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1 Introduction

An efficient way of encoding the information on the chiral ring of a supersymmetric theory

is given by the Hilbert series of the moduli space of supersymmetric vacua, which is the

generating function for the gauge invariant chiral operators. There has been recent progress

in the analysis of the chiral ring and moduli space of anN = 4 superconformal gauge theory

in 2+1 dimensions. We can now compute the Hilbert series for both the Higgs and Coulomb

branch and use it to test dualities, most notably mirror symmetry [1]. The Hilbert series

for the Higgs branch, which is classical, can be computed in a conventional way from

the Lagrangian using Molien-Weyl integrals. The Coulomb branch is more complicated,

but in spite of the complex structure of the chiral ring and the quantum corrections, it

is still possible to write the Hilbert series by counting monopole operators dressed with

scalar fields [2]. We refer to the Hilbert series for the Coulomb branch also as monopole

formula [2]. The formula can be applied to any 3d N = 4 supersymmetric gauge theory

that has a Lagrangian description and that is “good” or “ugly” in the sense of [3].

In this paper we discuss the general properties of the Hilbert series for the three-

dimensional superconformal field theories known as Tσρ (G) [3]. These are linear quiver

theories associated with a partition σ of G and a partition ρ of the GNO (or Langlands)

dual group G∨ [4]. They are defined in terms of a general set of D3 branes ending on NS5

and D5-branes [5], possibly in the presence of O3 planes [3, 6]. By construction, the mirror

of Tσρ (G) is Tρσ (G∨). These theories serve as basic building blocks for constructing a large

class of more complicated theories. In [7, 8] we already analyzed the special case of the

Coulomb branch of Tρ(G), corresponding to σ = (1, · · · , 1),1 and we proposed a general

formula for the Coulomb branch Hilbert series in terms of Hall-Littlewood polynomials. In

1Similarly, we adopt the standard convention that Tρ(G) corresponds to Tρ
σ (G) with σ = (1, · · · , 1).
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this paper we define generalized Hall-Littlewood functions that give a general expression

for the Coulomb branch Hilbert series of Tσρ (G), or equivalently the Higgs branch Hilbert

series of Tρσ (G∨), with background charges. The relevant formulae are (4.2) and (6.7).

The Hall-Littlewood polynomials are a class of symmetric functions that have

appeared in related context in both the mathematical and physical literature. In physics,

they appeared as blocks in the computation of a limit of the superconformal index [9, 10]

for class S theories in four dimensions [11]. The relation with our results for Tρ(G) theories

can be seen after compactification and mirror symmetry and was discussed in details in [8].

In mathematics, the Hall-Littlewood polynomials have appeared as characters of the

cotangent bundle of flag varieties, which can be computed by localization.2 The relation

with our work comes from the fact that the moduli space of Tσρ (G) can be expressed

in terms of nilpotent orbits of G∨ which have the cotangent bundles of flag varieties as

smooth resolutions. We took inspiration from these mathematical results to derive our

formula for the Hilbert series of Tσρ (G). A similar approach has been successfully applied

to the computation of the Hilbert series of instanton moduli spaces [14] or the Hilbert

series of non-compact Calabi-Yau’s [15].

In this paper we mainly focus on the case G = SU(N) where all derivations are neat

and we can make very general statements. The case of other classical groups, where there

are complications with the algebraic description of nilpotent orbits and issues with discrete

groups, is briefly discussed at the end of the paper. A regular and interesting pattern seems

to emerge also in other types, but we leave the general analysis for future work.

Some remarks are in order on the relation of Hilbert series to superconformal indices.

It was recently realized [16] that some Coulomb branch Hilbert series of d = 3 N = 4

“good” or “ugly” theories with a Lagrangian description [2] may also be captured by a

limit of the superconformal index of the theory. Analogously, the Molien-Weyl formula for

the Higgs branch Hilbert series is captured by another limit of the index. The derivation

of these limits in [16] is for a U(N) gauge group, but it can be easily generalized to any

gauge group and matter content.

For some of the theories of our interest in this paper, namely good or ugly Tσρ (G)

theories with G a classical group, the standard formula [17–20] for the superconformal

index may be written down. Involving an infinite sum over magnetic charges of integrals

over the gauge group, this formula is not of simple evaluation. On the other hand, the

monopole formula of [2] for the Coulomb branch Hilbert series and the Molien-Weyl formula

for the Higgs branch either involve only sums or integrals and can be more easily evaluated.

For bad Tσρ (G) theories, the superconformal indices fail to converge. However, the

Higgs branch Hilbert series can still be computed using standard techniques, including the

code Macaulay2 [21].

The paper is organized as follows. In section 2 we present the quivers for the Tσρ (G)

theory for a general classical group and generic partitions σ and ρ. We have been able to

find in the literature only particular examples and we state here the general result which

2We thank Yuji Tachikawa and all the contributors to the MathOverflow discussion [12]. We kindly

acknowledge the note [13] taken from a lecture given by Mark Haiman and linked therein.
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follows from the constructions in [3, 6]. In section 3 we discuss the brane construction of the

Tσρ (SU(N)) theories and we review the general expressions for the Coulomb branch Hilbert

series (based on the monopole formula [2]) and the Higgs branch Hilbert series (based on

the Molien-Weyl formula). We allow for background magnetic charges for flavor symmetries

in the Coulomb branch [7, 20] and baryonic charges in the Higgs branch [22–24]. The two

set of parameters are exchanged by mirror symmetry and we provide a precise map in

section 3.4. Section 4 contains the derivation of our main formula (4.2) for unitary groups.

We first derive the baryonic Higgs branch Hilbert series of Tσ(SU(N)) by a direct evaluation

of the the Molien-Weyl integral. We complement the result with a second derivation based

on a localization formula for the character of the Higgs branch moduli space, which can be

interpreted as a nilpotent orbit of SU(N). The localization formula apply to the standard

resolution of the orbit as a cotangent bundle of a flag variety and can be expressed in terms

of generalized Hall-Littlewood functions. In section 4.2.3 we show that the Higgs branch

Hilbert series of Tρσ (SU(N)) can be obtained from that of the theory Tσ(SU(N)) by taking

residues with respect to the flavor fugacities. A mirror statement holds for the Coulomb

branch: the Coulomb branch Hilbert series of Tσρ (SU(N)) can be obtained from that of

Tσ(SU(N)) by taking residues with respect to the fugacities for the topological symmetry.

Section 5 contains several explicit examples for unitary groups. Finally, section 6 contains

the generalization of our results to orthogonal and symplectic groups. After reviewing some

general facts about partitions and orbit resolutions for orthogonal and symplectic groups,

we present a generalised Hall-Littlewood formula (6.7) for a generic group G. We present a

series of results for USp(4) and SO(5) and discuss in details subtleties related to the choice

of SO/O gauge groups in the quiver. Other useful results, including explicit examples for

other groups of low rank, are given in a series of appendices.

2 Quiver diagrams for T σρ (G) with G a classical group

The theories Tσρ (G) are a class of 3d N = 4 superconformal field theories arising as infrared

limits of linear quivers with unitary or alternating orthogonal-symplectic gauge groups [3].

G is a classical group and σ and ρ are partitions of G and G∨, respectively, as defined below.

The theories Tσρ (G) can be defined in terms of configurations of D3 branes suspended

between NS and D5-branes [5], possibly in the presence of an orientifold O3 plane [3, 6].

G is determined by the type of orientifold and the two partitions σ and ρ specify how

the D3 branes end on the D5-branes and the NS5-branes, respectively. An example for

G = SU(N) is depicted in figure 1. By construction, the mirror of Tσρ (G) is Tρσ (G∨).3

The quiver for Tσρ (G) can be extracted from the brane construction using standard brane

moves [5] and paying attention to the presence of orientifolds [3, 6].

We could not find in the literature the quiver for the Tσρ (G) theory for a general

classical group and generic partitions σ and ρ and we present it here. We also discuss the

Tσρ (USp′(2N)) theories. Note that the quivers for Tρ(SO(N)) have been explicitly written

in [25].

3More precisely, the Lie groups G and G∨ should be replaced by their Lie algebras. Note also that the

exotic case dubbed G = USp′(2N) is self-dual: G∨ = G.
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Partitions of G are defined as follows. A partition of G = SU(N) is a non-increasing

sequence of integer numbers (parts) corresponding to a partition of N . Partitions for other

classical groups are required to satisfy some constraints. A partition of G = SO(N) is

a partition of N where any even part appears an even number of times. The partition

is called a B- or a D-partition if N is odd or even, respectively. A partition of G =

USp(2N) is a partition of 2N where any odd part appears an even number of times. Such

a partition is called a C-partition. With these definitions, partitions are in one-to-one

correspondence with the nilpotent orbits of the group G and also with the homomorphisms

Lie(SU(2)) → Lie(G) [26]. The interpretation of these constraints in terms of D3 branes

ending on D5-branes in the presence of an O3 plane is given in [3, 6].

2.1 T σρ (SU(N))

Let ρ = (ρ1, . . . , ρ`′) and σ = (σ1, . . . , σ`) be two partitions of N :

σ1 ≥ . . . ≥ σ` > 0 , ρ1 ≥ . . . ≥ ρ`′ > 0 ,
∑̀
i=1

σi =

`′∑
i=1

ρi = N . (2.1)

The quiver diagram for Tσρ (SU(N)) is depicted in (2.2), where, according to standard

notations, round nodes denote gauge groups and square nodes flavor groups. The label k

at each node denotes a U(k) group and `′ is the length of the partition ρ.

N1 N2 · · · N`′−2 N`′−1

M1 M2 M`′−2 M`′−1

(2.2)

The flavor symmetries U(Mj), with 1 ≤ j ≤ `′ − 1, are determined from the transpose

σT = (σ̂1, . . . , σ̂̂̀), with σ̂1 ≥ . . . ≥ σ̂̂̀> 0, of σ as follows:

Mj = σ̂j − σ̂j+1, with (2.3)

σ̂i = 0, for all i ≥ ̂̀+ 1 . (2.4)

Notice that Mi = 0 for i ≥ ̂̀+ 1 so that there are at most ̂̀ flavor groups. The gauge

symmetries U(Nj), with 1 ≤ j ≤ `′ − 1, are given by

Nj =
`′∑

k=j+1

ρk −
̂̀∑

i=j+1

σ̂i . (2.5)

Notice that the theories Tσρ (SU(N)) are defined only for σT < ρ. The quiver for

Tσρ (SU(N)) has first appeared in [27]. Various properties of these theories have been

studied recently using holography and three-sphere partition functions [28–32].

