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1 Introduction

A large class of N = 1 superconformal gauge theories in four dimensions can be realized on

the worldvolume of a stack of D3-branes probing toric Calabi-Yau threefold singularities

in Type IIB string theory. The field content and interactions of such gauge theories are

elegantly described by a bipartite graph on the 2-torus, known as a dimer model or brane

tiling [1–3]. The faces, edges and nodes of the brane tiling are associated to U(N) gauge

group factors, bifundamental/adjoint matter and superpotential terms respectively.

A simple class of toric CY singularities consists of orbifolds of the form C3/Γ where

Γ is a finite Abelian subgroup of SU(3) [4–7]. For Abelian Γ, the brane tiling is made of

n = |Γ| hexagonal faces covering the torus. The superpotential, inherited from the parent

N = 4 theory, is cubic in this case and the global symmetry is at least U(1)3, including

the U(1)R R-symmetry of the N = 1 superconformal theory.

– 1 –
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When one of the complex planes is invariant under Γ, the singularity is actually of the

form C2/Zn × C and supersymmetry is enhanced to N = 2. These theories admit mass

deformations which break N = 2 supersymmetry down to N = 1. Integrating out the

massive fields, the theory flows to an N = 1 superconformal fixed-point in the IR with a

quartic — in general non-toric — super-potential. As shown by Klebanov and Witten [8],

the conifold singularity can be obtained in this way, by perturbing the quiver gauge theory

on the worldvolume of D3-branes probing the C2/Z2 × C orbifold singularity with mass

terms for the adjoint fields. Toricity is preserved when the two mass parameters are equal

and opposite. The brane tiling of the conifold theory is made of two square faces covering

the torus like a chessboard [2].

This construction admits a natural generalization to RG flows triggered by mass de-

formations of N = 2 superconformal theories for D3 branes probing C2/Zn × C [9]. The

generalization starts with a quiver gauge theory with n adjoint fields — one for each U(N)

factor — besides the bifundamental matter. By giving masses to any of the adjoint fields,

one generates a flow to a new — in general non-toric — N = 1 superconformal gauge

theory. As we will review, toricity can be preserved by choosing the mass parameters to

be all equal with alternating signs in a sequence of k pairs of adjoints. In addition, a field

redefinition is required in the IR to restore the toric property of the superpotential. The

resulting quiver gauge theory is associated to the toric singularity C(Lk,n−k,k), where C(X)

denotes the cone over X, also known as a generalized conifold.1 Pictorially, the flow may be

thought of as the result of squeezing 2k strips of hexagonal faces in the brane tiling down

to 2k strips of squares. The case C2/Z3 × C leading to the suspended pinch point (SPP)

singularity [14] — also denoted by L1,2,1 — is an example which we consider in this work.

The Type IIA dual description of these models à la Hanany-Witten, i.e. in terms of

D4-branes wrapping a circle and suspended in between n NS5-branes [15–17], suggests

that mass deformations can be interpreted as complex deformations of the singularity.

Indeed, when the n NS5-branes are parallel to one another in the directions transverse

to the D4-branes, the configuration enjoys N = 2 supersymmetry. The adjoint chiral

multiplet inside the N = 2 vector multiplet corresponds to moving the D4-branes along

the NS5 brane or turning a Wilson line along the circle wrapped by the D4-branes. If the

NS5-branes are rotated by generic angles, supersymmetry is completely broken. N = 1

supersymmetry is restored whenever the NS5-branes wrap complex planes in C3. The

masses of the adjoints are the complexified relative angles between NS5-branes. The flow

described above corresponds to the case where k out of the n NS5 branes are rotated.

In the IIB description in terms of D3-branes on C2/Zn × C, the mass terms can be

realized as imaginary self-dual fluxes of type (2,1) as required by supersymmetry. Fluxes

of this type arise from the twisted sector and are associated to 3-forms ω(1,1) ∧ dZ with

ω(1,1) being one of the twisted (1,1)-forms dual to an exceptional 2-cycle of the ALE hy-

perkähler singularity C2/Zn and dZ being the holomorphic one-form on C. Since one leg

is non-compact, the flux is not quantized. While untwisted fluxes do not discriminate

1To simplify the notation, we drop C(. . .) in naming Calabi-Yau cones and their corresponding brane

tilings in the rest of this work. Lk,n−k,k are members of a larger class of toric Sasaki-Einstein 5-fold called

La,b,c [10], whose dual quiver gauge theories were found in [11–13].
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among the various nodes of the quiver, or the various faces of the brane tiling, twisted

fluxes instead allow for different masses for the various fields as required for the RG flow.

Moreover, the counting of twisted sectors, n−1 in this case, precisely matches the counting

of independent mass deformations or the counting of relative rotations in the NS5-brane

picture. Further evidence for this correspondence is obtained by computing the string disk

amplitude involving the insertions of a 3-form field strength from the closed string twisted

sector and two open string fermions.

Our construction is not limited to flows starting from N = 2 orbifold quivers, but

it applies to more general mass flows connecting two N = 1 superconformal theories.

We consider cases where the starting theory is or is not of orbifold type. The flows in

both cases are triggered by mass terms for bifundamental matter. As for deformations

of N = 2 theories, we show that in order to restore toricity in the IR after integrating

out the massive matter, one has to switch on equal mass parameters opposite in pairs,

each giving mass to two chiral super-fields. We illustrate this construction for the flows

(C2/Zn × C)/Z2 → Lk,n−k,k/Z2, C3/Z2n → Lk,n−k,k/Z′2 and PdP4b → PdP4a.
2 A crucial

rôle in these RG flows is played by accidental symmetries which appear after integrating

out the massive fields and which restore the toric U(1)3 symmetry in the IR.

The plan of the paper is as follows. In section 2, we review brane tilings and present

the brane tiling for C2/Z3 ×C as an example. Section 3 then discusses mass deformations

of brane tilings. The focus is on the RG flow C2/Z3 × C → L1,2,1 and then on the gener-

alizations to other RG flows: (C2/Zn × C)/Z2 → Lk,n−k,k/Z2, C3/Z2n → Lk,n−k,k/Z′2 and

PdP4b → PdP4a. Section 4 then discusses a-maximization and volume minimization in

order to identify the superconformal R-symmetry at the IR fixed point and to check that

central charges decrease along the RG flows in accordance with the a-theorem. Section 5

discusses the complex structure deformations of the Calabi-Yau cones under mass defor-

mations and the relation between Hilbert series of the toric Calabi-Yau cones associated

to the UV and the IR theories. Section 6 outlines with an explicit computation of the disk

amplitudes the correspondence between mass deformations in the boundary SCFT and the

effect of 3-form fluxes in the bulk. The paper closes with concluding remarks in section 7.

The appendix contains details of the RG flows induced by mass deformations; this includes

the UV superpotential, the mass terms, the IR superpotential, and the field redefinitions,

if any, which are needed to restore toricity.

2 Brane tilings

In this section we review brane tilings, which encode the data defining superconformal

quiver gauge theories on the worldvolume of D3-branes at toric Calabi-Yau cone singular-

ities. Brane tilings lead to a powerful forward algorithm [2, 3, 18–20] for computing the

vacuum moduli spaces of superconformal quiver gauge theories.

2Arising from D3-branes probing a non-compact CY 3-fold which is a complex cone over a toric (pseudo)

del Pezzo surface PdP4.
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Brane tiling dictionary. A brane tiling is a bipartite graph on a 2-torus, i.e. a covering

of the 2-torus by even-sided polygonal faces bounded by edges connecting a black to a white

node. The black or white coloring of nodes corresponding to the bipartiteness of the graph

determines an orientation around vertices, which we take by convention to be clockwise

around white nodes and counter-clockwise around black nodes. This in turn induces an

orientation of the dual graph, the periodic quiver diagram of the gauge theory.

The brane tiling/gauge theory dictionary is as follows:

• Faces are associated to U(N)i gauge group factors. We use F for the total number

of faces.

• Edges adjacent to faces i and j represent chiral superfields Xi j transforming in the

bifundamental representation of the associated gauge groups U(N)i × U(N)j . The

quiver orientation of the bifundamental field Xi j is given by the orientation around

the black and white nodes at the two ends of the corresponding tiling edge. We

denote by E the total number of edges.

