 1.0 * Ct  

Xt,, Yt, and Zt denote the values of the output variables and At,, Bt, and Ct denote the 

values of the input variables during the present trial whilst Xt+1, Yt+1, Zt+1 denote the 

values of the output variables in the subsequent trial.  

Important for the operationalization of knowledge acquisition, the system can 

be considered balanced, i.e., from 12 possible relationships between variables 6 do 

exist and among the three output variables one is subject to a “positive” eigendynamic 

(i.e., an autoregressive dependency that results in a monotone increase), one is subject 

to a negative eigendynamic (i.e., an autoregressive dependency that results in a 

monotonic decrease) and one is subjected to no eigendynamic and all three output 

variables have a double dependency. 

Previous research has found that the presence of a semantically meaningful 

context has an unpredictable, often negative, effect on acquisition of structural 

knowledge (Beckmann, 1994; Beckmann & Goode, 2014; Burns & Vollmeyer, 2002; 

Lazonder, Wilhelm & Hagemans, 2008; Lazonder, Wilhelm & van Lieburg, 2009). 

Therefore, in order to ensure that the system was relatively novel for all participants 

and thus control the potential influence of prior knowledge, the input and output 

variables are labelled with letters. As can be seen in Figure 2, the output variables are 

labelled X, Y and Z, whilst the input variables are labelled A, B, and C. 

The user-interface is in a non-numerical graphical format, in order to 

encourage the formation of mental representations more aligned with the development 

of causal diagrams. In accordance with the principles of cognitive load theory (CLT), 

this should minimise the cognitive activities that are not directly relevant to the task 

(extraneous cognitive load, e.g. Sweller, 1994; for a review see Beckmann, 2010; 

Sweller 2010). Figure 2 shows that the values of the input variables are represented as 

bars of varying heights in the boxes on the input variables, where positive values are 

shown above the input line and negative values are shown below. Each box represents 

the value of the input variable on a single trial, and in total seven trials can be 

conducted before the values are reset (representing a single cycle). Although the 

numerical values of the inputs are not available to participants, the inputs are varied in 

increments of one unit, within the range of -10 to 10. 
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On each trial, participants have to set value of each input variable. This is done 

step by step, such that after they set the value for input A, they then have to set the 

value for input B and finally input C before the “simulate” button could be pushed 

and the resulting values of the output variables are displayed as line graphs below. 

Previous inputs and there subsequent effects remained on the screen (decision history) 

for each cycle of seven trials. There was no time limit.  

During the control phase of the task, the goals are indicated as dotted lines on 

the graphs for the output variables (as show in Figure 2). The target values used for 

control cycle 1 and 2 were of comparable in difficulty, i.e., the Euclidean Distance 

(see operationalization of control performance) between start values and target values 

was the same for both cycles. 

 

Figure 2: Screenshot of the system interface, as presented in the information 

condition after the instructional phase. The goals are indicated as dotted lines on the 

graphs for the output variables. The underlying structure of the system is represented 

on screen as a causal diagram, where the arrows represent the relationships between 

the variables, while the positive and negative signs denote the direction of the 
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relationship, and the letters the relative strength. In this example, for the fifth trial of 

seven all input variables were increased (A half the strength and B and C using the 

maximum); as a result, Output X and Y increased whilst Output Y decreased slightly.   
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2.4 Dependent variables and individual differences measure 

2.4.1 Structural knowledge 

Participants’ structural knowledge was assessed by asking them to create causal 

diagrams of the relationships between the input and output variables at the end of each 

trial during the exploration phase. The diagram that was generated on the final 

exploration trial (after 2 cycles of 7 trials), before the control phase was used to derive 

a structural knowledge score. Using a procedure introduced by Beckmann (1994), the 

operationalisation of the knowledge acquisition performance is based on a threshold 

model for signal detection (Snodgrass & Corwin, 1988). The proportion of correctly 

identified relationships was adjusted for guessing by subtracting the proportion of 

incorrectly identified relationships. The final score has a theoretical range from -.98 to 

.98, where a score below zero indicates inaccurate knowledge, whilst a score above 

zero indicates more accurate knowledge.  