– 4 –
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2.2 T σρ (SO(2N))

These theories can be realised on the worldvolume of N D3 branes parallel to an orientifold

O3− plane and ending on systems of half D5 branes and of half NS5 branes. The partitions

σ and ρ determine how the D3 branes end on the half D5 branes and on the half NS5 branes

respectively. In this case both σ and ρ are D-partitions of SO(2N), of lengths ` and `′.

The quiver diagram for Tσρ (SO(2N)) consists of alternating (S)O/USp groups depicted

in (2.6), where each grey nodes with a label N denotes an O(N) or SO(N) group and each

black node with a label N denotes a USp(N) group.

�M1
|
•
N1

−
�M2
|
•
N2

− · · · −
�ML−1

|
•

NL−1

−
�ML
|
•
NL

(2.6)

The length of the quiver (2.6) is L = 2b`′/2c − 1, unless NL = ML = 0, in which case we

remove such nodes from the quiver and the length reduces to L− 1.

The labels Mj , with 1 ≤ j ≤ L, for the flavor symmetries are determined by σT as

in (2.3). On the other hand, the labels Nj , with 1 ≤ j ≤ L, for the gauge symmetries are

given by

Nj =

 `′∑
k=j+1

ρk


+,−

−

 ̂̀∑
i=j+1

σ̂i

 , + for O/SO and − for USp , (2.7)

where [n]+(resp. −) denotes the smallest (resp. largest) even integer ≥ n (resp. ≤ n).

2.3 T σρ (SO(2N + 1))

These theories can be realised on the worldvolume of N D3 branes parallel to an orientifold

Õ3
−

plane and ending on systems of half D5 branes and of half NS5 branes. The partitions

σ and ρ determine how the D3 branes end on the half D5 branes and on the half NS5

branes respectively: σ is a B-partition of SO(2N + 1), of length `, and ρ is a C-partition

of USp(2N), of length `′.

The quiver diagram for Tσρ (SO(2N + 1)) consists of alternating (S)O/USp groups

depicted in (2.8), where each grey nodes with a label N denotes an O(N) or SO(N) group

and each black node with a label N denotes a USp(N) group.

�M1
|
•
N1

−
�M2
|
•
N2

− · · · −
�ML−1

|
•

NL−1

−
�ML
|
•
NL

(2.8)

where the length of the quiver is given by L = 2b`′/2c.
The labels Mj , with 1 ≤ j ≤ L, for the flavor symmetries are determined by σT as

in (2.3). On the other hand, the labels Nj , with 1 ≤ j ≤ L, for the gauge symmetries are

given by

Nj =

1 +

`′∑
k=j+1

ρk


+̃,−

−

 ̂̀∑
i=j+1

σ̂i

 , +̃ for O/SO and − for USp , (2.9)

where [n]+̃ is the smallest odd integer ≥ n.

– 5 –
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Here and in the following, the distinction between SO(N) and O(N) groups is im-

portant. Theories with SO(N) gauge groups have typically more BPS gauge invariant

operators compared with the same theory with gauge group O(N) and we have different

theories according to the choice of O/SO factors. Examples are discussed in section 6.

2.4 T σρ (USp(2N))

These theories can be realised on the worldvolume of N D3 branes parallel to an orientifold

O3+ plane and ending on systems of half D5 branes and of half NS5 branes. The partitions

σ and ρ determine how the D3 branes end on the half D5 branes and on the half NS5

branes respectively: σ is a C-partition of USp(2N), of length `, and ρ a B-partition of

SO(2N + 1), of length `′.

The quiver diagram for Tσρ (USp(2N)) consists of alternating (S)O/USp groups de-

picted in (2.10), where each grey nodes with a label N denotes an O(N) or SO(N) group

and each black node with a label N denotes a USp(N) group.

�M1
|
•
N1

−
�M2
|
•
N2

− · · · −
�ML
|
•
NL

(2.10)

where L = 2b`′/2c and if NL and ML are both zero, we remove such nodes from the quiver,

in which case the length of quiver (2.10) is L− 1.

The labels Mj , with 1 ≤ j ≤ L, for the flavor symmetries are determined by σT as

in (2.3). On the other hand, the labels Nj , with 1 ≤ j ≤ L, for the gauge symmetries are

given by

Nj =

 `′∑
k=j+1

ρk


+,−

−

 ̂̀∑
i=j+1

σ̂i

 , + for O/SO and − for USp . (2.11)

2.5 T σρ (USp′(2N))

These theories can be realised on the worldvolume of N D3 branes parallel to an orientifold

Õ3
+

plane and ending on systems of half D5 branes and of half NS5 branes. The partitions

σ and ρ determine how the D3 branes end on the half D5 branes and on the half NS5

branes respectively. In this case both σ and ρ are C-partitions of USp(2N), of lengths `

and `′ respectively.

The quiver diagram for Tσρ (USp′(2N)) consists of alternating (S)O/USp groups de-

picted in (2.12), where each grey nodes with a label N denotes an O(N) or SO(N) group

and each black node with a label N denotes a USp(N) group.

�M1
|
•
N1

−
�M2
|
•
N2

− · · · −
�ML
|
•
NL

(2.12)

We defined

L =

{
`′ − 1 `′ is even

`′ `′ is odd
(2.13)

– 6 –
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and if both NL and ML are zero, the nodes are removed from the quiver and the length of

the quiver (2.12) is L− 1.

The labels Mj , with 1 ≤ j ≤ L, for the flavor symmetries are determined by σT as

in (2.3). On the other hand, the labels Nj , with 1 ≤ j ≤ L, for the gauge symmetries are

given by

Nj =



[
1 +

∑`′

k=j+1 ρk

]
+̃
−
(∑̂̀

i=j+1 σ̂i

)
for the O/SO node , if `′ is even ,[∑`′

k=j+1 ρk

]
−
−
(∑̂̀

i=j+1 σ̂i

)
for the USp node , if `′ is even ,[∑`′

k=j+1 ρk

]
+̃
−
(∑̂̀

i=j+1 σ̂i

)
for the O/SO node , if `′ is odd ,[∑`′

k=j+1 ρk

]
+
−
(∑̂̀

i=j+1 σ̂i

)
for the USp node , if `′ is odd .

(2.14)

3 The Hilbert series of T σρ (SU(N))

In this section we state the general formulae for the Hilbert series of the Coulomb and

Higgs branch of Tσρ (SU(N)) theories. The Hilbert series for the Coulomb branch can be

written using the monopole formula [2], while the Hilbert series for the Higgs branch can be

written as a Molien-Weyl integral. We introduce background magnetic fluxes for the flavor

symmetries in the Coulomb branch [7] and baryonic charges in the Higgs branch [22–24].

We explain how fugacities, fluxes and charges are related by mirror symmetry. We also

provide a useful brane description of the theory.

3.1 Brane configurations

The theory Tσρ (SU(N)) can be realized with N D3 branes suspended between `′ NS5-branes

and ` D5-branes, where `′ and ` are the length of the partitions ρ and σ respectively. We

order the branes in such a way that all the D5-branes are on one side of the NS5 branes

(on the left in figure 1). The parts of ρ = (ρ1, . . . , ρ`′) are the net number of D3 branes

ending on the NS5 branes going from the interior to the exterior of the configuration

and the parts σ = (σ1, . . . , σ`) are the net number of D3 branes ending on the D5-branes

again going from the interior to the exterior. Since the partitions are ordered as in (2.1),

the smallest part of ρ and σ are associated with the most external NS5 and D5-branes,

respectively, and they increase going into the interior. The configuration must satisfy

the s-rule requiring that no more than one D3 brane can end on the same pair of NS5

and D5-branes [5]. The quiver can be read after splitting the D3 branes among the NS5

branes and moving the D5-branes inside the NS5 intervals as in the example in figure 1

and figure 2. The result is the quiver in (2.2).

Unless otherwise stated we always use the following convention in reading the quiver

from the brane configuration. When talking about order we always refer to the brane

configuration where all the D5 are on one side of the NS5, as in figure 1. The gauge

groups are numbered by following the NS5 intervals from the interior to the exterior of the

configuration, or, equivalently, in the direction which goes from the D5 to the NS5. The first

gauge group U(N1) in (2.2) is the one living on the NS5 interval closer to the D5-branes.

– 7 –
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x1 x2

NS5

x3 x4n1

D5

n2n3

D3

Figure 1. A brane construction for T
(3,2,2)
(2,2,2,1)(SU(7)). The partition σ = (3, 2, 2) gives the net

number of D3 branes ending on each D5-brane from the interior to the exterior. The partition

ρ = (2, 2, 2, 1) gives the net number of D3 branes ending on each NS5-brane from the interior to

the exterior. Here xi are the fugacities associated with each NS5 brane and nj are the background

monopole charges associated with each D5-brane.

x1 x2 x3 x4

n3 n2 n1

U(1) U(2) U(1)

U(2) U(1)

Figure 2. Left: brane construction for T
(3,2,2)
(2,2,2,1)(SU(7)) after the D5-branes are moved inside the

NS5-brane intervals. Right: the linear quiver is read off from the brane configuration. We adopt

the convention that the i-th gauge group corresponds to the D3-brane interval between xi and

xi+1: hence U(1), U(2), U(1) from left to right are regarded as the first, second and third gauge

groups respectively, and similarly U(2) and U(1) are regarded as the second and third flavor groups

respectively.

3.2 The monopole formula for the Coulomb branch of T σρ (SU(N))

It is convenient to associate fugacities and fluxes to the NS5 and D5-branes, respectively.

We assign fugacities x = (x1, . . . , x`′) to each NS5 brane and we order them from the

interior to the exterior of the branes configuration as in figure 1. We also assign fluxes

n = (n1, · · ·n`) to the D5-branes and we order them again from the interior to the exterior

of the branes configuration as in figure 1.