• White (black) nodes correspond to positive (negative) monomial terms in the super-

potential W made of the products of the bifundamental fields associated to the edges

which end on the node and which are ordered in a clockwise (counter-clockwise)

fashion. The bipartite nature of the graph implies that every field appears in the

superpotential precisely once in a positive and once in a negative term. We call this

property the toric condition [18]. We denote by V the total number of vertices.

The incidence matrix dG×E. incorporates the charges of the chiral fields under the

U(1)i factor of the U(N)i = U(1)i × SU(N)i gauge groups. G is the number of gauge

groups, which equals the number of faces F of the tiling. In this work, we will concentrate

on the Abelian case with N = 1, such that the incidence matrix fully incorporates the

gauge charges of the theory. The ith-entry is −1 for Xi j , +1 for Xj i and zero otherwise.

The matrix dG×E has G− 1 linearly independent rows that can be collected in a separate

matrix ∆G−1×E .

The Kasteleyn matrix K. is a matrix which encodes information about the connec-

tivity of the bipartite diagram. Rows and columns index black nodes bm and white wn
nodes respectively and the entries of the matrix are associated to edges. An edge X(m,n)

between nodes (bm, wn) has a winding number (ha, hb) associated to the a, b-cycles and

the boundaries of the fundamental domain of the 2-torus. Accordingly, elements of the

Kasteleyn matrix take the following form,

Kmn(z1, z2) =
∑

X(m,n)

z
ha(X(m,n))
1 z

hb(X(m,n))
2 , (2.1)

where z1, z2 are the fugacities for the winding numbers along the a- and b-cycles of the

2-torus respectively.
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The permanent of the Kasteleyn matrix, also known as the characteristic polynomial

of the brane tiling,

perm K(z1, z2) =
∑
ni

cn1,n2z
n1
1 zn2

2 (2.2)

encodes the toric diagram of the singularity. More precisely, the absolute values of the

coefficients |cn1,n2 | give the multiplicities of the points (n1, n2) in the toric diagram.

Perfect matching. A perfect matching [3, 20] is a collection pα of edges in the brane

tiling which includes every white and black node precisely once. Each perfect matching

contributes a monomial to the determinant of the Kasteleyn matrix and vice versa. Perfect

matchings therefore can be associated to points in the toric diagram of the Calabi-Yau 3-

fold. We denote by c the total number of perfect matchings.

Perfect matchings are summarized in a perfect matching matrix PE×c with entries

P`α =

{
1 if X` ∈ pα
0 if X` /∈ pα

.

To each perfect matching we associate a perfect matching variable which we denote by

the same letter pα with a slight abuse of notation. Perfect matching variables can be

interpreted as fields in a gauged linear sigma model (GLSM) without superpotential, whose

moduli space is the toric Calabi-Yau singularity. Indeed, each bifundamental field X` in

the Abelian toric quiver gauge theory can be expressed as a product of perfect matching

variables pα via the simple relation

X` =
∏
α

(pα)P`α (2.3)

in such a way that the F-term constraints of the toric quiver gauge theory are automatically

satisfied.

Zig-zag paths. One can identify a particular set of paths along edges of the brane tiling

which are known as zig-zag paths [21]. A zig-zag path ηi is a closed non-trivial path on

the 2-torus along the edges of the brane tiling. The edges are selected in such a way that

the path makes a maximal left turn on a white node and a maximal right turn on a black

node. As an oriented path on the torus, each zig-zag path has winding numbers along the

a- and b-cycles of the torus. The winding numbers encode a fan in the plane which relates

to a (p, q)-web diagram [22]. The dual of the web diagram is the toric diagram [23]. A

bipartite graph on a torus which has zig-zag paths that do not self-intersect is considered

to be consistent and to realize a unitary superconformal quiver gauge theory [24, 25].

Mesonic moduli space. The vacuum moduli space resulting from imposing both F-

and D-terms constraints of the 4d N = 1 supersymmetric Abelian gauge theory is a non-

compact toric Calabi-Yau threefold. Using the basis of GLSM fields represented by perfect

matching variables, the constraints can be obtained as follows [2, 3, 18–20, 26, 27].

– 5 –
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• The F-terms ∂XW = 0 are solved thanks to the introduction of perfect matching

variables, which are defined modulo an Abelian gauge symmetry which leaves (2.3)

invariant. The charges of the perfect matching variables under this gauge symmetry

are encoded in the charge matrix

QF (c−G−2)×c = ker (PE×c) , (2.4)

• The D-term charge matrix QD (G−1)×c is defined by the relation

∆(G−1)×e = QD (G−1)×c·P tc×e . (2.5)

where ∆(G−1)×e is the matrix formed by the G− 1 independent rows of dG×e.
3

• One can combine the F - and D- charges into the total charge matrix of the GLSM,

Qt (c−3)×c =

(
QF
QD

)
. (2.6)

The mesonic moduli space of the Abelian toric quiver gauge theory can be expressed

as a Kähler quotient of the ring of perfect matching variables Cc by the U(1)c−3-action Qt,

Mmes = Cc//Qt . (2.7)

The integer kernel of Qt,

Gt = ker(Qt) , (2.8)

is a matrix whose rows are the coordinates of the points in the toric diagram associated to

the c perfect matchings.

The Hilbert series. The Hilbert series is a generating function which counts chiral

gauge invariant operators. The Hilbert series of the mesonic moduli space (2.8) counts the

number of U(1)c−3-invariant monomials made out of the c perfect matching variables pα.

It is computed using the Molien integral

g(tα;Mmes) =

c−3∏
i=1

∮
|zi|=1

dzi
2πizi

c∏
α=1

1

1− tα
∏c−3
j=1 z

(Qt)jα
j

, (2.9)

where tα is the fugacity corresponding to the perfect matching variable pα.

The Hilbert series encodes information about the generators of the moduli space as

well as the relations formed amongst them. This information can be extracted from the so

called plethystic logarithm [28, 29] of the Hilbert series g1(yα) defined as

PL[g(tα;Mmes)] =
∞∑
k=1

µ(k)

k
log
[
g(tkα)

]
=
∑
i

niMi(tα) (2.10)

3The number of incoming and outgoing arrows at each quiver node is the same, ensuring gauge anomaly

cancellation. This results in ∆(G−1)×e which forms the G − 1 independent rows of the quiver incidence

matrix dG×e.
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Figure 1. Quiver, dimer and toric diagrams for C2/Z3 × C singularity.

where µ is the Möbius function, Mi(tα) are monomials made of fugacities tα and ni are

integers. The Hilbert series can be reconstructed from its plethystic logarithm and written

in the simple product form

g(tα;Mmes) =
∏
i

1

(1−Mi)ni
= PE

[∑
i

niMi

]
, (2.11)

where PE refers to the plethystic exponential.4 In particular, when PL[g(tα;Mmes)] con-

tains a finite number of terms, the spaceMmes is said to be a complete intersection.5 It is

parametrized by the generators corresponding to the monomials {Mi(tα);ni > 0} satisfying

a finite number of relations corresponding to the monomials {Mi(tα);ni < 0}.
Simple representatives in the class of complete intersections are Abelian orbifolds of

the form C2/Zn × C with the Hilbert series [28]

g(tα;C2/Zn × C) =
1

n

n∑
h=1

1∏3
α=1(1− ωaαhn tα)

=
(1− tn1 tn2 )

(1− tn1 )(1− tn2 )(1− t1t2)(1− t3)
(2.12)

with ωn = e
2πi
n and aα = (1,−1, 0). The result in the right hand side shows that the

orbifold can be viewed as a hypersurface xy = wn in C4 with coordinates (x, y, w, z).

2.1 Example: C2/Z3 × CxC

Let us illustrate the brane tiling tools in the simple case of C2/Z3 × C. The associated

quiver, brane tiling and toric diagrams are displayed in figure 1.

