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HARMONIC FUNCTIONS ON RANK ONE

ASYMPTOTICALLY HARMONIC MANIFOLDS

GERHARD KNIEPER AND NORBERT PEYERIMHOFF

Abstract. Asymptotically harmonic manifolds are simply connected
complete Riemannian manifolds without conjugate points such that all
horospheres have the same constant mean curvature h. In this article we
present results for harmonic functions on rank one asymptotically har-
monic manifolds X with mild curvature boundedness conditions. Our
main results are (a) the explicit calculation of the Radon-Nykodym de-
rivative of the visibility measures, (b) an explicit integral representation
for the solution of the Dirichlet problem at infinity in terms of these
visibility measures, and (c) a result on horospherical means of bounded
eigenfunctions implying that these eigenfunctions do not admit non-
trivial continuous extensions to the geometric compactification X.
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1. Introduction

Manifolds with asymptotically harmonic metrics were first introduced by
Ledrappier ([Led, Thm. 1]) in the special case of negative curvature in con-
nection with rigidity of measures related to the Dirichlet problem (harmonic
measure) and the dynamics of the geodesic flow (Bowen-Margulis measure).
One of the equivalent characterisations of asymptotically harmonic metrics
there was that all horospheres have constant mean curvature h ≥ 0. We
express this geometric property in terms of Jacobi tensors (see Definion
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1.1 below). Let (X, g) be a complete Riemannian manifold without con-
jugate points and let π : SX → X be the canonical footpoint projection
from the unit tangent bundle. For v ∈ SX let cv : R → X be the unique
geodesic given by c′v(0) = v. Let Sv,r and Uv,r be the orthogonal Jacobi
tensors along cv, defined by Sv,r(0) = Uv,r(0) = id and Sv,r(r) = 0 and
Uv,r(−r) = 0. Note that we have Uv,r(t) = S−v,r(−t). The stable and un-
stable Jacobi tensors Sv and Uv are then defined as the Jacobi tensors along
cv with initial conditions Sv(0) = Uv(0) = id and S′

v(0) = limr→∞ S′
v,r(0)

and U ′
v(0) = limr→∞U ′

v,r(0). They are related by Uv(t) = S−v(−t). For
simplicity of notation, we introduce U(v) = U ′

v(0) and S(v) = S′
v(0). (For

more detailed information on Jacobi tensors see, e.g., [Kn1].)

Definition 1.1. An asymptotically harmonic manifold (X, g) is a complete,
simply connected Riemannian manifold without conjugate points such that
for all v ∈ SX we have trU(v) = h for a constant h ≥ 0.

The manifolds considered in this article are rank one asymptotically har-
monic manifolds. The notion of rank has been introduced by Ballmann, Brin
and Eberlein in [BBE] for nonpositively curved manifolds as the dimension
of the parallel Jacobi fields along geodesics. Since we do not assume non-
positive curvature, the notion of rank has to be understood in the following
generalized sense given in [Kn2, Def. 3.1]:

Definition 1.2. Let (X, g) be a complete simply connected Riemannian
manifold without conjugate points. For v ∈ SX let D(v) = U(v) − S(v)
and we define

rank(v) = dim(kerD(v)) + 1

and
rank(X) = min{rank(v) | v ∈ SX}.

In [KnPe2], we proved equivalence of the following four properties for
asymptotically harmonic manifoldsX under the mild curvature boundedness
condition

(1.1) ‖R‖ ≤ R0 and ‖∇R‖ ≤ R′
0

for some constants R0, R
′
0 > 0: (a) X has rank one, (b) X has Anosov

geodesic flow, (c) X is Gromov hyperbolic, and (d) X has purely exponen-
tial volume growth with growth rate hvol = h. These equivalences were
first proved for noncompact harmonic manifolds in [Kn2] and for asymp-
totically harmonic manifolds admitting compact quotients in [Zi1]. Besides
negatively curved symmetric spaces, Damek-Ricci spaces provide examples
of rank one harmonic and therefore also asymptotically harmonic manifolds,
since they all have purely exponential volume growth. As a consequence, all
Damek-Ricci spaces are Gromov hyperbolic. (Note that all non-symmetric
Damek-Ricci spaces admit zero-curvature.) In this article, we use the above
equivalences to study harmonic functions on rank one asymptotically har-
monic manifolds (X, g) satisfying (1.1). Let us discuss the results of this
paper in more detail.

In Sections 2 and 3, we introduce the geometric boundaryX(∞) via equiv-
alence classes of geodesic rays and the canonical maps ϕp : SpX → X(∞),
ϕp(v) = cv(∞). These maps have natural extensions ϕ̄p to the geometric
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compactification X = X ∪ X(∞), and we show that these extensions are
homeomorphisms. The visibility measures {µp} on X(∞) are then defined
as follows:

Definition 1.3. Let M1(X(∞)) denote the space of Borel probability mea-
sures on X(∞). For every p ∈ X, let µp ∈ M1(X(∞)) be defined by

∫

X(∞)
f(ξ) dµp(ξ) =

1

ωn

∫

SpX
f(ϕp(v)) dθp(v) ∀ f ∈ C(X(∞)),

where n = dim(X) and ωn is the volume of the (n−1)-dimensional standard
unit sphere and dθp is the volume element of SpX induced by the Riemannian
metric. µp is called the visibility measure of (X, g) at the point p.

Sections 4 and 5 are concerned with the explicit calculation of the Radon-
Nykodym derivative of the visibility measures. To state the result (Theorem
1.4 below), we need Busemann functions. Let v ∈ SqX and ξ = cv(∞) ∈
X(∞). Then the Busemann function (associated to v ∈ SqX or to (q, ξ) ∈
X ×X(∞)) is defined as

(1.2) bv(p) = bq,ξ(p) = lim
t→∞

d(cv(t), p) − t.

Theorem 1.4. Let (X, g) be a rank one asymptotically harmonic manifold
satisfying (1.1). Let (µp)p∈X be the associated family of visibility measures.
Then these measures are pairwise absolutely continuous and we have

dµp
dµq

(ξ) = e−hbq,ξ(p).

An analogous result on the Radon-Nykodym derivative for asymptotically
harmonic manifolds in the case of pinched negative curvature was given in
[CaSam, Prop. 6.1].

Since our rank one asymptotically harmonic manifolds (X, g) are Gromov
hyperbolic and have positive Cheeger constants (see [KnPe2, Prop. 5.3]), the
general theory of Ancona [Anc1, Anc2] implies that the geometric boundary
and the Martin boundary agree and that the Dirichlet problem at infinity can
be solved. In Section 6 we give an alternative direct proof of this latter fact
and give an explicit integral representation for the solution of the Dirichlet
problem at infinity in terms of the visibility measures:

Theorem 1.5. Let (X, g) be a rank one asymptotically harmonic manifold
satisfying (1.1). Let f : X(∞) → R be a continuous function. Then there
exists a unique harmonic function Hf : X → R such that

(1.3) lim
x→ξ

Hf (x) = f(ξ).

Moreover, Hf has the following integral presentation:

Hf (x) =

∫

X(∞)

f(ξ)dµx(ξ),

where {µx}x∈X ⊂ M1(X(∞)) are the visibility probability measures.

A related result in the setting of harmonic manifolds can be found in
Zimmer [Zi2, Thm. 1]. Moreover, the solution of the Dirichlet problem
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at infinity for general nonpositively curved rank one manifolds admitting
compact quotients was shown by Ballmann [Ba].

In Section 8 we consider eigenfunctions ∆f + λf = 0, λ ∈ R\{0} on rank
one asymptotically harmonic manifolds X satisfying (1.1). We show that
if such an eigenfunction f ∈ C∞(X,C) has a continuous extension to the
boundary X(∞), then the extension must be necessarily trivial, in contrast
to Theorem 1.5 for harmonic functions. The proof is based on taking horo-
spherical means. Since horospheres H are noncompact, the averages have to
be taken via compact exhaustions {Kj} with smooth boundaries ∂Kj . We
first observe in Section 8 (see Theorem 8.1) that, for continuous functions
f : X = X ∪ X(∞) → R and horospheres H centered at ξ ∈ X(∞) with
compact exhaustion {Kj}, we have

(1.4) lim
j→∞

∫
Kj
f(x)dx

voln−1(Kj)
= f(ξ).

The expression (8.1) is called the horospherical mean of f with respect to the
exhaustion {Kj}. In Section 7, we prove that all horospheres in these spaces
have polynomial volume growth, which implies that they admit (compact)
isoperimetric exhaustions {Kj}, that is,

(1.5)
voln−2(∂Kj)

voln−1(Kj)
→ 0 as j → ∞.

