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The manner in which the rate of magnetic reconnection scales with the Lundquist number in

realistic three-dimensional (3D) geometries is still an unsolved problem. It has been demonstrated

that in 2D rapid non-linear tearing allows the reconnection rate to become almost independent of

the Lundquist number (the “plasmoid instability”). Here, we present the first study of an analogous

instability in a fully 3D geometry, defined by a magnetic null point. The 3D null current layer is

found to be susceptible to an analogous instability but is marginally more stable than an equivalent

2D Sweet-Parker-like layer. Tearing of the sheet creates a thin boundary layer around the separatrix

surface, contained within a flux envelope with a hyperbolic structure that mimics a spine-fan

topology. Efficient mixing of flux between the two topological domains occurs as the flux rope

structures created during the tearing process evolve within this envelope. This leads to a substantial

increase in the rate of reconnection between the two domains. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4893149]

I. INTRODUCTION

Magnetic reconnection is a process in an almost ideal

plasma that permits a stressed magnetic field to become restruc-

tured, releasing its free energy. Examples of reconnection-

related phenomena include solar flares, geomagnetic storms in

the Earth’s magnetosphere and saw-tooth crashes in tokomaks

[Ref. 1 and references therein].

The problem of fast reconnection has been under discus-

sion since the inception of the classical Sweet-Parker (SP)2,3

reconnection model. In the SP model, the current sheet has a

length of the order of the system size L, and a width

d ¼ L=S1=2, where S ¼ vaL=g is the magnetic Lundquist

number based on this length scale and va is the Alfv�en speed

in the inflow region. Developed to explain energy release in

solar flares, the reconnection rate in the SP model (�S�1=2)

is orders of magnitude too slow to explain observations,

since in the solar corona S can take values as high as

S � 1014. Therefore, one requires a mechanism that scales

more favourably with S.

Recently, attention has returned to whether the tearing

mode4—initially disregarded as being too slow—could

enhance reconnection in such large systems [e.g., Refs. 5–7].

This followed from the realisation that when the classical

tearing analysis—which leads to a weak growth rate in a

fixed neutral sheet—is applied to the SP sheet with length L
and width d ¼ L=S1=2 the instability grows explosively at

high Lundquist numbers following scalings given by8–10

kmaxL � S3=8; cmaxðva=LÞ � S1=4; dinner=d � S�1=8; (1)

where kmax is the wavenumber of the fastest growing mode,

cmax is the growth rate of this mode and dinner is the width of

the resistive inner layer within which the instability grows in

the linear phase. Although tearing of SP sheets had been

known about for some time [e.g., Refs. 6 and 7], it is only

much more recently that the scaling relationships of the

linear phase were properly developed. This tearing occurs

above a critical Lundquist number (Sc) and aspect ratio

(A ¼ d=L), typically around �104 and � 50–100, respec-

tively.10 In the context of SP-like sheets, the tearing mode is

often referred to as the “plasmoid instability.”

2D MHD simulation studies have now confirmed that if

an SP current sheet fulfills the above criteria, the evolution

goes through three phases: (i) non-linear quasi-steady recon-

nection at the slow SP rate; (ii) tearing and inter-island

current sheet thinning, rapidly speeding up the overall recon-

nection rate; (iii) bursty reconnection mediated by a non-

linear hierarchy of current sheets. In this final phase, the

dynamics is governed by magnetic island formation, coales-

cence and ejection, and when averaged over time the recon-

nection rate becomes only weakly dependent upon S.

Beyond MHD, the inter-island current sheet thinning associ-

ated with the plasmoid instability is also a likely trigger for

the onset of “fast” Hall/kinetic scale reconnection5,11,12

(once the current sheet thickness drops below the ion inertial

length) and so provides a bridge between macro-scales and

micro-scales in large scale events. Stages (ii) and (iii) make

the mechanism highly attractive for explaining the sudden

onset of fast reconnection seen in solar flares or tokamaks.

The vast majority of previous work on the tearing insta-

bility has focused on the 2D problem. However, a few 3D

studies have also been undertaken using simplified initial

conditions of reduced dimensionality (using, for example, a

Harris sheet equilibrium), usually including a strong guide

field [e.g., Refs. 13 and 14]. An important consequence of

introducing the third dimension, even in these simplified set-

ups, is that when a guide field is present the islands formed in

2D become flux ropes–loosely defined as regions of helical

field—with magnetic flux often wrapping multiple ropes.13,15

However, astrophysical magnetic fields such as those

observed in the solar corona or planetary magnetospheres are
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typically highly complex in nature. In such complex mag-

netic fields, current sheets may form preferentially at differ-

ent topological features: 3D null points (isolated points at

which the field strength is zero16–18), separatrix surfaces,

separator lines (field lines connecting two 3D nulls along the

intersection of their separatrix surfaces16,19), and Quasi-

Separatrix Layers (locations at which the field line mapping

has large but finite gradients20,21). Both the current sheets

that form at these structures and the underlying magnetic

fields are globally three-dimensional in nature. The question

then arises: how does our understanding of tearing in 2D and

“guide field” configurations translate to these more general-

ised geometries?

This question is particularly timely, as with the increase

in computational resources current sheet tearing and frag-

mentation is now beginning to be observed in large scale nu-

merical experiments; examples include experiments

modeling Coronal Mass Ejections (CMEs),22,23 coronal

jets,24 and flux emergence [e.g., Ref. 25]. Additionally, with

the increase in spatial and temporal cadence of satellite

observations, bright blobs of plasma thought to be the obser-

vational signatures of flux ropes/plasmoids are now regularly

observed [e.g., Refs. 26–28].