The tiling is made of hexagons (as is always the case for orbifolds of C3) with F = 3

faces associated to three U(1) nodes in the quiver diagram and E = 9 edges Xi j , i =

1, 2, 3 associated to chiral fields in the adjoint for i = j and bifundamental representation

otherwise. The Kasteleyn matrix is given by

K(z1, z2) =

 1 + z2 0 z1

1 1 + z2 0

0 1 1 + z2

 (2.13)

4The plethystic exponential of a multivariate function f(t1, ..., tn) that vanishes at the origin,

f(0, . . . , 0) = 0, is defined as PE [f(t1, t2, . . . , tn)] = exp
(∑∞

k=1
1
k
f(tk1 , · · · , tkn)

)
. Its inverse is the plethystic

logarithm PL.
5When a complete intersection has only one relation, the corresponding space is called a hypersurface.
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Each row is associated to a black node. For instance, there are three lines starting from

the first black node (first row): two towards the first white node contributing 1 + z2 (one

internal and one crossing the second boundary) and one towards the third white node

contributing z1. This determines the first line of K. The determinant is given by

detK = 1 + z1 + 3z2 + 3z2
2 + z3

2 (2.14)

Each monomial term in (2.14) is associated to a point in the toric diagram with coordinates

given by the exponents of z1,2.

3 Mass deformations

We are interested in mass deformations of brane tilings. Mass deformation requires the

presence of adjoint fields φi = Xi i or pairs of bifundamentals (Xi j , Xj i) for a given “i”

different from “j”. The toric superpotential is deformed by adding quadratic mass terms

which violate the toric condition on the superpotential [18] and break the U(1)3 mesonic

and R- symmetry [30]. We are interested in the low energy theory that is obtained once

the massive fields φi (or Xij , Xji) have been integrated out. This low energy theory has a

superpotential which generically violates the toric condition. In the following we will show

that, for a large class of tilings and suitable mass deformations, the low energy theory

has accidental symmetries which restore the toric U(1)3 symmetry group. The accidental

symmetry is made manifest by certain field redefinitions of the massless fields which restore

the toric condition for the superpotential.

We focus on brane tilings which have at least two adjacent strips of hexagonal faces

and consider the effect of give mass to the hypermultiplets along these strips. A strip made

of a single type of faces leads to adjoint edges while two alternating faces along the strip

leads to bifundamental matter. We collectively label the massive fields X(m) and the light

fields X(l) to highlight their different rôles. We consider the mass-deformed superpotential

Wdeformed(X(m), X(l)) = W (X(m), X(l)) + ∆W (X(m)) (3.1)

where W (X(m), X(l)) is the initial toric superpotential and ∆W (X(m)) is deformation of

one of the following types

• Adjoint: ∆W = m
2 (φ2

i1
− φ2

i2
) or

• Bifundamental: ∆W = m(Xi1j1Xj1i1 −Xi2j2Xj2i2),

possibly involving several pairs of mass terms, all with the same mass parameter m.

Integrating out the massive fields X(m), by solving their F-term equations

∂

∂X(m)
Wdeformed(X(m), X(l)) = 0 (3.2)

in terms of the light components X(l), one finds a non-toric superpotential Wlow(X(l)) for

the light fields. We are able to restore the toric condition by field redefinitions of the

light fields

X ′i j = Xi j +
1

m

∑
k

c
(ij)
k Xi kXk j or φ′i = φi +

1

m

∑
k

c
(ij)
k Xi kXk j (3.3)

– 8 –
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with some judicious choice of the coefficients c
(ij)
k . The low energy superpotential

Wlow(X(l)), rewritten in terms of the new variables X(l)′ can be shown to satisfy the toric

condition. As such the IR fixed point of the RG flow is associated to a new brane tiling. In

the following sections we consider some simple examples of mass-deformed brane tilings.

3.1 C2/Z3 × C to SPP (L1,2,1)

We first illustrate mass deformation of brane tilings in our working example of C2/Z3×C.

The starting super-potential is

W = φ1 (X13X31 −X12X21) + φ2 (X21X12 −X23X32) + φ3 (X32X23 −X31X13) (3.4)

The corresponding brane tiling and quiver diagram are shown in figure 1. We consider the

mass deformation

∆W =
m

2

(
φ2

1 − φ2
2

)
. (3.5)

In the Type IIA description, this corresponds to rotating the NS5-brane between D4-branes

1 and 2.

Along the flow, massive fields can be integrated out. The effective superpotential at

the infrared end of the flow is found by solving the mass-deformed F-term conditions for

φ1 and φ2 in favor of the light components

φ1 =
1

m
(X12X21 −X13X31) , φ2 =

1

m
(X21X12 −X23X32) . (3.6)

Substituting this into the deformed superpotential Wdeformed = W + ∆W one finds a

non-toric superpotential. Remarkably, a toric superpotential is recovered under the field

redefinitions

φ3 = φ′3 −
1

2m
(X31X13 +X32X23)

X12X21 = mX ′12X
′
21 , (3.7)

Indeed, by plugging (3.6) and (3.7) into Wdeformed, one finds the superpotential

Wfinal = φ3 (X32X23 −X31X13) +X ′12X
′
21X13X31 −X ′21X

′
12X23X32 . (3.8)

The field content and the superpotential in (3.8) are those of the suspended pinch point

theory [18, 27, 31], also known as the theory for L1,2,1.

Interestingly, the result of integrating out the massive fields and shifting the light fields

can be visualized in the brane tiling as squeezing two consecutive strips of hexagonal faces

into two strips of square faces as illustrated in figure 2. The left side of figure 2 shows the

brane tiling for C2/Z3×C. Edges associated to massive fields are drawn in blue. These fields

are aligned along a deformation strip made of two neighboring arrays of hexagonal faces.

The remaining internal edges in the deformation strip are drawn in red and form a closed

cycle on the 2-torus which we call the deformation line. In order to obtain the brane tiling

of the low energy theory, we need to remove the blue edges and move the deformation line in
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Figure 2. Flow from C2/Z3 × C to L1,2,1.

Figure 3. Toric diagrams for the C2/Z3 × C case (on the left) and for SPP (on the right) before

and after the mass deformation. Mass deformation amounts to a displacement of an extremal toric

point.

such a way that white nodes and black nodes move towards the opposite boundaries of the

closed deformation strip, as shown in the middle column of figure 2. There are two options

for the choice of merging nodes of the same color, but in the current example they lead to

equivalent theories. In more involved examples, like for the brane tiling of PdP4b and its

mass flow, only one of the two choices leads to a consistent tiling as illustrated in figure 10.

It is instructive to follow other characteristics of brane tilings along a mass flow. Fig-

ure 4 shows for the brane tiling of C2/Z3 × C how zig-zag paths transform from a generic

UV brane tiling to a IR brane tiling. Zig-zag path η2 reverses its direction due to the

fact that all blue edges corresponding to fields given mass in the brane tiling get removed

during the mass flow. The (p, q)-leg corresponding to the zig-zag path η2 flips its direction,

amounting to an area preserving deformation of the toric diagram as shown in figure 5. In

fact, the new toric diagram is obtained from the old one by moving a single extremal toric

point as illustrated in figure 3. A few other zig-zag paths change their directions as well,

but do not completely reverse their direction. This is governed by an overall (p, q)-charge

conservation of zig-zag paths in the brane tiling.

In general, we observe for all examples presented in this work that mass flow of a brane

tiling amounts to the displacement of toric points in the corresponding toric diagram and

the reversal of (p, q)-leg directions in the corresponding dual (p, q)-web diagram. Further-
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Figure 4. Mass deformation for the brane tiling of C2/Z3 × C with zig-zag paths. η2 inverts its

direction during the mass deformation while the adjacency of the zig-zag paths is preserved.

Figure 5. Mass deformation for the brane tiling of C2/Z3 × C with zig-zag paths and the cor-

responding toric diagrams and external (p, q)-legs. The winding numbers of zig-zag paths in the

brane tiling correspond to the directions of the (p, q)-legs. The toric diagram is the dual graph of

(p, q)-web diagram and as such we can trace the effect of mass deformation on toric geometry.
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Figure 6. Examples of mass flows with four/eight massive chiral multiplets.

more, we remark that the area and hence the number of lattice points along the perimeter

of the toric diagram of the UV and IR toric Calabi-Yau geometries are invariant because

the mass deformation does not alter the number of anomalous and non-anomalous baryonic

symmetries.6

3.2 Other flows

The analysis in the last section can be applied mutatis mutandis to a large class of brane

tilings admitting mass deformations. In figure 6, we list three infinite sequences of flows

starting from Abelian orbifolds of C3.