2.4.2 Control performance 

The scoring procedure used was based on Beckmann’s (1994) scoring system. Control 

performance was calculated by determining the Euclidean Distance between the 

vectors of actual and optimal values of the input variables. The ideal values for each 

input variable, i.e, the intervention that would result in the system reaching the goal 

state, were calculated by using the values of the output variables on the previous trial 

and the goal output values to solve the set of linear equations underlying the system. 

As the range of possible input values is restricted for the system used in this study 

(i.e., between -10 and 10), it might not be possible to bring the system into the goal 

state by a single intervention. In cases as these, i.e., when the ideal values fall outside 

this range, the values were adjusted to the nearest possible values, which then 

constituted the optimal values. In cases when the ideal values are within the range of 

possible inputs, the ideal values were used as the optimal input. 

For the system at hand the theoretical range of this score is 0 to 34, where a lower 

score indicated a smaller deviation from optimal control interventions and therefore 

better performance. 

2.4.3 Fluid intelligence 
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The percentage of correct responses on an abridged version of the Raven’s APM 

(Raven, Raven & Court, 1998) was used as an indicator of fluid intelligence. This 

version of the APM included 20 items from the original 36-item test, created using the 

odd numbered items plus 2 additional even numbered ones from the most complex 

items (i.e. items 34 and 36).  

2.5 Procedure 

 The CPS task and the APM were presented to participants on PCs, over two 

separate sessions. The CPS task for each condition was installed on alternate 

computers at the study venue. On arrival at the first session, participants chose a 

computer, which determined their condition.  

The CPS task began with a set of instructions that explained the user-interface, 

how to change the values of the input variables and how to record and alter the causal 

diagram. At the end of the instructions, participants were informed that the task 

consists of two phases. Firstly, they had to explore the system to discover the 

underlying structure of the system and then control the system to reach certain values 

of the output variables. The goal values were not revealed until the beginning of each 

control cycle. 

 The exploration phase then began, in which participants were prompted to 

explore the system for two cycles of 7 trials each by changing any of the input 

variables and observing the effect on the output variables displayed in the graphs.  At 

the end of each trial, participants had to record what they had learned about the 

system using the causal diagram construction feature that was displayed on the screen.  

The causal diagram could be altered using a set of twelve buttons (one for 

each possible relationship in the system) at the bottom of the screen. Each button 

referred to a particular relationship in the system. Using these buttons, participants 

could record if they thought there was a relationship between two variables or not, or 

if they thought the output variables changed independently (or not). They could also 

specify the direction of the effect, and its perceived strength.   

After the exploration phase, participants then had to control the system by 

manipulating the inputs to reach set values of the outputs for seven trials, which were 

indicated as dotted lines on the output graphs (Control Cycle 1). The causal diagrams 
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they had constructed during the exploration phase remained on screen, providing 

access to the structural information they had individually extracted.  

In the information condition participants then watched an instructional video 

that explained the actual underlying structure of the system. The instructions were 

designed in accordance with the principles of CLT, and the aim was to reduce the 

amount of cognitive activities that problem solvers would have to undertake to 

translate the information provided into knowledge about the system (minimising 

extraneous cognitive load). In particular, previous research has shown that learning is 

facilitated when explanations of graphical information is presented aurally, rather than 

as text (modality effect, Tabbers, Martens & van Merriënboer, 2004). Therefore, the 

instructions consisted of a recording of seven intervention trials with an 

accompanying audio narration, which explained the actual underlying structure of the 

system. After each trial, the narrator explained how each of the outputs had changed, 

and how this reflected the underlying structure of the system. The respective causal 

diagram was constructed on screen in parallel, to record this information. Participants 

in the no information condition did not receive any additional information during this 

phase; representing a passive control group.  