The monopole formula [2] for quiver (2.2) is given by4

Hmon[Tσρ (SU(N))](t;x; ñ1, . . . , ñ̂̀)
=
( L∏
j=1

yj
∑Mj
i=1 ñj,i

) ∑
m1,1≥...≥m1,N1

>−∞
· · ·

∑
mL,1≥...≥mL,NL>−∞

×

×
( L−1∏
i=1

t
∑Ni
k=1

∑Ni+1
k′=1

|mi,k−mi+1,k′ |
)( L∏

i=1

t
∑Ni
k=1

∑Mi
k′=1

|mi,k−ñi,k′ |
)
×

×
( L∏
i=1

t
−2

∑
1≤k<k′≤Ni

|mi,k−mi,k′ |
)( L∏

i=1

PU(Ni)(t;mi)
)( L∏

j=1

z
∑Nj
k=1mj,k

j

)
. (3.1)

4For convenience we rescale the fugacity t → t2 from our previous papers [2, 7, 8]. t is now a highest

weight fugacity for the SU(2) R-symmetry acting on the Coulomb branch.
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x1 x2

D5

x3 x4n1

NS5

n2n3

D3

x1x2x3 x4

n1n2n3

U(1) U(2)

U(1) U(3)

Figure 3. Top: brane construction for T
(2,2,2,1)
(3,2,2) (SU(7)), obtained by exchanging D5-branes and

NS5-branes in figure 1. Bottom left: the D5-branes are moved inside the NS5-brane intervals.

Bottom right: the quiver diagram read off from the bottom left brane configuration. We adopt

the convention that the i-th gauge group corresponds to the D3-brane interval between ni and

ni+1: hence U(1) and U(2) are regarded as the first and the second gauge groups respectively, and

similarly U(1) and U(3) are regarded as the first and the second flavor groups respectively.

where mj = (mj,1, . . . ,mj,Nj ) with 1 ≤ j ≤ L are dynamical magnetic charges associated

with gauge group U(Nj), ñj = (ñj,1, . . . , ñj,Mj ) are background magnetic charges associated

with the flavor group U(Mj), and

L = `′ − 1 (3.2)

is the number of gauge groups. Here zj and yj are fugacities for the topological U(1) symme-

tries associated with the gauge groups U(Nj) and flavor groups U(Mj) respectively. Since

the flavor symmetry is actually (
∏L
j=1 U(Mj))/U(1), these fugacities are not independent.

Rather they satisfy the constraint

L∏
j=1

z
Nj
j y

Mj

j = 1 , (3.3)

which ensures that a shift of the magnetic charges corresponding to the removed U(1)

does not affect the monopole formula (3.1). We will refer to this as a shift symmetry in

the following.

We now need to translate the topological fugacities z and y and the background

magnetic fluxes ñ in terms of the previously defined variables x and n.

The fugacities z and y are related to x as

zj = xj+1x
−1
j , yj = x1 . . . xj , 1 ≤ j ≤ L . (3.4)

– 9 –



J
H
E
P
0
1
(
2
0
1
5
)
1
5
0

Then, (3.3) translates to
`′∏
i=1

xρii = 1 . (3.5)

Due to monopole operators, the topological symmetry U(1)`
′−1 is enhanced to

S

(∏
i

U(ρ̂i − ρ̂i+1)

)
, (3.6)

where ρT = (ρ̂1, . . . , ρ̂̂̀′), with ρ̂1 ≥ . . . ≥ ρ̂̂̀′ > 0 is the transpose partition of ρ [3].

ρ̂i − ρ̂i+1 is the number of parts of ρ equal to i. As expected by mirror symmetry, (3.6)

is the flavor symmetry of the mirror theory Tρσ (SU(N)). The x become fugacities for the

non-abelian symmetry (3.6). We can split the x into ̂̀′ pieces

(x̃1, . . . , x̃ ̂̀′) (3.7)

where, by definition, x̃i is the set of xk with ρk = i. The x̃i are fugacities for the group

U(ρ̂i− ρ̂i+1). The constraint (3.5) ensures that the overall U(1) is removed in (3.6). Notice

that the splitting (3.7) reverses the order of the xi. The x̃i are constructed by collecting

together all the fugacities of the NS5 associated with the parts of ρ equal to i and the index

i increases going in the direction which goes from the NS5 to the D5, from the exterior to

the interior, while the xi are ordered in the opposite direction.

For the flavour symmetry

S

(∏
i

U(Mi)

)
= S

(∏
i

U(σ̂i − σ̂i+1)

)
, (3.8)

the background monopole fluxes ñj are related to the n = (n1, · · · , n`) in a similar manner.

ñj is the set of fluxes nk with σk = j. The ñi are fugacities for the group U(σ̂i − σ̂i+1).

Once we move the D5 inside the NS5 intervals, the fluxes in ñj are those associated with

the D5-branes living in the j-th interval, with the intervals ordered going from the D5 to

the NS5 branes, according to our general convention. Notice that, in this case also, the

splitting of the fluxes into the ñi pieces reverses the original order of the ni.

Let us discuss some examples. In figure 1, we have ñ1 = ∅, ñ2 = (n3, n2), ñ3 = (n1),

and x̃1 = (x4), x̃2 = (x3, x2, x1). Notice that the order of the xi and ni has been reversed.

The splitting of ni, corresponding to the flavour symmetry, is manifest in figure 2. On the

other hand, the splitting of the topological fugacities xi is not manifest in figure 2, but this

becomes apparent in the mirror quiver depicted in figure 3.

3.3 The baryonic generating function for the Higgs branch of T σρ (SU(N))

The baryonic Hilbert series for quiver (2.2) is given by the Molien-Weyl integral [23, 24]

g[Tσρ (SU(N))](t;w1, . . . ,ŵ̀;B1, . . . , B`′−1) =

∫ L∏
i=1

 1

Ni!

∏
1≤k≤Ni

1

2πi

dsi,k

s1+Bi
i,k
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L∏
i=1

∏Ni
k 6=p(1− si,k/si,p)

∏Ni
k ,p(1− t2si,k/si,p)∏Ni

k=1

∏Ni+1

p=1

∏Mi
q=1(1− tsi+1,p/si,k)(1− tsi,k/si+1,p)(1− twi,q/si,k)(1− tsi,k/wi,q)

(3.9)

where L = `′ − 1 as before. wj = (wj,1, . . . , wj,Mj ) with 1 ≤ j ≤ ̂̀ are fugacities for the

flavor symmetry

S

(∏
i

U(Mi)

)
, (3.10)

and the integration variables si,k with 1 ≤ k ≤ Ni parameterise the Cartan of the gauge

groups U(Ni). The integration over the U(1) center of each U(Ni) factor selects the op-

erators of baryonic charge Bi for the leftover SU(Ni) gauge groups. 1 ≤ i ≤ L with

the understanding that terms with occurrences of sL+1,p should not be included in the

product. The numerator in (3.9) contains the Haar measure and the contribution of the

F-term relations while the denominator receives contributions from the fundamental and

bifundamental fields in the quiver.

3.4 Mapping of parameters under mirror symmetry

Under mirror symmetry Tσρ (SU(N)) is exchanged with Tρσ (SU(N)). The Coulomb branch

of the former is identified with the Higgs branch of the latter and, at the level of Hilbert

series, we have

Hmon[Tσρ (SU(N))](t;x; ñ1, · · · , ñ̂̀)
= xs(n)g[Tρσ (SU(N))](t; x̃1, . . . , x̃ ̂̀′ ;B1, . . . , B`−1) ,

(3.11)

where the relation between fugacities and charges in the two sides of the equation can be

determined by comparing global symmetries and following the brane configuration under

S-duality. The result is the following.

The x̃i are defined in terms of x as in (3.7). The x̃i with i = 1, . . . ̂̀′ are fugacities for

the global symmetry S (
∏
i U(ρ̂i − ρ̂i+1)) which is the topological symmetry of Tσρ (SU(N))

and the flavor symmetry of Tρσ (SU(N)). The x are associated with the NS5-branes in the

Coulomb picture as in figure 1 and with the D5-branes after S-duality, consistently with

the identification made above.

The baryonic charges Bi, which can also be viewed as magnetic charges for the topo-

logical symmetry, are instead given by

Bi = ni − ni+1 , (3.12)

where the ni and ñi are related as discussed at the end of section 3.2. Recall that the

ni are associated with the D5-branes and ordered in the direction which goes from the

NS5-branes to the D5. After an S-duality the ni are associated with the NS5-branes

and ordered in the direction which goes from the D5-branes to the NS5 of the final

configuration. The baryonic charge of the group living in the i-th NS5 interval is given

by the difference between the fluxes on the two NS5 branes delimiting the interval. We
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follow the convention that the gauge groups are ordered in the direction which goes from

the D5-branes to the NS5 even after S-duality.

The prefactor xs(n) is determined by the brane configuration of Tρσ (SU(N)) as follows.

First of all, write down the brane configuration of Tρσ (SU(N)) as obtained from mirror

symmetry, labelling each NS5-brane by n1, n2, . . . , n` from the interior to the exterior,

and each D5-branes by x1, x2, . . . , x`′ from the interior to the exterior as in figure 3. The

relevant contributions to xs(n) come from D3-branes that stretch between an NS5-brane

and a D5-brane and not from those split between NS5-brane intervals. In particular, any

D3-brane that stretches between a D5-brane labelled by xi and an NS5-brane labelled by

nj contributes the monomial x
nj−n1

i to the prefactor. Multiplying all such contributions,

the prefactor xs(n) is then given by

xs(n) =

`′∏
i=1

ρi∏
j=1

x
nj−n1

i . (3.13)

The rationale for this prefactor comes from the residue computation presented in appendix.

To illustrate the above procedure, we provide an example of T
(2,2,1,1)
(3,2,1) (SU(6)) in (5.30).

The dotted horizontal lines indicated in blue and red indicate the D3-brane segments that

contribute non-trivially to the prefactor xs(n). In this example, xs(n) = xn2−n1
1 xn2−n1

2 .

