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SUMMARY  

All species demonstrate intraspecific anatomical variation.  While generalisations such as Bergman’s 

and Allen’s rules have attempted to explain the geographic structuring of variation with some 

success, recent work has demonstrated limited support for these in certain Old World monkeys.  This 

study extends this research to the baboon: a species that is widely distributed across sub-Saharan 

Africa and exhibits clinal variation across an environmentally disparate range. This study uses trend 

surface analysis to map the pattern of skull variation in size and shape in order the visualise the main 

axes of morphological variation.   Patterns of shape and size controlled shape are compared to 

highlight morphological variation that is underpinned by allometry alone.  Partial regression is used 

to dissociate the effects of environmental terms, such as rainfall, temperature, and spatial position.  

The diminutive Kinda baboon is outlying in size so analyses were carried out with and without this 

taxon. 

Skull size variation demonstrates an east-west pattern, with small animals at the two extremes and 

large animals in central and southern Africa.  Shape variation demonstrates the same geographical 

pattern as skull size, with small sized animals exhibiting classic paedomorphic morphology.  However 

an additional north-south axis of variation emerges.  After controlling for skull size, the diminutive 

Kinda baboon is no longer an outlier for size and shape.  Also the east-west component is no longer 

evident and discriminant function analysis shows an increased misclassification of adjacent taxa 

previously differentiated by size.  This demonstrates the east-west component of shape variation is 

underpinned by skull size, while the north-south axis is not.  The latter axis is explicable in 

phylogenetic terms: baboons arose in southern Africa and colonised East and West Africa to the 

north, diverging in the process, aided by climate-mediated isolating mechanisms.  Environmental 

terms appear poorly correlated with shape variation compared with geography. This might indicate 

that there is no simple environment-morphology association, but certainly demonstrates that 

phylogenetic history is an overbearing factor in baboon morphological variation. 
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INTRODUCTION 

Continuous and spatially structured anatomical variation makes up a large part of intraspecific 

diversity (Forsman and Shine, 1997, Thorpe, 1987).  Clinal variation in size is common (Millien et al., 

2006, Mayr, 1956, Ashton et al., 2000), with patterns often being similar between species 

(Bergmann, 1847, James, 1970, Millien et al., 2006).  The most well-known examples of this are 
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Bergmann’s ‘rule’ and Allen’s ‘rule.’ These ecogeographic principles describe how body and 

extremity size covary with temperature in closely related animals, with spatial descriptors such as 

latitude or altitude often being used as proxies (Mayr 1963, Bergmann, 1847; Allen, 1877).  Meta-

analyses, suggest that over 70% of mammals and birds conform to Bergmann’s rule of increasing size 

with distance from the equator (Millien et al., 2006).  In addition species as disparate as non-

migratory sea birds (Nudds and Oswald, 2007 ), jackrabbits (Griffing, 1974) and foxes (Millien et al., 

2006) exhibit intraspecific variation consistent with Allen’s rule of decreasing extremity length with 

distance from the equator.  However, temperature is not the only spatially-correlated potential 

influence on morphological variation.  Greater primary productivity is likely to equate to greater food 

availability, a known influence on animal size and thus a possible determinant of clinal variation 

(Ferguson and Larivière, 2008, Yom-Tov and Geffen, 2006).  Seasonality may also affect body size 

(Boyce, 1978). Seasonal reductions in the amount of sunlight results in reduced photosynthesis, 

compounding the deleterious effects of low temperature and low rainfall.  For diurnal animals there 

is also the added burden of reduced foraging time during part of the year (Hill et al., 2003).  One 

strategy for coping with seasonal fluctuations of food is to accumulate fat over the summer months 

and use this to make up the negative energy balance over the winter (Lindstedt and Boyce, 1985).  

As stores are proportional to absolute size, some researchers have claimed that increasing size with 

latitude is selected for to act as a buffer to seasonal food shortages (Millar and Hickling, 1990, Boyce, 

1978, Lindstedt and Boyce, 1985), for which there is evidence in carnivores (Ferguson and Larivière, 

2008).  The likely importance of resource availability led Reinig (1939, reported in Scholander, 1955) 

to refute the existence of Bergmannian clines altogether, stating that size clines were present from 

the core to the periphery of an animal’s range.  This, he argued, was because peripheral habitat at 

the environmental boundary of an animal’s range may represent sub-prime habitat. 

 

Despite a wealth of studies in other orders, clinal variation in primates and its environmental 

underpinnings is relatively unstudied, with existing research providing few generalities.  For instance 

the long-tailed macaque exhibits a limited Bergmannian size cline but the pig-tailed macaque does 

not (Schillaci, 2009). An east-west rather than Bergmannian trend was found in Geoffroy’s tamarin 

(Natori and Kondo, 1998) and Brazilian tufted-eared marmosets (Albrecht, 1982).  In several studies 

the pattern of clinal variation is mosaic rather than affecting the whole body equally, such as in 

Japanese macaque maxillary sinus volume (Rae et al., 2003) and vervet tail length (Turner et al., 

1997).  Instances of translocation show that environment does influence body size.  Macaques 

translocated from Japan to two locations in the USA exhibited larger size at the colder Oregon site 

than those at the warmer Texas site, corresponding to a decrease in surface area to body mass of 
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about 10% (Paterson, 1996). The time depth was only two generations, suggesting phenotypic 

plasticity (Paterson, 1996).  A more consistent and comparable set of studies reveal strong clinal 

variation in three widespread African primates.  Blue monkeys (Cardini et al., 2010), vervets (Cardini 

et al., 2007) and red colobus monkeys (Cardini and Elton, 2009) have all been found to exhibit a 

decreasing size cline from Central to East Africa. However, there are differences, as West African 

blue monkeys and red colobus are small while West African vervets are large (Cardini et al., 2007, 

Cardini et al., 2010, Cardini and Elton, 2009, Cardini et al., 2012).  The Central-East African trend was 

found to be correlated with average annual rainfall in vervets, arguing for a resource-based 

underpinning (Cardini et al., 2007). 