In this paper, we take an important first step towards

understanding 3D current sheet breakup by considering the

fragmentation of current sheets formed at a 3D null point

using some of the highest resolution simulations to date for

such a dedicated set of experiments. In this investigation, we

focus on the general characteristics of the process—how stable

the layer is, what the overall dynamics are and how this affects

the reconnection rate—and plan to follow this with a second

paper (hereafter referred to as Paper 2) giving a detailed

account of how the magnetic topology evolves following the

onset of tearing. As a contrast, we compare our results against

an equivalent 2D setup initially containing a 2D null.

II. SIMULATION SETUP

The simulation was carried out using the Copenhagen

staggered mesh code,29 solving the 3D MHD equations in

the following non-dimensional form:

@B

@t
¼ $� v� Bð Þ þ gr2B; (2)

@ qvð Þ
@t
¼ �$ � qvvð Þ � $pþ j� B; (3)

@q
@t
¼ �$ � qvð Þ; (4)

@e

@t
¼ �$ � evð Þ � p$ � vþ gj2; (5)

where J ¼ $� B is the electric current density, v plasma

velocity, B magnetic field, q density, e thermal energy, p ¼
ðc� 1Þe gas pressure, and g the resistivity. The resistivity is

set explicitly to a constant value throughout the volume, see

Table I for values. Fourth-order hyper-viscosity terms (i.e.,

acting only upon hydro-dynamic quantities) are also included

in the momentum and energy equations for numerical

stability. Each simulation used a stretched grid, with points

packed around the origin—where the current sheet initially

forms—to properly resolve the current layer prior to tearing,

discussed further below. Length and time units are non-

dimensionalised such that one unit of time is the Alfv�en travel

time across one unit of length in a uniform plasma and mag-

netic field with q¼ 1 and jBj ¼ 1.

In the 3D simulations, an initial potential magnetic field

containing a single radially symmetric 3D null at the origin

is formed by placing two magnetic point sources on the x-

axis at x ¼ 62:5, outside the simulation volume of

½x; y; z� 2 6½0:5; 3:5; 4�, i.e.,

B t ¼ 0ð Þ ¼
B0 x� x0ð Þ
jx� x0j3

þ B0 xþ x0ð Þ
jxþ x0j3

; (6)

where x ¼ ½x; y; z�T ; x0 ¼ ½2:5; 0; 0�T . The strength of the

sources is set to B0 ¼ 2:53=2, so that in the vicinity of the

null the linearised field is given by B ¼ ½�2x; y; z�. Similarly,

in the 2D simulations, the initial magnetic field was con-

structed using two line sources placed on the x-axis at

x ¼ 62:5, outside a simulation volume of

½x; y� 2 6½0:5; 3:5�, i.e.

B t ¼ 0ð Þ ¼
B0 x� x0ð Þ
jx� x0j2

þ B0 xþ x0ð Þ
jxþ x0j2

; (7)

where x ¼ ½x; y�T and x0 ¼ ½2:5; 0�T , with the strength of the

sources set to B0 ¼ 2:52=2, giving a linearised field in the vi-

cinity of the null of B ¼ ½�x; y�.
The equilibrium is disturbed by two driving patches on

the x-boundaries, centred on the x-axis and oppositely

directed in y, of the following form:

v x¼60:5ð Þ¼7
A tð Þ

4
tanh

y� y0

ly

� �
� tanh

yþ y0

ly

� �" #

� tanh
z� z0

lz

� �
� tanh

zþ z0

lz

� �" #
ŷ; (8)

with y0 ¼ 2:1; z0 ¼ 0:5, ly¼ 0.3 and lz¼ 0.2. This driving

profile gives a near constant driving within the patch defined

by ½y; z� 2 ½6ðy0 � lyÞ;6ðz0 � lzÞ� outside of which the driv-

ing asymptotically approaches zero. In the 2D experiments, z
is set to zero in the above equation. AðtÞ ¼ 0:1 tanhðtÞ ramps

TABLE I. Summary of simulations (†: signifies that the quantity has been

multiplied by 104).

Case g† Resolution Dx†
min Dy†

min Unstable?

1 0.5 [450,2000,200] 7.4 28.7 Yes

2 1 [450,1000,200] 7.4 57.3 Yes

3 2 [450,1000,200] 7.4 57.3 No

4 0.5 [900,4000] 3.7 14.3 Yes

5 1 [900,4000] 3.7 14.3 Yes

6 0.5 [450,2000] 7.4 28.7 Yes

7 1 [450,1000] 7.4 57.3 Yes

8 2 [450,1000] 7.4 57.3 No

9 3 [450,1000] 7.4 57.3 No

10 5 [450,1000] 7.4 57.3 No
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up the driving smoothly from zero to a constant speed, with

an absolute value of 0.10 in the centre of the patch—approxi-

mately 10% of the local Alfv�en speed—over a period of one

time unit.

