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1 Introduction

In any quantum system we can arbitrarily partition the total Hilbert space H into two

subspaces H1 and H2. For a given configuration we can ask to what extent states in H1

are entangled with states in H2, or how strongly observables computed in H1 are correlated

with observables in H2. This is an interesting question that can reveal useful information

about the state of the system and its dynamical properties.
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In a well studied example we take a system defined in p spatial dimensions and separate

the degrees of freedom inside a spatial region A from the degrees of freedom in the com-

plement Ac. A natural measure of the entanglement of the two sets of degrees of freedom

(in Hilbert spaces HA and HAc) is the entanglement entropy defined as the von-Neumann

entropy of the reduced density matrix ρA

S = −TrHA [ρA log ρA] . (1.1)

ρA is obtained by tracing the total density matrix ρ over the states of the outside Hilbert

space HAc
ρA = TrHAcρ . (1.2)

S is an interesting quantity that has played a central role in many recent developments.

For example, when applied to (p + 1)-dimensional relativistic conformal field theories its

dependence on the characteristic size of the region A holds information about basic con-

stants of the theory, e.g. the central charge c in (1 + 1) dimensions [1] (see e.g. [2] for a

review), or the F -function in (2 + 1) dimensions [3] etc.

Another possibility is to partition the system in field theory space, namely split the

degrees of freedom at each point of spacetime into two subsets. This type of partitioning

arises naturally, for example, when we have two distinct quantum systems with Hamilto-

nians H1 and H2 interacting weakly via an interaction Hamiltonian Hint, but it can also

be considered more generally without reference to a specific type of dynamics.

The first question we want to ask in this paper is the following. Given an arbitrary split

of the degrees of freedom of a quantum system, e.g. a quantum field theory, in spacetime

and/or in field theory space, can we define a meaningful measure of the entanglement

or strength of correlation between the subsystems. Several well known measures from

quantum information theory that quantify the notion of separability, e.g. measures based

on the relative quantum entropy, turn out to be very well suited for this purpose. We will

review the relevant concepts, and give specific definitions, in section 2.

The second question we want to raise concerns the behavior of such measures under

deformations of the theory, or under the dynamical change of the parameters of the system

under the renormalization group (RG) flow.

For example, there are many cases where by tuning the parameters of a theory, or by

looking at the system at different energies, the interaction coupling in Hint between two

subsystems becomes weak or even turns off. In the latter case the subsystem Hamiltonians

H1 and H2 decouple completely. Any observable computed in this product theory (e.g. an

arbitrary correlation function) factorizes in a (sum of) products of observables of theory

1 and theory 2. It is useful to introduce a connectivity index 1 that quantifies how many

independent parts a quantum system possesses. Along the lines of factorizability, one might

define the connectivity index to be n, if the arbitrary correlation function factorizes in a

1An analogous concept was considered previously in [4]. In that work a rough definition of the con-

nectivity index was presented in terms of the independent gauge groups of a gauge theory (see also [5] for

very closely related work). Here we try to define the connectivity index in a more general (not necessarily

equivalent) manner.
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(sum of) products of correlation functions of n independent subsystems. Employing the

concept of separability from quantum information theory, one could alternatively define

the connectivity index as the number of separable components of the density matrix of the

system (for a definition of separable density matrices see section 2). Yet another natural

definition is the following. Notice that a theory with n decoupled components will have in

general n independently conserved energy-momentum tensors. This suggests defining the

connectivity index as the number of conserved energy-momentum tensors. In the examples

that we consider the above definitions appear to be equivalent, but we do not have a clean

proof. Their relation is discussed further in section 8.

With any of the above definitions the connectivity index can decrease when Hint turns

on, or increase when Hint turns off. The measures of entanglement mentioned above will

behave accordingly. It is possible, however, to encounter more subtle situations where

many of the effects mediated by Hint are suppressed until a finite value of the interaction

coupling. We will argue that RG flows in the Coulomb branch of large-N superconformal

field theories (SCFTs) provide interesting examples of this type.

For definiteness, let us consider the Coulomb branch of the four-dimensional SU(N)

N = 4 super-Yang-Mills (SYM) theory. In the ultraviolet (UV) we have an SU(N) gauge

theory with the apparent connectivity index 1. Turning on the vacuum expectation values

of the adjoint scalars we move away from the origin of the Coulomb branch, the gauge group

is Higgsed, say to SU(N1) × SU(N2) × U(1), and there is an RG flow to the infrared (IR)

where an SU(N1) gauge theory decouples from an SU(N2) gauge theory. In the far IR the

connectivity index counts 2 decoupled components with order N2 degrees of freedom and

another component associated with the decoupled degrees of freedom of the U(1) part of

the theory. At low energies the leading order direct interaction between the two SU(Ni) IR

CFTs is mediated by an irrelevant double-trace dimension 8 operator [6, 7] (see section 4.3

for specific expressions). Being irrelevant this operator turns off at the extreme IR. As we

explain in section 3 the U(1) part also mediates interactions and plays an interesting role

in the low energy dynamics.

The interest in the large-N limit stems from the following observation. If we could

isolate the dynamics of the SU(Ni) IR CFTs from the dynamics of the U(1) part, we would

be able to argue at leading order in the 1/N expansion that the multi-trace operators

that mediate interaction between the two IR CFTs do not contribute to the anomalous

dimension of any combination of their energy-momentum tensors and despite the defor-

mation both energy-momentum tensors remain independently conserved. That would be

evidence that the system remains in a separable state in a vicinity of the IR fixed point

at leading order in 1/N . In the actual RG flow, however, one cannot isolate the dynamics

of the U(1) part. Since the latter mediates interactions that allow energy to flow from the

SU(N1) to the SU(N2) IR CFTs the system is expected to be in a non-separable state with

connectivity index 1 infinitesimally away from the extreme IR. It is interesting to find a

quantitative measure that expresses how strongly the IR separability is broken by such

(U(1)-mediated) interactions and to explore how one connects this type of infrared physics

to the UV physics of a strongly non-separable Higgsed gauge theory in the UV.

One observable that we consider in the main text, in order to examine these questions,

is the entanglement entropy (1.1) for a spherical geometry A with radius `. As ` changes
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from 0 to +∞ we probe physics from the UV to the IR. In the large-N limit we can

evaluate the entanglement entropy with the generalized Ryu-Takayanagi prescription [8–

10] by determining a minimal co-dimension-2 hypersurface in the multi-throat geometry

of separated stacks of branes. We perform this analysis quite generally for the 4d N = 4

SYM theory on D3 branes, the 3d ABJM theory on M2 branes and for the 2d CFT on

D1-D5 branes. In all cases we find that the Ryu-Takayanagi minimal hypersurface exhibits

a separatrix at a radius `c where it shows signs of critical behavior. This is evidence of an

interesting sharp feature that occurs in the middle of the RG flow.

In section 2 we define other measures of entanglement based on the concept of relative

quantum entropy. Currently, we do not know how to compute these measures holograph-

ically from gravity in the large-N limit, but we discuss possible behaviors in sections 8

and 9. Eventually, one would like to determine how these measures capture the quantum

field theory dynamics that is summarized in section 3.

The main computational results of the paper are presented in sections 4–7. Section 5

contains a description of the qualitative features of the Ryu-Takayanagi surface in multi-

centered geometries. The reader can consult this section for a quick overview of the results

that arise by studying the holographic entanglement entropy in this context. Concrete

quantitative results based on the analysis of the equations of the Ryu-Takayanagi minimal

surface are presented in sections 6, 7. For instance, in section 6 we notice that the UV

expansion of the holographic entanglement entropy does not receive contributions from the

lowest order harmonics. This is a gravity prediction for a corresponding statement about

entanglement entropy in the large-N superconformal field theories that we consider.

Interesting aspects of our story and other open issues are summarized and further

discussed in the concluding section 9. Useful technical details are relegated to appendix A.

2 Separability, relative quantum entropy and other useful concepts

Assume that we have a (p + 1)-dimensional quantum system with Hilbert space H and

we partition H both in spacetime and field theory space. In spacetime we separate states

supported inside a spatial region A from states in the complement Ac. In field theory

space, we separate (at each point of spacetime) degrees of freedom of a subsystem 1 from

degrees of freedom of a subsystem 2. Then, the reduced density matrix ρA (1.2) is a matrix

that lives in the product Hilbert space HA,1 ⊗HA,2. We are interested in a measure that

quantifies the entanglement of the states of the two subsystems 1 and 2. We will focus on

the properties of the density matrix ρA keeping the additional dependence on the size of

the region A as a useful way to keep track of the entanglement across different length (or

energy) scales.

A standard definition in quantum information theory (see [11] for a review) postulates

that the state represented by ρA is separable if it can be written as a sum of product states

in the form

ρA =
∑
k

pk ρ
(k)
A,1 ⊗ ρ

(k)
A,2 , (2.1)

– 4 –
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with pk ≥ 0,
∑

k pk = 1. If not, ρA is called entangled. In the special case with a single

propability coefficient pk non-zero, i.e. when

ρA = ρA,1 ⊗ ρA,2 (2.2)

the state is called simply separable. This is the case mentioned in the introduction where

no correlations between subsystems 1 and 2 exist.

Testing for separability is in general a very hard problem. However, it is possible to

formulate a measure that quantifies how far from separability a quantum system is by using

the concept of relative quantum entropy. For any two density matrices ρ, σ the relative

quantum entropy of ρ with respect to σ is defined as

S(ρ ||σ) = Tr [ρ log ρ]− Tr [ρ log σ] . (2.3)

One can prove the Klein inequality (see e.g. [11]), which states that S(ρ ||σ) is a positive-

definite quantity that vanishes only when ρ = σ, i.e. when the states ρ and σ are indistin-

guishable. On the other extreme, the relative quantum entropy S(ρ ||σ) is infinite when

the two states are perfectly distinguishable. This fact played a useful role in the recent

work [12].

One can use the relative quantum entropy to define a measure of how far a system is

from separability. The usual approach defines the following quantity

DREE(ρ) = min
σ= separable

S(ρ ||σ) , (2.4)

which is called relative entropy of entanglement. The minimum is obtained by sampling

over the whole space of separable states. DREE(ρ) is zero if and only if ρ is a separable

state.

Since we are interested in simply separable states we can modify this definition in an

obvious way by taking the minimum over the simply separable states. In what follows,

however, we consider instead a related quantity that we define as follows. Concentrating

on the specific context of our density matrix ρA, and a partitioning into two complementary

subsystems 1 and 2, we consider the relative quantum entropy

S12(ρA) ≡ S (ρA || ρA,1 ⊗ ρA,2) (2.5)

where ρA,1 ⊗ ρA,2 is defined as the tensor product of the reduced density matrices

ρA,1 = TrHA,2 [ρA] , ρA,2 = TrHA,1 [ρA] . (2.6)

This quantity vanishes if and only if our system is completely decoupled into the two

subsystems 1 and 2. In fact, one can show that the definition (2.5) is simply the quantum

mutual information

S12(ρA) = S(ρA,1) + S(ρA,2)− S(ρA) (2.7)

where S(ρ) is the standard entanglement entropy (1.1) and S(ρA,1), S(ρA,2) are ‘inter-

system’ entanglement entropies. A version of the latter with Ac =Ø was studied recently

in the context of holography in [13].
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As a concept, separability is very well adapted to describe properties related to the

connectivity index and its behavior under changes of the system, e.g. under renormalization

group flows that lead to Hilbert space fragmentation. We will soon examine these properties

in a specific context of large-N quantum field theories.