The main result of Section 8 is that, for all λ ∈ R\{0}, the horospherical
means (with respect to isoperimetric exhaustions) of bounded eigenfunctions
are zero.

Theorem 1.6. Let (X, g) be a rank one asymptotically harmonic manifold
of dimension n satisfying (1.1) and h > 0 be the mean curvature of all horo-
spheres. Let λ 6= 0 be a real number and f ∈ C∞(X) be a bounded function
satisfying ∆f + λf = 0 and H ⊂ X be a horosphere with isoperimetric
exhaustion {Kj}. Then we have

(1.6) lim
j→∞

∫
Kj
f(x)dx

voln−1(Kj)
= 0.

This result leads to the following above mentioned fact, complementing
Theorem 1.5.

Theorem 1.7. Let (X, g) be a rank one asymptotically harmonic manifold
satisfying (1.1). Let λ ∈ R\{0} and f ∈ C∞(X) be an eigenfunction ∆f +
λf = 0. If f has a continuous extension F ∈ C(X) then we have necessarily
F |X(∞) ≡ 0.

Acknowledgement: The authors would like to thank Evangelia Samiou
for bringing the references [ItSa1, ItSa2] to their attention.

2. Uniform divergence of geodesics

In this section, we prove that for every distance d > 0 and any angle α > 0
there exists a t0 > 0, such that any two unit speed geodesics c1, c2 starting
at the same point and differing by an angle ≥ α will diverge uniformly in
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the sense that d(c1(t), c2(t)) ≥ d for all t ≥ t0. For the proof, we start with
the following lemma.

Lemma 2.1. Let (X, g) be a manifold without conjugate points and, for
v ∈ SX, let Av be the orthogonal Jacobi tensor along cv satisying Av(0) = 0
and A′

v(0) = id. Then we have

(i) Av(t) = Uv(t)
t∫
0

(U∗
vUv)

−1(u)du,

(ii) (U ′
v(0)− S′

v,t(0))
−1 =

t∫
0

(U∗
vUv)

−1(u)du.

Proof. Since the endomorphism Uv(u) is non-singular and Lagrangian for
all u ∈ R, we conclude from [Kn2, Prop. 2.1] that

Av(t) = Uv(t)

(∫ t

0
(U∗

vUv)
−1(u)du C1 + C2

)

with suitable constant tensors C1 and C2. Evaluating and differentiating
this identity at t = 0 yields C2 = 0 and C1 = id, finishing the proof of (i).
The statement (ii) can be found in [Kn2, Lemma 2.3]. �

Proposition 2.2. Let (X, g) be a rank one asymptotically harmonic mani-
fold satisfying (1.1). Then there exist constants a, ρ > 0 such that

‖Av(t)x‖ ≥ ae
ρ
2
t‖x‖

for all v ∈ SX, x ∈ v⊥ ⊂ TX and t ≥ 1.

Proof. We conclude from [KnPe2, Thm. 1.3] that there exists ρ > 0 such
that D(v) = U(v) − S(v) ≥ ρ · id. Using [KnPe2, Prop. 2.5] and the fact
that Sv(t) is non-singular for t ≥ 0, we conclude that there exists a2 > 0

such that ‖S−1
v (t)y‖ ≥ 1

a2
e

ρ
2
t‖y‖ for all y ∈ (Φtv)⊥, where Φt : SX → SX

denotes the geodesic flow. Using SΦtw(u)yu = Sw(u + t)(S−1
w (t)y)u (where

yu is the parallel translation of y ∈ (Φtw)⊥ along cv) with u = −t and
−v = Φtw yields

‖Uv(t)y‖ = ‖S−v(−t)y‖ = ‖S−1
−Φtv(t)yt‖ ≥ 1

a2
e

ρ
2
t‖y‖.

Lemma 2.1 yields

‖Av(t)(U ′
v(0) − S′

v,t(0))y‖ = ‖Uv(t)y‖ ≥ 1

a2
e

ρ
2
t‖y‖,

i.e.,

‖Av(t)x‖ ≥ 1

a2‖U ′
v(0) − S′

v,t(0)‖
e

ρ
2
t‖x‖ ≥ 1

a2(‖U ′
v(0)‖ + ‖S′

v,t(0)‖)
e

ρ
2
t‖x‖.

The proposition follows now from ‖U ′
v(0)‖ ≤ √

R0 and

‖S′
v,t(0)‖ = ‖A′

v(t)A
−1
v (t)‖ ≤

√
R0 coth(

√
R0),

which can be found in [KnPe2, Lem. 2.2] �

Using this we derive the uniform divergence of geodesics described above.
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Corollary 2.3. Let cv : [0,∞) → X and cw : [0,∞) → X be two geodesics
with v,w ∈ SpX. Then

d(cv(t), cw(t)) ≥ a(t)∠(v,w)

where a : [0,∞) → [0,∞) is a function (not depending on p ∈ X) with
lim
t→∞

a(t) = ∞.

Proof. Let c : [0, 1] → X be a geodesic connecting cv(t) with cw(t). Then c
is given by

c(s) = expp r(s)v(s),

where v(s) ∈ SpX and r(s) > 0 for all 0 ≤ s ≤ 1, and v(0) = v, v(1) = w
and r(0) = r(1) = t. Then

c′(s0) = D expp(r(s0)v(s0))(r
′(s0)v(s0) + r(s0)v

′(s0))

= r′(s0)c
′
v(s0)

(r(s0)) +Av(s0)(r(s0))(v
′(s0)).

Since c′v(s0)(r(s0)) ⊥ Av(s0)(r(s0))(v
′(s0)), we obtain

∥∥c′(s0)
∥∥2 = (r′(s0))

2 + ||Av(s0)(r(s0))v′(s0)||2

≥ ||Av(s0)(r(s0))v′(s0)||2.
If there exists s0 ∈ [0, 1] such that r(s0) ≤ t

2 then using the triangle inequal-
ity we have d(cv(t), cw(t)) ≥ t ≥ (t/π)∠(v,w). If this is not the case, we
obtain for all t > 0

d(cv(t), cw(t)) = length(c) ≥
1∫

0

||Av(s)(r(s))v′(s)||ds

≥ ae
ρ
4
t

1∫

0

||v′(s)||ds

≥ ae
ρ
4
t
∠(v,w).

The corollary follows now with the choice

a(t) = min

{
t

π
, ae

ρ
4
t

}
.

�

Remark. Note that the proof shows that the function a(t) describing the
divergence of geodesics has at least linear growth.

3. The geometric compactification

Let (X, g) be a rank one asymptotically harmonic manifold satisfying
(1.1). The geometric boundary X(∞) is the set of equivalence classes of
asymptotic geodesic rays. Two geodesic rays c1, c2 : [0,∞) → X are called
asymptotic, if there exists C > 0 with d(c1(t), c2(t)) ≤ C for all t ≥ 0. The
equivalence class of a geodesic ray c is denoted by c(∞).

Let p ∈ X and consider the map ϕp : SpX → X(∞) with ϕp(v) = cv(∞).
Uniform divergence of geodesics implies that ϕp is injective. Our next aim
is to prove surjectivity of ϕp. For this, we first prove general results which
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will also be useful later on. The first result requires besides no conjugate
points only a lower bound on the sectional curvature of X.

Proposition 3.1. Let p, q0, p0 ∈ X be three different points such that 1 <
r = d(p, p0) = d(q0, p0) and d(p, q0) < r − 1. Let β be the radial projection
(from p0) of the geodesic connecting p and q0 into Sr(p0). Then there is a
function b : R → (0,∞) such that

dSr(p0)(p, q0) ≤ length(β) ≤
(
max
|s|≤r

b(s)

)
d(p, q0),

where dSr(p0) is the intrinsic distance of the sphere Sr(p0).

Proof. Let γ : [0, d(p, q0)] → X be the geodesic connecting p and q0. We
first write γ and β in polar coordinates, i.e.,

γ(t) = expp0(d(t)v(t)), β(t) = expp0(rv(t))

with d(t) = d(p0, γ(t)) > 1 and v : [0, d(p, q0)] → Sp0X. Then we have

γ′(t) = d′(t)c′v(t)(d(t)) +Av(t)(d(t))(v
′(t))

and β′(t) = Av(t)(r)(v
′(t)) . Note that the lower bound on sectional cur-

vature yields the existence of a function b : R → [0,∞) such that for all
v ∈ SX and r ≥ 1 we have ‖Sv,r(t)‖ ≤ b(t) (see proof of Lemma 2.16 in
[Kn1]). Using Av(r)A

−1
v (x) = Sv,x(x− r) we therefore obtain

‖β′(t)‖ = ‖Av(t)(r)v′(t)‖ ≤ ‖Av(t)(r)A−1
v(t)(d(t))‖ · ‖Av(t)(d(t))v

′(t)‖
= ‖Sv(t),d(t)(d(t)− r)‖ · ‖Av(t)(d(t))v′(t)‖
≤ b(d(t)− r)

√
‖Av(t)(d(t))v′(t)‖2 + ‖d′(t)c′v(t)(d(t)‖2

≤
(
max
|s|≤r

b(s)

)
‖γ′(t)‖.