This driving amplitude was chosen to fall within the

range of values investigated by Galsgaard and Pontin,30 who

studied quasi-steady reconnection within a current layer

formed at a 3D null point in a similar numerical setup. They

showed that the rate of laminar flux transfer follows a power

law dependence upon the driving amplitude (specifically

� v0:6
d ), indicating that the reconnection rate is sensitive to the

rate of external driving. For simplicity, we consider only a

single driving amplitude, but note that in their work the small

size of the computational domain and driving patch limited

the formation of the current layer, constraining its free evolu-

tion. By using a much larger domain and longer driving patch,

the reconnection occurring in our experiments is much less

constrained by the finite nature of the computational domain.

Finally, the plasma in the volume is assumed to be an

ideal gas (c ¼ 5=3) and is initially at rest with e¼ 0.025 and

q¼ 1. All boundaries are closed and line-tied (B � n fixed,

v ¼ 0 outside driving regions). Narrow damping layers are

included on the boundaries to reduce the reflection of waves

back into the volume.

III. THRESHOLD FOR INSTABILITY

The field in the vicinity of the original null point is defined

by spine and fan structures: the spine is defined by two field

lines that asymptotically approach the null, and the fan is a

continuous separatrix surface of field lines emanating outwards

from the null which lies on the boundary of the two topological

regions, Fig. 1(a). Once the driving begins the two spine foot-

points are advected in opposite directions on the two driving

boundaries. This disturbance in the field propagates into the

volume, forming a current sheet localised to the weak field

region around the null point as the spine and fan are brought

close to one another by the action of the Lorentz force, Fig.

1(b) —see also (Refs. 31–33). Flux then begins to reconnect

across the spines and fan in a smooth quasi-steady manner.30

The length (in y) and breadth (out of the driving plane: in z) of

the current layer gradually increase due to a slight imbalance

between the rate of reconnection in the sheet and the rate that

flux is piled up at the edge of the layer by the driver.

A. Measured quantities

Beyond a critical threshold the current sheet in some of

the simulations then begins to fragment via the tearing insta-

bility, forming pairs of flux ropes—helical regions of twisted

field—which snake across the current layer, Fig. 1(c). To

determine the threshold of this tearing in the 3D experi-

ments, S ¼ L�va=g and A ¼ L=d were found using the full

width (d� ¼ 2d) and length (L� ¼ 2L) at half maximum of

the sheet in the xy-plane, the plane of maximum spine-fan

collapse. Due to the driving and the natural preference of the

current layer to spread out across the fan separatrix surface,

the current layer traces out a curved path in this plane.31,34

To account for this, a method was developed to trace the rel-

evant quantities along the current layer. First, the maximum

value of jJj is identified within the layer, Jmax. Starting at

this location, a series of points following the curve of the

current layer were found by stepping in both directions along

the layer. This was continued until the values of jJj in each

direction dropped below Jmax=2. L* is then the distance along

this curve between these two points. To obtain d and va, va

and jJj are interpolated along another line of points, defined

as the line which passes through the position of Jmax perpen-

dicular to the current layer. d is found from the distance

between the half maximum points of jJj along this line, and

va from an average of the values at the edge of the current

layer (where jJj 	 0:01Jmax). Figure 2(a) shows an example

of the result of implementing this procedure. In some cir-

cumstances, we also found it necessary to continue to mea-

sure these quantities once an island/flux rope had formed. In

this case, the same procedure was applied to the current sheet

containing the highest current in this plane—see Fig. 2(b).

We set two criteria for identifying the onset of the tear-

ing instability in these simulations. The first is that due to the

symmetry of the system, the first island/flux rope should

form over the original, highly collapsed null point; therefore,

for tearing to occur the null at the centre of the current layer

must bifurcate. To check this we found the position of all

nulls within the simulation volume using the trilinear method

described in Haynes and Parnell.35 The second condition is

that subsequent tearing should then occur following the for-

mation/ejection of the first flux rope. If these two conditions

are met for a given simulation then it is said to have reached

the instability threshold around this time. The critical values

of Sc and A are then defined to be the values just prior to flux

rope formation. As each is taken from a non-linearly varying

experiment these values provide only an estimate for when

the instability threshold is exceeded but do provide a basis

for assessing the relative stabilities of the 3D and 2D setups.

B. Results

The speed and spatial profile of the driving flow were

chosen to create a current layer which progressively

FIG. 1. 3D null simulation with g ¼ 5� 10�5 showing the magnetic field at various times: (a) t¼ 0, (b) t¼ 8, (c) t¼ 16. Red/yellow: field lines traced from

rings of footpoints on the x-boundaries. Blue: selected field lines within the flux ropes. Volume shading indicates current density.
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lengthens and to provide a quasi-steady inflow of flux

towards the reconnection region. In theory, the current layer

should lengthen until Sc is reached (provided that the aspect

ratio, A is high enough) enabling the value of Sc to be

obtained. However, unavoidable perturbations within the

volume seem to trigger an early onset of tearing in some

cases. Therefore, we measured S and A beyond the initial

island/flux rope formation in some of the experiments.

Figure 3 shows how S and A change in time for cases

1–8. The measurement of the values is terminated when a

simulation enters a highly fragmented, plasmoid/flux rope

dominated phase of evolution. A current layer is deemed to

have passed beyond the threshold for instability at this time.

The values that S and A take at this time are marked with tri-

angles. Diamonds denote when a null bifurcation occurs

(producing an island/flux rope which is subsequently ejected)

but does not lead to further tearing in the flanking, shortened

current sheet.