3 Hilbert space fragmentation in quantum field theory

There are several common mechanisms in quantum field theory that change the connectivity

index. For example, in strongly coupled gauge theories an operator will frequently hit

the unitarity bound and decouple from the remaining degrees of freedom as a free field.2

Another common example, involves gauge theories whose gauge group G is Higgsed. In the

IR one obtains a product gauge group G1 × G2 × · · ·Gn. In both cases the Hilbert space

fragments and the connectivity index (as defined in the introduction) increases. It should

be noted that there are also situations where the connectivity index may decrease under

RG running. This occurs naturally in RG flows where a mass gap develops in the IR, e.g.

a massive degree of freedom is removed from the spectrum in the far IR or a gauge group

confines.

In this paper we will examine closely the case of gauge group Higgsing in the Coulomb

branch of large-N superconformal field theories. A concrete example of the general setup

has the following ingredients. The UV conformal field theory CFTUV is a gauge theory with

gauge group SU(N). It flows by Higgsing to an IR conformal field theory which is a product

of decoupled theories, e.g. CFTIR = CFT1×CFT2×CFT3. CFT1 is a gauge theory with

gauge group SU(N1), and CFT2 is a gauge theory with gauge group SU(N2) (N = N1+N2).

CFT3 denotes collectively a U(1) gauge theory with a set of free decoupled massless fields.

The massless scalar fields in this set express the moduli whose vacuum expectation value

Higgses the UV gauge theory and sets the vacuum state.

It is interesting to consider the low-energy effective description of this theory. At

small energies above the extreme IR the direct product theory is deformed by irrelevant

interactions of three different types∫
dp+1x

(
g1V1 + g2V2 + . . .+ h12O1O2 + . . .+ L(ϕ,Φ1,Φ2)

)
. (3.1)

The first type includes the operators V1 and V2, which are single-trace operators in CFT1

and CFT2 respectively (with irrelevant couplings g1, g2 of order N). The second type

involves a double-trace operator of the form O1O2, where O1 and O2 are single-trace

in CFT1 and CFT2.3 The third type, L(ϕ,Φ1,Φ2), is an interaction between the fields of

CFT3 (collectively denoted here as ϕ) and gauge-invariant composite operators (single-trace

or multi-trace) of CFT1 and CFT2 (denoted as Φ1 and Φ2 respectively). For example, L can

include interactions of the form ϕV1 and ϕV2 in which case the single-trace couplings g1, g2

2There are many well known examples of this type of decoupling. For instance, a class of three-

dimensional superconformal field theories with a rich pattern of such features at strong coupling was studied

in [14].
3The double-trace coupling h12 is O(N0). The overall Lagrangian is normalized so that all terms are

O(N2).
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become dynamical. The dots in (3.1) indicate interactions of higher scaling dimension, i.e.

more irrelevant operators, that become increasingly important as we increase the energy.

Explicit examples of such operators and the corresponding irrelevant interactions will

be provided in the next section 4.3 for N = 4 SYM theory.

So far our discussion is valid at any N . We notice that the non-abelian IR CFTs, CFT1

and CFT2, communicate directly only by multi-trace operators, as dictated by gauge invari-

ance (a point emphasized in [15]), and indirectly via the interaction with abelian degrees of

freedom of CFT3. At finite N both types of interactions contribute to the precise manner

in which the system passes from a non-separable UV state to an extreme IR separable

state. However, in the large-N limit4 many of the effects of the multi-trace operators are

subleading in the 1/N -expansion. In particular, we provide evidence in section 8, that the

effects of multi-trace operators that break the IR separability are suppressed at leading

order in 1/N and the leading effects come from the communication mediated by the U(1)

degrees of freedom. As we move up in energy the irrelevant interactions become stronger

and the IR effective expansion in (3.1) eventually resums. At some characteristic energy

scale —comparable to the scale set by the vacuum expectation value that Higgsed the UV

gauge group— one eventually enters the explicitly non-separable description of the UV

SU(N) gauge theory.

The main purpose of this paper is to quantify this transition using the measures of

entanglement presented in the previous section 2 and to explore potentially new features

associated with the large-N limit. We will focus on large-N quantum field theories with a

weakly curved gravitational dual.

Entanglement entropy. The entanglement entropy of large-N conformal field theo-

ries with a weakly curved gravitational dual can be computed efficiently using the Ryu-

Takayanagi prescription in the AdS/CFT correspondence. This computation, which will be

performed in the next four sections, involves the analysis of a minimal co-dimension-2 sur-

face in multi-centered brane geometries in ten- or eleven-dimensional supergravities. The

non-standard feature of this computation is that the minimal surface embeds non-trivially

along the compact manifolds transverse to AdS. We will see that the above-mentioned

transitions of the connectivity index are closely related to the formation of a separatrix in

the geometry of the Ryu-Takayanagi minimal surface.

Relative entropy of entanglement and quantum mutual information. In sec-

tion 2 we presented two measures of separability, the relative entropy of entanglement

DREE(ρ) (2.4) and the quantum mutual information S12(ρA) (2.7). Currently, we are not

aware of an efficient computational method for such quantities in interacting quantum field

theories, either directly in quantum field theory or holographically. Nevertheless, the above

discussion indicates that we should anticipate the following features.

To specify S12(ρA) we define subsystem 1 as the subsystem associated with the degrees

of freedom of the IR CFT1. The subsystem 2 (that refers to the complementary Hilbert

4We consider the large-N limit in both CFT1 and CFT2, i.e. N1, N2 → ∞ with the ratio N1/N2 kept

fixed.
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space) includes the remaining degrees of freedom of the full SU(N) theory. In the effective

IR description subsystem 2 includes the degrees of freedom of CFT2 and CFT3. Since we

are considering a non-trivial RG flow the relative quantum entropy on a sphere of radius

` will be a non-trivial function of `. Complete decoupling in the extreme IR implies that

S12(`) vanishes at ` = ∞ and increases as ` decreases towards ` = 0 (that probes the

extreme UV). The increasing positive magnitude of

S12(ρA) = S(ρA)− S(ρA,1)− S(ρA,2) (3.2)

is a measure of the increasing strength of correlation of the degrees of freedom of the

IR CFT1 with the rest of the system at high energies. The general discussion in the

beginning of this section suggests that this increase is suppressed in the large-N limit

at low energies because the effects of inter-system interactions mediated by multi-trace

operators are suppressed. It is of interest to understand if this expectation is verified

by the explicit computation of S12(`), and to determine precisely how S12(`) interpolates

between the extreme UV and IR descriptions that exhibit a different connectivity index.

We anticipate a qualitatively similar behavior from other measures of separability, e.g.

the relative entropy of entanglement DREE(ρ). An efficient computational method for the

relative quantum entropy would be helpful in addressing these issues, but goes beyond the

immediate goals of this paper.

4 Coulomb branch of SCFTs and multi-centered geometries

In this preparatory section we collect useful facts and notation for the geometries involved

in the holographic computation of the entanglement entropy in the Coulomb branch of

superconformal field theories.

4.1 Notation and main features of multi-centered brane geometries

We focus on supersymmetric conformal field theories with a weakly curved gravitational

dual in string/M-theory. The gravitational description of the Coulomb branch of these

theories is directly related to the geometry of a discrete collection of flat parallel D/M-

branes in 10 or 11-dimensional supergravity. This geometry is uniquely specified by a

single harmonic function H = H(~y), where ~y are the coordinates transverse to the brane

volume. The supergravity solution also carries charge under the corresponding (p+1)-form

gauge fields and generically sources the dilaton Φ.5

In this paper, we will focus on multi-centered geometries given by:

• D3 branes in D = 10 dimensions, relevant for the d = 4 N = 4 SYM theory,

• M2 branes in D = 11 dimensions, relevant for the d = 3 N = 8 ABJM Chern-Simons-

Matter theories [16],

5The specific well known expressions for these fields can be found in the literature. Here we will con-

centrate on the metric, which is the only field that participates directly in our computation.

– 8 –



J
H
E
P
0
2
(
2
0
1
5
)
0
8
3

• D1-D5 bound states in R1,5 ×M4. The D5 branes wrap the compact manifold M4

(usually taken as T4 or K3) and give rise at low energies to an interacting (1 + 1)-

dimensional superconformal field theory.

The corresponding geometries in asymptotically flat space6 are given by the metrics

D3 : ds2 = H
−1/2
3 ηµνdx

µdxν + H
1/2
3 δijdy

idyj , (4.1)

M2 : ds2 = H
−2/3
2 ηµνdx

µdxν + H
1/3
2 δijdy

idyj , (4.2)

D1D5 : ds2 = (H1H5)−1/2 ηµνdx
µdxν + (H1H5)1/2 δijdy

idyj +

(
H1

H5

)1/2

ds2(M4). (4.3)

The harmonic functions H3, H2 are

H3(~y) = 1 +
K∑
I=1

NIρ3

|~y − ~yI |4
, ρ3 = 4πgsα

′2 (4.4)

H2(~y) = 1 +

K∑
I=1

MIρ2

|~y − ~yI |6
, ρ2 = 25π2`6P (4.5)

The vectors ~yI locate the position of the different stacks of branes in the transverse space.

We are considering K stacks of D3 (M2) branes, each one made out of NI D3 branes (MI

M2 branes). gs and α′ are the string coupling constant and string Regge slope. `P is the

eleven-dimensional Planck length.

For the D1-D5 system, the two harmonic functions H1 and H5 are:

H1(~y) = 1 +

K∑
I=1

Q
(1)
I ρ1

|~y − ~yI |2
, ρ1 =

gsα
′

v
(4.6)

H5(~y) = 1 +

K∑
I=1

Q
(5)
I ρ5

|~y − ~yI |2
, ρ5 = gsα

′ (4.7)

where v is essentially the volume of M4, i.e. v = V4/(2π)4α′2. It will be technically

convenient to focus on D1-D5 bound states with parameters that obey the relation

Q
(1)
J

Q
(1)
1

=
Q

(5)
J

Q
(5)
1

∀ 1 < J ≤ K . (4.8)

This restriction guarantees that the dilaton Φ, given by the relation e2Φ = H1/H5, will be

constant in the near-horizon limit.

Near-horizon limit. For the D3 and D1-D5 branes, the decoupling limit [17] is defined

by sending α′ → 0, and keeping the ratios ~u = ~y/α′ and ~uI = ~yI/α
′ fixed. As a result,

6The metric of the D3 and D1-D5 systems is given here in the string frame of type IIB string theory.
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the 1 in the harmonic functions drops out, and the geometry remains finite in units of α′.