The last inequality above follows from r − d(p, q0) ≤ d(t) = d(p0, γ(t)) ≤
r + d(p, q0) and d(p.q0) ≤ r. �

For the next result, we need to introduce for every v ∈ SX and r > 0
the function bv,r(p) = d(cv(r), p) − r and the Busemann function bv(p) =
limr→∞ bv,r(p). Since we also use a uniform bound on on the norm of Jacobi
tensor Sv,r(t) for all t ≥ 0 and r ≥ 1 as has been derived in [KnPe2, Cor.
2.6] we need the assumption on X made at the beginning of this section.

Corollary 3.2. Let p, q ∈ X, r > 2d(p, q)+1, v ∈ SpX and w = − grad bv,r(q) ∈
SqX. Then there exists a constant C = C(r) > 0 such that

d(cv(t), cw(t)) ≤ (1 + 2Ce−
ρ
2
t)d(p, q) for all 0 ≤ t ≤ r.

Proof. Let p0 = cv(r), q0 = cw(d(p0, q)− r) ∈ Sr(p0) and w0 = c′w(d(p0, q)−
r). Then we have

d(p, q0) ≤ d(p, q) + d(q, q0) ≤ 2d(p, q) < r − 1.

Let β : [0, 1] → Sr(p0) be the intrinsic geodesic in Sr(p0) connecting p
and q0. Let dp0(x) = d(p0, x) and N(x) = − grad dp0(x) for x 6= p0. Let
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βt : [0, 1] → Sr−t(p0) defined by βt(s) = cN(β(s))(t) for t ∈ [0, r). Then
β′t(s) = SN(β(s)),r(t)(β

′(s))t, which implies, using [KnPe2, Cor. 2.6],

‖β′t(s)‖ ≤ ‖SN(β(s)),r(t)‖ · ‖β′(s)‖ ≤ a2e
− ρ

2
t‖β′(s)‖.

Consequently,

d(cv(t), cw0(t)) ≤ length(βt) ≤ a2e
− ρ

2
tdSr(p0)(p, q0) ≤ Ce−

ρ
2
td(p, q0)

with C = a2max|s|≤r b(s), using Proposition 3.1. This implies

d(cv(t), cw(t)) ≤ d(cv(t), cw0(t)) + d(cw0(t), cw(t))

≤ Ce−
ρ
2
td(p, q0) + d(q, q0)

≤ (1 + 2Ce−
ρ
2
t)d(p, q).

�

Now we prove surjectivity of ϕp: Let c : [0,∞) → X be a geodesic ray
with w = c′(0) ∈ SqX. Let v = − grad bw(p) ∈ SpX. Then cv is asymptotic
to cw by Corollary 3.2 with r = ∞. Therefore ϕp(v) = c(∞) and ϕp is
surjective.

We define X = X ∪ X(∞) and introduce for every p ∈ X the following

bijective map ϕ̄p : B1(p) → X, where B1(p) ⊂ TpX is the closed ball of
radius 1:

ϕ̄p(v) =

{
ϕp(v) if ‖v‖ = 1,

expp

(
1

1−‖v‖v
)

if ‖v‖ < 1.

We define a topology on X such that the bijective map ϕ̄p : B1(p) → X is

a homeomorphism. Next we show that this topology on X does not depend
on the reference point p. For that we need to show that ϕ̄p,q = ϕ̄−1

q ◦ ϕ̄p :

B1(p) → B1(q) is a homeomorphism.
For the continuity of ϕ̄p,q note first that

ϕ̄p,q(v) =

{
− grad bv(q) if ‖v‖ = 1,

exp−1
q

(
expp

(
1

1−‖v‖v
))

if ‖v‖ < 1.

Let vn ∈ B1(p) such that vn → v ∈ B1(p). If ‖v‖ < 1, the continuity of
ϕ̄p,q at v follows from the continuity of the exponential maps. If ‖v‖ = 1,
it suffices to consider two cases: in the first case we have 0 6= ‖vn‖ < 1 for
all n and ‖vn‖ → 1, and in the second case we have ‖vn‖ = 1 for all n. We
present the prove of the first case, the second case goes analogously: Note
that we have

exp−1
q

(
expp

(
1

1− ‖vn‖
vn

))
=

− d(q, cvn(f(‖vn‖))
1 + d(q, cvn(f(‖vn‖))

grad b vn
‖vn‖

,f(‖vn‖)(q) = wn,

where f(x) = x
1−x . We need to show that wn → − grad bv(q). Choose a

convergent subsequence wnj
∈ SqX with limit w ∈ SqX. Then there exists

a constant a > 0 such that for all sufficiently large n ∈ N

d(cvn(t), cwn(t)) ≤ a for all 0 ≤ t ≤ f(‖vn‖) = rn,
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by Corollary 3.2. Note that rn → ∞. This implies that

d(cv(t), cw(t)) ≤ a for all t ≥ 0,

i.e., cv and cw are asymptotic geodesic rays. By Corollary 3.2, cv and
c− gradv(q)

are also asymptotic. Therefore, by the injectivity of ϕq, we have
w = − gradv(q). This finishes the proof that ϕ̄p,q is a homeomorphism.

This topology on X was first introduced for Hadamard manifolds by
Eberlein-O’Neill [EON] and is called cone topology. The points in X(∞) ⊂
X are called points at infinity. Note that a sequence xn ∈ X converges in
the cone topology to a point at infinity if and only if for every p ∈ X we have
d(xn, p) → ∞ and for every ǫ > 0 there exists n(ǫ) such that ∠p(xn, xm) < ǫ
for all n,m ≥ n(ǫ). We write “∠p(xn, xm) → 0 as n,m→ ∞” for the latter.

4. Gromov hyperbolicity

We start this section by introducing the Gromov product.

Definition 4.1. Let (X, d) be a metric space and x0 ∈ X a reference point.
The Gromov product (x|y)x0 of x, y ∈ X is defined as

(x|y)x0 =
1

2
(d(x, x0) + d(y, x0)− d(x, y))

Note that the Gromov product (x|y)x0 is non-negative, by the triangle
inequality. A metric space (X, d) is called a geodesic space, if any two points
x, y ∈ X can be connected by a geodesic, i.e., if there exists a curve σxy :
[0, d(x, y)] → X connecting x and y, such that d(σxy(s), σxy(t)) = |t− s| for
all s, t ∈ [0, d(x, y)].

Definition 4.2. A geodesic space (X, d) is called δ-hyperbolic if every ge-
odesic triangle ∆ is δ-thin, i.e., every side of ∆ is contained in the union
of the δ-neighborhoods of the other two sides. If a geodesic space (X, d) is
δ-hyperbolic for some δ ≥ 0, we call (X, d) a Gromov hyperbolic space.

Let us recall the following two general results for Gromov hyperbolic
spaces.

Proposition 4.3. (see [CDP, Chapter 1, Prop. 3.6]) Let (X, d) be a δ-
hyperbolic space. Then we have for all x0, x, y, z ∈ X:

(x|y)x0 ≥ min{(x|z)x0 , (y|z)x0} − 8δ.

Proposition 4.4. (see [CDP, Chapter 3, Lem. 2.7]) Let (X, d) be a δ-
hyperbolic space. Then we have for all x0, x, y ∈ X:

(x|y)x0 ≤ d(x0, σxy) ≤ (x|y)x0 + 32δ.

Now assume that X is a rank one asymptotically harmonic manifold sat-
isfying (1.1) and, therefore, a Gromov hyperbolic space, by [KnPe2, Thm.
1.5]. We show now that two sequences {xn}, {yn} ⊂ X have the same lim-
iting behavior at infinity in the cone topology if and only if

lim
n→∞

(xn|yn)p = ∞.

We note that condition limn,m→∞(xn|xm)p = ∞ is used for general Gromov
hyperbolic space as a definition for convergence to infinity (see [BS, Section
2.2]).
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Theorem 4.5. Let X be a rank one asymptotically harmonic manifold satis-
fying (1.1). Let p ∈ X and {xn}, {yn} be two sequences in X. The following
are equivalent.