 

It is possible that the similarities in size trends are the result of a common response to 

environmental variation.  One way of further addressing this is by extending analyses to other 

species.  The baboon, with its spatially structured variation and extensive geographic distribution 

(Fig. 1), is an excellent candidate for this, through mapping and quantifying the correlates of its 

variation.  An Old World monkey, like the vervet, red colobus and blue monkey, this species is found 

almost continuously in sub-Saharan Africa, aside from true desert and rainforest (Fig. 1, Jolly, 1993, 

Alberts and Altmann, 2006).  Since the baboon is terrestrial, it provides good comparison for the two 

arboreal primates (blue monkeys and red colobus) and one terrestrial primate (vervet) studied in this 

fashion to date. The baboon is regionally variable in pelage and morphology, and variants are often 

grouped into subspecies (Jolly, 1993).  While forms may be regarded as discrete, there is no 

complete reproductive isolation between them, with hybridisation common at the borders and 

evidence of a long history of genetic introgression (Zinner et al., 2011, Zinner et al., 2009).  Animals 

next to the hybrid zone exhibit some of the traits of those on the opposite side, unlike those closer 

to the heart of the subspecific range (Jolly, 1993).  Thus, the baboon may be approximately modelled 

as a continuous cline (Frost et al., 2003).  Such an approach revealed that geographic position 

explained 60% of ‘size-sex-corrected’ cranial shape variation (Frost et al., 2003).  Across Africa, Frost 

et al. (2003) found evidence of morphological change in a northeast-southwest direction, with the 

greatest step between northern and southern taxa.  Northern forms had wider skulls and less 

ventrally flexed rostra than southern forms.  However, the absence of analyses on size differences 

and the size correction used by Frost et al. (2003) renders comparison with other monkeys difficult, 

as size is a major part of subtle clinal morphological variation, and is likely to be the most important 

ecological aspect (Peters, 1983).   
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Baboon size variation is extensive, with the chacma baboons (P. h. ursinus) in southern Africa having 

a large body size (Anderson, 1982) while hamadryas (P. h. hamadryas) and Guinea baboons (P. h. 

papio) being smaller (Jolly and Phillips-Conroy, 2003, Jolly and Phillips-Conroy, 2006). Baboon size 

and shape is undoubtedly spatially variable but it is not clear whether this variation has arisen in 

response to environmental pressures, as has been argued to be the case in other instances of clinal 

variation (James, 1970, Burnett, 1983, Ferguson and Larivière, 2008, Virgós et al., 2011).  This seems 

likely in baboons as they are extremely responsive to the environment, which modulates group size 

(Byrne et al., 1993, Kunz and Linsenmair, 2008), composition (Hamilton III and Bulger, 1992, Kunz 

and Linsenmair, 2008) and hierarchy (Barton et al., 1996) and alters time budgets according to day 

length (Hill et al., 2003), rainfall (Bronikowski and Altmann, 1996) and temperature (Hill, 2006). 

However, although Dunbar (1990) found a relationship between rainfall and body mass, recent 

analysis with fuller data show this is not the case across the Papio baboons as a whole, although 

there is some evidence for a relationship within subspecies (Jolly, 2011).  Evidently the relationship 

between environment and morphology is complex and requires additional research to elucidate 

further. 

  

The aims of this study are to establish the patterns of baboon size and shape variation, and quantify 

the magnitudes of environmental and spatial variation that underpin this variation.  Size is 

considered more responsive to the environment than shape (Marroig and Cheverud, 2005).  Size-

related (allometric) and size unrelated components of shape thus reveal different processes, with 

deviations from allometric scaling suggesting deeper phylogenetic differences (Marroig and 

Cheverud, 2005).  In contrast, morphologies differing chiefly in allometric scaling are more likely to 

be the product of different ecological forces (Marroig and Cheverud, 2005),  mediated by life history 

tradeoffs in growth and reproduction relating to resource abundance and predation pressure 

(Palkovacs, 2003, Whitten and Turner, 2009, van Schaik, 1992, Charnov, 1993).  The intraspecific 

pattern and underpinnings of intraspecific variation will be compared with the ecologically analogous 

vervet, and the arboreal blue and red colobus monkeys.  The presence of affinities might suggest 

convergent adaptation, while idiosyncrasies suggest unique responses or evolutionary trajectories.  

This will advance our understanding of the emergence of clinal variation in primates and mammals in 

general. 

 

 

METHODS 

Sample 
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Anatomical landmark data for museum skulls from 463 Papio hamadryas subspecies were taken 

from the Leverhulme Old World monkey database (Elton and Cardini, 2008). Each specimen was 

described by 86 three-dimensional craniofacial landmark coordinates (Table 2).  This sample was 

reduced to include only well provenanced specimens (with latitude and longitude data or a place 

name for which they could be found), resulting in 370 specimens.  Subspecies was designated on the 

basis of specimen location. The original dataset contained landmark data for only the left half of the 

skull, and in a minority of the specimens landmarks were missing.  These issues were addressed 

using the method outlined fully in Cardini et al. (2010), which involves performing a GPA, estimating 

the coordinates of missing landmarks, and reflecting and reuniting the skull to create a complete 

conformation. 

 

Summarizing Shape 

The major axes of shape variance of the coordinate data are summarised by principal components 

(Slice, 2007).  To calculate the optimal number of PCs to use (i.e. the fewest that describe most of 

the total variance), the correlations between the Euclidean distance matrix (ED), based on the PCs 

and the Procrustes distances matrix (PD) were examined for sequentially smaller numbers of PCs.  

The ‘elbow’ or ‘drop-off point’ in the relationship represents a good trade-off between accuracy and 

economy of PC inclusion, given that when all PCs are included the matrices correlate perfectly 

(Cardini et al., 2010). Variation in specimen morphology within groups was visualised, and outliers 

were identified using bivariate plots and UPGMA cluster analysis of the PCs. A few morphological 

outliers were assumed to be the result of measurement mistakes, or else pathological factors of no 

interest with respect to this study, and were excluded from the analysis, resulting in the study 

sample of 361 specimens (table 1). 

 

Sex-Correction 

Given the small female sample, female morphology was ‘masculinised’ (Cardini et al., 2010).  This 

was achieved by adding within each subspecies the difference between male mean and female mean 

to female size (univariate) and shape (multivariate: differences per coordinate) values. This approach 

has the dual advantages of boosting the geographic sample and avoiding non-robust comparisons 

between the sexes. 