All participants then had to control the system again for seven trials, with 

different goals indicated on the output variables (Control Cycle 2). In the information 

condition the causal diagram displayed onscreen was the correct and complete one. In 

the no information condition, the causal diagram that participants had constructed in 

the initial exploration cycles was displayed onscreen. 

In a subsequent session, approximately one week later, participants completed 

the APM. 

2.6 Data Analysis 

 To test our main hypotheses we conducted a series of hierarchical linear 

modelling analyses using the HLM software package (Raudenbush, Bryk, Cheong, & 

Congdon, 2000). This approach allows us to model individuals’ change in 

performance from control cycle 1 to control cycle 2 as function of person-level 

variables (see Raudenbush & Bryk, 2002). We used a two level model in which 

performance in control cycle 1 and control cycle 2 (level 1) were clustered within 
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individuals (level 2). The specific analyses that we performed to test each hypothesis 

are discussed in the results section. 

3. Results 

The following sections first present preliminary analyses undertaken to test 

whether the random assignment to condition was effective, and justify our treatment 

of the variables in the following analyses. The findings in relation to the three 

hypotheses are then presented.  

Intercorrelations (Pearson) between the variables used in this study as well as 

descriptive statistics and distributions are presented in Table 1. The distributions of 

the variables indicate that assumptions of normality were met. 
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Table 1: Descriptive statistics, distributions and inter-correlations (Pearson) between the variables for each condition. 

  M 
(SD) 

Min Max. Kurtosis 
(SE) 

Skewness 
(SE) 

2 3 4 

No 
Information 
Condition 

1. 
Structural 
Knowledge 

.21 
(.33) 

-.49 .98 -.40 
(.70) 

.38 (.36) -
.38* 

-
.51** 

.45** 

N = 44 2. Cycle 1 13.88 
(4.20) 

4.52 20.77 -.54 
(.70) 

-.58 (.36) … .56** -.24 

 3. Cycle 2 13.21 
(5.28) 

2.50 25.01 -.58 
(.70) 

-.31 (.36) … … -.18 

 4. APM 63.75 
(16.32) 

30 95 -.23 
(.70) 

-.07 (.36) … … … 

Information 
Condition 

1. 
Structural 
Knowledge 

.22 
(.35) 

-.33 .98 -.47 
(.69) 

.29 (.35) -
.31* 

-.36* .26 

N = 45 2. Cycle 1 13.92 
(4.14) 

2.82 24.09 .75 
(.69) 

-.49 (.35) … .27 -.11 

 3. Cycle 2 10.24 
(5.29) 

2.10 22.33 -1.03 
(.70) 

.35 (.35) … … -
.52** 

 4. APM 58.00 
(17.75) 

30 95 -.85 
(.69) 

.06 (.35) … … … 

Notes. *p < .05, **p < .01  
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3.1 Equivalence between the conditions prior to the intervention 

To examine the effect of the intervention and fluid intelligence on control 

performance, firstly, it was necessary to check whether the conditions differed prior to 

the intervention. The amount of structural knowledge acquired by participants during 

the exploration phase did not differ by condition; t(87) = -.09, p = .93, d = 0.02, nor 

did their control performance scores in cycle 1; t(87) = -.05, p = .96, d = 0.01, or 

scores on the APM; t(87) = 1.59, p = .12, d = 0.34. This suggests that the procedure 

used to randomly allocate participants to the conditions was effective. 

3.2 Structural knowledge acquired during the exploration phase 

For both conditions, the amount of structural knowledge that was acquired 

during the exploration phase was significantly greater than zero; M = .22, SD = .34, 

t(88) = 6.00, p < .01. This indicates that on average, participants had acquired some 

knowledge of the underlying structure of the system prior to the first control cycle. 