(a) We have d(xn, p), d(yn, p) → ∞ and ∠p(xn, yn) → 0 for n→ ∞.
(b) (xn|yn)p → ∞ for n→ ∞.

Proof. (b) ⇒ (a): X is δ-hyperbolic for some δ ≥ 0. Let (xn|yn)p → ∞. We
know from Proposition 4.4 that d(p, xn), d(p, yn) ≥ (xn|yn)p, which shows
that d(p, xn), d(p, yn) → ∞ as n→ ∞. It remains to show that ∠p(xn, yn) →
0. Let Upxn , Upyn be δ-tubes around the geodesic arcs σpxn and σpyn . Then
the geodesic σxnyn must contain a point p1 ∈ Upxn ∩Upyn. We conclude from
Proposition 4.4 that

d(p1, p) ≥ d(σxnyn , p) ≥ (xn|yn)p.
Let γ1 and γ2 be the shortest curves connecting p1 with σpxn and σpyn at the
points x̂n and y′n, see Figure 1. Then d(p1, x̂n), d(p1, y

′
n) ≤ δ, which implies

d(x̂n, y
′
n) ≤ 2δ and

d(x̂n, p), d(y
′
n, p) ≥ (xn|yn)p − δ.

Upxn

Upyn

xn yn

p1

p

x̂n y′n

Figure 1. Illustration of the proof of (b) ⇒ (a) in Theorem 4.5

We assume, without loss of generality, that d(x̂n, p) ≥ d(y′n, p). Let ŷn ∈
σpyn be such that d(p, ŷn) = d(p, x̂n). This implies that

d(x̂n, p) = d(ŷn, p) ≥ (xn|yn)p − δ.

Since

d(y′n, p) ≤ d(ŷn, p) = d(x̂n, p) ≤ d(y′n, p) + d(x̂n, y
′
n) ≤ d(y′n, p) + 2δ,
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and since y′n, ŷn lie on the same geodesic arc σpyn , we have d(y′n, ŷn) ≤ 2δ.
This implies that

d(ŷn, x̂n) ≤ d(y′n, x̂n) + d(ŷn, y
′
n) ≤ 2δ + 2δ = 4δ.

Using Corollary 2.3, we conclude that

4δ ≥ length(σx̂nŷn) ≥ a(d(x̂n, p))∠p(xn, yn).

Since d(x̂n, p) → ∞, we also have a(d(x̂n, p)) → ∞, which implies that
∠p(xn, yn) → 0.

(a) ⇒ (b): Assume ∠p(xn, yn) → 0 and d(xn, p), d(yn, p) → ∞ for n→ ∞.
For all R > 0, there exists n0(R) ≥ 0, such that for all n ≥ n0(R):

(4.1) d(p, xn), d(p, yn) ≥ R and d(cpxn(R), cpyn(R)) ≤ 1,

since ∠p(xn, yn) → 0 for n → ∞. Note that the constant n0(R) does not
depend on p, but only on the values d(p, xn), d(p, yn) and ∠p(xn, yn), since
X has a uniform lower curvature bound.

We show now the following: The geodesic arc σxnyn has empty intersection
with the open ball BR− 1

2
(p) for all n ≥ n0(R).

If σxnyn ∩ BR(p) = ∅, there is nothing to prove. If σxnyn ∩ BR(p) 6= ∅,
there exists a first t0 > 0 and a last t1 > 0 such that

q1 = σxnyn(t0), q2 = σxnyn(t1) ∈ SR(p),

where SR(p) denotes the sphere of radius R > 0 around p (see Figure 2).
Then we have

d(q1, q2) = l(σxnyn)− d(xn, q1)− d(yn, q2).

p

xn yn

q1 q2

SR(p)

σpxn(R) σpyn(R)

Figure 2. Illustration of the proof of (a) ⇒ (b) in Theorem 4.5
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Using (4.1), we have

l(σxnyn) ≤ d(xn, σpxn(R)) + d(σpxn(R), σpyn(R)) + d(σpyn(R), yn)

≤ d(xn, σpxn(R)) + d(yn, σpyn(R)) + 1,

which implies that

(4.2)
d(q1, q2) ≤ (d(xn, σpxn(R))− d(xn, q1))

+ (d(yn, σpyn(R))− d(yn, q2)) + 1.

Since d(p, xn) = R + d(σpxn(R), xn) ≤ d(q1, xn) + R (by the triangle in-
equality), we obtain d(xn, q1)−d(xn, σpxn(R)) ≥ 0, and similarly d(yn, q2)−
d(yn, σpyn(R)) ≥ 0. This, together with (4.2) shows d(q1, q2) ≤ 1. But
then the geodesic segment of σxnyn between q1 and q2 cannot enter the ball
BR− 1

2
(p).

Therefore, we have for all n ≥ n0(R),

R− 1

2
≤ d(p, σxnyn) ≤ (xn|yn)p + 32δ,

using Proposition 4.4. This shows that

(xn|yn)p → ∞ as n→ ∞.

�

5. Visibility measures and their Radon-Nykodym derivative

Let (X, g) be a rank one asymptotically harmonic manifold of dimension
n. The boundary X(∞) ⊂ X is homeomorphic to the sphere Sn−1 and
equipped with the relative topology of the cone topology. Moreover, we
have a family of visibility measures {µp ∈ M1(X(∞))}p∈X , which were
introduced in Definition 1.3. We will see that any two visibility measures
µp, µq ∈ M1(X(∞)) are absolutely continuous, by calculating their Radon-
Nykodym derivative via a limiting process. Similar calculations were carried
out in [CaSam, Section 6.1] for asymptotically harmonic manifolds with
pinched negative curvature.

Lemma 5.1. For all p, q ∈ X there exists t(p, q) > 0 such that for all t ≥
t(p, q) and all v ∈ SqX the geodesic ray cv : [0,∞) → X intersects St(p) in a
unique point Ft(v) (see Figure 3). In particular, the map Ft : SqX → St(p)
is bijective.

Proof. Let a(t) be as in Corollary 2.3. Choose t0 such that for all t ≥ t0 we
have 2d(p, q) ≤ a(t). Define

t(p, q) = max{d(p, q) + 1, t0}.
In particular, q lies in the ball of radius t around p, for all t ≥ t(p, q), and
hence for all v ∈ SqX the geodesic ray cv : [0,∞) → X intersects St(p). Let
t ≥ t(p, q), and assume that q′ = cv(t1) is an intersection point of cv([0,∞))
and St(p) such that c′v(t1) is either pointing into Bt(p) or is tangent to St(p),
i.e.,

∠(c′v(t1), c
′
w(t)) ≥ π/2,
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SqX

q
v

Ft(v)

St(p)

t

p

Figure 3. Illustration of the map Ft : SqX → St(p)

where w ∈ SpX is the unique vector such that cw(t) = q′. Using the triangle
inequality we obtain

t− d(p, q) ≤ t1 ≤ t+ d(p, q)

Using Corollary 2.3, we obtain for all s ≥ 0

d(cv(t1 − s), cw(t− s)) ≥ a(s)π/2.

In particular for s = t this yields

a(t)π/2 ≤ d(cv(t1 − t), p) ≤ d(cv(t1 − t), q) + d(q, p) ≤ 2d(p, q) ≤ a(t),

which is a contradiction. Hence, a second intersection point between the
geodesic ray cv([0,∞)) and St(p) cannot occur. �

Proposition 5.2. Let (X, g) be a complete, simply connected noncompact
manifold without conjugate points and p, q ∈ X. Consider the map Ft :
SqX → St(p), where Ft(v) is the first intersection point of the geodesic ray
cv : [0,∞) → X with St(p). If q is contained in the ball of radius t about p,
this map is well defined. Then the Jacobian of Ft is given by

(5.1) JacFt(v) =
detAv(d(q, Ft(v)))

〈Np(Ft(v)), Nq(Ft(v))〉
,

where Nx(y) = (grad dx)(y) and dx(y) = d(x, y).

Note that (5.1) agrees with [CaSam, (6.3)]. For convenience of the readers,
we provide our own proof of this formula.

Proof. Choose a curve γ : (−ǫ, ǫ) → SqX with γ(0) = v ∈ SqX. Then

Ft(γ(s)) = expq(d(q, Ft(γ(s))) · γ(s)),
and, using the chain rule and the product rule,

DFt(v)(γ
′(0)) =

D expq(d(q, Ft(v)) · v)(〈Nq(Ft(v)),DFt(v)γ
′(0)〉v + d(q, Fγ(v)) · γ′(0)).
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Note that γ′(0) ⊥ v. We have

D expq(tv)(tw) = Y (t)(w) = J(t),

where Y is the Jacobi tensor along cv with Y (0) = 0 and Y ′(0) = id, and
therefore J is a Jacobi field along c satisfying J(0) = 0 and J ′(0) = w.