6There are e − 3 non-anomalous baryonic symmetries in the quiver, where e is the number of lattice

points along the perimeter of the toric diagram. There are also 2I anomalous baryonic symmetries, where I

is the number of points in the interior of the toric diagram. The number of gauge groups is (e−3)+2I+1 =

e+ 2I − 2, which by Pick’s theorem is equal to twice the area of the toric diagram.
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Figure 7. Mass flow from (C2/Z2 × C)× Z2 to C/Z2 which is equivalent to L111/Z2.

• C2/Zn × C → Lk,n−k,k: these flows are generated by giving identical masses to k

pairs of adjoint chiral multiplets which belong to N = 2 vector multiplets.

• (C2/Zn×C)/Z2 → Lk,n−k,k/Z2: these flows are generated by giving identical masses

to 2k pairs of chiral multiplets in bifundamental representations.

• C3/Z2n → Lk,n−k,k/Z′2: these singularities admit mass deformations for Z2n acting

as XI → ωaI XI , with ω2n = 1 and (aI) = (1, n − 1, n) [4–7, 32]. The flows are

generated by giving identical masses to 2k pairs of chiral multiplets in bifundamental

representations.

The results that we find on mass deformations of brane tilings can be extended to non-

orbifold theories obtained via un-higgsing of orbifold theories [27, 33]. As an example,

we present in figure 6 and figure 10 the flow starting from the brane tiling of PdP4b.

The explicit form of the toric superpotentials, mass deformations, and the required field

redefinitions for this example and all other examples are collected in appendices A.1 to A.4.

Figure 7 to figure 12 show in detail the brane tilings, toric diagrams and quiver diagrams

for the first few examples of mass deformation that are classified in figure 6.

4 R-symmetry, a-maximization and volume minimization

It is well known that the R-symmetry in the SU(2, 2|1) superconformal algebra of any 4d

SCFT is exactly and uniquely determined by an extremization procedure [34]. The exact

superconformal R-symmetry maximizes the expression of the central charge a [35] in terms

of ’t Hooft anomalies

a =
3

32
(3TrR3 − TrR) , (4.1)
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Figure 8. Mass flow from C3/Z4 to the second Z2 orbifold of the conifold C, C/Z′2, which is

equivalent to L111/Z′2.

Figure 9. Mass flow from (C2/Z3 × C)× Z2 to L121/Z2 also known as PdP3c.
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Figure 10. Mass flow from PdP4b to PdP4a.

Figure 11. Mass flow from C3/Z8 to L131/Z′2.
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Figure 12. Mass flow from C3/Z8 to L222/Z′2.

where the right-hand side is considered for any non-anomalous U(1) R-symmetry Rtrial

rather than just the superconformal one R.

In practice, one can start from a linear combination Rtrial = R0 +
∑

I α
iJi of a fiducial

non-anomalous R-symmetry generator R0 with the non-anomalous Abelian global sym-

metry generators Ji, compute atrial and maximize with respect to αi. The maximum of

atrial is the central charge a of the SCFT. As a corollary, one can argue that the central

charge a decreases along RG flows. Indeed, relevant deformations break some of the flavor

symmetries so, in the absence of accidental symmetries, the extermination in the IR under

a subset of the αi’s leads to a smaller value aIR < aUV [34]. For theories in this class,

a generalization of (4.1) has been introduced by [36] which can be used away from the

endpoints of RG flows. The resulting a-function monotonically decreases along the entire

RG flow if there are no accidental symmetries. However, the RG flows under consideration

in this paper exhibit accidental symmetries in the IR so we cannot use the a-function to

study the RG flow locally in the energy scale.7 We will content ourselves with checking

that aIR < aUV in all RG flows under consideration, consistently with the a-theorem.

We stress that, to obtain the correct superconformal R-charge and a central charge of

the infrared SCFT, it is essential to take into account the accidental mesonic symmetry that

is made manifest by the field redefinitions discussed in the previous section. Maximizing

only with respect to the mesonic symmetries that are present all along the RG flows

generically leads to the wrong answer, as expected on general grounds [34].

The connection with toric geometry and volume minimization was first pointed out

in [38], where it is shown that the Reeb vector and the volume of a Sasaki-Einstein metric

7One could use the a-function employed in the proof of the a-theorem by [37], but that requires computing

a scattering amplitude rather than a ’t Hooft anomaly.
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on the base of an n-dimensional toric Calabi-Yau cone may be computed by minimizing a

function Z which depends only on the toric data. For toric CY 3-folds, the Reeb vector and

the volume correspond to the superconformal R-symmetry and the inverse of the central

charge c = a of the holographic dual SCFT, respectively. Agreement between volume

minimization and a-maximization for toric SCFT’s was shown in [39] and later generalized

to non-toric cases in [30, 40]. In the present investigation, we are interested in relevant

mass deformations which, despite breaking the toric condition, lead to RG flows both of

whose endpoints are toric SCFT’s. We will show that for each of the considered flows,

VIR > VUV (or equivalently aIR < aUV using a-maximization).

4.1 Volume minimization

We have already recalled that the mesonic moduli space is a Calabi-Yau cone C(X) over

a Sasaki-Einstein 5-manifold X [12, 41]. Let us compute first the volumes VUV and VIR

of X at the two ends of the mass flow. According to holography, the volumes V and the

Reeb vector can be found by extremizing a volume function Z introduced in [38]. The

function Z is encoded in the Hilbert series which counts chiral gauge invariant operators of

the SCFTs. More precisely, introducing a fugacity tα = e−µrα for each of the GLSM field

pα associated to the CY singularity, the volume function Z is defined as

Z(rα;M) = lim
µ→0

µ3g(e−µrα ;M) . (4.2)

Note that we are overparametrizing the space of R-charges: the volume function is invari-

ant under

rα → rα +

c−3∑
i=1

si(Qt)iα , (4.3)

since the mesonic moduli space is the Kähler quotient (2.8). The freedom (4.3) can be

used to fix c − 3 of the c perfect matching variables. In addition, because each perfect

matching variables appears exactly once in each superpotential term, which has R-charge

2, the R-charges rα satisfy ∑
α

rα = 2 . (4.4)

The remaining 2-dimensional subspace corresponds to the mixing of the R-symmetry with

mesonic symmetries. Extremizing Z with respect to rα over this subspace leads to the

volume

V (M) = Ω ·min Z(rα;M) , Ω =

(
2π

3

)3

, (4.5)

where we have introduced a suitable normalization factor Ω. The R-charges of the SCFT

are obtained from the values of rα extremizing Z. For example for M = C3

Z =
1

r1r2(2− r1 − r2)
⇒ VS5 = π3 r1 = r2 =

2

3
(4.6)

as expected for the N = 4 theory. In the following paragraphs, we compute the volume of

the SCFTs at the two ends of the mass flows under consideration in this paper.
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Volumes for C2/Zn × C → Lk,n−k,k and their orbifolds. We start by considering

the flow starting from C2/Zn × C. The volume of an orbifold of a manifold M is simply

the volume of M divided by the order of the group. For S5/Zn one then finds

VS5/Zn =
π3

n
. (4.7)

On the other hand the volume of La,b,a can be obtained by extremizing the volume

function8

ZLa,b,a =
br1 + ar2 + ar3 + br4

(br1 + ar2)(ar3 + br4)(r2 + r3)(r1 + r4)
, (4.8)

with

r1 + r2 + r3 + r4 = 2

(r1, r2, r3, r4) ∼ (r1, r2, r3, r4) + (−a, b,−b, a)s .
(4.9)

Extremizing along the 2-dimensional subspace corresponding to mixing with the mesonic

symmetries, one finds

VLa,b,a =
4π3

27a2b2

[
(2b− a)(2a− b)(a+ b) + 2(a2 + b2 − ab)

3
2

]
(4.10)

Taking a = k and b = n − k, one can check that VLk,n−k,k > VS5/Zn for all n > 0 and

k = 1, . . . ,
[
n
2

]
(which covers the entire range because La,b,a = Lb,a,b). As expected, the

volume of the Sasaki-Einstein manifold increases along the RG flow. Similarly, for the

volumes of C3/Zn × Z2 and C3/Z2n one finds half the result (4.7) since the order is twice

as larger. On the other hand, the endpoints of the flows starting on these singularities are

Z2 orbifolds of Lk,n−k,k and therefore the volumes are just half of those of Lk,n−k,k. Again

the volumes increase along the flow as expected.