We have explicitly tested the relation (3.11) in several different cases. Notice that

there is an ambiguity in associating the ni corresponding to the same block ñj to the NS5

branes after S-duality. However, the Coulomb branch formula is manifestly invariant under

permutations of fluxes belonging to the same flavor symmetry U(Mi). One can check that

also the Higgs branch formula is the same for set of fluxes Bi obtained by permuting the

entries in the various blocks ñj .

4 The generalised Hall-Littlewood formula for T σρ (SU(N))

In this section we provide a closed formula for the Hilbert series of the Coulomb branch

of Tσρ (SU(N)), or equivalently the Hilbert series of the Higgs branch of Tρσ (SU(N)). The

Higgs branch part of the computation can be reinterpreted in the language of localization

and generalizes a known connection between Hall-Littlewood polynomials and Hilbert series

of cotangent bundles of flag varieties [33, 34]. Subtleties and complications arising for other

classical groups are discussed in section 6.

To state the formula we first need to repackage the magnetic fluxes in yet another

form. We construct a string of N integers by repeating σi times each flux ni

nσ = (nσ11 , nσ22 , · · · , nσ`` ) , (4.1)

where na means n repeated a times.

4.1 The formula for T σρ (SU(N))

The Coulomb branch formula for Tσρ (SU(N)) can be written as

Hmon[Tσρ (SU(N))](t;x; ñi) = H[Tσρ (SU(N))](t;x;nσ)

≡ tpσ(nσ)(1− t2)N−1Kρ(x; t)Q̂n
σ

σ (aρ(t,x); t) ,
(4.2)

– 12 –



J
H
E
P
0
1
(
2
0
1
5
)
1
5
0

and it is valid when the fluxes are fully ordered n1 ≥ n2 ≥ · · · ≥ n`. The notations are

defined as follows.

1. Q̂n
σ

σ is a generalised Hall-Littlewood function for the group SU(N), given by

Q̂n
σ

σ (x1, . . . , xr; t)

=
1∏
i σi!

∑
w∈SN

xw(nσ)
∏
α∈∆σ

(1− x−w(α))(1− t2xw(α))
∏
γ∈∆+

1− t2x−w(γ)

1− x−w(γ)
,

(4.3)

where

• ∆+ is the set of positive roots of SU(N), which can be written in standard

notation as α = ei − ej (with 1 ≤ i < j ≤ N).

• ∆σ is the set of positive roots in the diagonal blocks associated with σ: α =

ei − ej ∈ ∆σ iff
∑k−1

j=1 σj < i < j ≤
∑k

j=1 σj for some k = 1, . . . , `.

• the sum over w is over the Weyl group of SU(N).

• nσ determines a point in the weight lattice of U(N). It is a dominant weight

left invariant by the elements of the Weyl group
∏`
i=1 Sσi that only permutes

indices within the blocks associated with σ.

• The factor indicated in blue enters in the definition of the standard Hall-

Littlewood polynomial. The factor indicated in purple is a modification ap-

pearing for non-trivial partitions σ 6= (1N ).

2. The power pσ(nσ) is given by

pσ(nσ) =
∑

α∈∆+(G)

1

dσ(α)
α(nσ) , (4.4)

where for the positive root α = ei − ej (with 1 ≤ i < j ≤ N), α(nσ) = nσi − nσj
and dσ(ei − ej) depends only on the index i: it is equal to the size of block in the

decomposition given by σ to which ei belongs.

3. The partition ρ determines an embedding of SU(2) in SU(N) defined by the de-

composition of the fundamental representation of SU(N) in the sum of irreducible

representations of SU(2) of dimension ρk. The argument aρ(t,x), which we shall

henceforth abbreviate as a, is determined by the following decomposition of the fun-

damental representation of SU(N) to Gρ × ρ(SU(2)):

χ
SU(N)
fund (aρ) =

∑
k

χ
Gρk
fund(x̃k)χ

SU(2)
[ρk−1](t) , (4.5)

where Gρk = U(rk) denotes a subgroup of Gρ corresponding to the part k of the

partition ρ that appears rk times and the x̃k are defined as in (3.7). Formula (4.5)

determines a as a function of t and {x̃k} as required. Of course, there are many pos-

sible choices for a; choices related by outer automorphisms of SU(N) are equivalent.
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4. The prefactor Kρ(x; t) can be determined as follows. The embedding specified by ρ

induces the decomposition

χ
SU(N)
Adj (a) =

∑
j∈ 1

2
Z≥0

χ
Gρ

Rj
(x̃j)χ

SU(2)
[2j] (t) , (4.6)

where a on the left hand side is the same a as in (4.5). Each term in the previous

formula gives rise to a plethystic exponential, giving

Kρ(x; t) = PE

t2 ∑
j∈ 1

2
Z≥0

t2jχ
Gρ

Rj
(x̃j)

 . (4.7)

4.2 Derivation of the Hall-Littlewood formula for T σρ (SU(N))

We first consider the Coulomb branch formula (3.1) for the theory Tσ(SU(N)), where

omitted partitions are understood to be the trivial one (1N ). By mirror symmetry we

can equivalently compute the baryonic Higgs branch Hilbert series for Tσ(SU(N)) using

equation (3.11).

4.2.1 Tσ(SU(N)): computing residues for the gauge fugacities

In the case of Tσ(SU(N)) the quiver is

[N ]−
(∑̀
k=2

σk

)
− · · · − (σ` + σ`−1)− (σ`) (4.8)

where (n) and [n] indicate a U(n) gauge and flavor group respectively. By defining N0 = N

and s0,k = xk, we can rewrite the Molien-Weyl formula as follows

g[Tσ(SU(N))](t;x;B1, . . . , B`−1) =

=

∫ `−1∏
i=1

[(
1

Ni!

Ni∏
k=1

1

2πi

dsi,k

s1+Bi
i,k

) ∏Ni
k 6=p(1− si,k/si,p)

∏Ni
k ,p(1− t2si,k/si,p)∏Ni

k=1

∏Ni−1

p=1 (1− tsi−1,p/si,k)(1− tsi,k/si−1,p)

]
(4.9)

where Ni =
∑`

k=i+1 σk with i = 0, · · · , `− 1.

We need to identify the poles that contributes to the integral (4.9). We choose to

evaluate the integral adding (minus) the contributions from all the poles outside the unit

circle. For positive baryonic charges Bi ≥ 0 there are no poles at si,k = ∞. Assuming

|t| < 1, the poles for the fugacities of the gauge group U(Ni) are of the form

si,k = si−1,pk/t , k = 1, · · · , Ni (4.10)

for a choice of Ni fugacities si−1,pk of the gauge group U(Ni−1). Most of these poles give

the same contribution to the integral due to the permutation symmetry of the fugacities

si,k for each i and this contribution is compensated by the factors Ni!. Let us consider the

contribution of the pole

si,k = si−1,k/t , k = 1, · · · , Ni (4.11)
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for the gauge group U(Ni). The residue of the i-th term in the product in (4.9) is

Res
si,k→si−1,k/t

∏Ni
k=1 s

−1−Bi
i,k

∏Ni
k 6=p(1− si,k/si,p)

∏Ni
k ,p(1− t2si,k/si,p)∏Ni

k=1

∏Ni−1

p=1 (1− tsi−1,p/si,k)(1− tsi,k/si−1,p)
=

(−1)NitBiNi
Ni∏
k=1

s−Bii−1,k

∏
k≤Ni

∏
Ni<p≤Ni−1

(1− t2si−1,p/si−1,k)
−1(1− si−1,k/si−1,p)

−1 . (4.12)

Combining the contributions of all the groups and observing that, by iteration, si,k = xk/t
i

and si,k/si,p = xk/xp we obtain the contribution

t
∑
i iBiNi(x1 · · ·xσ`)−B1···−B`−1(xσ`+1 · · ·xσ`+σ`−1

)−B1···−B`−2 · · ·∏
(k,p)∈P (1− t2xp/xk)(1− xk/xp)

(4.13)

where P runs over all the entries (k, p) of the upper triangular part of an N × N matrix

with diagonal blocks of sizes (σ`, · · · , σ1) removed. Here σ` corresponds to the block on

the top of the matrix. All other poles in (4.10) give contributions that are obtained by

permuting the xi. Permutations that exchange only indices belonging to same blocks can

be reabsorbed by a permutation of the si,k and do not lead to new contributions.

We can rewrite the result in a more compact form in terms of roots. Using the con-

ventions where the positive roots of SU(N) (ei − ej with i < j) corresponds to the entries

(i, j) of the hermitian matrix in the Lie algebra Lie(SU(N)), we find

tpσ(nσ)
∑

w∈WSU(N)/WL(σ)

xw(nσ)
∏

α∈∆+\∆σ

1

(1− x−w(α))(1− t2 xw(α))
(4.14)

where ∆+ is the set of positive roots of SU(N), ∆σ is the set of positive roots in the

diagonal blocks of size σi and WL(σ) is the subgroup of the Weyl group of SU(N) which

just permutes roots inside the various blocks.5 pσ(nσ) is defined in (4.4) and nσ in (4.1).

It is convenient to write the expression (4.14) as follows

tpσ(nσ)
∏
α∈∆+

1

(1− t2xα)(1− t2x−α)∑
w∈WSU(N)/WL(σ)

xw(nσ)
∏
α∈∆σ

(1− x−w(α))(1− t2xw(α))
∏
γ∈∆+

1− t2x−w(γ)

1− x−w(γ)

= tpσ(nσ)(1− t2)N−1K(1,··· ,1)(x, t)Q̂
nσ

σ (x; t)

(4.15)

where Q̂n
σ

σ (x; t) and Kρ have been defined in (4.3) and (4.7) respectively. We can extend

the sum to the entire Weyl group since the fluxes are equal inside the blocks. We have

thus recovered the expression (4.2).

The computation is valid for Bi ≥ 0 which, using (3.12) and (4.1), correspond to fully

ordered fluxes n1 ≥ n2 ≥ · · · ≥ n`. For other values of Bi, extra poles at infinity might

affect the result and give a more complicated expression.