Note that Y and Av are related by Av = Y
∣∣∣
(c′v)

⊥
. In particular, we have

D expq(tv)(tv) = tc′v(t). This yields

DFt(v)(γ
′(0))

= 〈Nq(Ft(v)),DFt(v)γ
′(0)〉 c′v(d(q, Ft(v))) +Av(d(q, Ft(v)))(γ

′(0)).

Consequently,

(5.2) DFt(v)(γ
′(0)) =

〈Nq(Ft(v)),DFt(v)γ
′(0)〉Nq(Ft(v)) +Av(d(q, Ft(v)))(γ

′(0)).

Next, we introduce the map

Lx : Np(x)
⊥ → Nq(x)

⊥,

Lx(w) = w − 〈w,Nq(x)〉Nq(x).

Then (5.2) can be rewritten as

(5.3) LFt(v) ◦DFt(v) = Av(d(q, Ft(v))).

To finish the proof of the above Proposition, we need the following lemma.

Lemma 5.3. JacLx = |〈Np(x), Nq(x)〉|.
Proof. Consider

Np(x)
⊥ ∩Nq(x)

⊥ = {w ∈ TxX | 〈w,Np(x)〉 = 0 and 〈w,Nq(x)〉 = 0}.
ThenNp(x)

⊥∩Nq(x)
⊥ has co-dimension one inNp(x)

⊥ and Lx is the identity

on Np(x)
⊥ ∩Nq(x)

⊥. Let

w0 = Nq(x)− 〈Nq(x), Np(x)〉Np(x) ∈ Np(x)
⊥.

The vector w0 is orthogonal to Np(x)
⊥ ∩Nq(x)

⊥ since for all w ∈ Np(x)
⊥ ∩

Nq(x)
⊥ we have 〈w,Np(x)〉 = 0 and 〈w,Nq(x)〉 = 0, and therefore

〈w,w0〉 = 〈w,Nq(x)︸ ︷︷ ︸
=0

〉 − 〈Nq(x), Np(x)〉〈w,Np(x)︸ ︷︷ ︸
=0

〉 = 0.

Moreover, Lxw0 is also orthogonal to Np(x)
⊥ ∩Nq(x)

⊥:

Lxw0 = w0 − 〈w0, Nq(x)〉Nq(x)

= 〈Np(x), Nq(x)〉(〈Np(x), Nq(x)〉Nq(x)−Np(x)),

and consequently 〈w,Lxw0〉 = 0 for all w satisfying 〈w,Np(x)〉 = 〈w,Nq(x)〉 =
0. This shows that

JacLx =
||Lxw0||
||w0||

.

Since
‖Lxw0‖2 = 〈Np(x), Nq(x)〉2(1− 〈Np(x), Nq(x)〉2)

and
‖w0‖2 = 1− 〈Np(x), Nq(x)〉2,
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we obtain

JacLx =

(〈Np(x), Nq(x)〉2(1− 〈Np(x), Nq(x)〉2)
1− 〈Np(x), Nq(x)〉2

)1/2

= |〈Np(x), Nq(x)〉|,
which yields the lemma. �

Finally, (5.3) implies that

JacFt(v) =
detAv(d(q, Ft(v)))

Jac LFt(v)
=

detAv(d(q, Ft(v)))

〈Np(Ft(v)), Nq(Ft(v))〉
,

finishing the proof of the proposition. �

SqX

q
v

Ft(v)

St(p)

t

p

Bt(v)

Figure 4. Illustration of the map Bt : SqX → SpX

Corollary 5.4. Let (X, g) be a complete, simply connected noncompact
manifold without conjugate points and p, q ∈ X. Let Bt : SqX → SpX, v 7→
1
t exp

−1
p ◦Ft(v) (see Figure 4). Then we have

JacBt(v) =
detAv(d(q, Ft(v)))

detAu(t)
· 1

〈Np(Ft(v)), Nq(Ft(v))〉
,

where u = Bt(v).

Proof. Let u ∈ SpX. Then D expp(tu) : u⊥ → Texpp(tu)
St(p) is given by

D expp(tu)(w) =
1
tAu(t)(w), and therefore with u = Bt(v),

JacBt(v) =
1

detAu(t)
· JacFt(v)

=
detAv(d(q, Ft(v)))

detAu(t)
· 1

〈Np(Ft(v)), Nq(Ft(v))〉
.

�
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From now on, (X, g) denotes a rank one asymptotically harmonic manifold
satisfying (1.1) with n = dim(X). Let f ∈ C(X(∞)). We know from Lemma
5.1 that Bt : SqX → SpX is a bijection, for t > 0 large enough. Then we
have with f1 = f ◦ ϕp:∫

X(∞)
f(ξ) dµp(ξ) =

1

ωn

∫

SpX
f1(w) dθp(w)

=
1

ωn

∫

SqX
(f1 ◦Bt)(v)(JacBt)(v) dθq(v).

We will show that

(i) limt→∞Bt = (ϕp)
−1 ◦ ϕq,

(ii) There exist constants t0 > 0 and C > 0 such that

| JacBt(v)| ≤ C ∀ v ∈ SqX, t ≥ t0.

(iii) We have, for all v ∈ SqX,

lim
t→∞

JacBt(v) = e−hbv(p),

where bv is the Busemann function introduced in (1.2). Having these facts,
we conclude with Lebesgue’s dominated convergence that∫

X(∞)
f(ξ) dµp(ξ) = lim

t→∞

1

ωn

∫

SqX
(f1 ◦Bt)(v)(JacBt)(v) dθq(v)

=
1

ωn

∫

SqX
(f ◦ ϕq)(v)e−hbv(p) dθq(v)

=

∫

X(∞)
f(ξ)e−hbq,ξ(p) dµq(ξ),

with bq,ξ = bv with ξ = cv(∞) and v ∈ SqX. This proves Theorem 1.4 from
the Introduction:

Theorem 1.4. Let (X, g) be a rank one asymptotically harmonic manifold
satisfying (1.1). Let (µp)p∈X be the associated family of visibility measures.
Then these measures are pairwise absolutely continuous and we have

dµp
dµq

(ξ) = e−hbq,ξ(p).

It remains to prove properties (i), (ii) and (iii) listed above.

Proof of (i): Let tn → ∞ and sn ≥ 0, wn = Btn(v) ∈ SpX such that
yn = expq(snv) = expp(tnwn). We obviously have sn → ∞ and yn → ϕq(v).
Let wnj

be a convergent subsequence of wn = Btn(v) with limit w ∈ SpX.
Then we have ynj

→ ϕp(w) and

ϕq(v) = ϕp(w).

This shows that limn→∞Btn(v) = (ϕp)
−1 ◦ ϕq(v). �

For the proof of (ii), we need the following lemma:

Lemma 5.5. For every ǫ > 0, there exists t0 > 0 such that we have for all
v ∈ SqX

|〈Np(Ft(v)), Nq(Ft(v))〉 − 1| < ǫ ∀ t ≥ t0.
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Proof. This is an easy consequence of Corollary 2.3. �

Proof of (ii): We start with the formula (see [Kn2, p. 676])

detAv(t) =
detUv(t)

det(U ′
v(0) − S′

v,t(0))
=

eht

det(U ′
v(0) − S′

v,t(0))
.

Then

detAv(d(q, Ft(v))

detAut(t)
=
ehd(q,Ft(v)) det(Uu′t(0)− S′

ut,t(0))

det(U ′
v(0) − S′

v,d(q,Ft(v))
(0))eht

,

where ut = Bt(v) ∈ SpX.
Let ǫ > 0 be chosen. Since det(U ′

v(0) − S′
v,t(0)) converges monotonically

to a universal constant A > 0 (see [KnPe2, Theorem 1.3] and use the fact
that X is rank one), we conclude with Dini that the convergence is uniformly
on compact sets. Therefore, there exists t0 ≥ 0 such that A ≤ det(U ′

w(0) −
S′
w,t(0)) ≤ A+ ǫ for all w ∈ SpX ∪ SqX and t ≥ t0. Using Lemma 5.5 and

increasing t0 > 0, if necesary, we can also assume that

〈Np(Ft(v)), Nq(Ft(v))〉 ≥
1

2

for all t ≥ t0. Since d(q, Ft(v)) ≤ t+ d(p, q), we conclude from Corollary 5.4
for all t ≥ t0 and all v ∈ SqX,

| JacBt(v)| ≤ 2
A+ ǫ

A
ehd(p,q). �

Proof of (iii): This is a immediate consequence of Lemma 5.5 and the
following Lemma:

Lemma 5.6. Using the notation above we have that

lim
t→∞

detAv(d(q, Ft(v)))

detAut(t)
= e−hbv(p),

where ut = Bt(v).