Under the assumption (4.8), the product H1H5 simplifies

H1∪5 ≡ (H1H5)1/2 =

K∑
I=1

QIρ1∪5

|~u− ~uI |2
, QI =

√
Q

(1)
I Q

(5)
I , ρ1∪5 =

g2
sα
′2

v
. (4.9)

For the M2 branes the decoupling limit is obtained by sending `P → 0 and keeping ~u =

~y/`
3/2
P and ~uI = ~yI/`

3/2
P fixed.

In summary, the D1-D5 system is now described by the function H1∪5, and the D3

and M2 backgrounds are described by

H3 →
K∑
I=1

NIρ3

|~u− ~uI |4
, H2 →

K∑
I=1

MIρ2

|~u− ~uI |6
. (4.10)

The resulting geometry interpolates between an AdSp+2 × Sq space at |~u| → ∞, that

captures the UV fixed point with connectivity index 1, and a decoupled product of K

AdSp+2 × Sq spaces as ~u gets scaled towards the centers ~uI . The latter describes the

extreme IR fixed point with connectivity index K.

4.2 UV physics

For the cases we analyze the asymptotic |~u| → ∞ geometry is an AdSp+2 × Sq space with

(p, q) = (1, 3), (2, 7), (3, 5) for the D1-D5, M2 and D3 brane systems respectively. The

radius of each AdSp+2 space is

D3 : R2
UV =

(
4πgs

∑
I

NI

)1/2

(4.11)

M2 : R2
UV =

1

4

(
25π2`6P

∑
I

MI

)1/3

(4.12)

D1D5 : R2
UV =

(
g2
s

v

∑
I

QI

)
. (4.13)

These UV AdSp+2 × Sq geometries are dual to the microscopic (p + 1)-dimensional

superconformal field theories mentioned in the beginning of the previous subsection. For

concreteness, let us focus for the moment on the most emblematic case, i.e. the duality

between string theory on AdS5 × S5 and N = 4 SU(N) SYM theory.

The multi-centered D3 brane solutions are dual to a configuration in N = 4 SYM in

which the SU(N) gauge group has been Higgsed down to SU(N1)× . . .×SU(NK)×U(1)K−1

(N = N1 + . . . + NK). Conformal invariance, as well as the SO(6) R-symmetry of the

theory, are broken by the non-vanishing vacuum expectation value of the gauge-invariant

chiral operators

O(n) ∝ C
(n)
i1,...,in

Tr
[
Xi1 . . . Xin

]
, (4.14)

where C
(n)
i1,...,in

are totally symmetric traceless rank n tensors of the SO(6)-charged real

adjoint scalars Xi of the theory. These modes arise in the gravity dual from a Kaluza-

Klein decomposition of the transverse S5 space. By analyzing the asymptotic, large |~u|,
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behavior of these modes in the multi-centered geometry one can determine the vacuum

expectation value of the operators (4.14)[18–20].

4.3 IR physics

The decoupled product of gauge theories that arises in the extreme infrared of the Coulomb

branch translates, in the dual multi-centered geometry, into a decoupled product of K

string theories on the AdS
(I)
p+2 × S

q
(I) spacetimes. Each of these spacetimes arises from the

full multi-centered geometry by taking the limit ~u → ~uI that isolates the gravitational

dynamics near the I-th center. The radius of the I-th AdS spacetime is weighted by the

single coefficient NI , MI or QI , respectively. The K− 1 U(1) factors are decoupled sectors

of singleton degrees of freedom that reside on the common holographic boundary of the

AdS spacetimes.

As explained in section 3, in the IR description of the RG flow the non-abelian IR

CFTs interact off criticality via an infinite set of irrelevant multi-trace interactions, and

via irrelevant interactions mediated by the abelian singleton degrees of freedom —the

Lagrangian L in equation (3.1). For example, in the case of N = 4 SYM theory the

leading single-trace operator VI for the I-th non-abelian IR theory (see equation (3.1)) is

a dimension 8 operator of the form [6, 7, 21]

V = Tr

[
FµνF

νρFρσF
σµ − 1

4
(FµF

µν)2

]
+ . . . . (4.15)

The coefficient gI is proportional to the sum

gI ∝
∑
J 6=I

NJρ3

|~uJ − ~uI |4
. (4.16)

Note that (4.15) is also the type of interaction that appears in the small field strength

expansion of the Dirac-Born-Infeld action that describes the exit from the near-horizon

throat. In the current context the single-trace interaction (4.15) describes how the throat

in question connects with the rest of the geometry.

Besides the single-trace operator (4.15) there are also double-trace dimension 8 oper-

ators of the form [6]

TrI [FµνF
µν ] TrJ [FµνF

µν ] + . . . (4.17)

which mediate the direct inter-CFT interactions mentioned in equation (3.1).

Finally, there are interactions of the non-abelian degrees of freedom with the abelian

singleton degrees of freedom. Part of the singleton degrees of freedom are the massless

scalar fields ~ϕI associated with the 6(K − 1) moduli ~uI − ~uI+1. Expanding (4.16) around

the values of the given vacuum state produces irrelevant single-trace interactions of the form

∑
J 6=I

∑J−1
K=I ~ϕK · (~uI − ~uJ)

|~uI − ~uJ |6
VI . (4.18)

This makes the single-trace couplings gI dynamical.
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Holographically, in this description we are working in the bulk with an explicit UV

cutoff and we are dealing with a set of UV-deformed AdS gravity theories coupled in two

ways: by mixed boundary conditions and by explicit boundary degrees of freedom (the

singletons) that make the sources of some of the bulk fields dynamical. A similar picture

of coupled throat geometries was proposed some time ago in [22, 23].

5 Holographic entanglement entropy

In a field theory in p+ 1 dimensions, the static entanglement entropy of a space-like region

A is defined as the von-Neumann entropy of the density matrix ρA which is obtained by

tracing out the degrees of freedom in the complement of A (see equations (1.1), (1.2)).

For conformal theories living on the boundary of AdSp+2, the Ryu-Takayanagi pre-

scription (RT) computes the holographic entanglement entropy (HEE) by considering the

area of a p-dimensional minimal surface in AdSp+2, whose boundary is ∂A. We will refer

to this surface as γRT [8]. There is a beautiful derivation of the correctness of this pre-

scription for spherical entangling surfaces. By conformally mapping the density matrix ρA
to a thermal density matrix, the authors of [24] showed that the thermal entropy of the

dual hyperbolic black hole coincides with the HEE computed à la Ryu-Takayanagi. The

relation between the entropy of ρA and the minimal area condition was further investigated

and clarified in [25].

For non-conformal theories with a gravity dual, a natural extension of the Ryu-

Takayanagi prescription was given in [9, 10]. These authors considered the functional

S[∂A] =
1

4GDN

∫
dD−2ξ e−Φ

√
det gind (5.1)

where gind is the induced metric of a minimal co-dimension-2 surface γ in the full string

theory or M-theory background. The surface γ is again specified to have ∂A as its boundary.

This generalized prescription is the prescription we will apply in the computation that

follows. In our setup, the dilaton field Φ is a constant for all the cases we will consider; the

D3, M2 and D1-D5 branes. This statement is obvious for D3 and M2 branes, and follows

from the assumption (4.8) in the case of the D1-D5 bound states.

It is clear that for AdSp+2 × Sq spaces, the Ryu-Takayanagi prescription is in perfect

agreement with (5.1). When there is no dependence on the transverse sphere, the problem

of a minimal surface γ that wraps Sq reduces to the problem of finding γRT in AdSp+2.

The Newton constant in AdSp+2 is related to GDN through the formula

Gp+2
N = GDN/Vol(Sq). (5.2)

A typical class of examples in which the prescription (5.1) is non-trivial are the confining

backgrounds of [26, 27], for which the entanglement entropy was studied in [10]. These

backgrounds are of the type Mp+1 × CD−p−1, where C is a cone over a certain compact

manifold S. The volume of S may shrink along the radial coordinate of the cone, and since

γ wraps S, it will be sensitive to the dynamics of these extra dimensions along the RG flow.
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Similarly, the multi-centered geometries of interest in this paper are not product spaces

globally. They become locally AdSp+2× Sq spacetimes only in certain asymptotic regions.

If the dimension of γ was different from D−2, other data would be needed to determine it,

and the surface would not be unique for a given ∂A. An example appears in the holographic

computation of the Wilson loop in [28].

Multi-centered geometries. The remainder of this section provides a qualitative de-

scription of the surface γ in the multi-centered backgrounds described previously. We

consider spherical entangling surfaces when p = 2, 3, and intervals when p = 1. It is useful

to choose space-like coordinates adapted to these geometries. In dimensions p = 2, 3, we

choose spherical coordinates: ~x = (σ, φ1, . . . , φp−1), where σ > 0 is the radius of the sphere

and ~φ are angles. In one dimension we use a similar notation: σ is the spatial field the-

ory coordinate that runs along the real line. The entangling region A is described by the

equation σ2 < `2. This means that σ ∈ I` where I` = (−`, `) for p = 1, and I` = [0, `) for

p = 2, 3.

The main example we will consider in detail is the case of the two-centered geometry.

The two-centered geometries are conveniently described by hyper-cylindrical coordinates in

the transverse space. The branes are separated along a direction z, and the space orthogonal

to z is described by hyper-spherical coordinates (y,Ω1, . . . ,Ωq−1). In this setting, the

functions Hi of the previous section will depend both on z ∈ R and y > 0. The origin

z = 0 is taken to be the center of mass. We can also introduce polar coordinate in the

(z, y) plane,

z = r cos θ, y = r sin θ

with r > 0 and θ ∈ [0, π]. For coincident branes, K = 1, the coordinate r becomes the

radial coordinate of AdSp+2, and θ becomes the polar angle of the q-sphere.

The minimal surface is static with Dirichlet boundary conditions in the time direction,

which will not play any further role. The coordinates describing the co-dimension-2 surface

are chosen as follows

ξi = φi , i = 1, . . . , p− 1,

ξj+p−1 = Ωj , j = 1, . . . , q − 1,

ξD−3 = θ,

ξD−2 = σ. (5.3)

The embedding in the D-dimensional background is specified by the function r(σ, θ), where

σ ∈ A and θ ∈ [0, π]. This function is an interesting object because it mixes the evolution

along a field theory direction, σ, with the change of the geometry along the transverse

space direction θ. The non-trivial dependence on θ originates from Hi which are explicit

functions of θ.