 

Geographical Averaging 

Specimen localities were not evenly distributed.  Certain localities were represented by only a single 

skull while other localities yielded up to ten specimens.  Such local clustering is likely to skew the 
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results of an overall trend as regressions minimise variance, and much of the variance is 

concentrated in a particular regions. By averaging the morphological data (the 86 landmark 

coordinates) for specimens in the same locality the variance is more evenly weighted.  50km buffers 

around each locality were calculated in ArcGIS (ESRI, 2009) and were used to work out which 

specimens should be averaged.  Microsoft Excel (2007) was used to average landmark configurations 

using the average function. Different taxa were not averaged because of our a priori expectation of 

difference in morphology.  

 

Spatial variation in morphology was investigated using trend surface analysis (Legendre and 

Legendre, 1998), a method that regresses variables onto longitude (x) and latitude (y).  While there 

are more sophisticated methods, this method is simple, and easy to interpret and has been 

demonstrated for other African monkeys to provide results concordant with more complex analyses 

such as thin plate spline and kriging (Cardini et al., 2012, Kent personal communication). In this 

study, we regressed the first 20 PCs of shape (this number being derived according to the method 

described), and separately size, simultaneously onto a polynomial expansion of longitude (x) and 

latitude (y) (binomial: x2 xy y2, and trinomial: x y x2 xy y2 x3 x2y xy2 y3) and progressively removed the 

most non-significant predictors until only significant ones were left.  To compare the fit of the 

models, the variances explained by each regression were calculated.  Size was plotted directly on a 

map.  Shape, characterised by PCs, is multivariate, and so cannot be plotted simply.  In the case of 

shape, a PCA of the predicted PCs was carried out using NTSYSpc (Rohlf, 2008), resulting in geospatial 

PCs (gsPCs) (sensu Cardini and Elton, 2009). These PC scores were plotted on a map as contours to 

represent shape variation as a function of latitude and longitude, using ArcGIS (ESRI, 2009). To test 

the robustness of the geospatial PCs, the analysis was carried out on three reduced datasets, each 

comprising a random two thirds of the full dataset.  This randomisation was achieved by numbering 

the specimens in threes and choosing two of the three numbers for each holdout.  Subspecies were 

grouped, and so this procedure results in reduction that was equal across subspecies, and so no 

holdout had one subspecies overrepresented by chance.  The degree of similarity between the 

patterns of the actual and reduced datasets indicates the relative robustness of the trend.  

Confidence in each holdout was measured by using this trend to account for the variance of the held 

out third, with higher values denoting better a better model. 

 

High deviation from observed values adjacent to the Kinda baboon, and corresponding low variance 

of the full baboon trend surface analysis, as well weakly predicting holdouts, argued for the analysis 
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of the baboons without this outlier.  Thus all analyses were carried out with and without the Kinda 

baboon.  

 

Environmental Variable Selection 

Raw environmental point data for every 0.5 decimal degree coordinates for precipitation, moisture 

index, and temperature were taken from the Wilmott & Matsuura database (Willmott et al., 1998, 

Willmott et al., 2001, Willmott and Matsuura, 2001). Rasters, surfaces with values for all pixels, were 

extrapolated from these point data using the variance minimising interpolate function in ARCGIS 

(ESRI, 2009).  Normalised difference vegetation index (NDVI) for Africa (Zinner et al., 2001, Willems 

et al., 2009, Townshend and Justice, 1986), a remotely detected measure of photosynthetic activity, 

was downloaded from the Africa Data Dissemination Service (ADDS, 2005). Altitude was derived 

from the Earth Resource and Information Center (USGS, EROS). The ArcGIS Spatial Analyst and 

Extract to Points function were used to obtain values from all environmental rasters for each 

specimen according to its latitude and longitude. Monthly means, standard deviations and ranges 

were calculated for precipitation, moisture index, temperature and NDVI.  Other indices found to be 

informative in previous studies of primates, P2T (the number of months where precipitation (mm) is 

twice the temperature )),  seasonality index and Shannon Rainfall index (Bronikowski and Webb, 

1996, Korstjens and Dunbar, 2007), were also calculated.  These values were used in a partial 

regression (Legendre and Legendre, 1998).  Because partial regression simply separates variation 

between two blocks, in this case environment and spatial variation, it is rather hard to work out what 

variables within that block are important.  To get an insight into the environmental block, and also 

establish if there were disparate trends between taxa, centroid size was also regressed onto NDVI, 

altitude, mean and standard deviation of temperature, mean and standard deviation of 

precipitation, moisture index and Shannon diversity index. 

 

Partitioning Spatial and Environmental Terms 

Partial regression (Legendre and Legendre, 1998) was used to partition the morphological variation 

correlated with environmental variables (the environment block) from that correlated with spatial 

variation (the spatial block). Practically, this procedure involved regressing size and shape onto both 

the spatial block (geographic coordinates from the TSA) and environmental block, as well as size and 

shape onto the two blocks separately.  The first spatial-environmental regression yields the variance 

explained by both blocks, while the separate regressions contain the exclusive and overlapping 

proportions for each block.  The exclusive components of spatial and environmental variation can 
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then be calculated by simple subtraction and algebraic substitution (see Legendre and Legendre, 

1998). 

 

Size Correction 

Actual baboon centroid sizes for the specimens were plotted and variation modelled using trend 

surface analysis and the holdout procedure. Given the considerable size variation in the baboon 

subspecies (Fig. 2), with the Kinda baboon in particular being much smaller than the others, the 

trend surface analysis was performed including and excluding Kinda.  Removal of the size-dependent 

component of shape was achieved by regressing shape onto size using a multivariate analysis of 

covariance model (Klingenberg, 2011).  Using a taxon code as a covariate, the subspecies were tested 

for differences in intercept and slope.  According to the result of this test (i.e., non-significant 

differences in slope) each subspecies was modelled as having different intercepts but identical 

gradients (Elton et al., 2010). Subspecies means were created for the overall average size, according 

to the predictions of the taxon-specific regression models, and size-free residuals (saved in SPSS Inc., 

2009) were added to these subspecific shapes, resulting in ‘size-corrected’ shapes.  

 

Subspecific Differences 

Discriminant function analysis was used to assess the degree of similarity of subspecies (Elton et al., 

2010). The ratio of misclassified and correctly classified individuals, after cross-validation, gives a 

measure of similarity (Cardini and Elton, 2011).  For instance if two groups are always correctly 

classified they are clearly different, but if two samples have the same size and they are misclassified 

into the other group 50% of the time, there is no appreciable difference (Kovarovic et al., 2011 and 

references therein). DFA was used before and after the size-correction to establish the importance of 

size in subspecies distinctiveness. 