Volumes flow for PdP4b → PdP4a. Finally, for PdP4b one finds9

ZPdP4b
=

3r1 + 2r2 + 4r3 + 12r4

(r3 + 3r4)(4r4 + r1)(2r3 + r2)(3r1 + 2r2)
, (4.11)

with

r1 + r2 + r3 + r4 = 2

(r1, r2, r3, r4) ∼ (r1, r2, r3, r4) + (−4, 6,−3, 1)s .
(4.12)

The volume is given by the minimum

VPdP4b
' 0.531049 Ω . (4.13)

8This expression follows easily from the toric description for La,b,a: the toric diagram has vertices

w1 = (0, 0), w2 = (1, 0), w3 = (1, a), w4 = (0, b). The charge matrix of the GLSM is Qt = (−a, b,−b, a).

The singularity is the hypersurface xy = zawb in C4. The computation here agrees with the results

in [12, 41].
9The toric diagram of PdP4b has vertices w1 = (0, 0), w2 = (1, 0), w3 = (2, 1), w4 = (0, 3). The

charge matrix of the associated GLSM is Qt = (−4, 6,−3, 1). PdP4b is a non-complete intersection. The

computation here agrees with the results in [33].
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In comparison, PdP4a has the volume function10

ZPdP4a = (4r2
1 + 2r2

2 + 6r1r2 + 16r1r3 + 8r1r4 + 12r1r5 + 12r2r3 + 5r2r4 + 8r2r5

+12r2
3 + 12r3r4 + 2r2

4 + 16r3r5 + 6r4r5 + 4r2
5)× (4.14)

1

(2r1 + r2 + 2r3)(2r1 + 2r2 + r4)(r1 + 3r3 + r5)(r2 + 2r4 + 2r5)(2r3 + r4 + 2r5)
,

with

r1 + r2 + r3 + r4 + r5 = 2

(r1, r2, r3, r4, r5) ∼ (r1, r2, r3, r4, r5) + (2,−2,−1, 0, 1)s1 + (1, 0,−1,−2, 2)s2 ,
(4.15)

leading to the volume

VPdP4a ' 0.595008 Ω . (4.16)

The volume of the Sasaki-Einstein manifold increases in agreement with the holographic

a-theorem.

4.2 Volume ratios

Interesting observations can be made, when we consider ratios of volumes of the Sasaki-

Einstein manifolds along the mass flow. The volume ratio of the mass deformations in

figure 6 are as follows,

VLk,n−k,k

VC2/Zn×C
=

VLk,n−k,k/Z2

V(C2/Zn×C)/Z2

=
VLk,n−k,k/Z′2
VC2/Z2n

= R(k/n) , (4.17)

where

R(x) =
4(−9x2 + 9x− 2 + 2(3x2 − 3x+ 1)3/2)

27x2(1− x)2
. (4.18)

We note that the volume ratios R(x) in (4.18) for the mass flows C2/Zn × C → Lk,n−k,k,

(C2/Zn×C)/Z2 → Lk,n−k,k/Z2 and C3/Z2n → Lk,n−k,k/Z′2 take particular irrational values

for various values of x = k
n . The first few values are given in table 1 and plotted in figure 13.

Since the volume ratio R only depends on x = k
n , rescaling n and k by integers

provides an infinite class of mass flows which are characterized by the same ratio R(x).

This phenomenon has been observed for the mass flow of C2/Zn×C in the very special case

of n = 2k, i.e. x = 1
2 . This corresponds to the case where one gives masses to all adjoints

fields in the theory and one finds the universal value 32/27 for the ratio (see table 1). This

is consistent with the findings in [42], where it was shown that when a N = 2 SCFT flows

10The toric diagram of PdP4a has vertices w1 = (0, 2), w2 = (1, 2), w3 = (0, 0), w4 = (2, 1) and

w5 = (2, 0). The charge matrix of the associated GLSM is Q =

(
2 −2 −1 0 1

1 0 −1 −2 2

)
. The computation here

agrees with the results in [33].
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k

1 2 3 4

n

2 32
27

3 2√
3

4 32
243

(
7
√

7− 10
)

32
27

5 5
54

(
13
√

13− 35
)

10
243

(
7
√

7 + 10
)

6 16
75

(
7
√

21− 27
)

2√
3

32
27

7 7
243

(
62
√

31− 308
)

7
675

(
38
√

19− 56
)

7
486

(
35 + 13

√
13
)

8 64
1323

(
43
√

43− 260
)

32
243

(
7
√

7− 10
)

64
6075

(
28 + 19

√
19
)

32
27

9 1
8

(
19
√

57− 135
)

2
49

(
13
√

39− 54
)

2√
3

1
50

(
27 + 7

√
21
)

Table 1. Values of volume ratios R(k/n) for various values of n and k = 1, . . . , [n/2] for mass

flows C2/Zn × C→ Lk,n−k,k, (C2/Zn × C)/Z2 → Lk,n−k,k/Z2 and C3/Z2n → Lk,n−k,k/Z′2.

to a N = 1 SCFT by masses given to all adjoint fields, the central charges a and c before

and after the flow take the ratio R = 32
27 .

Interestingly, the ratio R = 32
27 is the maximum value achieved by the flows considered

in this paper. Here we have extended this observation beyond masses given to adjoints

and with the result that there is an infinite number of ‘mass flow classes’ characterized by

their ratios R(x) with x ∈ [1
2 , 1). This is shown for mass flows C2/Zn × C → Lk,n−k,k,

(C2/Zn × C)/Z2 → Lk,n−k,k/Z2 and C3/Z2n → Lk,n−k,k/Z′2. It would be interesting to

study this phenomenon further in future work.

5 Mass deformations as complex structure deformations and Hilbert se-

ries

The introduction of masses deforms the superpotential of the toric SCFT and therefore

its F-term relations. In this section, we show how this results into a complex structure

deformation of the underlying singularity by looking directly at the algebraic description of

the mesonic moduli space and its Hilbert series, rather than performing field redefinitions

of the microscopic fields.

Let us consider the simplest flow C2/Zn×C→ Lk,n−k,k as an illustration of the general

phenomenon. The gauge invariant mesonic operators are given by

x =
n∏
i=1

Xi,i+1 , y =
n∏
i=1

Xi,i+1 , wi = Xi,i+1Xi+1,i , φi (5.1)

satisfying

x y =

n∏
i=1

wi . (5.2)
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Figure 13. Volume ratio plot for mass flows C2/Zn × C → Lk,n−k,k, (C2/Zn × C)/Z2 →
Lk,n−k,k/Z2 and C3/Z2n → Lk,n−k,k/Z′2. Different colors correspond to different values of the

volume ratio R(k/n) in the left plot. The right plot shows the correspondence between the volume

ratio R(x) and the flow parameter x = k
n .

After the mass deformation the relations among these operators that follow from their

definition and the F-term equations become11

φi = z , ∀i = 1, . . . , n

w2i−2 − w2i−1 +mφ2i−1 = w2i−1 − w2i −mφ2i = 0 , i = 1, . . . , k

wi−1 − wi +mφi = 0 , i = 2k + 1, . . . , n . (5.3)

The solution can be written as

w2i−1 −mz = w2i = w i = 1, . . . , k

wi = w i = 2k + 1, . . . , n (5.4)

while the relation (5.2) becomes

x y = (w +mz)k wn−k . (5.5)

If m = 0, (5.5) reduces to the algebraic description of C2/Zn in terms of the generators x,

y and w, which is in a product with the C plane generated by z. If m 6= 0, the equation

which describes the singularity is deformed, and the symmetry acting on x, y, z and w

by complex rescalings is broken from C∗3 to C∗2. However, we can change variable z to

z̃ = mz + w in order to recast (5.5) into

x y = z̃k wn−k . (5.6)

11We restrict to the mesonic branch of the moduli space, where the adjoint fields are equal. This condition

is not satisfied on the branches of the moduli space corresponding to the regular D3-brane splitting into

fractional D3-branes.
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This is nothing but the defining equation of the cone over Lk,n−k,n, which enjoys the full

toric C∗3 symmetry. We see that as soon as the mass parameter is turned on, the complex

structure of the mesonic moduli space becomes that of the cone over Lk,n−k,n, which

is associated to the infrared SCFT. This fact is well known for the flow C2/Zn × C →
Lk,n−k,k [9], although here we have emphasized the choices of mass parameters that lead to

a toric mesonic moduli space for the mass-deformed theory (or equivalently in the infrared).