However, the range of structural knowledge scores, -.49 to .98, indicates that 

participants differed widely in the amount of knowledge that they were able to acquire 

about the underlying structure of the system during the initial exploration phase. That 

is, while some participants were able to acquire complete knowledge of the 

underlying structure of the system (one participant in the no information condition, 

and two participants in the information condition), others acquired a rather incorrect 

representation of the underlying structure. This also suggests that for the majority of 

problem solvers the provision of structural information could potentially represent a 

significant source of new information about the underlying structure of the system.  

3.3 Internal consistencies  

Internal consistency analyses were conducted to determine the variability in 

control performance scores across the trials and for different goal states as an estimate 

of the reliability of the dependent variables. Internal consistency was good across the 

first control cycle (ω = .85, 95% CI [.79, .89]) and the second control cycle (ω =.93, 

95% CI [.89, .95]) (Dunn, Baguley, & Brunsden, 2013). This indicates that problem 

solvers are rather consistent in their performance and it justifies averaging the scores 

across each control cycle.  
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A further analysis indicated that the reliability of the APM scores was 

acceptable across the 20 items (ω = .76, 95% CI [.59, .83]) (Dunn et al., 2013).  

3.4 Knowledge Hypothesis 

In support of the knowledge hypothesis, across the conditions, there was a 

significant moderate negative relationship between structural knowledge scores and 

control performance in cycle 1 (r = -.34, p < .01). This indicates that participants who 

acquired more knowledge about the underlying structure of the task produced smaller 

deviations from the set of optimal control interventions, and were therefore better at 

controlling the system (i.e., reaching and maintain the goal values). This advantage 

persisted in cycle 2 even when participants received additional instructions with 

regard to the underlying structure of the system (rinformation = -.36, p < .01, rno information = -

.51, p < .01).  

3.5 Information and Intelligence Hypotheses 

 In order to determine whether the provision of structural information facilitates 

control performance (Information Hypothesis) and whether the extraction of 

knowledge from information in this context is determined by fluid intelligence 

(Intelligence Hypothesis) we conducted a series of two-level HLM analyses. Firstly, a 

random coefficient regression analysis was conducted to assess whether control 

performance changed across the two control cycles. At level 1, each participant’s 

performance was represented by an intercept term, which denoted their mean 

performance across control cycle 1 and control cycle 2, and a slope, that represented 

their change in performance from control cycle 1 to 2. Control cycle (1 or 2, effect 

coded as -.5 and .5, respectively) was entered as an independent variable at this level. 

The mean control performance scores and the change in control performance then 

became the outcome variables in a level-2 model, in which they were modelled as 

random effects. The results of this analysis are presented in the top section of Table 2. 

This analysis indicated that the mean control performance score was 12.81 across 

control cycle 1 and 2 and on average, control performance scores improved by 2.19 

points from control cycle 1 to 2. The change in control performance was significantly 

different from zero; t(88) = -3.86, p < .001. There was significant differences between 

problem solvers in terms of their mean control performance scores and the change in 
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their control performance; χ2 = 2867895259.6, df = 88, p < .001 and χ2 = 

1274245149.4, df = 88, p < .001, respectively. Variability in problem solvers’ change 

in control performance from control cycle 1 to 2 accounted for 64% of the total 

variability in control performance scores. These findings are an important prerequisite 

for the subsequent analyses, as they indicate that individuals show substantial 

variability in their mean control performance and the extent to which their control 

performance changed across the two cycles. 

We conducted an intercept- and slope-as-outcomes regression analysis in 

which mean control performance and the change in control performance from control 

cycle 1 to 2 were modelled as a function of condition (as an effect coded variable 

indicating condition: -.5 = no information, .5 = information) and scores on the APM at 

level 2. The level 1 model was the same as in the random coefficients regression 

analysis. The results of this analysis are presented in the middle panel of Table 2.  