 

RESULTS 

Size 

In order to display the pattern of size variation a trend surface analysis was performed, with values 

of skull centroid size plotted as contours on a map.  The sharp size difference between the Kinda 

baboon and the other subspecies necessitates analysis both with and without this subspecies.  The 

non-Kinda trend surface analysis (TSA) reveals a strong east-west cline of increasing then decreasing 

skull centroid size (Fig. 3 a), with the trend explaining 55.9% of the size variance.  This pattern is 

borne out in the holdouts (Fig. 3, b, c, d).  The TSA shows a north-south cline slightly less pronounced 

than the east-west one, with a peak around central Africa, rising again in South Africa.  This trend is 
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weaker in two of the holdouts (Fig. 3b, 3c) and not present in one (Fig. 3d). When the Kinda baboon 

is included, the TSA has a much lower explanatory power, at 24.7% (Fig. 4a). The clinal pattern of 

increasing and then decreasing size from east to west is still present (Fig. 4a) and the with- and 

without -P. h. kindae TSAs are mainly different within and adjacent to the Kinda range. The three 

holdouts corroborate this (Fig. 4b, c, d). 

 

Shape 

In order to display the pattern of shape variation a trend surface analysis was performed, with values 

of geospatial principle components plotted as contours on a map. The first geospatial PC of baboon 

shape with P. h. kindae removed shows a depression in West and East Africa denoting low gsPC 

values, with central Africa at intermediate values, and southern Africa at high values (Fig. 5a).  Low 

gsPC values correspond to a morphology exhibiting a short rostrum and mandible, large 

neurocranium and wide face compared to those with high gsPC values. In addition, low values 

correspond to less ventrally deflected rostrum, and the anterior part of the neurocranium is elevated 

relative to the occiput.  The second gsPC (Fig. 5b) has a similar spatial pattern to gsPC1 with peaks 

located in West and East Africa, but a depression in Central Africa and a rise and drop in South Africa. 

The West and north-east morphology corresponds to a small face, large neurocranium and wide face 

relative to central Africa. The rostrum of the Central and southern form is concave while the larger is 

convex, in contrast to gsPC1.  The third gsPC (Fig. 5c), which accounts for a smaller amount of 

variance, shows a peak along the coast of East Africa then decreases to the north and west. The 

eastern morphology exhibits a deep mandibular corpus in contrast to the west, as well as more 

flared zygomatic arches.  The shape pattern (Fig. 5a) is similar to that of size (Fig. 3a) and indeed the 

first and second gsPCs, but not the third, are correlated with size (Table 3).  

 

The gsPCs including the Kinda baboon (Fig. 6) shows affinities to the Kinda removed  TSA (Fig. 5), 

differing chiefly in  a depression slightly to the north of where the Kinda are found, as was the case 

with size (Fig. 4).  Similar morphological extremes are detected to the Kinda-free TSA (Fig. 5). 

 

Size-Controlled Shape 

In order to remove shape variation related to the common allometric trajectory of baboon 

subspecies, size-related variation was regressed out.  The resulting size-controlled data were subject 

to a TSA and plotted as contours as in other analyses.  The first size-controlled gsPC reveals a north-

south clinal trend (Fig. 7). The northern specimens have a shorter rostrum (i.e. increasing nostril - 

glabella distance) and a change from a concave to a convex rostrum, as well as a slightly shallower 
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mandible and a shorter, narrower head relative to the southern specimens.  The second size 

controlled gsPC explains only a quarter of the variance explained by gsPC1. It displays an east-west 

trend with a maximum on the coast of East Africa, dropping off to the west and north.  The third size-

controlled gsPC indicates a complex clinal pattern. In West Africa the morphological differentiation is 

rather subtle, accounting 8.7% of the total variation, related mainly to the deeper mandible seen in 

West African specimens. 

 

Subspecific Differences 

To compare the similarity of the morphology of subspecies a cross-validated discriminant function 

analysis was carried out. P. h. papio and P. h. kindae are never misclassified (Table 4) while P. h. 

hamadryas, P. h. ursinus and P. h. anubis have some misclassification, with a trend toward 

misclassification into nearby groups  for all but P. h. anubis (Table 4).  Reclassification rates for the 

size-controlled sample (Table 4) show a slightly different pattern for all but P. h. papio.  The majority 

of P. h. hamadryas specimens are misclassified as P. h. anubis.  Two thirds of P. h. kindae specimens 

are misclassified as P. h ursinus, and over a quarter of the P. h. ursinus specimens are misclassified as 

P. h. kindae.   

 

Environmental and Spatial Correlates 

In order to establish the relative contribution of physical environmental terms and spatial positions 

to morphology partial regressions were carried out.  In all partial regressions the spatial terms 

account for more variance than the environmental or shared ones (Table 5). Spatial terms account 

for a larger proportion of the variance in size when the Kinda baboon is removed (Table 5, Fig. 8).  

When Kinda is included, the partial regressions account for much less of the size variance (51.1% to 

23.0%, Table 5). A slight increase in the environmental component is evident when the Kinda baboon 

is included (1.7% to 4.7%, Table 5).  For shape, exclusion of the Kinda baboon makes little difference, 

with only a slight decrease in the dominant spatial component. There is little difference between the 

partial regression for full shape and the partial regression for allometrically controlled (Fig. 8). 

Regression of centroid size onto each of the separate environmental variables reveals no significant 

species-wide relationships and indeed only one significant relationship between centroid size of P. h. 

anubis and standard deviation of precipitation is evident (Table 6, Fig. 9).  