We describe first the results of the 2D simulations. For

the runs with g ¼ 5� 10�5 and 1� 10�4 (cases 4 and 5), the

central X-point bifurcates and a magnetic island forms at

t � 8. As mentioned, this is likely a result of a perturbation

to the sheet caused by waves within the simulation volume

(and also occurs in the higher resolution experiments—cases

7 and 8). The ensuing evolution is slightly different in the

two experiments. In case 4, the subsequent sheet thinning

sets off further tearing in the flanking current layers before

the island is ejected and the layer is deemed to have passed

beyond the threshold for instability—solid lines, Figs. 3(a)

and 3(b). In case 5, the island grows large as it is slowly

ejected, during which time the flanking current layers remain

stable, and in fact take on a Petschek-like, opened out shape

at this time—shortening the dominant current sheet length

(L*). This is evident in the drop in both S and A (as both are

proportional to L*), dashed lines, Figs. 3(a) and 3(b)—

t 2 ½9; 13�. Beyond t � 13, the island has moved to near the

exit of the main reconnection layer. The trailing current layer

lengthens into a Sweet-Parker-like geometry once more

(seen as an increase in S and A – t 2 ½13; 17�, see also

Fig. 2(b)) and eventually tears, forming several small islands

and entering a plasmoid-dominated non-linear evolution at

t � 18. The triple-dot dashed and long dash lines show the

comparison with the respective high resolution experiments,

which follow similar evolutions and shown an excellent

agreement with the values of S and A at which the layer

becomes unstable. The run with g ¼ 2� 10�4 (case 8)

remains stable throughout the experiment, but beyond t � 20

the current layer becomes gradually less strongly driven.

This is because the magnetic field in the inflow region is con-

stantly changing due to the 2D nature of the field and driving

FIG. 3. Evolution of A and S in the 2D

(a),(b) and 3D (c),(d) simulations with

different background g values (see

Table I). Triangles mark the null bifur-

cation that leads to the sheet becoming

violently unstable. Diamonds denote

the time a bifurcation occurs (produc-

ing an island/flux rope) but the flank-

ing shortened current layers remain

stable —see text for details.

FIG. 2. Contour of jJj in a portion of the xy-plane overlayed with the posi-

tions of points used to determine S and A: (a) 3D case 1 at t¼ 12 – prior to

tearing. (b) 2D case 7 at t¼ 17 – after an island has formed, but before the

layer becomes violently unstable. White points lie along the centre of the

sheet where jJj 
 Jmax=2 (used to find L*); green points indicate the direc-

tion of the locally perpendicular line passing through the site of Jmax; red are

the interpolated points used to find d� and va. The contours are scaled to half

the maximum in each frame.
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flow, and by t � 20 enough flux has been reconnected to

severely deplete the finite reservoir of inflow region flux con-

tained within the driving patch, thus reducing the strength of

current in the layer. This likely explains why the sheet

remains stable despite attaining Lundquist numbers in excess

of the other two runs. Cases 9 and 10 also remain stable

throughout their evolution, so have been omitted from Fig. 3

in the interests of clarity. From the values at which cases 4–5

and 7–8 became rapidly unstable, we conclude that for our

2D control setup the critical Lundquist number Sc � 104,

occurring for aspect ratios above Amin � 50. These values

are broadly consistent with previous studies using less

dynamically formed current sheets [e.g., Refs. 8, 9, and 36].

Turning now to the 3D simulations, we find that those

with g ¼ 5� 10�5 and 1� 10�4 (cases 1 and 2) form flux

ropes (following a null bifurcation—see below) and eventu-

ally descend into a highly fragmented, flux rope dominated

state. In case 1 this occurs directly, with a flux rope pair

forming at t � 12, leading to further rapid tearing and flux

rope formation—solid line, Figs. 3(c) and 3(d). In case 2, a

null bifurcation occurs at t � 8 (diamonds, Figs. 3(c) and

3(d))—forming a flux rope pair. However, the main layer

remains otherwise stable and recovers once the pair are

ejected—seen as a drop in S and A between t 2 ½8; 12�. The

layer continues to lengthen until multiple flux ropes form at

t � 24, where the layer is said to have passed the threshold

for instability. Case 3 (with g ¼ 2� 10�4) remains stable

throughout. The evolutions of cases 1 and 2 suggest that the

threshold Lundquist number in the 3D experiments is around

Sc � 2� 104, occurring when the current layers have an as-

pect ratio of at least Amin � 100. This suggests that 3D null

current sheets are marginally more stable to tearing than 2D

SP layers.

C. Discussion of thresholds

One reason why the instability threshold is marginally

higher for the 3D null configuration may be that the plasma in

the current layer is able to escape through the sides of the

sheet. To demonstrate this, consider the diagram in Fig. 4. This

disk approximates the shape of the pre-tearing current layer in

our simulations, Fig. 1(b). Following a Sweet-Parker-type

analysis, mass diffuses into the current sheet at a speed

vi ¼ d=g, and mass continuity implies 2pL2vi ¼ 4pdLvo.

Assumptions on the nature of the outflow then constrain the

rate of flux transfer into the region. Choosing the simplest

scenario of a radial outflow and assuming B? is passive within

the layer, vo can be obtained (see Priest and Forbes37 for a sim-

ilar example) by equating the inflow of free magnetic energy

to the outflow kinetic energy: B0
2=2l ¼ qvo

2=2. Combining

these we find that:

vi=va ¼
ffiffiffi
2
p

S�1=2; d=L ¼ S�1=2=
ffiffiffi
2
p

; (9)

where S ¼ Lva=g and va ¼ B0=
ffiffiffiffiffiffi
lq
p

is the upstream Alfv�en

speed based on Bjj. Eq. 9 shows that when plasma escapes

radially through the sides of the sheet, the non-dimensional

rate that flux is advected into the layer (vi=va) is a factor offfiffiffi
2
p

faster, necessitating a thinner or longer sheet than in 2D.