With regard to the Information Hypothesis, this analysis indicated that 

information had a significant impact on average control performance scores, and the 

change in control performance from control cycle 1 to 2, controlling for the effects of 

fluid intelligence; t(86) = -2.32, p < .05, ∆R2 = 5% and t(86) = -3.19, p < .01, ∆R2 = 

9%, respectively. Participants in the information condition had an average control 

performance score 1.91 points better than those in the no information condition. 

Similarly, the change in control performance for participants in the information 

condition was 3.42 points better than those in the no information condition. In support 

of the Information Hypothesis, these results indicate that participants who received 

additional information with regard to the underlying structure of the system 

performed better on average, and improved at a greater rate from control cycle 1 to 

control cycle 2 than those who did not receive information. 

With regard to the Intelligence Hypothesis, the analysis also indicated that 

APM scores were significantly linked to control performance scores as well as to their 

change from control cycle 1 to 2, controlling for the effects of condition; t(86) = -

3.21, p < .01, ∆R2 = 7%  and t(86) = -2.17, p < .05, ∆R2 = 2%, respectively. On 

average, a one-point increase in scores on the APM was associated with a 0.08 better 

score on average control performance, and a 0.07 better score on the change in 

performance scores from control cycle 1 to 2. These results indicate that on average, 
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participants with a higher APM scores, tended to perform better overall, and improved 

more from control cycle 1 to 2. 

 In order to determine whether the effect of fluid intelligence on control 

performance differed by condition a third analysis was conducted in which an 

interaction term (APM x Condition) was added to the main effects of the variables at 

level 2. The results are presented in the bottom panel of Table 2. There was no 

evidence that fluid intelligence (as measured via APM scores) has an effect on mean 

control performance scores varied by condition, as the interaction term was small and 

insignificant; t(85) = -.68, p = .50, ∆R2 = 0%. However, the effect of fluid intelligence 

on the change in performance from control cycle 1 to control cycle 2 did vary 

significantly by condition; t(85) = -2.48, p < .05, ∆R2 = 3%. In further support of the 

Intelligence Hypothesis, this suggests that the change in performance scores for 

participants who received information was more strongly related to fluid intelligence 

than for participants who did not receive information.   
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Table 2: Results of the Random Coefficients Regression (RCR) Analysis and the 
Intercept- and Slope-As-Outcome Regression (ISAOR) Analyses 

Variable Parameter Estimate SE t ∆R2 

RCR Analysis 

Mean control performance (β00) 12.81 0.43 30.10**  

Mean change in control performance (β10) -2.19 0.57 -3.86**  

ISAOR Analysis 1 

Intercept-as-outcome     

Condition (β01) -1.91 0.82 -2.32* 5% 

APM (β02) -0.08 0.02 -3.21** 7% 

Slope-as-outcome     

Condition (β11) -3.42 1.07 -3.19** 9% 

APM (β12) -.07 0.03 -2.17* 2% 

ISAOR Analysis 2 

Intercept-as-outcome     

Condition (β01) -1.89 .82 -2.33* 5% 

APM (β02) 
-0.08 .02 -3.32** 7% 

Condition x APM (β03) 
-0.03 .04 -0.68 0% 

Slope-as-outcome     

Condition (β11) -3.38 1.03 -3.29** 9% 

APM (β12) -0.06 .03 -2.37* 2% 

Condition x APM (β13) -0.13 0.05 -2.48* 3% 

Notes. *p < .05; **p < .01 

Level 1 model (for all analyses):  

Yti = π0i + πli(Control Cycle),  

where Yti is person i’s control performance score at time t, π0i is their mean control performance 
score and πli is their change in control performance from control cycle 1 to control cycle 2. 

Level 2 model for RCR Analysis:  

π0i  = β00 + r0i  

and  

πli = β10 + rli 

Level 2 model for ISAOR Analysis 1:  
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π0i  = β00 + β01(Condition) + β02(APM) + r0i  

and 

 πli = β10 + β11(Condition) + β12(APM) + rli 

Level 2 model for ISAOR Analysis 2:  

π0i  = β00 + β01(Condition) + β02(APM) + β03(Condition x APM) + r0i  

and  

πli = β10 + β11(Condition) + β12(APM) + β13(Condition x APM) + rli 

Note: When intercepts are outcomes, ∆R2 is expressed as a percentage of the variability in mean 
control performance scores.  When slopes are outcomes, ∆R2 is expressed as a percentage of the 
variability in the change in control performance.  