We claim that this phenomenon, which was studied from the dual supergravity perspective

in [43], applies to all the mass flows described in this paper even in the cases where the

singularities are not complete intersections.

There are two ways to understand why the mesonic moduli space becomes the toric

Calabi-Yau threefold associated to the infrared field theory as soon as the mass deformation

is turned on. The first way is to analyze directly the F -term equations, as reviewed in

section 3 and detailed in appendix A. Since imposing F -term equations effectively integrates

out massive fields, the mesonic moduli spaces of the mass-deformed UV theory and of the

low energy theory obtained by integrating out the massive fields coincide. Using the light

matter fields of the UV theory only manifests a U(1)2 symmetry in the mesonic moduli

space, because the mass deformation explicitly breaks a U(1) factor of the toric U(1)3 of

the UV CFT. However a change of variables (3.3) recasts the low energy superpotential in

toric form, making it clear that the mesonic moduli space of the IR CFT (or, equivalently,

of the mass-deformed UV CFT) is a toric Calabi-Yau threefold.

An alternative and more general perspective on this point, even though it misses the

accidental symmetry, is offered by the Hilbert series of the mesonic moduli space of the

Abelian quiver gauge theory [28, 29]. In this section we work with the matter fields of the

quiver gauge theory subject to F -term equations, rather than with the perfect matching

variables appearing in (2.9), that are associated to the GLSM description of the toric

Calabi-Yau, which has a larger gauge group and no superpotential. The Hilbert series of

the mesonic moduli space counts gauge invariant chiral operators, weighted according to

their charges under the global symmetry. It is given by a Molien formula similar to (2.9),

but now the integral is over the gauge group of the quiver gauge theory. Chiral multiplets

Φ in the quiver contribute to the integrand factors (1 − tΦ)−1, where tΦ is the weight of

Φ under the global and gauge symmetry group, whereas F -term equations contribute to

the numerator. To proceed, we note that the F -term equations for the massive fields are

linear in the massive fields and can be solved independently of the other equations. So

the F -term of a massive field X contributes a factor
(

1− t ∂W
∂X

)
to the numerator of the

integrand.

We start from the Hilbert series of the mesonic moduli space of the toric UV theory,

which depends on three fugacities associated to the U(1)3 non-baryonic symmetry. All the

weights above are monomials in such fugacities and the fugacities for the gauge group. The

first effect of the mass deformation on the Hilbert series of the mesonic moduli space of the

UV theory is to unrefine it with respect to the non-baryonic symmetry which is broken by

the mass terms: the fugacity associated to the broken U(1) symmetry is set to 1. Secondly,

in the Molien integrand the F -term of a field X appearing in a superpotential mass term
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mXY exactly cancels the contribution of the partner field Y ,

1− t ∂W
∂X

1− tY
= 1 , (5.7)

because ∂W
∂X and Y are forced by the mass term to have the same quantum numbers under

the unbroken symmetries.

Since massive fields and their F -term equations cancel out in the Hilbert series, we

conclude that the Hilbert series of the mass-deformed UV theory coincides with the Hilbert

series of the IR theory, unrefined with respect to the accidental symmetry. In particular, a

necessary condition for two toric Calabi-Yau threefolds (complete intersections or not) to

be related by a mass flow is that their Hilbert series coincide under a certain unrefinement.

This is a restrictive constraint, because it implies a bijection between spectra of holomorphic

functions.

As an example, let us return to the flows C2/Zn × C → Lk,n−k,k. For C2/Zn × C,

parametrized by (x, y, w, z) subject to xy = wn, the refined Hilbert series is

g(t;C2/Zn × C) = PE [tx + ty + tw + tz − tnw] , with txty = tnw . (5.8)

Unrefining with respect to the broken U(1) symmetry sets tz = tw and yields

g(t;C2/Zn × C)|tz=tw = PE[tx + ty + 2tw − tnw] , with txty = tnw . (5.9)

For the cone over Lk,n−k,k, parametrized by (X,Y,W,Z) subject to XY = ZkWn−k, the

refined Hilbert series is

g(T ;Lk,n−k,k) = PE
[
tX + tY + tW + tZ − tkZtn−kW

]
, with tXtY = tkZt

n−k
W . (5.10)

Unrefining with respect to the accidental U(1) symmetry sets tZ = tW and yields

g(T ;Lk,n−k,k)|tZ=tW = PE [tX + tY + 2tW − tnW ] , with tXtY = tnW , (5.11)

which indeed coincides with (5.9) if (tX , tY , tW ) = (tx, ty, tw).

6 The string amplitude

In the last section we give some evidence for the interpretation of mass deformations as

complex deformations of the UV Calabi-Yau cone. This suggests that mass deformations

can be realized in String Theory by turning on 3-form NSNS and RR fluxes. Here we

support this identification, by computing the mass couplings of 3-form fluxes to open string

fermion bilinears. The mass couplings will be extracted from the three point functions on

a disk involving the insertion of two open and one closed string vertex operators.12

We focus on the C2/Zn×C case. The generalization to the other orbifold theories under

consideration here is straightforward since the orbifold groups always contain an N = 2

12M. B, J. F. M. and D. R. P. would like to acknowledge stimulating discussions on this issue with

G. Inverso and L. Martucci.
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element, i.e. an element leaving invariant one complex plane, let us say X3. Turning on a

flux belonging to this sector will give mass to the scalar field Φ3. The only difference with

the N = 2 setup is that for N = 1 orbifold theories, the orbifold group acts non-trivially on

Φ3 and therefore Chan-Paton indices should be taken off-diagonal leading to bifundamental

rather than adjoint representations.

Open string vertices can be chosen among the gaugino and the fermions in the bifun-

damental matter

VΛ0 = Λ0
α e
−ϕ

2 Sα Σ0 (x)

VΛI = ΛIα e
−ϕ

2 Sα ΣI (x) . (6.1)

The gaugino field is described by block diagonal matrix Λ0
α while matter fermions are given

by off-diagonal matrices ΛIα̇ with non-trivial Na×Na+aI block components. There are two

choices for the closed string fields depending on whether we consider fluxes coming from the

untwisted or twisted sectors. The result in the untwisted sector can be borrowed from that

in flat space-time [44] after Chan-Paton matrices are properly projected. For convenience

of the reader, we review the results here. The closed string vertices for RR and NSNS

3-form fluxes in the untwisted sector are given by

VF = (FR0)AB e
−ϕ

2 Sα ΣA(z) e−
ϕ
2 Sα ΣB(z̄) + (FR0)AB e−

ϕ
2Cα̇ ΣA(z) e−

ϕ
2 Cα̇ ΣB(z̄)

VH = ∂m(BR0)np ψ
mψn(z)e−ϕψp(z̄) (6.2)

with A = 0, . . . 3 upper and lower indices labeling the L- and R-moving spinor represen-

tations of the R-symmetry group SO(6), and R0 = −1, R0 = Γ4 . . .Γ9 are the reflection

matrices relating left to right moving modes of the strings. Explicitly

(FR0)AB = ∗Fmnp(Σmnp)AB (BR0)np = −Bnp (6.3)

where m = 1, . . . 6 runs over the vector of SO(6). Finally internal spin fields can be written

in the bosonized form

Σ0 = e
i
2

(ϕ1+ϕ2+ϕ3) ΣI = e−
i
2

(ϕ1+ϕ2+ϕ3−2ϕI) Sα = e±
i
2

(ϕ4+ϕ5) Cα̇ = e±
i
2

(ϕ4−ϕ5) (6.4)

and upper indices are given by their complex conjugates. Collecting all pieces and plugging

them into the disk amplitudes 〈VF,HΛAΛB〉, one finds the three point couplings [44]

L3−form = 2π
3! G

IASD
mnp (Σ̄mnp)AB TrΛαA ΛBα + h.c. (6.5)

where GIASD = ∗F − τH is the imaginary anti self-dual part of the three-form field13

G = F − τH . (6.6)

In components, after keeping only Zn-invariant components of the fluxes, one finds

1
2πLuntw = G(3,0)TrΛα0 Λ0

α +G(1,2)TrΛα3 Λ3
α . (6.7)

13We take τ = i
gs

.
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Notice that the first term breaks supersymmetry since it gives mass to the gaugino. On

the other hand, a flux of (1,2) type generates a supersymmetric mass for the adjoint

fermions Λ3.