A radial outflow is a rather extreme assumption, given that

the magnetic tension of newly reconnected field lines in the

layer would be expected to launch plasma preferentially

towards the ends of the sheet. Thus, the relationships above

should be considered as upper bounds. It is interesting to

note that Galsgaard and Pontin30 performed a series of 3D

simulations similar to ours but restricted to the laminar stage

of the evolution, i.e., prior to any flux rope formation. They

noted that in the quasi-steady reconnecting current sheet

Lvi=dvo � 1:5 in a typical simulation, which lies between the

2D value of 1 and the value of 2 that would be obtained by

combining the terms in Eq. (9).

Returning to the discussion of thresholds, if we then fur-

ther assume that the width of the 3D and 2D layers are com-

parable at the point of tearing (d � d2D), then L �
ffiffiffi
2
p

L2D.

Writing the 3D aspect ratio and critical Lundquist number in

terms of its 2D counterpart then gives that:

A3D ¼
ffiffiffi
2
p
A2D; Sc;3D �

ffiffiffi
2
p

Sc;2D: (10)

Given the number of assumptions made above, the

relationships in Eq. (10) agree reasonably well with the sim-

ulation results. Line-tying on the z-boundaries (of the “out-

of-plane component”) may also act to inhibit the growth of

the instability, although we do not believe that this will have

a significant effect given that the tearing instability occurs

initially in the symmetry plane, near which Bz is weak.

D. Resolution of the current layer

In these simulations, the current sheet forms at a time-

varying angle relative the background grid (see also Refs. 30

and 31), with the angle between the sheet and the y-axis

reducing as the simulation progresses. To aid in fully resolv-

ing the layer, each simulation used a stretched grid with the

majority of points packed around the y-axis, so that as each

simulation progressed (and the current sheet aligned to the

y-axis), the sheet became better resolved. The threshold of

the plasmoid instability can be highly dependent upon the

degree of numerical noise in a given numerical simulation

[e.g., Ref. 5]. To check the robustness of our results in the

2D setup, the runs which became tearing unstable (cases 6

and 7) were repeated with at least double the resolution

FIG. 4. Simplified model of the pre-tearing current sheet. Bk is the anti-

parallel component of the field across the sheet and B? is the component

perpendicular to the plane of null collapse. vi is the inflow velocity and vo

the outflow velocity, both assumed uniform.
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(cases 4 and 5). The quasi-steady Sweet-Parker stage and the

linear phase of the tearing instability agree closely, with

small differences only arising in the non-linear tearing phase

where the inter-island current layers can thin further at the

higher resolutions. Given the large grid sizes, it was not prac-

tical to re-run the 3D experiments at higher resolutions, but

each tearing unstable 3D experiment was checked to be sure

that just prior to tearing there was a similar number of grid

points spanning the current layer as in its 2D counterpart. As

the sheet forms at an angle to the grid, this was found using

nequiv: ¼ nxny=ðn2
x þ n2

yÞ
1=2

, where nx and ny are the number

of points spanning the sheet in the x and y directions, respec-

tively. A good resolution of the current sheet provides confi-

dence that the explicit spatially uniform resistivity used in

all simulations is significantly larger than any numerical dis-

sipation. Generally, nequiv: 
 18 between the edges of the

current layer (where jJj 
 0:01Jmax) which, combined with

the low numerical dissipation afforded from the sixth-order

spatial derivatives employed by the code, leads us to be

confident that the analysis of the relative stability of the 2D

and 3D setups uses simulations which are properly resolved.

IV. ENTERING THE FLUX ROPE DOMINATED PHASE

As in previous 3D studies of neutral sheets with guide

fields, e.g., Daughton et al.,13 when the 3D null current sheet

is unstable the non-linear evolution is dominated by interact-

ing flux ropes. The first flux ropes form as a result of a bifur-

cation of the central 3D null point within the current layer. A

detailed description of the evolving topology will be pre-

sented in Paper 2. Here, we note that the magnetic configura-

tion following the bifurcation of the original null point is as

shown in Fig. 5 (see also Fig. 1(c)). The original central null,

with a topological degree38 (t.d.) of �1 undergoes a pitch-

fork bifurcation to produce a spiral null of t.d. þ 1 flanked

by two nulls of t.d. �1. The newly formed spiral null sits at

the intersection of two spiral field structures—which we

loosely designate as flux ropes. The crucial distinction that

this 3D topology has from the closed islands formed by tear-

ing in the 2D experiments is that the magnetic field within

the flux ropes has an open structure due to the 3D nature of

the field.15,39 As such, the tearing does not create distinct

new (closed) topological regions; there remain throughout

the evolution only two distinct flux domains.

The tearing which drives this bifurcation occurs over a

finite patch of current sheet around the null. This launches

torsional MHD waves along each respective rope, allowing

the induced twist to propagate outwards. Additionally,

plasma is permitted to flow outwards along each of the flux

ropes. The associated mass and magnetic flux transport is

likely the reason that the flux ropes in the 3D simulations

have a much flatter cross section compared with the closed

plasmoids observed in 2D, Fig. 6. Therefore, as a result of

the 3D nature of the layer both the threshold for instability

and the subsequent non-linear growth of the ropes differs

from the 2D scenario.