5Notice that, compared with (4.13), we have reversed the order of the blocks. Here σ1 denotes the diag-

onal block on the left top of the matrix, σ2 the adjacent diagonal block and so on. The contribution (4.13)

corresponds to the permutation (1, 2, · · · , N) → (N, · · · , 2, 1) in the sum (4.14). We used (3.12) and the

fact that
∏
j xj = 1.
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4.2.2 The localisation formula

We can reinterpret the previous computation in terms of localisation. A similar approach

has been successfully used for the computation of the Hilbert series of non-compact Calabi-

Yaus [15] and the Hilbert series of instanton moduli spaces [14]. We use localisation in the

following form. Suppose that we have a line bundle L over a smooth manifold X with a

holomorphic action of a torus µ : T → X with isolated fixed points. The Lefschetz fixed

point formula states that [35, 36]

∑
i

(−1)iTr{µ|H(0,i)(X,L)} =
∑
P

qm
L
P∏

j(1− qm
j
P )

(4.16)

where P are the fixed points of the torus action, mj
P , j = 1, · · · ,dimX are the weights of

the linearization of the torus action µ on the tangent space of X at the point P and mL
P

is the weight of the action of µ on the fiber of the line bundle at P . q denotes a set of

fugacities for the action of T . Whenever the higher cohomology groups H(0,i)(X,L) , i ≥ 1

vanish the left hand side of (4.16) computes the Hilbert series counting holomorphic

sections of the line bundle L.

In order to use formula (4.16) we need to find an algebraic description of the Higgs

branch of Tσ(SU(N)), a smooth resolution of it, and the conditions under which the higher

cohomology groups vanish.

It is known that, as an algebraic variety, the Higgs branch of Tσ(SU(N)) is the closure

of the nilpotent orbit of Jordan type σT [27, 37, 38]

Higgs(Tσ(SU(N))) = OσT . (4.17)

Recall that a partition λ = (λ1 · · · , λl) of N

λ1 ≥ · · · ≥ λl ,
l∑

i=1

λi = N (4.18)

naturally identifies a nilpotent matrix Nλ in Lie(SU(N)) with Jordan blocks of dimension

λi. The nilpotent orbit Oλ of type λ is, by definition, the orbit of Nλ under the adjoint

action of SU(N). Notice that the transpose of σ enters in (4.17).

It is also well known that the singular variety OσT has a smooth resolution, called the

Springer resolution,

µ : T ∗(SU(N)/P )→ OσT , (4.19)

in terms of the cotangent bundle of a flag variety. P here is a parabolic subgroup of SU(N)

consisting of the upper triangular block matrices with blocks of dimensions σi. The non-

zero entries in P are those belonging to diagonal blocks of dimensions σi×σi in addition to

all the entries above the diagonal. The homogeneous space SU(N)/P parametrizes all the

possible flags of type σ in CN , i.e. the set of vector subspaces V0 = {0} ⊂ V1 · · · ⊂ VN = CN

with relative dimension dim(Vi+1/Vi) = σ`−i.

We can also give a different characterization of T ∗(SU(N)/P ) which is sometime use-

ful. The elements in P belonging to the diagonal blocks form a subgroup S(
∏
i U(σi))
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of P , called the Levi subgroup and denoted by L(σ). Accordingly, the Lie algebra of P

decomposes as

Lie(P ) = Lie(L(σ))⊕ n(P ) , (4.20)

where the nil-radical n(P ) consists of nilpotent matrices. The cotangent bundle

T ∗(SU(N)/P ) can be written as SU(N)×P n(P ), which is the quotient of SU(N)× n(P )

by the equivalence relation

(g, n) ∼ (g′, n′)⇔ g′ = g p , n′ = p−1 n p , p ∈ P . (4.21)

The resolution in (4.19) is just given by µ : (g, n)→ gng−1.

We can now use the localisation formula (4.16). We can apply the formula to

X = T ∗(SU(N)/P ) since it has the same holomorphic functions as Oσ. The torus action

is induced by the Cartan subgroup of SU(N) and by the scaling symmetry, with associated

fugacities x and t. The Cartan subgroup of SU(N) acts in the obvious way on the cosets in

SU(N)/P and its action is naturally extended to the cotangent bundle. The scaling sym-

metry acts on the cotangent fiber. This torus action has isolated fixed points. A coset gP

in SU(N)/P is fixed by the action of the Cartan torus T ⊂ SU(N) if and only if T ⊂ gPg−1

and this selects g ∈WSU(N)/WL(σ) where WSU(N) is the Weyl group of SU(N) and WL(σ)

the Weyl group of the Levi subgroup of P . The fiber at the fixed points must be zero because

of the scaling symmetry. In order to use (4.16) we need to linearize the torus action around

the fixed points. The tangent space to T ∗(SU(N)/P ) at a fixed point can be written as

Lie(SU(N))/Lie(P )⊕ Lie(SU(N))∗/Lie(P )∗ , (4.22)

where the first factor is the tangent space to the flag manifolfd SU(N)/P and the

second to the cotangent fiber. The torus action on an element of the root space

α in Lie(SU(N))/Lie(P ) is xα while on the corresponding element in the dual space

Lie(SU(N))∗/Lie(P )∗ is t2x−α. We also consider a line bundle L associated with the fluxes

n, which give the weight of the representation of the Cartan subgroup of SU(N) on the fiber.

The right hand side of (4.16) then reads∑
w∈WSU(N)/WL(σ)

xw(nσ)
∏

α∈∆+\∆σ

1

(1− x−w(α))(1− t2 xw(α))
(4.23)

where ∆+ is the set of positive roots of SU(N), while ∆σ is the set of positive roots in

L(σ). The product in (4.23) covers all the roots in Lie(SU(N))/Lie(P ) which correspond

to the entries in the lower triangular part of the matrix with the exclusion of those living

in the diagonal blocks. When σ = (1, · · · , 1) the sum in (4.23) runs over all the positive

roots and the expression in (4.23) becomes a (dual) Hall-Littlewood polynomial [33].

The expression (4.23) is the baryonic Hilbert series of the Higgs branch of Tσ(SU(N))

provided the higher cohomology group of the line bundle L vanish. Sufficient conditions

for the vanishing have been discussed in [39] (see Proposition 3.7) and require that nσ is

a dominant weight and it is fixed by the action of WL(σ). This requires that all the entries

in nσ are ordered and equal in the blocks corresponding to the partition σ

nσ = (nσ11 , nσ22 , · · · , nσll ) , n1 ≥ n2 ≥ · · · ≥ nl , (4.24)
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where na means n repeated a times.

The rest of the computation is the same as in section 4.2.1. We can manipulate

expression (4.23) and obtain again the final formula (4.15). The sum is extended to the

entire Weyl group assuming the condition (4.24) on the fluxes. In this approach the overall

prefactor tpσ(nσ) is found by an explicit comparison with the monopole formula.

4.2.3 Computing residues in the flavor fugacities

We state the following general observation:

The Higgs branch Hilbert series of Tρσ (SU(N)) can be obtained from that of the

theory T
(1N )
σ (SU(N)) by taking residues with respect to the flavor fugacities.

The logic is similar to the computations of [40, 41] in the context of superconformal

indices. The Higgs branch Hilbert series (4.9) for Tρσ (SU(N)) has poles corresponding to

a particular limit of the fugacities. The residue at this pole is the Higgs branch Hilbert

series for Tρ
′

σ (SU(N)), where ρ′ is obtained from ρ by moving the last box in the partition

ρ to a previous column. For example, we can go from the trivial partition ρ = (1N ) to

ρ′ = (2, 1N−1) as follows:

Res
z→1

g[T
(1N )
σ (SU(N))](t;w1;B)

∣∣∣∣∣ w1,1=tzx1
w1,q=xq q=2,··· ,N−1

w1,N=(tz)−1x1

=

=
1

2
x−B1

1 PE

t2 + t
N−1∑
q=1

(x1x
−1
q + x−1

1 xq)

 g[T
(2,1N−1)
σ (SU(N))](t; w̃1, w̃2;B) ,

(4.25)

where w̃1 = (xN−1, · · · , x2), w̃2 = (x1) and the first line receives the contribution from

the residue

s1,N1 = tw1,N = x1z
−1 . (4.26)

We give a proof and a generalization of this formula to partitions ρ and ρ′ of SU(N) which

are related by moving a single box in appendix C. Any partition ρ can be obtained from the

trivial partition (1N ) by an iteration of the previous move. Therefore by repeated residue

computations we may extract the Higgs branch Hilbert series of any Tρσ (SU(N)) theory

from that of T
(1N )
σ (SU(N)).

We can do a completely analogous computation in the Coulomb branch. The mirror

of the previous observation is:

The Coulomb branch Hilbert series of Tσρ (SU(N)) can be obtained from that

of Tσ
(1N )

(SU(N)) by taking residues with respect to the topological fugacities.

As discussed in section 6 of [7], the monopole formula for Tσρ (SU(N)) has poles corre-

sponding to a particular limit of the fugacities. The residue at this pole gives the monopole

formula for Tσρ′(SU(N)), where ρ′ is obtained from ρ by moving the last box in the par-

tition ρ to a previous column. This was proven in [7] for the case σ = (1N ) but it can
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straightforwardly extended to the case of a general σ. For example, we can go from the

trivial partition ρ = (1N ) to ρ′ = (2, 1N−1) by computing

Res
z→1

Hmon[Tσ(1N )(SU(N))](t;x1 t z, x2, · · · , xN−1, x1t
−1z−1; ñ) =

=
1

2
PE

t2 + t
N−1∑
q=1

(
x1

xq
+
xq
x1

)Hmon[Tσ(2,1N−1)(SU(N))](t;x1, x2, · · · , xN−1; ñ)
(4.27)

By repeated residue computations we may extract the Coulomb branch Hilbert series of

any Tσρ (SU(N)) theory from that of Tσ
(1N )

(SU(N)).

By carefully mapping the fugacities under mirror symmetry, we see that the two pre-

vious observations are consistent with (3.11). Notice that in taking residues with respect

to the flavor symmetries we obtain a prefactor with powers of xi in the Higgs branch com-

putation but not in the Coulomb branch one. This is consistent with and explains the

prefactor (3.13) in (3.11).