The behavior of r(σ, θ) can be understood qualitatively by regarding r(σ, θ) as a map

from I` × [0, π] to the plane (z, y). We imagine foliating the surface r(σ, θ) by fixing a

certain σ0, drawing the curve rσ0(θ) = r(σ0, θ) in the plane (z, y), and moving σ0 in the

interval I`. For example, in AdSp+2 × Sq, the solution is given by the Ryu-Takayanagi
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0
0

π

`
σ

−ε
z

y

z1 z2

r(σ, θ)

AdSUV × Sq

Figure 1. Qualitative behavior of the map rσ0
(θ) as a function of σ0, and for large values of `. The

red line represents the separatrix. Below the separatrix, a suitable set of variables that describe the

surface will be given in section 7.1.

surface which is θ independent, therefore r(σ, θ) = r(σ), and the map rσ0(θ) draws circles

of radius r(σ0). From this simple analysis we are able to infer three out of the four boundary

conditions that fix a generic θ-dependent solution on I` × [0, π]:

r(σ, θ)
∣∣∣
σ=`

=∞ , ∂θr(σ, θ)
∣∣∣
θ=0

= 0 , ∂θr(σ, θ)
∣∣∣
θ=π

= 0 . (5.4)

We will discuss the boundary condition at σ = 0 in a moment.

To start thinking about r(σ, θ) in two-centered solutions, it is useful to first consider

the limit ` → ∞. In this limit the surface probes the physics of the deep IR of the field

theory where the UV gauge group has been Higgsed and the energy scales of interest are

well below the mass of the massive W bosons. In the gravity dual this limit zooms into

the vicinity of the two centers which can be regarded as decoupled. The surface γ is then

given by the union γ1 ∪ γ2, where γi = γRT × Sq. At this point, it is important to recall

that γRT has a turning point at σ = 0, i.e. r(σ) > r(0) for any σ ∈ I`. The fact that σ = 0

is the turning point follows from the symmetries of the entangling surface and from the

assumption that γRT is convex.

When ` is finite, but large enough for γ to probe the IR throats, the picture we have

just described will be approximately valid only locally close to each of the two centers.

In a neighborhood of σ0 = 0 the map rσ0(θ) draws approximately small disconnected

circles around the position of each stack of branes (points z1 and z2 in the (z, y) plane in

figure 1). The curve rm(θ) ≡ r(σ = 0, θ) generalizes the notion of turning point in the AdS

Ryu-Takayanagi surface and obeys the boundary conditions

∂σr(σ, θ) = 0 at σ = 0 for any θ. (5.5)

The overall picture in the IR is summarized by the brown curves in figure 1.

The above description refers to the IR patch of the surface γ associated to a space-

like region of large enough radius `. In the opposite regime, we can ask what happens
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at σ0 = ` − ε (ε � `), when the curve r(` − ε, θ) is close to the UV boundary. Because

the boundary is AdSUV × Sq, this curve is again approximately θ-independent and the

associated map rσ0(θ) draws a large circle in the (z, y) plane (captured by the blue curves

in figure 1).

The inevitable conclusion of the above analysis is that, although the surface γ is

always simply connected, the topology of the curves
{
rσ0(θ)

}
σ0∈I`

may change as we vary

σ0. When ` is large enough, the minimal surface will have a UV patch where rσ0(θ) is

topologically S1, and an IR patch where rσ0(θ) is topologically S1×S1. For such a surface

γ there is necessarily a branch point. The curve rb(θ) ≡ r(σb, θ) at which this branch point

belongs will be referred to from now on as the separatrix. This is sketched as the red line

in figure 1.

The topology change that we described above does not occur for surfaces with small

enough ` that can only probe the UV part of the full geometry. For such surfaces the curves

rσ0(θ) are topologically S1 for any σ0 ∈ I`. It is clear that the discriminating quantity

between the existence of the topology change or not, for a given `, is the turning point

curve rm(θ). Accordingly, we will distinguish between the following two phases:

• Phase A, for ` < `c, where the topology of rm(θ) is S1. In this case we can describe

γ with single-valued coordinates.

• Phase B, for ` > `c, where the topology of rm(θ) is S1×S1. In that case a separatrix

exists and when rσ0(θ) moves below the separatrix, r(σ, θ) becomes double-valued.

The counterpart of the transition between these phases in field theory is a transition

of the behavior of the entanglement entropy as a function of ` at `c.

The qualitative behavior of γ for multi-centered geometries can be deduced by following

the same logic as in the two-centered solution. However, in the general case it will not be

possible to restrict the discussion to a certain plane (z, y), and one has to consider the full

transverse space.

6 UV expansion of the entanglement entropy

In this section we will study more explicitly the HEE of phase A. The equation of motion of

r(σ, θ) is a non-linear, quite challenging, PDE. Yet, we are able to obtain a series expansion

of the solution by expanding in a small dimensionless parameter that combines the mass

scale of symmetry breaking (equivalently the center separation in the geometry) and the

sphere radius `. Our perturbative solution is analytic in the variables σ and θ, and at zeroth

order coincides with the AdS γRT solution. The perturbative solution does not allow us to

detect analytically the formation of the separatrix as we approach `c, but it confirms the

qualitative description of the previous section.

By direct integration of the generalized HEE functional we obtain a series of finite

corrections to the AdSp+2 entanglement entropy. Perhaps suprisingly, the translation of

the result to field theory language suggests that the lowest chiral primary operators do not

contribute to these corrections.
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6.1 Minimal surface action and its equations of motion

In phase A the variable r(σ, θ) is single-valued as a function of θ, thus we can write the

induced metric on γ by using the coordinates (5.3). Referring to the components of the

background metrics (4.1), (4.2) and (4.3), with the generic notation,

ds2 = gµνdx
µdxν , ~x = (t, σ, φ1, . . . , φp−1, r, θ,Ω1, . . . ,Ωq−1) ,

the induced metric on γ, in the coordinates (5.3), is given by

ds2
ind = ds2

ind

∣∣∣
(σ,θ)

+ ds2
ind

∣∣∣
(φ,Ω)

, (6.1)

where

ds2
ind

∣∣∣
(σ,θ)

=

(
gσσ + grr

(
∂r

∂σ

)2
)
dσ2 + 2grr

∂r

∂σ

∂r

∂θ
dσdθ +

(
gθθ + grr

(
∂r

∂θ

)2
)
dθ2 ,

ds2
ind

∣∣∣
(φ,Ω)

= gijdφ
idφj + gabdΩadΩb . (6.2)

The HEE functional is then

Sp =
1

4GDN

∫
d~Ω
√
gab

∫
d~φ
√
gij

∫
dσdθLp [θ, r(σ, θ)] (6.3)

where the Lagrangian Lp can be put into a form valid for all cases of interest here (the D3,

M2 and D1-D5 branes),

Lp = σp−1K[θ, r]H[θ, r]

√
1 +

∂θr2

r2
+ (H[θ, r])2 ∂σr2 . (6.4)

In (6.4) we defined the functions

D3 : H2 = H3 , K = r5 sin4 θ

M2 : H2 = H2 , K = r7 sin6 θ

D1D5 : H2 = H2
1∪5 , K = r3 sin2 θ .

(6.5)

In the two-centered geometries we fix the origin of the z axis at the center of mass of

the system, namely we set

z1N1 + z2N2 = 0 . (6.6)

After the implementation of the condition (6.6), the Euler-Lagrange equation following

from (6.4) depends only on a single dimensionful parameter, z1 for example. Schematically,

the single PDE that we need to solve is the equation of motion of r

Eq
[
r(σ, θ), z1

]
= 0 . (6.7)

The explicit form of this equation is provided in appendix A.
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6.2 Perturbative UV Solution

Before entering the details of the calculation, we review the AdS solution making manifest

the underlying scale invariance. This is our starting point towards a perturbative solution

of the non-linear PDE (6.7) that follows from (6.4).

It is convenient to work with the variable ζ = 1/r2, in the cases of D3 and D1-D5

branes, and ζ = 16R2/r4 for the M2 branes. The UV boundary is now at ζ = 0. In our

conventions, the metric of AdSp+2 is written as

ds2 =
1

R2

1

ζ

(
−dt2 + dσ2 + σ2d~φ 2

p−1 +R4dζ
2

4ζ

)
, (6.8)

where R = RUV is the AdS UV radius defined case by case in (4.11)–(4.13). The Ryu-

Takayanagi surface is obtained from the embedding function ζ(σ). Its equation of motion

and the corresponding solution are,

Eq
[
ζ(σ), z1 = 0

]
= ζ ′′ +

p− 1

2

ζ ′2

ζ
+
p− 1

x
ζ ′
(

1 +
R4

4

ζ ′2

ζ

)
+

2p

R4
= 0 , (6.9)

ζ(σ) =
`2

R4

(
1− σ2

`2

)
≡ `2

R4
F
(σ
`

)
. (6.10)

It should be noted that with our choice of spherical entangling surfaces, the embedding

function is independent of p. In the r.h.s. of (6.10) we wrote ζ(σ) in a conformal fashion:

we isolated the pre-factor `2, and defined the function F (σ̂) that depends only on the

dimensionless combination σ̂ = σ/`. The pre-factor captures the weight of ζ(σ) under

rescaling of `. We also notice that the equation (6.9) has weight zero; in particular, the

corresponding equation for F (σ̂) has no ` dependence.

Now the idea is to consider a UV ansatz for ζ(σ, θ) of the type,

ζ(σ, θ) =
`2

R4
F (σ̂, θ) . (6.11)

As expected, by plugging (6.11) into the equation of motion we obtain an equation for

F (σ̂, θ) which depends only on the dimensionless parameter ε = ∆
R2 for D3 and D1-D5

branes with ∆ ≡ z1`, and ε = ∆
R3/2 for M2 branes with ∆ = z1

√
`. The limit ε → 0

is well defined and gives back (6.9). Around it we can solve the equation for F (σ̂, θ) in

perturbation theory. Schematically, our problem becomes

Eq
[
Fp(σ̂, θ),∆

]
= 0 ,

Fp(σ̂, θ) = (1− σ̂2) +

∞∑
k=1

∆kf (k)
p (σ̂, θ) . (6.12)

In (6.12) we restored the label p to stress that the perturbative solution depends on the

number of dimensions. The functions f
(k)
p capture the two-center deformation of the UV

AdS solution. Solving for f
(k)
p still requires finding the solution of a set of PDEs. However,

this problem is tractable and analytic solutions can be obtained.

– 17 –



J
H
E
P
0
2
(
2
0
1
5
)
0
8
3

Perturbative equations. For D3 and D1-D5 branes it is possible to write down simple

explicit formulae. Results for the M2 branes are more involved due to the fact that the UV

AdS comes in horospherical coordinates. However, the algorithm to find the perturbative

solution is valid for generic p.

For p = 1, 3, the functions f
(k)
p solve a PDE of the form,

∂2
σ̂f

(k)
p +

p− 1

σ̂(1− σ̂2)
∂σ̂f

(k)
p +

1

(1− σ̂2)2

(
∂2
θf

(k)
p + (p+ 1) cot θ ∂θf

(k)
p

)
= F (k)(σ̂, cos θ)

(6.13)

where F (k) are forcing terms whose explicit θ dependence is inherited from H = H(ζ, cos θ).

At fixed k, the forcing term F (k) is determined by the lower order solutions f
(m)
p for m < k.