Proof. We recall that

detAv(d(q, Ft(v)))

detAut(t)
= eh(d(q,Ft(v))−t)

det(Uu′t(0) − S′
ut,t(0))

det(U ′
v(0)− S′

v,d(q,Ft(v))
(0))

and
det(Uu′t(0)− S′

ut,t(0))

det(U ′
v(0)− S′

v,d(q,Ft(v))
(0))

→ A

A
= 1.

Now the lemma follows from

lim
t→∞

d(q, Ft(v))− t = lim
t→∞

d(q, Ft(v))− d(p, Ft(v))

= lim
s→∞

d(q, cv(s))− d(p, cv(s))

= lim
s→∞

s− d(p, cv(s)) = −bv(p).

�
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Remark Theorem 1.4 has an analogue for simply connected, noncom-
pact harmonic manifolds (X, g) without the rank one condition and replacing
the geometric boundary X(∞) by the Busemann boundary (see [KnPe1,
Theorem 12.6]). There, we have detAv(t) = f(t) for all v ∈ SX, where
f(t) is the volume density function, and f(t) is an exponential polynomial.
Moreover, the uniform divergence of geodesics (Corollary 2.3) holds there
without the rank one condition. These results are not known for general
asymptotically harmonic manifolds.

6. Solution of the Dirichlet problem at infinity

Since rank one asymptotically harmonic manifolds (X, g) satisfying (1.1)
are Gromov hyperbolic with positive Cheeger constant (see [KnPe2]), gen-
eral results of Ancona yield that the Martin boundary and the geometric
boundary coincide ([Anc2, Théorème 6.2]) and that the Dirichlet problem
at infinity has a solution ([Anc2, Théorème 6.7]). In this section we give an
alternative direct proof that the Dirichlet problem at infinity has a solution
for these manifolds by providing a concrete integral formula of the solu-
tion using the visibility measures. Moreover, this shows that the visibility
measures coincide with the harmonic measures on X(∞).

A crucial step for our result of this section is to show that limx→ξ µx = δξ,
where δξ is the δ-distribution at ξ. This abstract condition will follow from
the next proposition. To state it, we introduce for v0 ∈ SpX and δ > 0 the
cone

C(v0, δ) = {cv(t) | t ∈ [0,∞], ∠(v0, v) ≤ δ}.
Note that the set of all truncated cones C(v0, δ) ∩ BR(p)

c together with
all open balls Br(q) define a basis of the cone topology of the geometric
compactification X̄.

Proposition 6.1. Let (X, g) be a rank one asymptotically harmonic man-
ifold satisfying (1.1). Let p ∈ X and δ > 0. Then there exists a constant
C1 = C1(δ) > 0 such that for all v ∈ SpX

bv(q) ≥ d(p, q)− C1 for all q ∈ X\C(v, δ).

Proof. Let p ∈ X and δ > 0 be given. Then there exists a constant C1 > 0
such that

(6.1) 0 ≤ 2(cv(t)|q)p ≤ C1 ∀ t ≥ 0 ∀ v ∈ SpX ∀ q ∈ X\C(v, δ),

where (·|·)p is the Gromov product introduced in Definition 4.1. If this were
false, then we could find sequences tn ≥ 0, vn ∈ SpX and qn ∈ X\C(vn, δ)
such that

(cvn(tn)|qn)p → ∞.

Let qn = cwn(rn) with wn ∈ SpX and rn = d(qn, p). This would mean, by
Theorem 4.5, that d(p, qn) → ∞ and ∠p(vn, wn) → 0, which is a contradic-
tion to qn ∈ X\C(vn, δ).

(6.1) means that

d(p, q)− (d(cv(t), q) − t) ≤ C1 ∀ t ≥ 0.

Taking the limit t→ ∞, we obtain

d(p, q)− bv(q) = d(p, q)− lim
t→∞

(d(cv(t), q)− t) ≤ C1,
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finishing the proof. �

Remark The statement of the proposition includes the fact that any
horoball H, centered at ξ = cv(∞) ∈ X(∞), ends up inside any given cone

C(v, δ), when being translated to a horoball H̃ along the stable direction
(see the illustration in Figure 5). (Note that the horoballs centered at ξ can
be described by {q ∈ X | bv(q) ≤ −C}, and that these horoballs become
smaller and shrink towards the limit point ξ, as C ∈ R increases to infinity.)

H

H̃
v

C(v, δ)

X(∞)

ξ

Figure 5. Geometric property necessary for the solution of
the Dirichlet problem at infinity

Remark Proposition 6.1 does not hold if (X, g) is the Euclidean space.
In this case, every horoball is a halfspace, which lies never inside a given
cone.

Now we state our main result of this section, namely, the solution of the
Dirichlet problem at infinity for rank one asymptotically harmonic mani-
folds satisfying (1.1) via an explicit integral formula involving the visibility
measures (see Theorem 1.5 from the Introduction).

Theorem 1.5. Let (X, g) be a rank one asymptotically harmonic manifold
satisfying (1.1). Let f : X(∞) → R be a continuous function. Then there
exists a unique harmonic function Hf : X → R such that

(6.2) lim
x→ξ

Hf (x) = f(ξ).

Moreover, Hf has the following integral presentation:

Hf (x) =

∫

X(∞)

f(ξ)dµx(ξ),

where {µx}x∈X ⊂ M1(X(∞)) are the visibility probability measures.
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Proof. (a) We show first that
∫

X(∞)

f(ξ)dµx(ξ) is a harmonic function. Let

p ∈ X. Then

∆x

∫

X(∞)

f(ξ)dµx(ξ) = ∆x

∫

X(∞)

f(ξ)e−hbp,ξ(x)dµp(ξ).

Let K ⊂ X be a compact set. Then x 7→ f(ξ)e−hbp,ξ(x) is bounded for
all x ∈ K and all ξ ∈ X(∞), because of |bp,ξ(x)| ≤ d(p, x). Moreover

∆xf(ξ)e
−hbp,ξ(x) = 0 and bp,ξ(·) is smooth, because of ∆xbp,ξ = h. Therefore,

∆x

∫

X(∞)

f(ξ)dµx(ξ) =

∫

X(∞)

f(ξ)∆xe
−hbp,ξ(x)

︸ ︷︷ ︸
=0

dµp(ξ) = 0.

(b) Now we prove

lim
x→ξ0

∫

X(∞)

f(ξ)dµx(ξ) = f(ξ0).

Let ξ0 = cv0(∞) with v0 ∈ SpX. Without loss of generality, we can assume
that f(ξ0) = 0 (by subtracting a constant if necessary). Let ǫ > 0 be given.
Then there exists δ > 0, such that

| f(cv(∞)) | ≤ ǫ ∀ v ∈ SpX with ∠p(v0, v) ≤ δ.

We split the integral representing Hf (x) in the following way:

ωn|Hf (x)| ≤
∣∣∣∣∣

∫

SpX \ {v | ∠(v0,v)≤δ}
f(cv(∞)) e−hbv(x) dθp(v)

∣∣∣∣∣+
∣∣∣∣∣

∫

{v | ∠(v0,v)≤δ}
f(cv(∞)) e−hbv(x) dθp(v)

∣∣∣∣∣ .

Now, using Proposition 6.1, we obtain for all x ∈ C(v0, δ/2) and C1 =
C1(δ/2)

ωn|Hf (x)| ≤ ‖f‖∞
∫

SpX \ {v | ∠(v0,v)≤δ}
e−h(d(p,x)−C1) dθp(v)+

ǫ

∫

{v | ∠(vo,v)≤δ}
e−hbv(x) dθp(v) ≤

‖f‖∞ ωn e
hC1 e−hd(p,x) + ǫ

∫

SpX
e−hbv(x)dθp(v)

︸ ︷︷ ︸
=
∫

SxX
dθx(v)=ωn

≤

ωn

(
ǫ+ ‖f‖∞ ehC1 e−hd(p,x)

)
.

Let xn = cvn(rn) with vn ∈ SpX and rn ≥ 0 be a sequence converging to
ξ0 ∈ X(∞). Then we have rn = d(p, xn) → ∞ and ∠p(v0, vn) → 0. Since
ǫ > 0 was arbitrary, the above estimate shows that

Hf (x) → 0 forx→ ξ0.