The observations can be now used to conclude our proof of (4.2). The Higgs branch

Hilbert series of Tρσ (SU(N)) can be obtained from (4.15) by taking residues with respect

to the flavor fugacities. Notice that the poles in formula (4.15) come only from the factor

K(1N )(x, t). The partition ρ can be obtained from (1N ) by a set of moves like those

in (C.1). It is not difficult to see that this set of moves has the effect of replacing x with

aρ(t,x) given in (4.5). The multiplicative factors in (4.25) and (C.7) cancel some terms

in the denominator of K(1N )(x, t) and transform it into Kρ(x, t). They also introduce a

prefactor which coincides with (3.13). In this way we obtain the general expression for the

Higgs branch Hilbert series Tρσ (SU(N)). Removing the prefactor according to (3.11), we

obtain precisely the general expression for the Coulomb branch Hilbert series of the mirror

Tσρ (SU(N)) given in (4.2).

Geometrically, the structure of the factor Kρ(x, t) is related to the fact that, as an

algebraic variety, the Coulomb branch of Tσρ (SU(N)), equivalently the Higgs branch of

Tρσ (SU(N)), is the intersection of the nilpotent orbit of type σT with the Slodowy slice of

type ρ [3, 27],

OσT ∩ Sρ . (4.28)

The Slodowy slice is defined as follows. The partition ρ identifies a homomorphism ρ :

Lie(SU(2)) → Lie(SU(N)) by saying that the image of J+ = J1 + iJ2, where Ji are the

standard generators of SU(2), is a nilpotent matrix of Jordan type ρ. A theorem by

Jacobson and Morozov guarantees that the map between partitions and homomorphisms

is one-to-one [26]. The Lie algebra of SU(N) decomposes under the homomorphism ρ into a

set of irreducible Gρ×SU(2) representations [Rj ; 2j] as in (4.6). Let tj be the SU(2) lowest

weight in each representation [Rj ; 2j]. The Slodowy slice associated with the partition ρ

is the subspace of Lie(SU(N)) consisting of the elements of the form

ρ(J1 + iJ2) +
∑
j

cjtj . (4.29)

The various terms entering (4.7) schematically correspond to such description of the slice.
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Partition σ Quiver for Tσ(SU(4)) ∆σ Levi subgroup

(1, 1, 1, 1) (3, 4)− (2, 0)− (1, 0) ∅ S(U(1)4)

(2, 1, 1) (2, 2)− (2, 1)− (1, 0) {e1 − e2} S(U(2)×U(1)2)

(2, 2) (1, 0)− (2, 2)− (1, 0) {e1 − e2, e3 − e4} S(U(2)×U(2))

(3, 1) (1, 1)− (1, 0)− (1, 1) {e1 − e2, e1 − e3, e2 − e3} S(U(3)×U(1))

Table 1. Parameters for the partitions of SU(4), whose positive roots are ei−ej with 1 ≤ i < j ≤ 4.

The shorthand notation (k1, N1)− (k2, N2)− . . .− (k`, N`) denotes the quiver with the gauge group

U(k1)× · · · ×U(k`) with `− 1 bifundamental hypermultiplets and Ni fundamental flavors charged

under the gauge group U(ki) for all 1 ≤ i ≤ `.

5 Applications of the Hall-Littlewood formula for T σρ (SU(N))

In this section we demonstrate the previous results for unitary groups of small rank.

5.1 T σ(SU(4))

In the following we focus on cases in which the partition ρ is trivial, namely ρ = (1, 1, 1, 1).

Let us map the results obtained from the right-hand side of (4.2) to those obtained

from the monopole formula.

5.1.1 σ = (3, 1)

The brane configurations corresponding to T (3,1)(SU(4)) are

x1 x2

NS5

x3 x4n1

D5

n2

D3
x1 x2 x3 x4n1n2

(5.1)

The monopole formula for the Coulomb branch of T (3,1)(SU(4)) reads

Hmon[T (3,1)(SU(4))](t;x;n2, n1) = yn2
1 yn1

3

∞∑
m1=−∞

∞∑
m2=−∞

∞∑
m3=−∞

zm1
1 zm2

2 zm3
3 ×

× t|m1−m2|+|m2−m3|+|m1−n2|+|m3−n1|×
× PU(1)(t;m1)PU(1)(t;m2)PU(1)(t;m3) ,

(5.2)

where z1, z2, z3 and y1, y3 are fugacities for the topological charges, with

z1 = x2x
−1
1 , z2 = x3x

−1
2 , z3 = x4x

−1
3 , y1 = x1 , y3 = x1x2x3 . (5.3)

Let us emphasize that n1, n2 are the background fluxes for the third and the first U(1)

flavor symmetries in the quiver reading from left to right, respectively.

– 20 –



J
H
E
P
0
1
(
2
0
1
5
)
1
5
0

Due to the shift symmetry, the fugacities z and y satisfy

z1z2z3y1y3 = 1 (5.4)

and so

x1x2x3x4 = 1 . (5.5)

We find that

Hmon[T (3,1)(SU(4))](t;x;n2, n1)

=

{
H[T (3,1)(SU(4))](t;x1, . . . , x4;n1, n1, n1, n2) , n2 ≥ n1 − 3

H[T (3,1)(SU(4))](t;x−1
1 , . . . , x−1

4 ;n2, n2, n2, n1) , n1 ≥ n2 − 3 .
(5.6)

where H[T (3,1)(SU(4))] is given by (4.2) with relevant data given by table 1.

We know that Hmon and H coincide for fully ordered fluxes. We see that in certain

specific cases this constraint can be relaxed. In general, whenever there are two background

fluxes present in the theory, it is always possible to find an ordering of such fluxes in

the generalised Hall-Littlewood formula to match the result obtained from the monopole

formula. The reason is the symmetry of the monopole formula under permutation of the

fluxes belonging to the same flavor group and under change of sign of all the background

fluxes together with a reflection x → x−1 of the fugacities. We present another example

in the next subsection. Note that when there are three or more background fluxes, this is

not always possible; we comment on this below (5.33).

Let us compare this result to the baryonic generating function of the mirror

T(3,1)(SU(4)) : (1)− [4].

g[T(3,1)(SU(4))](t; (x4, . . . , x1);B) =

∮
|b|=1

1

2πibB+1
(1− t2) PE

[
tb

4∑
i=1

x−1
i + tb−1

4∑
i=1

xi

]
.

(5.7)

After the constraints (5.3) and (5.5) are imposed, we find that

g[T(3,1)(SU(4))](t; (x4, x3, x2, x1);n1 − n2)

= Hmon[T (3,1)(SU(4))](t;x1, x2, x3, x4;n1, n2) .
(5.8)

5.1.2 σ = (22)

The brane configurations corresponding to T (2,2)(SU(4)) are

x1 x2

NS5

x3 x4n1

D5

n2

D3
x1 x2 x3 x4

n1 n2
(5.9)
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The monopole formula for the Coulomb branch of T (2,2)(SU(4)) reads

Hmon[T (2,2)(SU(4))](t;x;n1, n2) = yn1+n2
2

∞∑
u1=−∞

∑
m1≥m2>−∞

∞∑
u3=−∞

zu11 zm1+m2
2 zu33

t
∑2
i=1(|u1−mi|+|u3−mi|)+

∑2
i=1

∑2
j=1 |mi−nj |−2|m1−m2|×

× PU(1)(t;u1)PU(2)(t;m)PU(1)(t;u3) . (5.10)

Due to the shift symmetry, the fugacities z and y satisfy

z1z
2
2z3y

2
2 = 1 . (5.11)

Setting

z1 = x2x
−1
1 , z2 = x3x

−1
2 , z3 = x4x

−1
3 , y2 = x1x2 , (5.12)

the above constraint translates to

x1x2x3x4 = 1 . (5.13)

We find that

Hmon[T (2,2)(SU(4))](t;x;n2, n1)

=

{
H[T (2,2)](SU(4))](t;x1, . . . , x4;n1, n1, n2, n2) , n1 − n2 ≥ −1

H[T (2,2)(SU(4))](t;x1, . . . , x4;n2, n2, n1, n1) , n2 − n1 ≥ −1
, (5.14)

where H[T (2,2)(SU(4))] is given by (4.2) with relevant data given by tables 1.

Let us compare this to the baryonic generating function of T(2,2)(SU(4)) : (2)− [4].

g[T(2,2)(SU(4))](t; (x4, . . . x1);B) =

∮
|b1|=1

db1

2πib1+B
1

∮
|b2|=1

db2

2πib1+B
2

(1− b1b−1
2 )(1− b2b−1

1 )

PE

[
t(b1 + b2)

4∑
i=1

x−1
i + t(b−1

1 + b−1
2 )

4∑
i=1

xi

− t2(b1 + b2)(b−1
1 + b−1

2 )

]
. (5.15)

Then after the constraints (5.11), (5.12) and (5.13) are imposed, we find that

g[T(2,2)(SU(4))](t; (x4, . . . , x1);n1 − n2)

= Hmon[T (2,2)(SU(4))](t;x1, . . . , x4;n2, n1) , x1x2x3x4 = 1 . (5.16)

5.1.3 σ = (2, 12)

The brane configurations corresponding to T (2,1,1)(SU(4)) are

x1 x2

NS5

x3 x4n1

D5

n2n3

D3
x1 x2 x3 x4

n1n2n3
(5.17)
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The monopole formula reads

Hmon[T (2,12)(SU(4))](t;x;n1, n2, n3)

= yn2+n3
1 yn1

2

∑
u1≥u2>−∞

∑
m1≥m2>−∞

∞∑
v=−∞

zu1+u2
1 zm1+m2

2 zv3×

× t
∑2
i=1

∑2
j=1 |ui−mj |+

∑2
j=1 |v−mj |+

∑2
i=1

∑3
k=2 |ui−nk|+

∑2
j=1 |mj−n1|×

× t−2|m1−m2|−2|u1−u2|PU(2)(t;u)PU(2)(t;m)PU(1)(t; v) ,

(5.18)

where z1, z2, z3 are topological fugacities for the U(2), U(2) and U(1) gauge groups from

left to right; y1, y2 are topological fugacities for the U(2) and U(1) flavor groups from left

to right; n1 is the background charge for the U(1) flavor symmetry and n2, n3 are those for

the U(2) flavor symmetry. The relations between z, y and x are

z1 = x2x
−1
1 , z2 = x3x

−1
2 , z3 = x4x

−1
3 , y1 = x1 , y2 = x1x2 . (5.19)

As before, these fugacities satisfy

z2
1z

2
2z3y

2
1y2 = 1 ⇔ x1x2x3x4 = 1 . (5.20)

The brane configuration of the mirror theory T(2,1,1)(SU(4)) : [4]− (2)− (1) is

x1 x2

D5

x3 x4n1

NS5

n2n3

D3
n1n2n3

(5.21)

Reading from right to left, the first gauge group is U(2) and the second gauge group is

U(1). The baryonic generating function reads

g[T(2,1,1)(SU(4))](t; (x4, . . . , x1);B1, B2)

=

∮
|b1|=1

db1
2πib1

∮
|b2|=2

db2
2πib2

∮
|b3|=2

db3
2πib3

(b1b2)−B1b−B2
3

PE
[
(b−1

1 + b−1
2 )(x1 + . . .+ x4)t+ (b1 + b2)(x−1

1 + . . .+ x−1
4 )t

+ (b1 + b2)b−1
3 t+ (b−1

1 + b−1
2 )b3t− t2 − t2(b1 + b2)(b−1

1 + b−2
2 )
]
,

(5.22)

where B1 is the baryonic charge associated with the U(2) group and B2 is that associated

with the U(1) group.