4. Discussion 

This study examined whether: (1) providing guidance in the form of structural 

information results in an immediate improvement in controlling a CPS task after 

knowledge has already been acquired through an unguided exploration of the system 

variables; and (2) any improvements are moderated by fluid intelligence as measured 

via APM. In summary, support was found for the Knowledge Hypothesis, as 

participants who acquired more structural knowledge during the exploration phase 

had better control performance in control cycle 1. Support was also found for the 

Information Hypothesis, as participants who received structural information improved 

their control performance more than those who received no information. Finally, 

support was found for the Intelligence Hypothesis, as when participants received 

information, their change in control performance scores from control cycle 1 to 2 was 

more strongly related to APM performance scores than the change in control 

performance scores in participants who did not receive structural information. These 

results suggest that guidance in the form of structural information does confer an 

additional advantage in controlling a complex system over independently acquired 

knowledge, and that problem solvers can translate such information into effective 

control actions without practice. However, the extent to which problem solvers can 

benefit from such information appears to be moderated by their fluid intelligence as 

measured via APM.   

As in previous studies, it was found that the amount of structural knowledge 

acquired by participant is strongly related to the quality of participants’ control 

performance. In addition, in line with other studies, few participants were able to 
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acquire complete knowledge of the underlying structure of the system during the 

exploration phase (Beckmann, 1994; Beckmann & Guthke, 1995; Burns & Vollmeyer 

2002; Funke & Müller, 1988, Müller 1993; Kröner, 2001; Kröner et al., 2005; Kluge, 

2008; Osman, 2008; Schoppek, 2002; Vollmeyer, et al., 1996). These findings 

provide further evidence that learners require additional support or guidance to 

acquire complete and accurate knowledge about complex and dynamic systems; they 

are unlikely to do so through unguided discovery learning. 

This study also found that guidance in form of providing structural 

information resulted in an immediate improvement in control performance. In contrast 

to previous studies (Preußler, 1998; Putz-Osterloh, 1993; Süß, 1996), these findings 

suggest that a period of active practice is not required to translate knowledge into 

effective control actions. One caveat to this conclusion is, however, that the task used 

in other studies could be considered more complex than the task used in the current 

study. Further studies are required to determine whether the findings observed in this 

study generalise to more complex tasks.  

Nevertheless, the results support and extend upon the findings of Goode and 

Beckmann (2010) in important ways. As in Goode and Beckmann’s (2010) study, the 

results of the present study show that if problem solvers receive a direct 

demonstration as to how each input affects each output, and have access to this 

information in form of a causal diagram during control performance, then they will be 

able to immediately translate this information into the appropriate actions for 

controlling the system.  This provides further support for the claim that supporting 

information should be available throughout the task (Berry & Broadbent, 1987; 

Gardener & Berry, 1995; Leutner, 1993).  

Indeed, comparing the findings from the current study with Goode and 

Beckmann’s (2010) study, which employed the same CPS task, instructional method 

and participants drawn from the same university student population, suggests that an 

unguided, albeit “active” exploration of the system variables provides no advantage 

for control performance whatsoever. In Goode and Beckmann’s (2010) study, 

participants received structural information and then were required to immediately 

control the system variables; mean control performance scores were 10.33 (SD = 

5.25) in the comparable control cycle. In the current study, mean control performance 
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scores were 10.24 (SD = 5.29). This suggests that the actively acquired knowledge 

and practice controlling the system variables resulted in no net advantage for control 

performance over simply providing structural information. The finding that 

participants in the no information condition showed little improvement across the 

control cycles further reinforces this claim. This suggests that practice at controlling 

the system does not have a significant impact upon the quality of problem solvers’ 

control performance, especially if the control goals change.  