 

DISCUSSION 

This study has revealed marked variation in baboon skull size, shape and size-controlled shape.  Skull 

centroid size is small in the western- and easternmost edges of Africa, and larger in central Africa.  
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This is contrary to Bergmannian expectations of size increasing north and south of the equator, 

suggesting that neither a straightforward thermoregulatory (Millien et al., 2006) nor seasonality 

buffering explanation (sensu Boyce 1978) can be invoked.  Previous studies have indicated a close 

relationship between skull centroid size and overall body size (Singleton, 2002, Cardini et al., in 

press).  The small bodied eastern- and westernmost subspecies, the hamadryas and Guinea baboons 

respectively, are on the furthest fringes of the baboon’s current range.  This may be consistent with 

the edge effect explanation (Reinig 1939, reported in Scholander, 1955).  However, this hypothesis 

invokes decreasing habitat quality to account for small size.  While the hamadryas baboon lives in a 

resource-poor environment (Schreier and Swedell, 2009, Kummer, 1968), the Guinea baboon lives in 

a very productive environment with high levels of rainfall, primary productivity and fruit abundance 

(Culot, 2003, Anderson and McGrew, 1984). There are several similarities between the far western 

and far eastern subspecies: small stature (Fleagle, 1988), pelage (Jolly, 1993), and social structure, 

namely a form of one male group (Maestripieri et al., 2007, Galat-Luong et al., 2006). It is thus 

parsimonious to regard these traits as ancestral, retained when baboons radiated into the north-

eastern and -western corners of sub-Saharan Africa; the presence of the larger bodied olive baboon 

midway between the Guinea and hamadryas baboons may well be due to a later expansion of the 

ancestor of P. h. anubis (Jolly, 2003). 

 

The lack of a Bergmannian trend is particularly surprising given that the chacma baboon from 

southern  Africa is commonly regarded as the largest Papio subspecies (Fleagle, 1988, Anderson, 

1982).  Its large size is suggested to be an adaptation for heat conservation and starvation resistance 

(Anderson, 1982).  Nevertheless, the central African baboons appear to occupy broadly the same 

contours as the chacma baboon in the size trend surface analysis.  Larger size in forest baboons has 

been reported by Elliot (1909), who also identified slight differences in pelage and morphology.  

Rowell (1964, 1966) described an extensive suite of ecological and behavioural differences between 

forest baboons in Central Africa and savannah baboons in the East Africa.  Resources at woodland 

sites are described as “superabundant” (Rowell, 1966), with baboons eating fruits, flowers, and 

barks. This habitat is seasonal but with consistent high quality food availability throughout the year.  

It is possible that forest baboons owe their large size to a release of the resource limitations faced by 

baboons on the savannah, a xeric and unproductive habitat, with a high seasonality of resource 

availability (Alberts and Altmann, 2006).  During the dry seasons, foods in such environments can be 

poor quality and high fibre, such as roots, corms and tubers (Harding, 1976, Rhine et al., 1989, 

Norton et al., 1987).   

 



Page 13 of 38 

 

 

Given the small skull centroid size of the West African Guinea baboon, food resource abundance 

does not satisfactorily explain size trends in all subspecies of Papio hamadryas. The partial regression 

analyses reveal that environmental terms explain only a small proportion of the total size and shape 

variance.  As this block encapsulated primary productivity in the form of NDVI, this is at odds with a 

straightforward and consistent resource-based underpinning to clinal skull size variation in baboons.  

The regression of centroid size onto environmental variables revealed no consistent pattern across 

subspecies, or indeed any patterns within subspecies except for standard deviations of precipitation 

and centroid size in the olive baboon.  Of course intraspecific analyses suffer from low sample size, in 

particular with Kinda and guinea baboons.  Additionally the environmental variables may be 

somewhat removed from the factors that matter to the animals.  For instance although NDVI, which 

gives a gross indication of the amount of photosynthesis (assumed to relate to the gross amount of 

food) is not a significant explanatory variable, resource distribution (varying between dispersed and 

clumped) rather than amount is known to affect group size via intragroup competition (Barton et al., 

1996). Varying levels of resource availability per individual are likely to influence growth versus 

reproduction tradeoffs  (Janson and van Schaik, 1993).  Resource distribution and predation alter 

grouping behaviour in hamadryas baboons at Awash (Schreier and Swedell, 2012) and olive baboons 

at Laikipia and chacma baboons at the Drakensbergs (Barton et al., 1996). It is thus possible that the 

crude environmental variables fail to reflect such meaningful factors, such as resource distribution, 

and further studies incorporating socioecological variables will be required to investigate this.   

   

The clinal pattern of shape variation largely mirrored that of size, with small animals exhibiting a 

classically paedomorphic appearance, with a relatively small face and relatively large neurocranium, 

as seen in vervets (Cardini et al., 2007) and red colobus monkeys (Cardini and Elton, 2009), as well as 

other mammals (Emerson and Bramble, 1993). However, the pattern of clinal shape change 

contained an additional north-south component of variation, in line with the findings of Frost et al. 

(2003).  Removal of the size-dependent component of shape confirmed that the east-west trend is 

underpinned by size variation while the north-south cline is not.  Comparison of the size-controlled 

and non-size-controlled DFAs also support this difference in pattern, highlighting important non-

allometric shape differences within the species   

 

The Kinda baboon is a notable outlier for size.  While it grades into the larger yellow baboon to the 

east of its range (Freedman, 1963), this cline is sufficiently steep that it could not be well 

represented by a polynomial expansion in the trend surface analysis.  Inclusion of this subspecies 

revealed an extensive trough in size and shape, placing adjacent large taxa at low size contours.  This 
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deficiency of the model to deal with so steep a cline is demonstrated by the lower explanatory 

power of spatial terms in the partial regression with the inclusion of the Kinda baboon.   

While the Kinda baboon was found to be an outlier in size, this was not so for size-controlled shape.  

This suggests that, though this animal has a distinctive paedomorphic morphology, it is distinct only 

insofar as it is allometrically scaled down relative to its neighbouring subspecies.  Given the absence 

of any ecotone along the cline between the Kinda and the yellow baboon, there is no obvious 

environmental explanation for this small skull and body size.  Behavioural observations hint at a 

possible social function.  The Kinda baboon has reduced sexual dimorphism (Leigh, 2006, Jolly et al., 

2011) with females exhibiting male-like vigilance and alarm behaviours, and males showing greater 

interest in nonoestrous females than exhibited by males of other subspecies (Phillips-Conroy et al., 

2009).  It is possible that the morphology has changed in response to the social system, rather than 

to the environment directly.  This is a pattern seen in the hamadryas baboon, where males herd and 

directed aggression toward straying females, rather than towards other males, relaxing pressure for 

large male body size (Jolly and Phillips-Conroy, 2003).  Prognathism may be related to canine size for 

display and agonistic encounters (Leutenegger and Cheverud, 1982, Plavcan et al., 1995). 