Further differences between the 2D and 3D simulations

arise as multiple ropes begin to form and evolve. Newly

formed, highly twisted ropes appear to be unstable to an

additional ideal instability40,41 which kinks them so that ad-

jacent ropes interact, Fig. 7—blue field lines. A stronger

guide field is known to stabilise against this kinking in

twisted flux tubes42 but without a guide field component the

instability results in a descent into turbulence.40 We observe

that the weak magnetic field in the center of the current layer

FIG. 5. A model magnetic field showing the magnetic topology following

the bifurcation of the central 3D null within the current sheet.

FIG. 6. Comparison of 2D islands with a slice through the 3D flux ropes. (a) x’s and o’s: X and O-points; (b) x’s and �’s: 3D nulls within z 2 60:05 with t.d.

�1 and þ1, respectively. Shading indicates jJj, scaled to the maximum value. Each view has been rotated (x; y! X;Y by 12� (a); 6� (b)). Nulls were found

using the trilinear method.35

082114-6 P. F. Wyper and D. I. Pontin Phys. Plasmas 21, 082114 (2014)



is most susceptible to this kinking, leading to regions which

exhibit a turbulent-like behaviour. Flanking these regions

(away from the mid-plane, z¼ 0) where the Bz (“guide”)

field is stronger more coherent kinking flux ropes exist. The

evolution of the field in these different regions is consistent

with the idea that what we are observing is ideal kinking of

the flux rope structures. Note that we have taken care to refer

to the complex regions which form at the center of our layer

as exhibiting a “turbulent-like” evolution as in our 3D simu-

lations there is not sufficient resolution within each region to

develop any kind of inertial range over which an energy cas-

cade could occur. These regions clearly cannot with any con-

fidence be deemed fully turbulent but with greater resolution

genuinely turbulent regions may form.

V. FLUX MIXING ACROSS THE SEPARATRIX

The original 3D null point field in our simulations parti-

tions two regions of topologically distinct flux—one where

field lines have footpoints on the top (x¼ 0.5) boundary, and

the other with footpoints on the bottom (x ¼ �0:5) bound-

ary, Fig. 1(a) —red/yellow field lines. The separatrix surface

intersects the side (y and z) boundaries along a continuous

line, coincident with x¼ 0 at t¼ 0. Once the driving begins

and the current layer forms, flux is smoothly reconnected

across the separatrix surface. This changes the identity of the

separatrix footpoints on the side boundaries so that as the

simulation progresses the curve along which the separatrix

intersects the side boundaries becomes distorted. Due to the

direction we have driven the spines, the separatrix moves

upwards on the positive y boundary (y¼ 3.5), and down-

wards on the negative one (y ¼ �3:5)—see red/yellow field-

line evolution, Figs. 1(b) and 1(c). When the sheet

fragments, on top of this general trend one would expect that

the highly dynamic evolution of the field in the vicinity of

the separatrix surface would lead to additional flux transport

between these two topological domains.

In order to better understand how magnetic flux is mixed

between the two domains, we produced a series of connectiv-

ity maps. These are formed by defining a grid of field line

footpoints on each side boundary, tracing field lines from

each point, and coloring each point according to whether the

associated field line lies in the top or bottom domain. Field

lines from white points connect to the x ¼ �0:5 boundary,

those from black points connect to x¼þ0.5. Figure 8 shows

connectivity maps at various times in case 1 taken from a

side boundary (z¼�4). The envelope within which flux is

efficiently mixed presents as a thin boundary layer filled

with extended spirals in the fieldline mapping. These spirals

correspond to patches within the volume where the flux

ropes twist up the separatrix surface and show that the

magnetic field within these patches falls into distinct layers

connected to the top and bottom boundaries. They also

become progressively more complex as the simulation

progresses—indicative of the increased mixing of flux within

the volume. Studying the evolution of these maps shows that

these spirals form by wrapping up the fields of the two

domains and subsequently relax again through an unwinding

of the two layers.

As is noticeable from the red/yellow field lines in Fig. 7,

the flux which threads into this thin boundary layer has a

globally hyperbolic shape and connects with the top and bot-

tom boundary within two small patches. The size of these

patches is determined by an envelope of flux which just

touches the edge of the boundary later—within which all

flux which threads the boundary layer at this time is con-

tained. This envelope forms a hyperbolic structure of finite

extent that mimics a spine-fan topology.

Lastly, given the finite resolution of the maps, it is not

clear whether the separatrix surface remains a smooth con-

tinuous surface or whether small, distinct flux domains form

in this thin boundary layer. Recent work on the boundary

between globally open and closed solar magnetic fields has

shown that open field regions can bud-off and appear to

be disconnected but are in fact linked by a vanishingly thin

line of flux, see Antiochos et al.,43 Titov et al.44 However,

these investigations were in the context of genuinely global

open and closed flux regions, so may not be directly applica-

ble. What is clear is that if new topological domains are

formed, they are constrained to exist within the thin bound-

ary layer.

FIG. 7. Interaction of adjacent flux ropes following the ideal kinking insta-

bility. Blue field lines show four flux ropes intersecting in a turbulent-like

region in the xy-plane. Yellow/red field lines show the global shape of the

magnetic field.