(c) Uniqueness of the solution follows from the maximum principle. �
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Remark The above considerations show that rank one asymptotically
harmonic manifolds (X, g) with reference point x0 ∈ X satisfying (1.1) admit

Poisson kernels of the form P (x, ξ) = e−hbx0,ξ(x).
These Poisson kernels can be used to define a map ϕ : X ∋ x →

P (x, ξ)dµx0(ξ) ∈ P(X(∞)), where P(X(∞)) is the space of all probability
measures on ∂X which are absolutely continuous to µx0 . P(X(∞)) car-
ries a natural Riemannian metric G, called the Fisher-Information metric
(see [Fr] or [ItSa1] for more details). The following was proved in [ItSa1,
Prop. 1] for homogeneous Hadamard manifolds of dimension n: if (X, g)

admits Poisson kernels of the form P (x, ξ) = e−cbx0,ξ(x) with c > 0, then

the Poisson kernel map ϕ : X → P(X(∞)) satisfies ϕ∗G = c2

n g, i.e., that ϕ
is a homothety. Examples of such spaces are rank one symmetric spaces of
non-compact type and Damek-Ricci spaces. Conversely, the following was
shown in [ItSa2, Thm 1.3]: If (X, g) is an n-dimensional Hadamard mani-
fold admitting a Poisson kernel map ϕ : X → P(X(∞)), which is both a

homothety with constant c2

n , c > 0 and minimal, then (X, g) is necessarily
asymptotic harmonic with horospheres of mean curvature c. These results
provide an interesting characterization of asymptotic harmonic manifolds
via the Poisson kernel map.

7. Polynomial volume growth of horospheres

Let (X, g) be a rank one asymptotically harmonic manifold satisfying
(1.1). Let W s(v) ⊂ SX be a strong stable manifold through v ∈ SX. Its
projection Hv = πW s(v) ⊂ X is a horosphere orthogonal to v. Let p = π(v).
Consider a curve

β : [0, 1] → Hv

with length(β) ≤ r. Let γ : [0, 1] → W s(v) be the lift of β in the strong
stable manifold and βt = πΦtγ, where Φt is the geodesic flow on SX. We
conclude from [KnPe2, Corollary 2.6] that

length(βt) ≤ a2re
− ρ

2
t

for all t ≥ 0. Hence length(βt) ≤ 1 for all

t ≥ t0 :=
2 log(a2r)

ρ
.

Since the curvature of X and the second fundamental form of horospheres
are bounded, the Gauss equation implies that the sectional curvatures of
horospheres are bounded, as well. Therefore, by the volume comparison
theorem, any ball of radius 1 in any horosphere has an intrinsic volume
bounded by some constant A > 0:

volH(B1(q)) ≤ A ∀ H horospheres ∀ q ∈ H.
This implies that

volHv(Br(p)) ≤ volHv(Φ
−t0(B1(π ◦ Φt0(v))))

≤ eht0 volH
Φt0 (v)

(B1(π ◦ Φt0(v))) ≤ Aeht0 = A′r
2h
ρ ,
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p = π(v)

v
Hv = πW s

v

HΦt(v) = πW s
πt(v)Φt(v)

Figure 6. Contraction of the geodesic flow on stable horospheres

with A′ = Aa
2h
ρ

2 . This proves that all horospheres have polynomial volume
growth in (X, g). �

8. Horospherical means and bounded eigenfunctions

In this section, we are mainly concerned with horospherical means of
bounded eigenfunctions on rank one asymptotically harmonic manifolds X
satisfying (1.1). Before we consider the special class of eigenfunctions, we
first state a general result for all continuous functions on the geometric
compactification X . The underlying space is also more general than just
rank one asymptotically harmonic manifolds.

Theorem 8.1. Let (X, g) be a complete, simply connected Riemannian man-
ifold without conjugate points of dimension n. Assume that the geometric
compactification X = X ∪ X(∞) carries a topology such that the maps

ϕ̄p : B1(p) → X are homeomorphisms for all p ∈ X (see Section 3 for de-
tails). Moreover, we assume that the following holds for every horosphere
H ⊂ X:

(a) We have voln−1(H) = ∞.
(b) For every ball Br(p) of radius r > 0 around p ∈ X, we have

voln−1(H ∩Br(p)) <∞.

(c) The closure of H in the geometric compactification X satisfies

H = H ∪ {ξ},
where ξ ∈ X(∞) is the center of H.

Then we have for every horosphere H ⊂ X centered at ξ ∈ X(∞), every
compact exhaustion {Kj}, and every continuous function f : X → R:

(8.1) lim
j→∞

∫
Kj
f(x)dx

voln−1(Kj)
= f(ξ).
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Proof. Let H be centered at ξ ∈ X(∞) and p0 ∈ X. We show first indirectly
that for every open neighbourhood U ⊂ X of ξ there exists R > 0 such that

(8.2) H ⊂ BR(p0) ∪ U.
Assume that there exists xn ∈ H with xn 6∈ U and d(p0, xn) → ∞. Then,
after choosing a subsequence if necessary, we have xn → ξ′ ∈ X(∞) with
ξ′ 6= ξ. But this is ruled out by (c).

Let {Kj} be a compact exhaustion and ǫ > 0 be given. Then there exists

an open neighbourhood U ⊂ X of ξ such that

|f(q)− f(ξ)| < ǫ for all q ∈ U .

Let R > 0 such that (8.2) is satisfied. Let Kj,0 = Kj ∩ Br(p0) and
Kj,1 = Kj\Kj,0 ⊂ U . Then (a) and (b) yield 1/ vol(Kj)

∫
Kj,0

f → 0 and

vol(Kj,1)/ vol(Kj) → 1, which imply

f(ξ)− ǫ ≤ lim inf
j→∞

∫
Kj
f(x)dx

voln−1(Kj)
≤ lim sup

j→∞

∫
Kj
f(x)dx

voln−1(Kj)
≤ f(ξ) + ǫ.

This shows (8.1), since ǫ > 0 was arbitrary. �

The following proposition states that Theorem 8.1 is applicable in our
setting of rank one asymptotically harmonic manifolds.

Proposition 8.2. Let (X, g) be a rank one asymptotically harmonic mani-
fold of dimension n satisfying (1.1). Then every horosphere H ⊂ X satisfies
properties (a), (b), and (c) in Theorem 8.1.

Before we present the proof of the proposition, we first introduce some
useful notation. Let H ⊂ X be a horosphere. Then there exists p0 ∈ H
and v ∈ Sp0X such that H = b−1

v (0). Let Ht = b−1
v (t) and ηt : X → X be

the flow associated to grad bv. Then H = H0, ηt : H0 → Ht and, for every
A ⊂ H0 and A(t) = ηt(A) ⊂ Ht we have (see [PeSa, Prop. 3.1])

(8.3) voln−1(A(t)) = eht voln−1(A).

Proof. (a) Assume there is a horosphereH ⊂ X with voln−1(H) <∞. Using
the above notation associated to H, we see that the horoball

B =
⋃

t≤0

Ht = b−1
v ((−∞, 0])

must also be of finite volume, since

voln(B) =
∫ 0

−∞
eht dt voln−1(H) =

1

h
voln−1(H).

But B contains the balls Br(cv(r)) ⊂ X with arbitrarily large radii r > 0,
whose volumes become arbitrarily large because of Proposition 2.2. This is
a contradiction.

(b) Let H be a horosphere and Br(p) ⊂ X a ball. Let A = H ∩ Br(p)
and assume that voln−1(A) = ∞. Let A1 =

⋃
0≤t≤1A(t). Then we also have

voln(A1) = ∞, by (8.3). But A1 ⊂ Br+1(p), and Br+1(p) has finite volume.
This is, again, a contradiction.

(c) Since H = b−1
v (0) is closed in X, we only need to show that H has no

other accumuluation points in X(∞) other than ξ. We proceed indirectly.
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Assume there exist xn ∈ H with d(p, xn) → ∞ and limxn = ξ′ ∈ X(∞) and
ξ′ 6= ξ. Then we can find δ > 0 such that ξ′ = cw(∞) for some w ∈ Sp0X with
∠(w, v) > δ. Using the remark after Proposition 6.1, we know that there
exists s < 0 such that Hs = ηs(H) ⊂ C(v, δ). Let xn(s) = ηs(xn) ∈ Hs.
Since d(xn, xn(s)) = s, we still have xn(s) → ξ′ and xn(s) ∈ Hs ⊂ C(v, δ)
and, therefore, ∠(w, v) ≤ δ, which is a contradiction. �

Next we prove the main result of this section for bounded eigenfunctions
(see Theorem 1.6 in the Introduction). The proof is similar to the proof of
Theorem 1 in [KP].