 

In DFA, including both allometric shape and size controlled shape, olive baboons are only rarely 

misclassified into chacma, and no chacmas are misclassified as olive baboons. This demonstrates that 

the skulls are quite distinct. In contrast adjacent taxa tend to be misclassified more, such as the olive 

and yellow and hamadryas and olive baboon.  One possibility is that the distinctiveness is eroded by 

the mistaken inclusion of hybrids, or else inclusion of specimens with a past history of hybridisation.  

If included, the influence of hybrids is likely to be small relative to the total sample.  While gene flow 

and hybridisation do occur the extent to which this has opposed divergence over time is unknown. 

Nevertheless, the pattern of skull shape differences between the two largest Papio hamadryas 

subspecies conforms to the north-south pattern shown in the size-controlled trend surface analysis, 

and is concordant with the results of Frost et al. (2003).  The visualisation presented here of 

narrower bizygomatic breadths and more ventrally flexed rostra for southern forms relative to 

northern also matches the work of Frost et al. (2003).  Like Frost et al. (2003) we interpret this as 

reflecting phylogenetic history, reinforced by  the observation that patterns of genetic variation are 

largely oriented in this axis (Zinner et al., 2009), with baboons likely to have originated in southern 

Africa before radiating north (Newman et al. 2004).  The complexity and high genetic integration of 

the skull means that moving up and down the existing size-shape trajectory requires less genetic 

change than deviation from it (Marroig and Cheverud, 2005, Elton et al., 2010).  Differences after 



Page 15 of 38 

 

 

controlling for size indicate a divergent scaling trend between chacma and olive baboons and thus 

suggest a relatively deep phylogenetic split. This could be the result of a vicariance event or events 

during the Pleistocene allowing the accrual of genetic differences over time. Pleistocene 

environment fluctuations resulted in periods of increasing and decreasing aridification, potentially 

with periodic barriers to gene flux (Zinner et al., 2009). While these barriers are now relaxed, they 

may have profoundly altered baboon genetic structure (Zinner et al., 2009) and hence phenotype 

(Jolly and Phillips-Conroy, 2003, Charpentier et al., 2008).  A similar explanation has been given for 

biological diversity in several polytypic African mammals (Hewitt, 2004), such as the eland (Lorenzen 

et al., 2010) and giraffe (Brown et al., 2007). 

  

The differences between chacma and olive baboons illustrate the complexity of the processes that 

contributed to the skull morphology of modern Papio hamadryas. Phylogenetic differences may 

reflect adaptive signals relating to past environmental conditions.  Also genetic isolation is likely to 

favour drift, and so morphological variation may be stochastic. Both these factors may play a part in 

determining baboon skull form. Adjacent populations typically show affinities (Jolly, 1993), and 

hence clinal variation, but there are discontinuities in certain traits relating to growth and form. 

Hamadryas baboons cease growing at an earlier stage than olive baboons (Jolly and Phillips-Conroy, 

2003) and the olive baboon matures faster than the yellow baboon, ontogenetic features that are 

under strict genetic control rather than being the result of phenotypic plasticity (Charpentier et al., 

2008). The chacma baboon also has a later peak testosterone level than the yellow baboon, again 

not the result of plasticity (Beehner et al., 2009).  While these features are potentially ecologically 

adaptive, these genetic features are evidently canalised and not plastic. The distribution of these less 

labile genetic features is likely to be related to population history (or "zygostructure" Jolly, 1993). 

Added to these deeper rooted and heavily genetically determined examples of variation, proximate 

differences in, for example, resource availability or temperature, as discussed above, may lead to 

rapid alterations in size, which in turn can influence shape through allometry, and ultimately 

adaptation and population divergence (Elton et al. 2010).  

 

To conclude, this study has found no evidence of a Bergmannian trend and no overarching 

relationship between baboon skull morphological variation and environmental variation.  This 

suggests that, while important, thermoregulation is one of a variety of factors that contribute to 

morphological variation.  Past rather than current environmental variation seems likely to have been 

the major driver of baboon morphological variation as a whole, by creating barriers to gene flow 

resulting in the highly spatial pattern of morphological variation described.  Shallower subspecific 
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divisions manifest themselves as differences more related to allometric scaling, than deeper 

temporal division (and spatial distances).  Subspecific morphological responses to environmental 

variation, potentially not related to environment directly but via the sociological factors cannot be 

ruled out.  
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Table 1. The morphological sample broken down by subspecies and sex. The common names are as 

follows: P. h. anubis = olive, P. h. cynocephalus = yellow, P. h. hamadryas = hamadryas, P. h. kindae = 

Kinda, P. h. papio = Guinea, P. h. ursinus = chacma.  

Subspecies Sex N 

  

Male 120 P. h. anubis 

  Female 56 

P. h. cynocephalus Male 63 

  Female 11 

P. h. hamadryas Male 17 

  Female 4 

P. h. kindae Male 11 

  Female 11 

P. h. papio Male 13 

  Female 1 

P. h. ursinus Male 45 

  Female 9 

    361 
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Table 2. Descriptions of the anatomical landmarks that were digitised to capture the three 

dimensional shape of the specimens (see Cardini et al., 2007). 

No Description 

1 Prosthion: antero-inferior point on projection of pre-maxilla between central incisors 

2 Prosthion2: antero-inferior-most point on pre-maxilla, equivalent to prosthion but 

between central and lateral incisors 

3 Posterior-most point of lateral incisor alveolus 

4 Anterior-most point of canine alveolus 

5 Mesial P3: most mesial point on P3 alveolus, projected onto alveolar margin 

6-9 Contact points between adjacent pre-molars/molars, projected labially onto alveolar 

margin 

10 Posterior midpoint onto alveolar margin of M3 

11-14 Contact points between adjacent pre-molars/molars, projected lingually onto alveolar 

margin 

15 Posterior-most point of incisive foramen 

16 Meeting point of maxilla and palatine along midline 

17 Greater palatine foramen 

18 Point of maximum curvature on the posterior edge of the palatine 

19 Tip of posterior nasal spine 

20 Meeting point between the basisphenoid and basioccipital along midline 

21 Meeting point between the basisphenoid, basioccipital and petrous part of temporal 

bone 

22 Most medial point on the petrous part of temporal bone 

23 Most medial point of the foramen lacerum 

24 Meeting point of petrous part of temporal bone, alisphenoid and base of zygomatic 

process of temporal bone 

25-26 Anterior and posterior tip of the external auditory meatus 

27 Stylomastoid foramen 

28,30 Distal and medial extremities of jugular foramen 

29 Carotid foramen 

31 Basion: anterior-most point of foramen magnum 

32,35 Anterior and posterior extremities of occipital condyle along margin of foramen 
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magnum 