Indeed, under both conditions the high level of internal consistency in control 

performance scores further suggests that problem solvers do not dramatically change 

their control behaviours through practice. Subsequently, improvements in control 

performance with practice are rather limited. In other words, these results seem to 

suggest that no spontaneous optimisation of control behaviour (i.e. learning by doing) 

takes place. The question, however, of whether longer periods of active practice after 

exposure to guiding information, would lead to further improvements, could be of 

interest in future studies. 

These findings are consistent with recent findings regarding CPS training. 

Kretzschmar and Süß (2015) trained participants using five different computer-based 

complex dynamic systems, and their performance was tested in a sixth system. 

Interacting with each system involved a goal-free exploration phase and a control 

phase. They found that trained participants were able to acquire more knowledge 

about the final system than an untrained control group. However, there was no 

difference in control performance. In line with the findings from our study, this 

suggests that for each control intervention, the problem solver must apply their 

knowledge to generate the correct action for that specific situation.  

With regard to the relationship between fluid intelligence and control 

performance, it should first be acknowledged that the generalisability of the results 

from this study may be limited by the narrow operationalisation of fluid intelligence 

via APM. Whilst the APM has been traditionally seen as the empirical reference point 

of fluid intelligence, more recent discussions (e.g., Gignac, 2015) are critical of 

studies that rely on this single test score. This on-going debate should be kept in mind 

while reading the following interpretation of the findings. 
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The results of this study are in line with previous studies that have shown that 

when structural information is provided, control performance is moderately to 

strongly correlated with fluid intelligence (Bühner, Kröner & Ziegler, 2008; Goode & 

Beckmann, 2010; Körner, Plass & Leutner, 2005; Putz-Osterloh, 1981; Putz-Osterloh 

& Lüer, 1981; Wüstenberg et al., 2012). This suggests that more intellectually capable 

problem solvers are able to make use of structural information more effectively than 

individuals who are less so. This study extends on these previous findings, as it was 

also found that fluid intelligence as measured via APM had an impact on the 

acquisition of structural knowledge during the exploration phase, and subsequently in 

controlling the system when only incomplete knowledge was available. These results 

suggest that intellectually more capable problem solvers are at a double advantage in 

comparison to those who score lower on fluid intelligence with regard to acquiring 

and utilising structural knowledge: they are able to acquire more knowledge without 

assistance, and they also benefit more from guidance. This implies a necessity to 

tailor instructions to problem solvers’ intellectual capacity, an aspect often neglected 

in educational contexts. In other words, and as frequently advanced by Snow (1986; 

1989; Snow & Lohman, 1989; Snow & Yallow, 1982), individual differences among 

learners still “… present a pervasive and profound problem to educators” (Snow, 

1989, p. 1029).  

The results with regard to the role of fluid intelligence also provide support for 

the claim that in previous studies (Preußler, 1996; Putz-Osterloh & Lüer, 1981; Putz-

Osterloh, 1993), the effect of structural information on control performance may have 

been masked by individual differences in the ability to understand and utilise the 

information. In addition, Preußler’s (1998) finding that all of her participants were 

able to effectively utilise information after a period of active practice, may now be 

interpreted in a different light. It may be that practice per se is not the essential 

component, but rather that some problem solvers require more extensive guidance in 

order to be able to make sense of the information that is provided. 

Overall, our results imply that guidance in the form of structural information 

has the potential to provide benefits over and above the effects of discovery learning. 

The crucial aspect of guidance, however, is that it is well designed. These findings are 

in line with those from other domains that show that learners experience many 
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difficulties when they are required to independently acquire knowledge without 

guidance (de Jong & van Joolingen, 1998; Mayer, 2004; de Jong, 2005; 2006; 

Kirschner et al., 2006).  
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