Formulae (5.18) and (5.22) can be matched as follows:

g[T(2,12)(SU(4))](t; (x4, . . . , x1);n1 − n2, n2 − n3)

= Hmon[T (2,12)(SU(4))](t;x;n1, n2, n3) , x1x2x3x4 = 1 .
(5.23)
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x1 x2

NS5

x3 x4n1

D5

n2n3

D3

Figure 4. Brane construction for T
(3,2,1)
(2,2,1,1)(SU(6)). The corresponding quiver diagram is depicted

in figure 5.

x1 x2 x3 x4

n3 n2 n1

U(1) U(1) U(1)

U(1) U(1) U(1)

Figure 5. Left: brane construction for T
(3,2,1)
(2,2,1,1)(SU(6)) after the D5-branes are moved into the

NS-brane intervals. Right: the linear quiver read off from the brane configuration. We adopt the

convention that the i-th gauge group corresponds to the D3-brane interval between xi and xi+1.

The monopole formula (5.18) can also be related to the generalised Hall-Littlewood

formula (4.2). When the monopole fluxes in the former are ordered, we find that

Hmon[T (2,12)(SU(4))](t;x1, . . . , x4;n3, n2, n1)

= H[T (2,12)(SU(4))](t;x1, . . . , x4;n1, n1, n2, n3) , n1 ≥ n2 ≥ n3 ,
(5.24)

where H[T (2,12)(SU(4))](t;x;n) is given by (4.2) with p(2,12)(n) = 2n1 − 2n3.

5.2 Examples of T σρ (SU(N))

Below we present some examples for Tσρ (SU(N)) theories.

5.2.1 T
(3,2,1)
(2,2,1,1)(SU(6))

The brane configuration and quiver diagram for T
(3,2,1)
(2,2,1,1)(SU(6)) are depicted in figures 4

and 5.

The monopole formula. The monopole formula for this theory reads

Hmon(t;x;n3, n2, n1) = yn3
1 yn2

2 yn1
3 (1− t2)−3×

×
∞∑

u1=−∞

∞∑
u2=−∞

∞∑
u3=−∞

zu11 zu22 zu33 t|u1−u2|+|u2−u3|+|u1−n3|+|u2−n2|+|u3−n1| ,
(5.25)
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x1 x2

D5

x3 x4n1

NS5

n2n3

D3

x1 x2 x3 x4

n1n2n3

U(1) U(1)

U(2) U(2)

Figure 6. Top: brane construction for T
(2,2,1,1)
(3,2,1) (SU(6)). This diagram is obtained by exchanging

D5-branes and NS5 branes in figure 4. Bottom left: the D5-branes are moved into the NS5-brane

intervals. Bottom right: the quiver diagram read off from the bottom left brane configuration. We

adopt the convention that the i-th gauge group corresponds to the D3-brane interval between ni
and ni+1.

where we set

z1 = x2x
−1
1 , z2 = x3x

−1
1 , z3 = x4x

−1
1 ,

y1 = x1, y2 = x1x2 , y3 = x1x2x3 ,
(5.26)

and by shift symmetry we impose the following conditions:

z1z2z3y1y2y3 = 1 ⇔ x2
1x

2
2x3x4 = 1 . (5.27)

The baryonic generating function. From figure 6, the baryonic generating function

of T
(2,2,1,1)
(3,2,1) (SU(6)) reads

g[T
(2,2,1,1)
(3,2,1) (SU(6))](t, (x4, x3), (x2, x1);B1, B2) =

∮
|b1|=1

db1

2πib1+B1
1

∮
|b2|=1

db2

2πib1+B2
2

×

× PE
[
b−1
1 (x3 + x4) + b1(x−1

3 + x−1
4 ) + b−1

2 (x1 + x2) + b2(x−1
1 + x−1

2 )

+ b1b
−1
2 + b2b

−1
1 − 2t2

]
. (5.28)

This can be equated to the monopole formula as follows:

xn2−n1
1 xn2−n1

2 g[T
(2,2,1,1)
(3,2,1) (SU(6))](t, (x4, x3), (x2, x1);n1 − n2, n2 − n3)

= Hmon(t;x;n3, n2, n1) , x2
1x

2
2x3x4 = 1 .

(5.29)
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According to (3.13), the prefactor xn2−n1
1 xn2−n1

2 in the first line is due to the dotted D3-

branes in the interval n2 − n1 in the following diagram:

x1 x2

D5

x3 x4n1

NS5

n2n3

D3

(5.30)

The dotted red line contributes xn2−n1
1 to the prefactor and the dotted blue line contributes

xn2−n1
2 .

The generalised Hall-Littlewood formula. From (4.2), the generalised Hall-

Littlewood formula for the Coulomb branch Hilbert series of T
(3,2,1)
(2,2,1,1)(SU(6)) reads

H[T
(3,2,1)
(2,2,1,1)(SU(6))](t;x1, . . . , x4;n1, n2, n3) (5.31)

= t3n1−n2−2n3(1− t2)5K(2,2,1,1)(x1, x2, x3; t)Q̂
(n3

1,n
2
2,n3)

(2,2,1,1) (tx1, t
−1x1, tx2, t

−1x2, x3, x4; t) ,

where

K(2,2,1,1)(x1, . . . , x4; t) = PE
[
t2(3 + x1x

−1
2 + x2x

−1
1 + x3x

−1
4 + x4x

−1
3 )

+ t4(2 + x1x
−1
2 + x2x

−1
1 ) + t3

∑
i=1,2

∑
j=3,4

(xix
−1
j + xjx

−1
i )
]
,

∆(3,2,1) = {e1 − e2, e1 − e3, e2 − e3, e4 − e5} .

(5.32)

The HL formula agrees with the monopole formula when the fluxes are ordered:

H[T
(3,2,1)
(2,2,1,1)(SU(6))](t;x1, . . . , x4;n1, n1, n1, n2, n2, n3)

= Hmon[T
(3,2,1)
(2,2,1,1)(SU(6))](t;x1, . . . , x4;n3, n2, n1) , n1 ≥ n2 ≥ n3 ∈ Z .

(5.33)

Note that for some values of fluxes (n1, n2, n3) that are not ordered, such as (n1, n2, n3) =

(0, 1, 0), the two formulae cannot be matched with each other. This is due to novanishing

contributions to the index (4.16) from higher cohomology groups.

5.2.2 T
(2,2)
(2,1,1)(SU(4)) : (1) − [2]

The quiver diagram for T
(2,2)
(2,1,1)(SU(4)) is the same as that of T (SU(2)) theory, namely

(1)− [2]. Although this example violates the condition σT < ρ, we demonstrate below that
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the monopole formula and the generalised Hall-Littlewood formula can still be applied.

x1 x2

NS5

x3n1

D5

n2

D3

x1 x2 x3

n1 n2 (5.34)

From (4.2) the Coulomb branch Hilbert series of T
(2,2)
(2,1,1)(SU(4)) reads

H[T
(2,2)
(2,1,1)(SU(4))](t;x1, x2, x3;n1, n2)

= t2n1−2n2(1− t2)3K(2,1,1)(x1, x2, x3; t)Q̂
(n2

1,n
2
2)

(2,2) (tx1, t
−1x1, x2, x3; t) ,

(5.35)

where

K(2,1,1)(x1, x2, x3; t) = PE

[
t4 + t3

(
x1

x2
+
x1

x3
+
x2

x1
+
x3

x1

)
+ t2

(
x2

x3
+
x3

x2
+ 2

)]
. (5.36)

The Coulomb branch Hilbert series can also be computed directly from the monopole

formula

Hmon[T
(2,2)
(2,1,1)(SU(4))](t; z1, z2; y2;n2, n1) = yn1+n2

2

∞∑
u=−∞

t
∑
i=1,2 |ni−u|zu2 (1− t2)−1 , (5.37)

where we take

y2 = x1x2 , z2 = x3x
−1
2 . (5.38)

By the shift symmetry,

y2
2z2 = 1 ⇒ x2

1x2x3 = 1 . (5.39)

Formulae (5.35) and (5.37) can be matched as follows:

H[T
(2,2)
(2,1,1)(SU(4))](t;x1, x2, x3;n1, n1, n2, n2)

= Hmon[T
(2,2)
(2,1,1)(SU(4))](t;x1, x2, x3;n2, n1) .