Now, let us consider the twisted closed string spectrum. Denoting by θI = (θ, 1−θ, 0),

θ ∈ 1
nZ, the bosonic twists, the relevant vertex for NSNS and RR field strengths can be

written as

VH,tw = H e−ϕ
2∏
I=1

σθIe
iϕIθI (z)e−iϕ3

2∏
I=1

σθIe
−iϕIθI (z̄)

VF,tw = F e−
ϕ
2 e−

iϕ3
2 Sα

2∏
I=1

σθIe
iϕI( 1

2
−θI)(z)e−

ϕ
2 e−

iϕ3
2 Sα

2∏
I=1

σθIe
−iϕI( 1

2
−θI)(z̄) (6.8)

with σθI the bosonic twist fields. The vertices (6.8) are massless for any choice of θ since

left and right moving conformal dimensions add up to one.14 Terms combine again into

imaginary anti-self-dual combinations generating the bilinear couplings

1
2πLΘh−tw = G(1,2),hTr

(
ΘhΛα3 Λ3

α

)
. (6.9)

Comparing (6.9) with (6.7), one notices that an untwisted 3-form flux produces identical

masses for all the adjoint hypermultiplets while fluxes from the twisted sector can be used

to tune mass differences. The flows studied in this paper are then induced by NSNS/RR

3-form fluxes coming from twisted sectors localized at the singularities.

In the following we present the derivation of this coupling for the RR vertex. A similar

computation can be performed for the NSNS field.

6.1 The RR amplitude

Let us compute the coupling FΛα3Λ3
α. The relevant disk amplitude (at zero momenta) is

∫
dz2 〈VΛ3(z1)VΛ3(z2)VF (z3, z4)〉 = FΛ3

α1
Λ3
α2
εα3α4 Aα1α2α3α4 (6.10)

with

Aα1α2α3α4 =

∫
dz2

〈
ce−

ϕ
2 Sα1 Σ3 (z1)e−

ϕ
2 Sα2 Σ3 (z2)

× ce−
ϕ
2 e
−iϕ3

2 Sα3

2∏
I=1

σθIe
iϕI( 1

2
−θI)(z3)ce−

ϕ
2 e
−iϕ3

2 Sα4

2∏
I=1

σθIe
−iϕI( 1

2
−θI)(z4)

〉
.

14The dimensions of the various fields are [e−ϕ/2] = 3
8
, [e−ϕ] = 1

2
, [eiqϕi ] = q2

2
, [σθI ] = θI

2
(1 − θI),

[eiθ] = θ2

2
.
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The various contributions are

〈e−
ϕ
2 (z1)e−

ϕ
2 (z2)e−

ϕ
2 (z3)e−

ϕ
2 (z4)〉 = (z12z13z14z23z24z34)−1/4

〈e
iϕ3
2 (z1)e

iϕ3
2 (z2)e−

iϕ3
2 (z3)e−

iϕ3
2 (z4)〉 =

(
z12z34

z13z24z14z23

)1/4

〈e
i
2

(ϕ1+ϕ2)(z1)e
i
2

(ϕ1+ϕ2)(z2)
2∏
I=1

σθIe
iϕI( 1

2
−θI)(z3)

2∏
I=1

σθIe
−iϕI( 1

2
−θI)(z4)〉 =

(
1

z12z34

) 1
2

〈Sα1(z1)Sα2(z2)Sα3(z3)Sα4(z4)〉 =

(
z14z23z13z24

z12z34

)1/2 [εα1α3εα2α4

z13z24
+
εα1α4εα2α3

z14z23

]
〈c(z1)c(z3)c(z4)〉 = z13z34z41 . (6.11)

Contracting with εα3α4 , one finds15

εα3α4Aα1α2α3α4 = εα1α2

∫
|w|=1

dw

w
= 2πi εα1α2 (6.12)

with w = z24z13
z14z23

the complex cross ratio. Plugging (6.12) into (6.10) one finds the F-

contribution to the coupling (6.9).

A similar computation can be performed for untwisted R-R fluxes. The relevant disk

amplitude (at zero momenta) reads

AKLIJ =

∫
dz2

〈
ce−

ϕ
2 Sα ΣI (z1)e−

ϕ
2 Sα ΣJ (z2)ce−

ϕ
2 e
−iϕ3

2 Cα̇ ΣK (z3)ce−
ϕ
2 e
−iϕ3

2 Cα̇ ΣL (z4)
〉

= δ
(I
(Kδ

J)
L)

∫
|w|=1

dw

w
= 2πi δ

(I
(Kδ

J)
L) (6.13)

leading to (6.7).

7 Conclusions

In this paper we have shown that brane tiling methods can be used to efficiently study

RG flows between toric quiver gauge theories triggered by mass terms. Even though mass

terms break the U(1)3 toric symmetry of the UV superconformal field theory and cannot

be described by nodes in a brane tiling, for judicious choices of the masses with pairs of

equal and opposite mass parameters it is possible to flow to another superconformal toric

quiver gauge theory in the IR. The IR toric U(1)3 non-baryonic symmetry involves an

accidental mesonic symmetry which appears once the massive fields are integrated out.

The accidental symmetry is manifested by a change of variables for the light fields which

recasts the superpotential in toric form. The endpoints of such renormalization group flows

can be easily visualized by performing a certain move on the brane tiling associated to the

UV fixed point. The effect of this move is to reverse the winding numbers of a particular

zig-zag path made of those massless fields which appear in two toric superpotential terms

with massive fields.

15Here we write dz2z34
z23z24

= dw
w

with |w| = 1.
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Although the mass-deformed theory does not have a U(1)3 non-baryonic symmetry

along the RG flow, its mesonic moduli space is actually a toric Calabi-Yau cone: this is

nothing but the Calabi-Yau cone associated to the IR fixed point, since the U(1) charges

of F -terms are independent of the RG scale. We have shown that the volumes of the

Sasaki-Einstein bases of the singularity cones always increase along the flows from UV to

IR, in agreement with the holographic a-theorem. Interestingly, for flows starting from an

orbifold singularity the ratio between IR and UV volumes depends only on the order of

the group and the number of massive deformations with maximum value 32/27 matching

the universal value explained in [42] for flows from N = 2 to N = 1 SCFT where all

adjoint fields get masses. This universal value is also achieved for flows involving massive

bifundamental matter.

The toric Calabi-Yau cones associated to the UV and IR fixed points are related by a

complex deformation. We have shown the relation between UV and IR toric Calabi-Yau

cones in a simple class of examples, in terms of the algebraic description of the singularity

and its Hilbert series. The introduction of a mass term has the net effect of partially

unrefining the Hilbert series of the mesonic moduli space of the UV theory with respect to

the global symmetry broken by the mass term, and the Hilbert series of the mass-deformed

UV theory coincides with that of the Hilbert series of the IR theory, unrefined with respect

to the accidental symmetry.

The mass deformation is induced by the presence of an imaginary-self-dual 3-form

fluxes in the twisted sector. We supported this identification by an explicit computation of

the disk amplitude involving a closed 3-form vertex from the twisted sector and two open

string fermions.