We find the first non-trivial F (k), and solve for f
(k)
p . Then we proceed to compute F (k+1),

solve for f
(k+1)
p , and continue by iteration. An important observation is that upon the

change of variable v = cos θ, the forcing terms F (k) become polynomials in v with σ̂-

dependent coefficients. Therefore, the ansatz

f (k)
p = g(k,k)

p (σ̂)vk + g(k,k−1)
p (σ̂)vk−1 + . . .+ g(k,0)

p , (6.14)

which is compatible with the boundary conditions ∂θf
(k)
p = 0 at θ = 0, π, solves the θ

dependence in (6.13). The set of functions {vm}∞m=0 is just a rewriting of the standard

Fourier basis in a way that is compatible with our boundary conditions. For any f
(k)
p of

the form (6.14), the PDE (6.13) generates a set of k ODEs for the functions {g(k,n)
p }kn=0.

The boundary conditions that uniquely specify the solution of each g
(k,n)
p (σ̂) are

g(k,n)
p (σ̂ = 1) = 0 , ∂σ̂g

(k,n)
p (σ̂ = 0) = 0 . (6.15)

The use of the coordinate ζ makes manifest the fact that in order to have a perturbative

solution which is consistent with the UV AdS asymptotics, the functions g
(k,n)
p have to

vanish like (1 − σ̂2)α with α ≥ 1. When α > 1, corrections will be sub-leading at the

boundary.

The equations for the functions g
(k,n)
p are linear ODEs with forcing terms induced by

F (k). The highest mode g
(k,k)
p has no forcing term. At fixed n < k, the equation for g

(k,n)
p

has forcing terms induced by the functions g
(k,m)
p with n < m ≤ k. Starting from n = k and

solving for g
(k)
p it is possible to generate the forcing term for g

(k−1)
p and solve its equation.

At the next step we generate the forcing terms for g
(k−2)
p and solve its equation. Repeating

this algorithm it is possible to calculate the full tower of {g(k,n)
p }kn=0 modes.

We conclude this subsection with one relevant comment: there is no f
(1)
p contribution

to the perturbative solution. This statement follows from: 1) the fact that the equation

of motion depends just on H2, 2) the expansion of H in terms of ∆ is given by the UV

expansion of the harmonic functions (4.9) and (4.10), and 3) in the latter, the contribution

at order ∆ is proportional to the center of mass condition and therefore vanishes.

6.3 Two-centered D3 geometries

We are now in position to carry out the perturbative calculation in the two-centered D3

brane solution more explicitly. The analytic result for F3(σ̂, θ) can be written in a compact
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form by defining the variable X = (1− σ̂2). The first non-trivial corrections to γRT are

F3(σ̂, θ)−X = −2

3

N1

N2

(
6 cos2 θ − 1

)
X2

(
∆

R2
UV

)2

+
N1 −N2

N2

N1

N2

(
8 cos3 θ − 3 cos θ

)
X5/2

(
∆

R2
UV

)3

+
(
g(4,4) cos4 θ + g(4,2) cos2 θ + g(4,0)

)( ∆

R2
UV

)4

+ . . . (6.16)

where

g(4,4) = −16N1

N2

N2
1 − 3N1N2 +N2

2

N2
2

X3 , (6.17)

g(4,2) =
16N1

N2

9N2
1 − 17N1N2 + 9N2

2

15N2
2

X3 , (6.18)

g(4,0) =
4

9

N2
1

N2
2

X2 − N1

N2

27N2
1 − 71N1N2 + 27N2

2

45N2
2

X3 . (6.19)

It is intriguing that f (2)(X, θ) and f (3)(X, θ) are separable, whereas f (4)(X, θ) is not. In

general, higher modes f (k) with k ≥ 4 are also not separable. We will come back to this

aspect of the solution later on. Finally, we could have guessed from the beginning that

when N1 = N2 a symmetry argument implies that f (k) with k odd will be vanishing.

Plugging the solution (6.16) into the HEE functional given by equations (6.3)–(6.4) we

obtain

S3 =
1

4G
(5)
N

(
4πR3

UV

) (
I3(`)− 4

9

N2
1

N2
2

(
∆

R2
UV

)4

+ . . .

)
, (6.20)

I3(`) =

∫ 1

0
dσ̂

σ̂2

(1− σ̂2)2
=

∫ 1

a/`
ds

√
1− s2

s3
. (6.21)

In (6.20) we used the relation

G
(5)
N =

G
(10)
N

π3R5
UV

. (6.22)

The integral I3(`) is the AdS Ryu-Takayanagi result [8] with a/` their UV cutoff. Surpris-

ingly, even though the profile of the surface gets corrections at order ∆2 and ∆3, the first

non-vanishing contribution to the entanglement entropy comes at fourth order. Higher

order correction are also non-trivial but their expression is too cumbersome and not suffi-

ciently illuminating to repeat here. In agreement with the expectation that the renormal-

ized entanglement entropy decreases along the RG flow, the first non-trivial correction to

I3(`) in (6.20) comes with a negative sign.

Geometrically, the reason why there are nor ∆2 neither ∆3 corrections to the HEE can

be seen as follows. We first observe that(
6 cos2 θ − 1

)
∝ Y

(5)
~0,2

(θ) ,
(
8 cos3 θ − 3 cos θ

)
∝ Y

(5)
~0,3

(θ) , (6.23)
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where Y
(5)
~0,l

are the S4-invariant 5-dimensional spherical harmonics. Then, we notice that

the expression of the integrand of S3, at order ∆2 or ∆3, takes the form of a scalar product7

between the harmonics (6.23) and the identity. In particular we find,

S3 ∼ I3(`) + 〈1 |Y~0,2〉
(

∆

R2
UV

)2

+ 〈1 |Y~0,3〉
∫ 1

0
dσ̂ σ̂2

√
1− σ̂2

(
∆

R2
UV

)3

+ . . . (6.24)

The result (6.20) follows from the orthonormality condition 〈Ym|Yn〉 = δmn. We would like

to stress that the decomposition (6.24) is not immediately obvious, and it comes out from

the interplay between the UV expansion of the metric and the form of the solution.

The use of the scalar product between harmonics may be a useful way of packaging the

expansion of the HEE. It also suggests that in order to have non-vanishing corrections, we

should find at least terms of the type Y 2. The only way to generate such contributions is

through the non-linearity of the background metric, and indeed multi-centered geometries

are non-linear solutions.

As we briefly reviewed in section 4.2 the field theory description of the two-centered

D3 solution is well understood at the UV. By splitting the stack of coincident branes

along the z direction, we give an expectation value to one of the real adjoint scalar fields

of N = 4 SYM. Therefore, the 1-point function of the gauge invariant chiral operators

O(n), defined in (4.14), will be non-trivial. Given the relation between these operators and

the harmonics of S5, it is possible to show that the AdS/CFT correspondence correctly

reproduces the 1-point function of the operators O(n) unambiguously [18]. This fact invites

us to think of the result (6.24) as the statement that at small distances corrections to

the entanglement entropy associated to O(2) and O(3) vanish. It would be interesting to

examine this possibility directly in field theory.

6.4 Two-centered D1-D5 geometries

In this section we repeat the perturbative computation of the entanglement entropy in two-

centered D1-D5 geometries producing a prediction for the corresponding two-dimensional

conformal field theories.

Keeping the notation X = (1− σ̂2), the analytic form of F1∪5 up to fourth order is

F1∪5(σ̂, θ)−X = −2

3

Q1

Q2

(
4 cos2 θ − 1

)
X2

(
∆

R2
UV

)2

+
Q1 −Q2

Q2

Q1

Q2

(
4 cos3 θ − 4 cos θ

)
X5/2

(
∆

R2
UV

)3

+
(
g(4,4) cos4 θ + g(4,2) cos2 θ + g(4,0)

)( ∆

R2
UV

)4

, (6.25)

7The measure in the scalar product is
√
gij on the S5.
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Figure 2. In the upper figure we plot the transverse scalar function F1∪5 in the (z, y) plane for

∆ = 2 and z1 = −z2 = 1. We are using the polar coordinates z = ζ cos θ and y = ζ sin θ. The

location of the branes is indicated by a red dot. The UV boundary is at the origin. The foliation

corresponds to equally spaced intervals in (0, `), and is approximately made by circles. For this

value of ∆ the equation of motion is satisfied with a minimum accuracy of 10−5. In the inset we

show an extrapolation to a value of ∆ which comes closer to the formation of the separatrix. In

the lower figure we use coordinates z = r cos θ and y = r sin θ with r = 1/
√
ζ. In this specific plot

the function F1∪5 is extrapolated to ∆ = 2.755. The r.h.s. part of the plot, where the solution

is less reliable, has been excised. The qualitative features of this solution agree with the features

anticipated in the general discussion in section 5. We see how the surface deforms around the

centers and how the turning point of the surface approaches a separatrix.

where

g(4,4) = −16Q1

Q2

18Q2
1 − 49Q1Q2 + 18Q2

2

45Q2
2

X3 , (6.26)

g(4,2) = − 16Q2
1

135Q2
2

X2 +
24

5

Q1

Q2

(Q1 −Q2)2

Q2
2

X3 , (6.27)

g(4,0) =
8

15

Q2
1

Q2
2

X +
22

135

Q2
1

Q2
2

X2 − Q1

Q2

18Q2
1 − 53Q1Q2 + 18Q2

2

45Q2
2

X3 . (6.28)

As we found in the case of the D3 brane solution, the σ̂ and θ dependence of f
(2)
1 and f

(3)
1

factorizes and we can write

f
(2)
1 ∝ Y

(3)
~0,2

X2 , f
(3)
1 ∝ Y

(3)
~0,3

X5/2 , (6.29)

where Y
(3)
~0,l

are harmonics of S3 symmetric with respect to the ~Ω angles.

From the series expansion of F1∪5, we obtain a series expansion for the HEE. At lower

orders we find

S1 =
RUV

4G
(3)
N

(
I1(`)− 1

20

Q2
1

Q2
2

(
∆

R2
UV

)4

+ . . .

)
(6.30)

I1(`) =

∫ 1

0
dσ̂

2

1− σ̂2
= 2

∫ π
2

2a/`

ds

sin s
(6.31)
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Figure 3. We plot the finite part of the HEE defined by subtracting I1(`). In units of RUV /4G
(3)
N ,

the blue (red) curve represents the series expansion up to order ∆18
(
∆16

)
. The embedding function

ζ and the HEE have different sensibility with respect to ∆.

where we used the relation

G
(3)
N =

G
(6)
N

2π2R3
UV

. (6.32)

The integral I1(`) is the Ryu-Takayanagi result [8], and the first non-trivial correction

comes at fourth order, as in the case of the D3 brane system. Along the lines of (6.24), we

find that the vanishing of ∆2 and ∆3 corrections can be interpreted as the vanishing of the

scalar product between different harmonics.