33 Hypoglossal canal 

34 Centre of condylar fossa 

36 Opisthion: posterior-most point of foramen magnum 

37 Inion: most posterior point of the cranium 

38 Most lateral meeting point of mastoid part of temporal bone and supraoccipital 

39 Nasospinale: inferior-most midline point of piriform aperture 

40 Point corresponding to largest width of piriform aperture 

41 Meeting point of nasal and pre-maxilla on margin of piriform aperture 

42 Rhinion: most anterior midline point on nasals 

43 Nasion: midline point on fronto-nasal suture 

44 Glabella: most forward projecting midline point of frontals at the level of the 

supraorbital ridges 

45 Supraorbital notch 

46 Frontomalare orbitale: where frontozygomatic suture crosses inner orbital rim 

47 Zygo-max superior: antero-superior point of zygomaticomaxillary suture taken at orbit 

rim 

48 Centre of nasolacrimal foramen (fossa for lacrimal duct) 

49 Centre of optic foramen 

50 Uppermost posterior point of maxilla (visible through pterygomaxillary fissure) 

51 Frontomalare temporale: where frontozygomatic suture crosses lateral edge of zygoma 

52 Maximum curvature of anterior upper margin of zygomatic arch 

53 Zygo-max inferior: antero-inferior point of zygomaticomaxillary suture 

54 Zygo-temp superior: superior point of zygomaticotemporal suture on lateral face of 

zygomatic arch 

55 Zygo-temp inferior: infero-lateral point of zygomaticotemporal suture on lateral face of 

zygomatic arch 

56 Posterior-most point on curvature of anterior margin of zygomatic process of temporal 

bone 

57 Articular tubercule 

58 Distal-most point on post-glenoid process 

59 Posterior-most point of zygomatic process of temporal bone 

60 Foramen ovale (posterior inferior margin of pterygoid plate) 

61 Meeting point of zygomatic arch and alisphenoid on superior margin of 
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pterygomaxillary fissure 

62 Meeting point of zygomatic arch, alisphenoid and frontal bone 

63 Bregma: junction of coronal and sagittal sutures 

64 Lambda: junction of sagittal and lamboid sutures 

65 Antero-superior point of mandible between central incisors 

66 Antero-superior point of mandible between lateral incisors 

67 Posterior-most point of lateral incisor alveolus 

68 Anterior-most point of canine alveolus 

69 Mesial P3: most mesial point on P3 alveolus, projected onto alveolar margin 

70-73 Contact points between adjacent pre-molars/molars, projected labially onto alveolar 

margin 

74 Posterior midpoint onto alveolar margin of M3 

75-78 Contact points between adjacent pre-molars/molars, projected lingually onto alveolar 

margin 

79 Superior tip of coronoid process 

80-81 Most lateral and most medial points on mandible condylar surfaces 

82 Anterior-most point on roughening for attachment of masseter on inferior margin of 

the angle of mandible 

83 Mandibular foramen 

84 Posterior-most point on superior area of insertion of medial pterygoid 

85 Region of insertion of genioglossus muscles (midline posterior-most point on upper 

‘ridge behind incisors’) 

86 Region of insertion of geniohyoid muscles (midline posterior-most point on lower ‘ridge 

behind incisors’) 
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Table 3. Exploratory investigation of correlations between gsPCs and centroid size.  

Sample 

size 

Geospatial 

PC 

Pearson 

Correlation 

112 1 -0.310 

 

2 -0.338 

 

3 -0.106 

106 1 -0.455 

 

2 -0.566 

  3 -0.102 
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Table 4. Discriminant analyses showing the percentage cross validated classification rates for the six subspecies for shape and size controlled shape. 

 

Shape Subspecies 

Predicted Group Membership 

P. h. 

papio 

P. h. 

hamadryas 

P. h. 

Anubis 

P. h. 

cynocephalus 

P. h. 

ursinus 

P. h. 

kindae 

Actual P. h. papio 100.00 0.00 0.00 0.00 0.00 0.00 

  P. h. hamadryas 0.00 77.78 11.11 11.11 0.00 0.00 

  P. h. Anubis 2.04 4.08 75.51 12.24 6.12 0.00 

  P. h. cynocephalus 0.00 0.00 25.00 65.00 10.00 0.00 

  P. h. ursinus 0.00 0.00 0.00 12.00 88.00 0.00 

  P. h. kindae 0.00 0.00 0.00 0.00 0.00 100.00 

    

     

  

Size controlled P. h. papio 100.00 0.00 0.00 0.00 0.00 0.00 

  P. h. hamadryas 0.00 44.44 55.56 0.00 0.00 0.00 

  P. h. anubis 4.08 4.08 75.51 14.29 2.04 0.00 

  P. h. cynocephalus 0.00 0.00 35.00 55.00 10.00 0.00 

  P. h. ursinus 0.00 0.00 0.00 4.00 68.00 28.00 

  P. h. kindae 0.00 0.00 0.00 0.00 66.67 33.33 
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Table 5.  The results of the partial regression, displaying the percent of variance explained by four 

components: the exclusive spatial and environmental component, their common overlap and the 

residual.  Values are displayed for all models and the holdouts. 