Theorem 1.6. Let (X, g) be a rank one asymptotically harmonic manifold
of dimension n satisfying (1.1) and h > 0 be the mean curvature of all horo-
spheres. Let λ 6= 0 be a real number and f ∈ C∞(X) be a bounded function
satisfying ∆f + λf = 0 and H ⊂ X be a horosphere with isoperimetric
exhaustion {Kj}. Then we have

(8.4) lim
j→∞

∫
Kj
f(x)dx

voln−1(Kj)
= 0.

Remark Since horospheres have polynomial volume growth, the intrinsic
balls of suitably chosen increasing radii rj satisfy

voln−2(∂BH(rj))

voln−1(BH(rj))
→ 0.

A suitable choice of sets Kj are regularized spheres, as explained in [KP,
p. 665]. But there might be many more increasing sets satisfying this
asymptotic isoperimetric property.

Proof. We give an indirect proof. Assume that (8.4) is not satisfied. Then
we can assume – by replacing {Kj} by a subsequence, if needed – that there
exists c 6= 0 such that

lim
j→∞

∫
Kj
f(x)dx

voln−1(Kj)
= c.

Let ηt : H0 → Ht be again the flow defined above after Proposition 8.2.
Let Kj(t) = ηt(Kj) ⊂ Ht. Recall that we have

voln−1(Kj(t)) = eht voln−1(Kj).

Since X has a lower sectional curvature bound, there exists C > 0 such that

voln−2(∂Kj(t)) ≤ eC|t| voln−2(∂Kj).

This implies that, on every compact interval I ⊂ [0,∞), we have
∥∥∥∥
voln−2(∂Kj(·))
voln−1(Kj(·))

∥∥∥∥
∞,I

→ 0, as j → ∞.

Define

gj(t) =

∫
Kj(t)

f(x)dx

voln−1(Kj(t))
∀ t ∈ R.

Since ‖gj‖∞ ≤ ‖f‖∞, using diagonal arguments, we find a subsequence gjk
such that gjk(t) → g(t), for all rational t ∈ Q. Since |∇f | is uniformly
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bounded by Yau’s gradient estimate [Yau, Theorem 3], f is uniformly con-
tinuous and therefore, the sequence gjk is equicontinuous. This implies that
we have gjk → g pointwise to a continuous limit and g(0) = c 6= 0.

Next we show that g satisfies

(8.5) g′′ + hg′ + λg = 0,

in the distributional sense. Let ψ ∈ C∞
0 (R) be a test function. Then we

have

∞∫

−∞

gj(t)(ψ
′′(t)−hψ′(t)+λh)dt =

∞∫

−∞

∫
Kj(t)

f(x)dx

voln−1(Kj(t))
(ψ′′(t)−hψ′(t)+λψ)dt.

Let f̃ : H × (−∞,∞) → R be defined as f̃(x, t) := f(ηt(x)). The tranfor-
mation formula yields:

∫

Kj(t)

f(x)dx =

∫

Kj

f ◦ ηt(x)
eht︷ ︸︸ ︷

Jac ηt(x) dx = eht
∫

Kj

f̃(x, t)dx.

Therefore, we have gj(t) = 1/ voln−1(Kj)
∫
Kj

f(ηtx)dx, and

g′′j (t) + hg′j(t) + λgj =
1

voln−1(Kj)

∫

Kj

d2

dt2
f(ηtx) + h

d

dt
f(ηtx) + λf(ηtx)dx

=
1

voln−1(Kj(t))

∫

Kj(t)

∆xf(x) + λf(x)︸ ︷︷ ︸
=0

−∆Htf(x)dx

= − 1

voln−1(Kj(t))

∫

Kj(t)

∆Htf(x)dx

=
1

voln−1(Kj(t))

∫

∂Kj(t)

〈gradHt
f(x), νx〉dx,

where νx denotes the outward unit vector of ∂Kj(t) ⊂ Ht. Since supp ψ ⊂ R

is compact, we have

∞∫

−∞

gj(t)(ψ
′′(t)− hψ′(t) + λψ(t))dt =

∞∫

−∞

(g′′j (t) + hg′j(t) + λgj(t))ψ(t)dt

=

∞∫

−∞

1

voln−1(Kj(t))

∫

∂Kj(t)

〈gradH(t) f(x), νx〉dxψ(t)dt.
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Taking absolute value and using, again, Yau’s gradient estimate [Yau, The-
orem 3], we obtain
∣∣∣∣∣∣

∞∫

−∞

gj(t)(ψ
′′(t)− hψ′(t) + λψ(t))dt

∣∣∣∣∣∣

≤
∫

suppψ

voln−2(∂Kj(t))

voln−1(Kj(t))
‖ gradX f‖∞ ‖ψ‖∞ dt → 0,

as j → ∞. By Lebesgue’s dominated convergence, and since ‖g‖∞, ‖gj‖∞ ≤
‖f‖∞, we conclude that

∞∫

−∞

g(t)(ψ′′(t)− hψ′(t) + λψ(t))dt = 0,

i.e., the continuous function g satisfies (8.5) in the distributional sense.
Therefore, g is smooth and satisfies g′′ + hg′ + λg = 0 in the classical sense.
This implies that g is of the general form

(8.6) g(t) = c1e

(

−h
2
+
√

(h
2 )

2
−λ

)

t
+ c2e

(

−h
2
−
√

(h
2 )

2
−λ

)

t

if λ 6= (h/2)2 and

g(t) = c1e
−h

2
t + c2te

−h
2
t

if λ = (h/2)2. It is straightforward to check for λ 6= 0 that every choice of
(c1, c2) 6= (0, 0) leads to an unbounded function g(t). But g must be bounded
because of ‖g‖∞ ≤ ‖f‖∞. Therefore we conclude that (c1, c2) = (0, 0) in
contradiction to g(0) = c 6= 0, finishing the indirect proof. �

Examples of bounded eigenfunctions. (a) Let X be a rank one symmet-
ric space of non-compact type and M = X/Γ be a compact quotient. Then
every non-constant ∆M -eigenfunction f ∈ C∞(M) gives rise to a bounded

lift f̃ ∈ C∞(X) which is also a ∆X-eigenfunction to the same eigenvalue.

Since f̃ is non-constant and Γ-periodic, it does not admit a continuous ex-
tension to the compacitification X.

(b) Let X(p,q) be a Damek-Ricci space with p, q defined as in [Rou]. Then

X(p,q) is an asymptotically harmonic manifold with h = p/2 + q and there

exist radial eigenfunctions ϕµ ∈ C∞(X(p,q)) satisfying

∆ϕµ +

(
µ2 +

(
h

2

)2
)
ϕµ = 0 and ϕµ(e) = 1,

where µ ∈ C and e ∈ X(p,q) denotes the neutral element in the Damek-Ricci
space considered as a solvable group. If 0 < iµ < h/2, we have (see [Rou, p.
78])

ϕµ(r) ∼ c(µ)e(iµ−h/2)r as r → ∞
with suitable constants c(µ) ∈ R\{0}. This means that ϕµ is a bounded

eigenfunction with trivial continuous extension to the compactification X(p,q).



RANK ONE ASYMPTOTICALLY HARMONIC MANIFOLDS 27

Now we are in a position to prove our final result (see Theorem 1.7 in the
Introduction) which states that the above examples are the only two possible
cases with regards to continuous extensions of bounded eigenfunctions f :
either f cannot be extended to X or the extension is trivial.

Theorem 1.7. Let (X, g) be a rank one asymptotically harmonic manifold
satisfying (1.1). Let λ ∈ R\{0} and f ∈ C∞(X) be an eigenfunction ∆f +
λf = 0. If f has a continuous extension F ∈ C(X) then we have necessarily
F |∂X ≡ 0.

Proof. Assume that λ 6= 0 and that an eigenfunction ∆f + λf = 0 has a
continuous extension F on the compactification X . Then we know from
Theorem 8.1 that all horospherical means of f over horospheres centered at
ξ ∈ X(∞) agree with F (ξ). On the other hand, we conclude from Theorem
1.6 that all horospherical means with isoperimetric exhaustions have to van-
ish. Moreover, every horosphere in X has polynomial volume growth and,
therefore, admits isoperimetric exhaustions. This implies that F |∂X ≡ 0. �
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[Anc2] A. Ancona. Théorie du potentiel sur les graphes et les variétés, in École d’été
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