Analogously to our study of mass deformations, it would be interesting to analyze

the effect of other relevant or marginal deformations [30] and identify the source of the

deformation from the bulk point of view. The results of this paper relate gauge theories on

non-orbifold singularities like Laba (or orbifolds of them) to orbifold theories. In orbifold

theories, one has complete control of the dynamics from the world-sheet vantage point.

One can not only compute mass terms generated by twisted bulk fluxes, as done in sec-

tion 6, but also superpotentials and other interactions in the effective action dynamically

generated by ‘gauge’ or ‘exotic’ instantons [45–51]. It would be interesting to extend the

results of this paper to superconformal unoriented theories that emerge from D3-branes

at orientifold singularities [52] and exploit the worldsheet description in the UV to learn

about the strong coupling dynamics of the non-orbifold theories in the IR. Given their pos-

sible role in embedding (supersymmetric) extensions of the Standard Model, configurations

of unoriented D-branes at Calabi-Yau singularities certainly deserve a systematic analysis

starting from the toric case along the lines of [53–56].
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A Details of the flows

In this appendix we collect the details of the mass flows described in section 2. For each case

we list the starting and end superpotentials, the mass deformation, the F-term conditions

and the field redefinitions.

A.1 C2/Zn × C to Lk,n−k,k

Superpotentials and mass terms:

WC2/Zn×C =

n∑
i=1

φi (Xi,i−1Xi−1,i −Xi,i+1Xi+1,i)

∆W =
m

2

k∑
i=1

(
φ2

2i−1 − φ2
2i

)
(A.1)

WLk,n−k,k =
k∑
i=1

(
X ′2i−1,2iX

′
2i,2i−1X2i−1,2i−2X2i−2,2i−1 −X ′2i,2i−1X

′
2i−1,2iX2i,2i+1X2i+1,2i

)
+

n∑
i=k+1

φ′i (Xi,i−1Xi−1,i −Xi,i+1Xi+1,i)

where subscripts i are understood modulo n.

F-term and field redefinitions:

φ2i−1 =
1

m
(X2i−1,2iX2i,2i−1 −X2i−1,2i−2X2i−2,2i−1)

φ2i =
1

m
(X2i,2i−1X2i−1,2i −X2i,2i+1X2i+1,2i)

φj = φ′j −
1

2m
(Xj,j+1Xj+1,j +Xj,j−1Xj−1,j)

X2i−1,2iX2i,2i−1 = mX ′2i−1,2iX
′
2i,2i−1 (A.2)

with i = 1, . . . , k and j = 2k + 1, . . . , n.
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A.2 (C2/Zn × C)/Z2 to Lk,n−k,k/Z2

The superpotential of the (C2/Zn × C)/Z2 model is given by

W(C2/Zn×C)/Z2
=

n∑
i=1

[
X2i−1,2i (X2i,2i+2X2i+2,2i−1 −X2i,2i−3X2i−3,2i−1)

+X2i,2i−1 (X2i−1,2i+1X2i+1,2i −X2i−1,2i−2X2i−2,2i)
]

∆W = m
2k∑
i=1

(−1)iX2i−1,2iX2i,2i−1 (A.3)

WLk,n−k,k/Z2
=

n∑
i=2k+1

[
X ′2i−1,2i (X2i,2i+2X2i+2,2i−1 −X2i,2i−3X2i−3,2i−1)

+X ′2i,2i−1 (X2i−1,2i+1X2i+1,2i −X2i−1,2i−2X2i−2,2i)
]

+
k∑
i=1

X ′4i−3,4i−1 (X4i−1,4i+1X4i+1,4iX4i,4i−3 −X4i−1,4i−2X4i−2,4i−5X4i−5,4i−3)

+
k∑
i=1

X ′4i−2,4i (X4i,4i+2X4i+2,4i−1X4i−1,4i−2 −X4i,4i−3X4i−3,4i−4X4i−4,4i−2)

where subscripts i are now understood modulo 2n.

F-terms and field redefinitions:

X2i−1,2i = (−1)i+1 1

m
(X2i−1,2i+1X2i+1,2i −X2i−1,2i−2X2i−2,2i)

X2i,2i−1 = (−1)i+1 1

m
(X2i,2i+2X2i+2,2i−1 −X2i,2i−3X2i−3,2i−1)

X2j−1,2j = X ′2j−1,2j −
1

2m
(X2j−1,2j−2X2j−2,2j +X2j−1,2j+1X2j+1,2j)

X2j,2j−1 = X ′2j,2j−1 −
1

2m
(X2j,2j+2X2j+2,2i−1 +X2j,2j−3X2j−3,2j−1)

X4l−3,4l−1 = mX ′4l−3,4l−1 , X4l−2,4l = mX ′4l−2,4l , (A.4)

with i = 1, . . . , 2k, j = 2k + 1, . . . , n and l = 1, . . . , k.

A.3 C3/Z2n to Lk,n−k,k/Z′2

Superpotentials and mass terms:

WC3/Z2n
=

2n∑
i=1

Xi,i+1 (Xi+1,i+n+1Xi+n+1,i −Xi+1,i+nXi+n,i)

∆W = m

k∑
i=1

(X2i−1,2i−1+nX2i−1+n,2i−1 −X2i,2i+nX2i+n,2i) (A.5)
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WLk,n−k,k/Z′2 =
n∑

i=2k+1

X ′i,i+n (Xi+n,i−1Xi−1,i −Xi+n,i+n+1Xi+n+1,i) +

+
n∑

i=2k+1

X ′i+n,i (Xi,i+n−1Xi+n−1,i+n −Xi,i+1Xi+1,i+n) +

+

k∑
i=1

X ′2i−1,2i (X2i,2i−1+nX2i−1+n,2i−2X2i−2,2i−1 −X2i,2i+1X2i+1,2i+nX2i+n,2i−1) +

+
k∑
i=1

X ′2i−1+n,2i+n

(
X2i+n,2i−1X2i−1,2i−2+nX2i−2+n,2i−1+n+

−X2i+n,2i+1+nX2i+1+n,2iX2i,2i−1+n

)
(A.6)

with the subscripts understood modulo 2n.

F-terms and field redefinitions:

X2i−1,2i−1+n =
1

m
(X2i−1,2iX2i,2i−1+n −X2i−1,2i−2+nX2i−2+n,2i−1+n)

X2i−1+n,2i−1 =
1

m
(X2i−1+n,2i+nX2i+n,2i−1 −X2i−1+n,2i−2X2i−2,2i−1)

X2i,2i+n =
1

m
(X2i,2i+n−1X2i+n−1,2i+n −X2i,2i+1X2i+1,2i+n)

X2i+n,2i =
1

m
(X2i+n,2i−1X2i−1,2i −X2i+n,2i+1+nX2i+1+n,2i)

Xj,j+n = X ′j,j+n −
1

2m
(Xj,j+1Xj+1,j+n +Xj,j+n−1Xj+n−1,j+n)

Xj+n,j = X ′j+n,j −
1

2m
(Xj+n,j+n+1Xj+n+1,j +Xj+n,j−1Xj−1,j)

X2i−1,2i = mX ′2i−1,2i , X2i−1+n,2i+n = mX ′2i−1+n,2i+n , (A.7)

for i = 1, . . . , k and j = 2k + 1, . . . , n.

A.4 PdP4b to PdP4a

Superpotentials and mass terms:

WPdP4b
= X12X25X51 +X13X34X41 +X14X47X71 +X24X45X52 +X35X56X63

−X12X24X41 −X13X37X71 −X14X45X51 −X23X35X52 −X25X56X62

+X23X37X76X62 −X34X47X76X63

∆W = m (X14X41 −X25X52)

WPdP4a = X ′45 (X51X13X34 −X56X62X24) +X ′12 (X24X47X71 −X23X35X51) +

+X ′63 (X35X56 −X34X47X76) +X ′37 (X76X62X23 −X71X13) . (A.8)

F-terms and field redefinitions:

X14 = +
1

m
(X12X24 −X13X34) , X41 = +

1

m
(X45X51 −X47X71) ,

X25 =
1

m
(X24X45 −X23X35) , X52 = − 1

m
(X51X12 −X56X62) , (A.9)

X37 = X ′37 −X34X47 , X63 = X ′63 −X62X23 , X12 = mX ′12 , X45 = mX ′45 .
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