Model 
Spatial 

(%) 

Common 

(%) 

Environmental 

(%) 
Residual (%) 

    

   

  

All subspecies Shape (full) 20.8 1.8 5.5 71.9 

  Shape holdout 1 23.8 0.0 7.0 69.2 

  Shape holdout 2 20.1 2.9 8.2 68.8 

  Shape holdout 3 21.6 4.5 8.5 65.4 

    

   

  

Kinda baboon 

excluded Shape (full) 27.5 1.7 6.6 64.2 

  Shape holdout 1 30.3 0.6 9.3 59.9 

  Shape holdout 2 25.8 4.4 9.3 60.5 

  Shape holdout 3 29.3 4.6 8.6 57.5 

    

   

  

All subspecies Size (full) 23.0 1.7 6.6 68.8 

  Size holdout 1 25.0 1.6 7.0 66.4 

  Size  holdout 2 23.1 -3.0 11.3 68.6 

  Size  holdout 3 21.1 5.9 11.3 61.7 

    

   

  

Kinda baboon 

excluded Size (full) 51.1 4.7 2.7 41.5 

  Size holdout 1 52.5 8.5 1.3 37.7 

  Size holdout 2 42.9 3.1 8.0 46.0 

  Size holdout 3 58.0 8.6 4.5 28.9 

      

  

  

All subspecies, 

size controlled Shape (full) 22.1 0.4 7.9 69.6 

  Shape holdout 1 24.6 0.0 10.9 64.5 

  Shape holdout 2 24.8 2.0 9.8 63.4 

  Shape holdout 3 23.7 0.7 10.8 64.8 

            



Page 28 of 38 

 

 

 

Table 6. Results of regressions of centroid size on environmental terms for different subspecies.  Temp. M. = mean temperature, Temp. SD = standard 

deviation of monthly temperature, Prec. M. = mean precipitation in mm, Prec. SD = standard deviation of monthly rainfall, Most. M. = mean moisture index, 

Moist. SD = standard deviation of monthly moisture index, Shan. Div. = Shannon diversity index of monthly rainfall. A conservative Bonferroni correction for 

multiple tests was used (α = 0.006). 

 

Model n 
NDVI Altitude Temp. M. Temp SD 

F P F P F P F P 

All subspecies 112 2.145 0.099 0.942 0.334 0.801 0.373 1.935 0.167 

All subspecies minus P. h. kindae 106 1.313 0.274 3.755 0.055 0.344 0.559 0.402 0.527 

P. h. Anubis 48 0.206 0.652 1.559 0.218 6.067 0.017 0.258 0.614 

P. h. cynocephalus 19 0.503 0.487 0.503 0.487 5.061 0.037 0.331 0.572 

P. h. hamadryas 7 0.028 0.871 1.594 0.247 0.088 0.776 0.069 0.801 

P. h. kindae 5 1.040 0.365 0.415 0.554 0.084 0.787 1.823 0.248 

P. h. papio 2 0.093 0.812 2.954 0.335 59.911 0.082 2.693 0.348 

P. h. ursinus 24 0.691 0.414 1.361 0.255 3.214 0.086 2.879 0.103 
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Table  6. Continued.  

Model n 
Prec. M. Prec. SD Moist. M. Moist. SD Shan. Div. 

F P F P F P F P F P 

All subspecies 112 0.040 0.841 0.538 0.465 0.233 0.630 0.132 0.717 0.382 0.538 

All subspecies minus P. h. kindae 106 1.538 0.218 2.625 0.108 0.002 0.964 0.342 0.560 0.205 0.652 

P. h. Anubis 48 3.412 0.071 12.727 0.001 0.026 0.871 6.118 0.017 0.942 0.337 

P. h. cynocephalus 19 0.316 0.581 1.041 0.321 0.020 0.888 0.751 0.398 0.137 0.716 

P. h. hamadryas 7 0.020 0.892 0.022 0.886 0.008 0.933 0.000 0.984 0.310 0.595 

P. h. kindae 5 0.167 0.704 0.073 0.800 1.348 0.310 0.097 0.771 1.899 0.240 

P. h. papio 2 0.005 0.955 0.389 0.645 0.040 0.875 13.679 0.168 0.017 0.917 

P. h. ursinus 24 1.084 0.309 0.382 0.543 3.823 0.063 0.089 0.768 1.696 0.206 
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FIGURE LEGENDS 

Figure 1. The geographic ranges of the six baboon subspecies (IUCN, 2011) and a phylogenetic 

schematic (based on mt haplogroups of Zinner et al., 2011). Please note that the distribution 

illustrated here represents the one used by the authors in analysis but that the exact transition 

points from P. h. kindae to P. h. cynocephalus  and P. h. ursinus are debated due to the complex 

nature of phenotypic and genotypic variation, resulting from hybridisation at range edges, in the 

Kinda baboon.   
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Figure 2. The location of baboon specimens for all taxa (n=112), where point size is proportional to 

the centroid size of the skull. 
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Figure 3. The baboon size trend surface analysis for a) all taxa minus P. h. kindae and b-d) the three 

holdouts. Terms in regression a) were x y2 x3 xy2, variance explained 55.9%. n =106.  The holdout 

trends explained b) 33.0, c) 72.3 and d) 22.4% of the variance of the randomly omitted third. Point 

size is proportional to the modelled centroid size of the skull 
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Figure 4.  The baboon size trend surface analysis for a) all baboon taxa b-d) the three holdouts.  

Terms in regression a) were xy x3 x2y y3, variance explained 24.7%, n =106.  The holdout trends 

explained b) 9.7, c) 29.5 and d) 18.2% of the variance of the randomly omitted third.  Point size is 

proportional to the modelled centroid size of the skull  
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Figure 5.  The first three gsPCs for baboon shape without P. h. kindae (n = 106). Variance explained 

by a) gsPC1 = 57.3%, b) gsPC2 = 16.3%, and c) gsPC3 = 9.0%. Visualisations are exaggerated by a 

factor of 2.5 to aid interpretation.  Point size is proportional to the gsPC score of the skull. 
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Figure 6.  The first three gsPC for baboon shape including P. h. kindae (n = 112). Variance explained 

by a) gsPC1 = 57.3%, b) gsPC2 = 16.3%, and c) gsPC3 = 9.0%. Visualisations are exaggerated by a 

factor of 2.5 to aid interpretation. Point size is proportional to the gsPC score of the skull. 
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Figure 7. Size-controlled geospatial PCs for the full dataset (n=112). Percentage of variance explained 

by a) SCgsPC1 is 61.0% b) SCgsPC2 is 14.5% c) SCgsPC3 is 8.7%. Visualisations exaggerated by a factor 

of 2.5 to aid interpretation. Point size is proportional to the gsPC score of the skull. 
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Figure 8.  Partial Regression results showing the percentages of variance explained by significant 

spatial terms, environmental terms (precipitation, moisture index, temperature, NDVI, altitude, P2T, 

seasonality index, Shannon Rainfall index) and their overlap for size, shape, size controlled shape and 

all the holdout with and without the Kinda baboon sample. 
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Figure 9.  Showing P. h. anubis centroid size against standard deviation of precipitation (R2 = 0.213). 

 

 