FIG. 8. Connectivity maps generated on the z¼� 4 boundary at (a) t¼ 17,

(b) 21.5, and (c) 25. Field lines from white points connect to the x ¼ �0:5
boundary, those from black points connect to x ¼ þ0:5. (a) and (b) were

produced using 80 000 field lines, whereas (c) which is computed over a

wider area used 160 000.
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VI. RECONNECTION RATE

Despite its distorted nature and the complexity of the

field nearby, outside of the boundary layer there continues to

remain only two distinct topological regions. It is clear by

the evolution of the spirals in the fieldline mapping that the

dynamics of the flux ropes within the volume is influential in

transporting flux back and forth between these regions. This

is in contrast to the 2D experiments, whereby the magnetic

islands are not directly involved in flux transfer between the

different topological regions. In the 2D scenario, the recon-

nection rate is simply given by the electric field at the domi-

nant X-point—a single X-point which lies at the intersection

of the four global separatrix lines—given by �gJmax.

However, in 3D, it is known that reconnection occurs

continuously throughout the non-ideal region, which is a

layer of complex structure comprising the flux ropes and the

fragmented inter-rope current sheets. The question then

arises: how do we measure the reconnection rate in these

simulations?

In general, for an isolated 3D reconnection region in the

absence of null points the rate of flux transfer is given by the

maximum of
Ð

Ejjdl along all field lines threading the

region.45 Pontin, Hornig, and Priest46 showed that for a non-

ideal region defined by a smooth current layer containing a

single null ð
Ð

EjjdlÞmax measures the rate of flux transfer

across half of the separatrix surface. However, once the cur-

rent layer fragments multiple reconnection sites clearly form

within the volume. Not all have a sufficiently ideal region

surrounding them for them to be considered as isolated.

Wyper and Jain47 considered a similar scenario to this where

a current layer exists at a single null but is highly distorted—

leading to non-isolated patches of intense current within a

large scale current layer. ð
Ð

EjjdlÞmax in that case was shown

to be of limited use for quantifying the rate at which flux is

transferred between the two topological regions. A method

relying upon an accurate knowledge of the position of the

separatrix surface was presented which accounted for the

multiple reconnection sites.

Since our separatrix surface becomes highly distorted,

and as mentioned in the previous section difficult to identify

at later times in these simulations, we use a different method

to quantify the rate that flux is transferred between the two

domains. The connectivity maps were used to apply the

method of flux counting by comparing the maps at succes-

sive times and summing the number of field lines to have

changed connectivity, weighted by the normal component of

the field and the associated boundary area element. The finite

temporal and spatial resolution of the maps means that this

provides a conservative estimate of the total flux transfer

between the two topological regions.

Figures 9(b) and 9(d) compare the temporal variation in

the reconnection rate between the 2D (cases 6-8) and 3D

(cases 1-3) experiments. The 2D runs exhibit a sharp

increase in reconnection rate following the onset of tear-

ing—solid and dashed lines. In both the runs which became

tearing unstable the rate at which this plateaus at is approxi-

mately the same, in agreement with the established theory

that in the bursty non-linear phase of the plasmoid instability

the average rate of reconnection becomes approximately

independent of Lundquist number [e.g., Ref. 5]. This is also

true of the more highly resolved 2D experiments (cases 4

and 5). Although two of the 3D experiments become tearing

unstable, computational constraints prevented us from run-

ning more than one far beyond this into the flux rope domi-

nated regime. Figure 9(d), dashed and dotted-dashed lines

show that the rate of reconnection in cases 2 and 3 remains

relatively steady once the current layer has formed (t 
 8)

and prior to tearing in case 2. By contrast, the rate of

reconnection in case 1, which becomes tearing unstable

early in the experiment, exhibits a smooth and substantial

increase (approximately five-fold) following the onset of the

tearing instability—Fig. 9(d)—solid line. That the growth in

FIG. 9. (a) and (c): maximum current

in the volume. (b) gJmax � reconnec-

tion rate in 2D, diamonds show a com-

parison with the flux counting method.

(d) 3D reconnection rate obtained by

the flux counting method, crosses show

a comparison of ð
Ð

EjjdlÞmax for case 1.
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reconnection rate is less explosive than in 2D we attribute to

the fact that the enhancement of current in the layer after

tearing (see Fig. 9(a)) occurs only in small patches (Fig. 7),

and therefore leads to only a small enhancement in the inte-

gral of Ejj along any given fieldline (Ejj ¼ gJjj) threading the

layer. This is demonstrated by the crosses in Figure 9(d),

which show that ð
Ð

EjjdlÞmax does not undergo any significant

enhancement once the tearing instability sets in.

This substantial increase in reconnection rate occurs for

very different reasons than in the 2D experiments. Whereas

reconnection is sped up in the 2D experiments by shortening

and thinning the current sheet at the dominant X-point, recon-

nection is sped up in the 3D runs by the introduction of many

additional sites of flux transfer across the separatrix surface

as a result of the fragmentation of the current layer. It is

therefore unclear whether the scaling of the averaged rate of

flux transfer in the later non-linear regime will follow that of

the 2D scenario and become near independent of Lundquist

number. Indeed, studies of current sheet fragmentation in

magnetic braiding experiments48 and at separators19 hint that

a decrease in g leads to an increase in total amount of flux

reconnected during a given event, facilitated by increased

fragmentation and recursive reconnection. The scaling of the

reconnection rate and cumulative reconnected flux with g
will be important quantities to explore in the future.