In addition, we computed F1∪5 for a D1-D5 system with Q1 = Q2 up to order ∆18,

and studied the convergence of the series. We checked explicitly that at orders k > 3,

separation of variables does not occur for any f (k). Because our perturbative expansion

makes use of a spectral decomposition, it works quite well in a certain range of ∆. An

example is given in figure 2, where we observe that the qualitative features of the solution

agree with the features anticipated in section 5.

After subtracting I1(`) the HEE of the D1-D5 system is expressed as a series expan-

sion in ∆ with coefficients that can be determined analytically. The resulting series is

alternating. For example, the coefficient of ∆2k for k = 2, . . . , 7 are,

{
− 1

20 ,
8

567 , −
1.567

170.100 ,
40.729

7.016.625 ,−
101.669.532

23.508.883.125 ,
30.609.041.679

9.050.920.003.125 , . . .
}
. (6.33)

The corresponding curve is also plotted in figure 3.

6.5 Two-centered M2 geometries

We conclude this section by analyzing the perturbative solution of F2 for two-centered M2

brane geometries. The notation is unchanged, X = (1− σ̂2). The leading contributions to
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the embedding function are given by

F2(σ̂, θ)−X = −3
M1

M2

(
8 cos2 θ − 1

)
X3/2

(
∆

R
3/2
UV

)2

(6.34)

+ 64
√

2
M1 −M2

M2

M1

M2

(
cos3 θ − 3

10
cos θ

)
X7/4

(
∆

R
3/2
UV

)3

(6.35)

+
(
g(4,4) cos4 θ + g(4,2) cos2 θ + g(4,0)

)( ∆

R
3/2
UV

)4

+ . . . (6.36)

where RUV is the radius of the UV AdS and,

g(4,4) = −32M1

M2

10M2
1 − 37M1M2 + 10M2

2

M2
2

X2 (6.37)

g(4,2) =
20M1

M2

(8M2
1 − 17M1M2 + 8M2

2 )

M2
2

X2 (6.38)

g(4,0) = −21M2
1

M2
2

(√
X − log

(
1 +
√
X
)
− X

2

)
− M1

M2

32M2
1 − 89M1M2 + 32M2

2

4M2
2

X2 .

(6.39)

Certain features of F2 are similar to the previous cases. In particular, we find for any p

that the corrections f
(2)
p and f

(3)
p are solved by separation of variables. The origin of this

feature is unclear. It is possible that supersymmetry is related to this effect (recall that we

are studying BPS configurations).

The HEE expanded at lower orders is

S2 =
1

4G
(4)
N

(2πR2
UV )

I2(`)− 35

4

M2
1

M2
2

(
∆

R
3/2
UV

)4

+ . . .

 (6.40)

I2(`) =

∫ 1

0
dσ̂

σ̂

(1− σ̂2)3/2
=

∫ 1

a/`

ds

s2
(6.41)

where the lower-dimensional Newton constant is,

G
(4)
N =

G
(11)
N

π4/3R7
S7

. (6.42)

In defining G
(4)
N we made use of the relation RS7 = 2RUV . The expression (6.40) again

shows that the first non-trivial correction to the Ryu-Takayanagi result I2(`) [8] comes at

fourth order.

7 IR expansion of the entanglement entropy

As we increase the radius ` of the entangling surface, the bulk minimal surface γ starts

to probe the interior of the D-dimensional bulk geometry. For a given `c, the surface hits
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the branching point, and for ` ≥ `c the topology of γ is that of a pant with two legs.

Geometrically, for ` ≥ `c, the surface is “attracted” towards the position of the branes.

The qualitative picture to keep in mind is given by figure 1.

Target space coordinates adapted to the center-of-mass become problematic if we want

to describe γ in Phase B. Below the separatrix r(σ, θ) is double-valued as a function of θ for

fixed σ in a neighborhood of σ = 0. To overcome this problem we will use a different system

of coordinates. This is also motivated by the following field theory observation. The end-

point of the RG flow is a collection of decoupled theories, therefore the leading contribution

to the entanglement entropy in the deep IR has to be the sum of the entanglement entropies

of each individual throat. This expectation implies that as `→∞, the contribution to the

area of γ coming from the patch outside the separatrix has to become subleading. We will

see how the new coordinate system clarifies the role of the separatrix as we take the deep

IR limit.

7.1 Adapted coordinates

We first focus on two-centered geometries with Z2 symmetry, namely z1 = −z2 ≡ z̄. The

change of coordinates relevant for this case is constructed as follows. Starting from the

hyper-cylindrical coordinates (z, y) we introduce

1) polar coordinates z = r cos θ and y = r sin θ,

2) we define the (u, v) variables by means of the relation,

u+ iv =

(√
(z + iy)2 − z̄2

)2

, (7.1)

which is equivalent to

r2 =

√
(u+ z̄2)2 + v2 , θ =

1

2
arctan

(
v

u+ z̄2

)
, (7.2)

and finally,

3) we consider polar coordinates u = η cosψ and v = η sinψ.

The geometry in the (u, v) plane is such that the two stacks of branes are both located

at the origin, u = 0 and v = 0±, one in the upper half plane and the other in the lower

half plane. The Z2 symmetry has become a reflection symmetry between these two planes.

From the relation (7.1), it is simple to see that the interval {|z| ≤ z̄, y = 0} has been

mapped to {−z̄2 < u < 0, v = 0±}, whereas the y-axis {y > 0, z = 0} and semi-infinite

lines {|z| ≥ z̄, y = 0} have been mapped to {u < −z̄2, v = 0}8 and {u > 0, v = 0±},
respectively. See figure 4 for an illustration. Geodesics can cross the line {u < −z̄2, v = 0},
and go from the upper to the lower half plane. The lines {u > −z̄2, v = 0±}, instead, are

a boundary. The change of variables (7.1) is borrowed from 2d complex analysis [29].

8The determination of the arctan in (7.2) has to be chosen correctly when u > −z̄2 and u < −z̄2.
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u

v

z

y

Figure 4. Circles in the (u, v) plane (l.h.s. picture) are mapped to closed curves in the (z, y) plane

(r.h.s. picture). The red dots indicate the position of the branes. The black dot in the (u, v) plane

is mapped to the origin in the (z, y) plane.

UV and IR limits. As an example, the two-centered D1-D5 metric with Q1 = Q2 ≡ Q
has the following translation in the new coordinates

H1∪5

(
dz2 + dy2

)
→

R2
UV

4η2

(
1 +

z̄2√
z̄4 + η2 + 2z̄2η cosψ

)(
dη2 + η2dψ2

)
, (7.3)

H−1
1∪5 dx

2 → η2

R2
UV

dx2(
z̄2 +

√
z̄4 + η2 + 2z̄2η cosψ

) . (7.4)

Formulas (7.3)–(7.4) are useful as concrete reference for the subsequent calculations. How-

ever, the discussion that follows is general, and it holds for any p, i.e. for D3 and M2

branes as well.

Describing the Coulomb branch in this coordinate system is advantageous because the

UV and the IR limits of the geometry can be formally explored by sending η → ∞ and

η → 0, as in the case of coincident branes. In the limit η →∞ we recover the UV AdS×S
geometry with radius RUV ,

ds2
UV =

η

R2
UV

dx2 +
R2
UV

4η2
dη2 +R2

UV

(
dψ2

4
+ sin2 ψ

2
d~Ω2

)
(7.5)

↪→ R2
UV

(
ρ2dx2 +

dρ2

ρ2
+
dψ2

4
+ sin2 ψ

2
d~Ω2

)
with η = R4

UV ρ
2 . (7.6)

In the η → 0 limit we obtain the metric

ds2
IR =

1

4R2
IR

η2

z̄2
dx2 +R2

IR

dη2

η2
+R2

IR

(
dψ2 + sin2 ψd~Ω2

)
. (7.7)

It is important to point out two facts about (7.5) and (7.7). The first is that the

metric (7.7) is described by a radial coordinate which is essentially a double covering of

the UV AdS. The second is that the metric (7.7) still depends on z̄ and therefore we need

to properly define the IR limit. In fact, from the field theory side we know that in the

limit z̄ → ∞ the theory is decoupled at all energy scales and consists of two independent

– 25 –



J
H
E
P
0
2
(
2
0
1
5
)
0
8
3

SCFTs. However, taking the limit z̄ →∞ in (7.7) does not return an AdS solution. This

issue is simply solved by defining

ηIR = η/z̄ . (7.8)

The correct IR limit is then obtained by keeping the variable ηIR fixed, while taking the

limit z̄ → ∞. This prescription gives the IR AdS as the zeroth order metric of a 1/z̄

expansion,

ds2 =
η2
IR

4R2
IR

dx2 +R2
IR

dη2
IR

η2
IR

+R2
IR

(
dψ2 + sin2 ψd~Ω2

)
+O

(
1

z̄

)
. (7.9)

All corrections vanish in the limit z̄ → ∞ and we recover the expected decoupling of the

full geometry.

At this point, it is also useful to write down the expression for the γRT surface embedded

in the metric (7.9). The equation of motion and the solution of η(σ) are,

η′′IR +

[
p− 1

x
− (p+ 2)

η′IR
ηIR

+ 4R4
IR

p− 1

x

η′2IR
η4
IR

]
η′IR −

p

4R4
IR

η3
IR = 0 (7.10)

ηIR(σ̂) =
1

`

2R2
IR√

1− σ̂2
with σ̂ = σ/` . (7.11)

On the other hand, the embedding function for γRT in the UV AdS is easily obtained from

the solution (6.10) by noticing that (7.5) gives the AdS metric (6.8) after the change of

variables η = 1/ζ. We thus find the relation

ηUV =
R4
UV

`2 (1− σ̂2)
, ηIR =

2R2
IR

R2
UV

√
ηUV . (7.12)

The property (7.12) fits naturally with the observation that (7.7) is a double covering

of (7.5).

7.2 Details of the IR expansion

The original embedding function r(σ, θ) described in section 5 becomes in the new coordi-

nates η = η(σ, ψ). This function is always single-valued as a function of ψ. Exploiting the

symmetry of the Z2 symmetric solution we can restrict ψ ∈ (0, π] and impose appropriate

boundary conditions at ψ = π.

The minimal surface is governed by the Euler-Lagrange equations of a Lagrangian with

the structure of (6.4). For quick reference we repeat here the specifics of the D1-D5 case,

L1∪5 = K[ψ, η]H[ψ, η]

√
1 +

∂ψη2

η2
+ (H[ψ, η])2 ∂xη

2

η4
, (7.13)

H[ψ, η] = 2z̄ cosh

[
1

4
log

(
1 +

η2

z̄4
+

2η

z̄2
cosψ

)]
, (7.14)

K[ψ, η] =
1

η

(√
1 + z̄4η2 + 2z̄2η cosψ

)
. (7.15)
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The reader can find the Lagrangian for the D3 case in appendix A. Details about the equa-

tion of motion are not important, and numerical studies of the solution will be presented

elsewhere. In this section, we focus mainly on the role of the separatrix, and discuss how

to describe (globally) the Ryu-Takayanagi surface.