VII. DISCUSSION

In this study, we have investigated how the tearing/plas-

moid instability is triggered, and subsequently evolves, when

both the underlying magnetic field and the current sheet are

intrinsically three-dimensional. This was motivated by the

fact that both observations and large scale simulations often

contain complex three-dimensional fields within which cur-

rent sheets form and fragment via a tearing-like process. We

focused our attention upon how current sheets fragment

when formed around a 3D null point, as 3D null reconnec-

tion is thought to be central to many astrophysical phenom-

ena. By comparing with an equivalent 2D setup we showed

that 3D null current sheets have similar stability properties to

the 2D scenario (being marginally more stable) but that the

subsequent dynamics exhibit a complex behaviour domi-

nated by the formation, interaction and ejection of magnetic

flux ropes. In particular, it was shown that an envelope with

a global appearance of a spine-fan topology is created,

within which flux between the two topological regions is

efficiently mixed across the separatrix surface.

The findings of this work have implications on several

areas of Heliophysics. In many applications, the fan separatrix

surface of a pre-existing 3D null partitions regions of closed

and globally open magnetic field. Within the context of the

solar corona this occurs when a parasitic polarity emerges

within a coronal hole.24,44,49 Composition studies [e.g., Refs.

50 and 51] have suggested that acceleration of both impulsive

solar energetic particles and the slow solar wind may involve

reconnection between open and closed magnetic flux – often

referred to as “interchange reconnection” [e.g., Ref. 52]. We

have shown that at Lundquist numbers typical of the solar

corona (S � 1014 � Sc) the tearing of the current layer and

the formation of flux ropes straddling the separatrix surface

would lead to multiple sites on such a separatrix dome across

which flux can be reconnected. This happens recursively

between the open and closed fields and occurs within the

mixed flux envelope with the global appearance of a spine-fan

topology. As such our results could help to shed light on the

origins of the slow solar wind.

We have also shown that following the onset of tearing

new 3D magnetic null points appear along with the flux

ropes, and that regions of turbulent-like field evolution occur

as the flux ropes writhe and interact. Both turbulence and 3D

nulls can be excellent particle accelerators [e.g., Refs. 53,

54, and references therein] and envisaging once more that

our scenario is being played out at a coronal null point, the

particle acceleration associated with these evolving struc-

tures may explain the anisotropic flare kernels observed at

the separatrix footpoints of certain solar flares [e.g., Ref. 55].

The finite width of the mixed flux envelope also provides a

natural explanation for the finite width of SEP (Solar

Energetic Particle) beams emitted in impulsive SEP events

when the null configuration is such that one spine connects

to open fields [e.g., Ref. 56].

VIII. CONCLUSIONS

This work was concerned with understanding the tearing

instability in the context of 3D null point current sheets. Our

main findings are that:

(i) Current sheets that form about 3D null points are sus-

ceptible to an instability analogous to the plasmoid

instability, but are marginally more stable than equiv-

alent 2D neutral sheets.

(ii) After the current layer tears a thin boundary layer is

formed around the separatrix surface, within which

flux from both topological domains is efficiently

mixed. The flux threading this layer forms an enve-

lope with a hyperbolic structure that mimics a spine-

fan topology.

(iii) The mixing within this envelope leads to a substantial

increase in the rate of reconnection between the two

regions.

(iv) The 3D evolution following tearing is dominated by

interacting flux rope structures within the boundary

layer. These interactions appear to be driven primarily

by an ideal 3D instability which causes them to kink.

(v) The flux ropes tend to have a much flatter aspect ratio in

cross-section than the islands in an equivalent 2D simu-

lation, since the tearing occurs in localised patches.

Looking ahead to future work, flux ropes and null points

are fundamental elements of evolving magnetic fields at all

scales throughout the heliosphere. In an effort to better

understand how null points, flux ropes and reconnection are

coupled in complex magnetic fields, we will follow this

work with a second paper (Paper 2) giving a detailed descrip-

tion of the topology change and dynamics of the evolving

post-tearing boundary layer straddling the separatrix surface.

More generally, future work should address how the

gross rate that flux is transferred across the separatrix surface
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scales with the diffusion parameters, in particular in configu-

rations in which the driver of the reconnection is set by the

system itself, rather than being prescribed on the simulation

boundaries as considered here. Furthermore, the initial mag-

netic field used in our 3D simulations contained a radially

symmetric 3D null. However, 3D nulls found in magnetic

field extrapolations typically lack such radial symmetry [e.g.,

Ref. 57]. The degree of null asymmetry has been shown to

affect both how current sheets form at nulls and the subse-

quent reconnection process [e.g., Refs. 58 and 59]. Future

work should be done to address how the degree of 3D null

asymmetry affects the threshold for tearing to occur as well

as the later flux rope dominated dynamics of the tearing

mode and flux rope evolution. An investigation of whether

evolving patches of turbulence can be realised in 3D null cur-

rent sheets would also be of great benefit, although this may

require a different methodology than what is employed here.

Lastly, future work should also consider non-linear tear-

ing during non-null reconnection in line-tied 3D magnetic

fields, and the role that this plays in both the formation of the

current layers and their subsequent dynamics. This is the

subject of an ongoing investigation.
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