The starting point is similar to that of section 6.2. We know that the equation of

motion of η(σ, ψ) depends on the dimensionful parameter z̄, and we want to exploit the

scale invariance of the IR fixed point by writing a suitable ansatz for the solution. The

idea is to recover the IR solution (7.11) in the limit z̄ →∞, therefore we consider9

η(σ, ψ) =
z̄

`
F (σ̂, ψ) . (7.16)

The equation of motion for the field F (σ̂, ψ) depends on a single dimensionless parameter
∆
R2 = z̄`

R2 . The limit ∆
R2 →∞ is well defined and gives back the equation (7.10). It is then

possible to set up a perturbative calculation in inverse powers of ∆ whose form is

F (σ̂, ψ) =
2R2

IR√
1− σ̂2

+
∞∑
k=1

1

∆k
f (k)
p (σ̂, θ) . (7.17)

The functions f (k) would be determined at each order in perturbation theory. However,

unlike the UV expansion, now the perturbative series breaks down in some range of σ̂. We

can understand this point in two ways. One way is to realize that the expansion in inverse

powers of ∆ that we are using involves, for example, expressions like√
1 +

F 2(σ̂, ψ)

∆2
+

2F (σ̂, ψ)

∆
cosψ = 1 +

∑
i

ci(ψ)

(
F (σ̂, ψ)

∆

)i
(7.18)

(see e.g. (7.15)). Therefore, it would be strictly valid as long as F (σ̂, ψ) < ∆ for any σ̂, ψ.

Problems arise with this requirement when σ̂ → 1 because the surface is approaching the

UV boundary and F diverges.

The second argument relies on the observation that the functions f (k) will generically

diverge faster than ηUV ∼ 1/(1− σ̂2), thus violating the known UV AdS asymptotics. For

example, in our D1-D5 system the first f (k) that we find are10

F (σ̂, ψ) =
2R2

IR√
1− σ̂2

+
v

1− σ̂2

(
R2
IR

∆

)
+

+
3

4

v2

(1− σ̂2)3/2

(
R2
IR

∆

)2

+
v
(
v2 − 3(1− σ̂2)

)
(1− σ̂2)2

(
R2
IR

∆

)3

+ . . . (7.19)

where v = cosψ. The second line involves powers higher than (1− σ̂2)−1.

From these observations we conclude that the perturbative expansion (7.17) is a good

approximation of the solution only below a certain σ̂s, potentially related to the existence

9Notice that this is a different ansatz compared to the UV (6.11).
10In writing these f (k) we are imposing one boundary condition, ∂σ̂f

(k) = 0 at σ̂ = 0, and we are fixing

the remaining integration constant to some value. In principle we should keep this integration constant and

use it as a matching parameter. However, the argument we want to make here does not depend on this

choice.
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of the separatrix. The right way to recover the UV solution is to make use of a matched

expansion.

Before discussing the matching procedure at the UV boundary, we would like to make

the following comment. In the limit ∆ → ∞, it is clear that the separatrix becomes a

UV cut-off and the full geometry breaks into the sum of two disconnected throats. Such

fragmentation is nicely understood in the (u, v) plane as the process of zipping the upper

from the lower half plane (the dashed line on the left plot of figure 4 on the u-axis moves

off to infinity). However, for ∆ � 1 but finite, the IR geometry is still connected all the

way up to the UV and the separatrix is the natural short distance cut-off from the deep

IR perspective. The resummation of the series (7.9) seems to be in direct relation with

the resummation of an infinite set of irrelevant interactions that one has to perform in the

effective IR field theory to reconstruct the whole RG flow.

The matching expansion is based on the assumption that as we zoom into the boundary

region σ̂ → 1 we effectively look into the UV AdS. In order to do so, it is standard to define

both a rescaled variable ¯̂σ = (1− σ̂)/ε and a rescaled function F = εαF̄ , and take the limit

ε → 0 in the equation of motion. In such a limit, the new variable ¯̂σ and new function

F̄ are kept fixed. Because F diverges at the boundary α has to be negative. In our case

we know that α = −2 because we are taking a limit in which the theory is conformal and

we know the scalings. As a result, the matching procedure gives back ηUV with an overall

constant that we need to determine. By inspection of the equation of motion we find that

F =
1

∆

R4
UV

1− σ̂2
. (7.20)

The matched expansion leads to an expression of the form

F (σ̂, ψ) =
2R2

IR√
1− σ̂2

+
1

∆

R4
UV

1− σ̂2
+
[
. . . matched expansion corrections . . .

]
. (7.21)

Returning to the original embedding field η(σ̂, ψ) we find

η(σ̂, ψ) =
z̄

`

2R2
IR√

1− σ̂2
+

1

`2
R4
UV

1− σ̂2
+
[
. . . matched expansion corrections . . .

]
. , (7.22)

7.3 Entanglement fragmentation

Inserting the solution (7.21) into the entropy functional we can calculate the leading large-`

behavior of the holographic entanglement entropy in the Coulomb branch RG flow. The

resulting expression will give the correct expectation: the HEE receives one contribution

from the UV AdSp+2 (with radius RUV ), and another one from the two disconnect IR

AdSp+2 (with radius RIR). In the following, we will make this statement more precise by

splitting the integration over σ̂ ∈ [0, `) into an IR and a UV contribution.

It is useful to define the integral

Ip[smin, smax] =

∫ smax

smin

ds

(
1− s2

)(p−2)/2

sp
. (7.23)

– 28 –



J
H
E
P
0
2
(
2
0
1
5
)
0
8
3

We already encountered Ip in section 6. In particular, Ip[
a
` , 1] calculates the ` dependence

of the HEE of spherical entangling surfaces for pure AdSp+2.

In the limit ∆ → ∞, the form of the solution (7.21) implies that the HEE is that of

two AdSp+2 with radius RIR, as expected

Sp
Ap

(`→∞) = 2CIRp RpIR Ip

[a
`
, 1
]

(7.24)

where Ap is the area of the entangling surface and

CIRp =
1

4GDN
Vol(SD−p−2)RD−p−2

IR . (7.25)

The factor of 2 in (7.24) counts the two disconnected AdS throats, and comes from the

integration over the angle ψ. For a generic multi-centered configuration with K IR throats

the result will be given in terms of the sum of K contributions. The integration over s needs

the UV regulator a/`, as usual in AdS. Notice that this cut-off is the one that regulates

the volume of the IR AdS after taking the decoupling limit.

At ∆ � 1 the exact solution of η(σ̂, ψ) will exhibit a separatrix and thus we need to

consider the matched expansion. We can estimate roughly that the IR solution becomes

sub-leading compared to the UV at

Xc ≈
R4
UV

2R2
IR

1

∆
=

R4
UV

2z̄ R2
IR

1

`
≡ ā

`
, (7.26)

where X = 1 − σ̂2. Therefore it is useful to separate the integration over σ̂ in a UV

contribution, in which we can use η ≈ ηUV , and an IR contribution, in which we can

use η ≈ ηIR. In our approximation, this way of splitting the integral over σ̂ isolates the

contributions coming from below and above the separatrix. This is a natural thing to do

because in the limit ∆ → ∞ the separatrix will become the UV cut-off. The final result

for the HEE is

Sp
Ap

= 2CIRp RpIR Ip

[ ā
`
, 1
]

+ CUVp RpUV Ip

[a
`
,
ā

`

]
+ . . . (7.27)

where a is a UV cut-off, ā can be read from (7.26), and finally

CUVp =
1

4GDN
Vol(SD−p−2)RD−p−2

UV . (7.28)

The result (7.27) agrees with the general expectations for the HEE along RG flows [30, 31].

8 More about the connectivity index in the IR effective theory

The behavior of the entanglement entropy that we studied in previous sections suggests

that the change of the connectivity index along the RG flow is a process with sharp features

at intermediate energies in the large-N limit. The discussion in sections 1 and 3 suggests

that the origins of these features can be traced to the qualitatively different properties
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of the theory at large and small energies. In particular, we pointed out that part of the

interaction between the IR CFTs at small energies is mediated by multi-trace operators,

and stated that such interactions cannot change the IR connectivity index in the large-N

limit. Any change of the IR connectivity index must be driven by the interactions with the

singleton degrees of freedom. Since this is one of the main points of the proposed picture

we would like to summarize here some well known facts that support its validity.

Energy-momentum conservation, bi-gravity and the connectivity index. Let

us consider the flow from SU(N) to SU(N1) × SU(N2) × U(1) in the large-N limit. As

described in section 3, in quantum field theory the infrared effective description of this flow

involves two large-N IR CFTs deformed separately by single-trace interactions denoted

schematically by VI in (3.1). Interaction between these theories comes from multi-trace

interactions of the schematic form O1O2 in (3.1) and from interactions with the abelian

singleton degrees of freedom. In this section we want to examine what would happen in

the large-N limit if the interaction with the singleton degrees of freedom were absent. All

the interactions are IR-irrelevant, which means that one has to work with an explicit UV

cutoff both in field theory and the AdS/CFT correspondence.

Refs. [4, 5] demonstrated that multi-trace interactions alone do not introduce any

anomalous dimensions to the two energy-momentum tensors of the deformed IR product

theory at leading order in 1/N in the large-N limit.11 As a result, even after the defor-

mation, the theory continues to have two separately conserved energy-momentum tensors.

This is the first sign that the connectivity index cannot be modified as we increase the

energy if the singletons do not contribute in the IR effective field theory description. No-

tice that the subleading 1/N corrections introduce an anomalous dimension to a linear

combination of the energy-momentum tensors and the connectivity index necessarily gets

reduced.

Ignoring the contribution of singletons, on the holographically dual side the IR effec-

tive description involves a bi-gravity (bi-string) theory [4, 5, 15] with the following features.

The spacetime of each graviton asymptotes towards the UV to a deformed AdS×S space.

The UV deformation introduces the ‘1′ in the harmonic function of each throat as we ex-

pand the full harmonic function of the double-center solution around each center. This

deformation captures the irrelevant single-trace part of the deformations VI in each theory

mentioned previously.12 In addition, at leading order in 1/N , the multi-trace deformations

impose modified boundary conditions for the fields in the bulk [32, 33]. It was shown

in [4, 5] that the bulk gravitons remain massless at leading order and the bi-gravity the-

ory is trivial (namely, besides the modified boundary conditions, the theory in the bulk

is a decoupled product of string theories living on separate spacetimes with separate La-

grangians). Subleading 1/N corrections make a linear combination of the bulk gravitons

massive (i.e. modify the gravity Lagrangians) and reduce the connectivity index.

11In [4, 5] this statement was shown for double-trace deformations involving scalar single-trace operators,

but it is not hard to show in general that the leading correction to the anomalous dimension of the energy-

momentum tensors is 1/N suppressed as a consequence of the large-N counting.
12From the UV point of view the IR bi-gravity description arises as we localize the wavefunction of the

single graviton in the multi-center geometry in the vicinity of each center.
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The above discussion suggests that the effects of the multi-trace interactions alone

do not reduce the IR connectivity index at leading order in 1/N . The effects that are

responsible for this reduction at the planar level come from the interaction with the abelian

singleton degrees of freedom. In the bulk bi-gravity picture these are interactions that

take place on the boundary and make the sources dynamical. In the presence of these

interactions only one combination of the bulk stress-energy momentum tensors is classically

conserved.

Factorizability of correlation functions. We mentioned in the introduction that one

of the signs of separability is factorization in correlation functions. Here we would like to

examine how separability and factorization of correlation functions work at leading order in

1/N in a large-N product theory deformed only by multi-trace deformations. For example,

the presence of the double-trace inter-CFT interactions in (3.1) modifies the correlation

functions already at leading order in the 1/N expansion. In particular, the correlation

function 〈O1(x1)O2(x2)〉 (recall Oi, i = 1, 2, is a single-trace operator in the IR CFTi)

receives h12 contributions and is no longer vanishing. This effect alone seems to spoil the

extreme IR factorizability, so one may wonder how it is consistent with the above-proposed

separability in the vicinity of the IR fixed point in the absence of singleton contributions.

It is perhaps simpler to describe the resolution of this question in AdS/CFT language

along the following lines. For concreteness, let us focus on two single-trace (scalar) opera-

tors O1, O2 and assume for clarity that the total effective field theory action is

Stotal = S1 + S2 +

∫
dp+1xh12O1O2 . (8.1)

S1, S2 are the actions of two CFTs, CFT1 and CFT2. In the bulk bi-gravity theory there

are two scalar fields, φ1 and φ2, corresponding to O1, O2. With the boundary of each AdS

spacetime at large radius ri (i = 1, 2), each of these fields will asymptote to

φi =
αi

r∆i
i

+ . . .+
βi

rp+1−∆i
i

+ . . . . (8.2)

∆i is the scaling dimension of the operator Oi. Assuming ∆i >
p+1

2 the double-trace

deformation on the r.h.s. of equation (8.1) is irrelevant. Also, with this assumption the βi
term in (8.2) is the leading term as ri →∞.

The generating functional of the theory (8.1) is obtained by adding sources for Oi,

δS =

∫
dp+1x (J1O1 + J2O2) , (8.3)

and computing the quantum path integral of the full theory

Z = e−W [J1,J2] (8.4)

as a function of the sources Ji. Then, connected correlation functions of O1, O2 are

computed by functional derivatives of W with respect to Ji.
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In gravity one computes the on-shell gravity action IGR as a function of the asymptotic

coefficients βi in (8.2). In the case at hand, these obey the boundary conditions

β1 = J1 + h12 α2 , β2 = J2 + h12 α1 . (8.5)

Using the conditions coming from the regularity of the bulk solutions within the framework

of designer (bi)gravity [34, 35] one can fix a second pair of relations between β1 and α1 on

the one hand, and β2 and α2 on the other. This allows to re-express the bulk solution and

the corresponding on-shell gravity action in terms of Ji. Since the bulk theory is a direct

product of two gravity theories

IGR[J1, J2] = IGR,1[J1, J2] + IGR,2[J1, J2] . (8.6)

The basic relation of the AdS/CFT correspondence is

W [J1, J2] = IGR[J1, J2] . (8.7)

Because of (8.6), (8.7) we see, for example, that the correlation functions 〈O1(x1)O2(x2)〉
are non-vanishing and factorizability is seemingly lost. However, the above procedure

reveals that the main effect of the double-trace deformation is to mix the sources Ji.

Denoting the new combinations as J̃i ≡ βi, so that

W [J̃1, J̃2] = IGR,1[J̃1] + IGR,2[J̃2] , (8.8)

we see that there is a new basis of operators (dual to J̃i) where factorization of correlation

functions reappears. The new basis is non-trivially related to the old one with redefinitions

of the form

O1 =
δJ̃1

δJ1
Õ1 +

δJ̃2

δJ1
Õ2 , O2 =

δJ̃1

δJ2
Õ1 +

δJ̃2

δJ2
Õ2 (8.9)

at any J1, J2. For correlation functions we need to take at the end J1, J2 → 0. When

the regularity conditions are linear, e.g. βi = fi αi for constant fi, the coefficients of the

linear transformation (8.9) are simple functions of the parameters f1, f2, h12. For non-linear

regularity conditions, e.g. βi = fi α
pi
i with pi positive real exponents, the same coefficients

are algebraically less straightforward to obtain. We have computed them for p1 = p2 = 2

as functions of f1, f2, h12, but the expressions are not particularly illuminating and will not

be presented here explicitly.

Although these arguments do not examine the correlation functions of the most gen-

eral operators, combined with the statements about energy-momentum conservation, they

motivate the expectation that it is possible to find density matrices that obey the relation

ρA = ρA,1 ⊗ ρA,2 , (8.10)

by defining appropriately the Hilbert spaces HA,1 and HA,2 (over which we trace) in order to

account for the new basis of operators identified in (8.9). Equivalently, we expect that the

corresponding relative quantum entropy continues to vanish in the deformed theory (8.1),

S12(ρA) = 0, and that the connectivity index remains 2.
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9 Discussion

Generic processes rearrange the interactions and correlations between different degrees of

freedom in a quantum system. In some cases the Hilbert space experiences a fragmentation

where the interaction between degrees of freedom in different parts of the system becomes

weak or even disappears.13 When the latter happens correlation functions appropriately

factorize and we say that the process changed the connectivity index of the system.

In this paper we pointed out that there are instances where such processes can exhibit

sharp features at finite interaction coupling. We examined a particular class of examples

that occur in the Coulomb branch of large-N superconformal field theories. In that class we

presented evidence that suggests that the effect is a consequence of a competition between

large-N effects and effects associated to the specifics of the renormalization group flow. It

would be interesting to learn if there are other classes of quantum systems that exhibit

this kind of behavior. A potentially interesting holographic context for this purpose is the

context of ref. [36].

We discussed two major probes of transitions between fixed points with different con-

nectivity indices. The first one is entanglement entropy on a spatial region A and the second

one are quantum information measures of separability, e.g. relative entropy of entanglement

and quantum mutual information. The main lessons and emerging open questions of our

study can be summarized as follows.

Entanglement entropy. For spherical regions the entanglement entropy S is a function

of the radius ` of the sphere. We computed this function in the Coulomb branch of large-

N gauge theories and noticed that a sharp feature appears through the formation of a

separatrix in the Ryu-Takayanagi surface. The separatrix is absent for ` < `c and present

for any ` ≥ `c, where `c is a critical radius. The presence of `c signals a change in the

behavior of the entanglement above `c, but since we lack an analytic solution of the Ryu-

Takayanagi surface in all regimes, it has been hard to determine the precise nature of this

change. It would be very interesting to learn if the entanglement entropy is a C∞ function

at `c, or whether some derivative of S diverges.

It would also be important to understand better why the perturbative UV re-

sults (6.20), (6.30), and (6.40), do not depend on ∆2 and ∆3 corrections to the RT surface.

In field theory, it is natural to associate those contributions to operators of dimension 2

and 3. The perturbative holographic computation would be reliable for small entangling

regions and one way to proceed would be to develop a small length OPE expansion for

the twist fields. Because of supersymmetry some coefficients in the OPE may be directly

vanishing, or may vanish when the limit n → 1 in the replica trick is taken. This would

also provide a non-trivial check of the RT prescription out of conformality.

Entanglement measures of separability. We pointed out that the quantum informa-

tion notion of separability is a very suitable probe of physics in processes that change the

connectivity index. In our examples we expect the quantum mutual information S12(ρA)

13The inverse is also possible. The interactions between different parts of a fragmented Hilbert space

may turn on and grow.
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to vanish at ` = ∞ (the extreme IR) and increase as ` decreases. We also expect certain

suppressing effects in the large-N limit.

It would be interesting to know:

(a) if S12(`) exhibits a critical radius `∗c , analogous to `c of the entanglement entropy,

and if so, what is the precise relation between the critical radii `c and `∗c , e.g. whether

`c = `∗c . Also, we would like to determine the precise behavior of S12(`) at `∗c , e.g.

in order to verify whether it is continuous at that point, or whether some derivative

diverges.

(b) it would be useful for many general purposes to know how to compute S12(`) ef-

ficiently, for instance with holographic methods in the AdS/CFT correspondence.

Notice that the definition of S12(`) involves the entanglement entropy S(`), that can

be computed holographically à la Ryu-Takayanagi, and the entanglement entropies

of the reduced density matrices ρA,1, ρA,2. The authors of the recent paper [13] ar-

gued that the latter entropies for Ac =Ø are computed in AdS × S spacetimes by a

co-dimension-2 surface that goes through the equator of the transverse sphere S. It

would be interesting to know if there is a generalization of this statement for Ac 6=Ø.

Related questions and quantities have been discussed in the recent condensed matter

literature in [37–40].

Similar observations and questions can be made for other measures of separability, for

example the relative entropy of entanglement DREE (2.4), although most likely this is a

much harder quantity to compute explicitly.
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A Minimal surface equations

In all cases analyzed in the main text, the Lagrangian of the Ryu-Takayanagi minimal

surface can be put into the form

L = σp−1K[θ, η]H[θ, η]

√
1 +

1

α

∂θη2

η2
+ (H[θ, η])2 ∂ση2 (A.1)
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where α is a constant. We will use the notation ∂ση = η(1,0) and ∂θη = η(0,1). For example,

the case of D3 branes in the coordinates of section 7 is

H2 =
1

η4

1

4
√
z̄4 + η2 + 2z̄2η cosψ

[
2
(
z̄2 +

√
z̄4 + η2 + 2z̄2η cosψ

)2
− η2

]
, (A.2)

K = η3

[√
1 +

z̄4

η2
+

2z̄2

η
cosψ +

(
z̄2

η
+ cosψ

)]2

. (A.3)

The equation of motion is quite complicated and can be expressed as the sum of

different pieces. We found convenient to write it as

D0 +D1 +D2 +D3 = 0 . (A.4)

The first operator, D0, is a generalization of the flat space minimal surface equation, namely

D0 = −d(2,0)η
(2,0) − d(1,1)η

(1,1) − d(0,2)η
(0,2) +

1

αη

[
η(0,1)

ηF

]2

(A.5)

with

d(2,0) = 1 +

[
η(0,1)

η

]2

, d(1,1) = −2
η(0,1)η(1,0)

η2
, d(0,2) =

1

η2F2
+

[
η(1,0)

η

]2

. (A.6)

The remaining terms are

D1 =
1

F2

[
1 +

(
η(0,1)

)2
αη2

+
(
η(1,0)

)2
F2

](
K(0,1)

K
− η(0,1)

αη2

K(1,0)

K

)
, (A.7)

D2 = −1

2

(
1 +

(
η(0,1)

)2
αη2

)[
∂η

(
1

F2

)
− η(0,1)

αη2
∂θ

(
1

F2

)]
, (A.8)

D3 =
1− d
x

η(1,0)

[
1 +

(
η(0,1)

)2
αη2

+
(
η(1,0)

)2
F2

]
. (A.9)
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