(5.40)

Let us compare this result to the baryonic generating function of T
(2,1,1)
(2,2) (SU(4)).

x1

D5

x2 x3n1

NS5

n2

D3

x3x2x1

n1n2

(5.41)
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g[T
(2,1,1)
(2,2) (SU(4))](t; (x3, x2);B)

=

∮
|b|=1

db

2πib
b−B PE

[
b−1(x2 + x3)t+ b(x−1

2 + x−1
3 )t− t2

]
. (5.42)

This can be equated to the monopole formula as follows:

Hmon[T
(2,2)
(2,1,1)(SU(4))](t;x1, x2, x3;n2, n1)

= xn2−n1
1 g[T

(2,1,1)
(2,2) (SU(4))](t; (x3, x2);n1 − n2) ,

(5.43)

where the prefactor xn2−n1
1 is due to the D3-brane indicated by the dotted red horizontal

line in the diagram below.
x1

D5

x2 x3n1

NS5

n2

D3

(5.44)

5.2.3 T
(2,1,1)
(2,1,1) (SU(4)) : [1] − (1) − (1) − [2]

The brane configurations are given by

x1 x2

NS5

x3n1

D5

n2n3

D3
x1 x2 x3

n1n2n3
(5.45)

From (4.2), the Hilbert series of the Coulomb branch of T
(2,1,1)
(2,1,1) (SU(4)) reads

H[T
(2,1,1)
(2,1,1) (SU(4))](t;x1, x2, x3;n1, n1, n2, n3)

= t2(n1−n3)(1− t2)3K(2,1,1)(t;x1, x2, x3)Q̂
(n1,n1,n2,n3)
(2,1,1) (tx1, t

−1x1, x2, x3; t) ,
(5.46)

where

K(2,1,1)(t;x1, x2, x3)

= PE
[
t2(2 + x2x

−1
3 + x3x

−1
2 ) + t3(x1x

−1
2 + x2x

−1
1 + x1x

−1
3 + x3x

−1
1 ) + t4

]
.

(5.47)

The monopole formula. The Coulomb branch Hilbert series of T
(2,1,1)
(2,1,1) (SU(4)) can be

computed directly for any values of the magnetic fluxes from the monopole formula

Hmon

[
T

(2,1,1)
(2,1,1) (SU(4))

]
(t;x;n3, n2, n1)

= yn2+n3
1 yn1

2

∞∑
u=−∞

∞∑
v=−∞

t|u−v|+|u−n1|+|v−n2|+|v−n3|zv1z
u
2 (1− t2)−2 ,

(5.48)
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where n1 is the background flux for the U(1) flavor symmetry and n2, n3 are those for the

U(2) flavor symmetry. The fugacities are subject to the constraint

z1y
2
1z2y2 = 1 . (5.49)

Setting

z1 = x2x
−1
1 , z2 = x3x

−1
2 , y1 = x1 , y2 = x1x2 , (5.50)

the constraint (5.49) becomes

x2
1x2x3 = 1 . (5.51)

When the background fluxes are ordered, we find as expected that

Hmon[T
(2,12)
(2,12)

(SU(4))](t;x1, x2, x3;n3, n2, n1)

= H[T
(2,1,1)
(2,1,1) (SU(4))](t;x1, x2, x3;n1, n1, n2, n3), n1 ≥ n2 ≥ n3 ∈ Z .

(5.52)

The baryonic generating function. The baryonic generating function of the mirror

T
(2,1,1)
(2,1,1) (SU(4)) is

g[T
(2,1,1)
(2,1,1) (SU(4))](t; (x3, x2), x1;B1, B2) =

∮
|b1|=1

db1

2πib1+B1
1

∮
|b2|=1

db2

2πib1+B2
2

× (5.53)

× PE
[ {
b2x
−1
1 + b−1

2 x1t+ b1b
−1
2 + b2b

−1
1 + b−1

1 (x2 + x3) + b1(x−1
2 + x−1

3 )
}
t− 2t2

]
.

This can be equated with the monopole formula as follows:

Hmon

[
T

(2,1,1)
(2,1,1) (SU(4))

]
(t;x1, x2, x3;n3, n2, n1)

= xn2−n1
1 g[T

(2,1,1)
(2,1,1) (SU(4))](t; (x3, x2), x1;n1 − n2, n2 − n3) , x2

1x2x3 = 1 .
(5.54)

The prefactor xn2−n1
1 is due to the D3-brane indicated by the dotted red horizontal line in

the diagram below.
n1n2

NS5

n3 x1

D5

x2 x3
D3

(5.55)

6 Orthogonal and symplectic groups

In this section we discuss the generalisation of our results to other classical groups SO(N)

and USp(2N). We consider the case of USp′(2N) in appendix E. Life is much harder in

other types. Complications with orthogonal and symplectic nilpotent orbits and issues with

discrete groups make it difficult to state general results. We present few examples for the

case of orthogonal and symplectic groups with low rank, mostly for the Coulomb branch of
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Tσ(G) and the Higgs branch of Tσ(G) at zero external fluxes, leaving the general analysis

for future work. We also provide a generalised Hall-Littlewood formula and discuss its

condition of validity. A regular and interesting pattern seems to emerge, which would be

interesting to study in more detail.

A non-exhaustive list of differences with the unitary case is the following.

• Many of the Tσρ (G) theories with orthogonal and symplectic groups are bad in the

language of [3], meaning that the dimension of some monopole operator computed

using the ultraviolet R-symmetry violates the unitary bound. The monopole formula

written in terms of the Lagrangian data is ill-defined and divergent. Complications

arise also in the Higgs branch where typically there is no complete Higgsing. Such

theories are supposed to flow to an interacting superconformal point in the IR but,

unfortunately, we have no general description of it.

• Recall that, for Tσρ (G), σ and ρ are partitions of G and G∨, respectively. Partitions of

G, as defined in section 2, are in one-to-one correspondence with the nilpotent orbits

of the group G and also with the homomorphisms Lie(SU(2)) → Lie(G) [26]. The

Coulomb branch of Tσρ (G), equivalently the Higgs branch of Tρσ (G∨), as an algebraic

variety, can be still written as an intersection of a nilpotent orbit with a Slodowy

slice, but this time of the group G∨ [3]

Oσ∨ ∩ Sρ . (6.1)

ρ is indeed a partition of G∨ and determines the Slodowy slice through the homo-

morphism ρ : Lie(SU(2)) → Lie(G∨). To determine the orbit itself we need a map

∨ : σ → σ∨ from partitions of G to partitions of G∨. Such a map is well known in

the mathematical literature [42, 43] and we discuss it below. It has also explicitly

appeared in the physical literature in the context of the (2, 0) theory compactified on

Riemann surfaces with punctures [44, 45].

• The quivers Tσρ (G) contains orthogonal gauge groups as nodes. The distinction

between an SO(N) and an O(N) gauge group is important. Theories with SO(N)

gauge groups have typically more BPS gauge invariant operators compared with the

same theory with gauge group O(N). We often have different interesting quivers

which we can write under the name of Tσρ (G) and that differ in the choice of O/SO

factors. Their Coulomb branch is typically a covering of (6.1). We discuss examples

in section (6.3).

• There is a Springer map T ∗(G/P ) → Oσ∨ , where the parabolic group P is related

to σ∨ by yet another nontrivial map that we discuss below. In other types, the

Springer map is not necessarily one-to-one. We can always write a generalisation

of the Hall-Littewood function (4.2) for generic classical group G, which computes

the Hilbert series of some covering of the moduli space (6.1).6 The Hall-Littlewood

6Further complications might arise for non-normal orbits, the first example of which is the orbit (3, 2, 2)

of SO(7); we discuss this case briefly in table 10.
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formula computes the Coulomb branch Hilbert series of the quiver Tσρ (G) for a

specific choice of SO/O factors.

All these features are discussed in the explicit examples which are discussed below. We

first discuss some general properties of partitions of a classical group G, we write a gen-

eralised Hall-Littlewood function and we present the results for USp(4) and SO(5). Other

groups of low rank are discussed in appendix D. We provide mirror pairs and we test mirror

symmetry by evaluating the monopole formula in the Coulomb branch of Tσ(G) theories

and the Molien-Weyl integral in the Higgs branch of Tσ(G). Whenever the SO/O factors in

the theory Tσρ (G) can be chosen in physically inequivalent ways, we put subscripts in order

to differentiate the theories: we adopt the convention that the subscript (I) refers to the the-

ory which has moduli space (6.1); other subscripts correspond to various coverings of (6.1).

6.1 Properties of partitions of a classical group G

As discussed above, for any partition σ of G we need to define two auxiliary objects. One

is a partition σ∨ of the dual group G∨. The Coulomb branch of Tσρ (G) is expressed as an

algebraic variety in terms of σ∨ as in (6.1). The other is the Levi type σL of the parabolic

group corresponding to σ∨, which is needed to write a resolution of the moduli space.

Recall that a partition σ of a classical group identifies the Jordan type of a nilpotent

element of Lie(G) up to conjugacy. The Jordan types of matrices in the Lie algebra of a

classical group are restricted as follows [26]. A partition of type A is just a non-increasing

sequence of integers. A partition of type B and D is a non-increasing sequence of integers

where all the even parts appear an even number of times. A partition of type C is a non-

increasing sequence of integers where all the odd parts appear an even number of times.

For each non-increasing sequence of integers σ we can define a B-, C- and D- collapse as

the maximal partition τ ≤ σ of type B, C and D, respectively.

We then define the map [42–45]

∨ : σ → σ∨ (6.2)

as follows

• For G = SU(N), σ∨ is just the transpose of σ

• For G = SO(2N + 1), σ∨ is obtained by transposing σ, subtracting 1 from the last

entry of the transpose partition and C-collapsing.

• For G = USp(2N), σ∨ is obtained by transposing σ, adding a new part equal to 1

to the transpose partition and B-collapsing.

• For G = SO(2N), σ∨ is obtained by transposing σ and D-collapsing.

∨ is an inclusion-reversing map between the orbits of G and G∨ which becomes one-to-one

when restricted to the so-called special orbits [42, 43].

Consider now the nilpotent orbit associated with σ∨. We are interested in maps

T ∗(G/P )→ Oσ∨ (6.3)
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where P is a parabolic subgroup of G with dimOσ∨ = 2 dimG/P . Such P is called a

polarization of σ∨.

For G = SU(N), polarizations exist and are unique. As we already discussed in

section 4.2.2, we have σ∨ = σT and, up to conjugation, the associated parabolic group P

is the group of upper triangular block matrices with blocks of size σi. The algebra of P

decomposes as

LieP = LieL(σ)⊕ n(P ) (6.4)

where n(P ) is the nil-radical of LieP and L(σ) is the Levi subgroup. Here LieL(σ) =∏
i U(σi) consists of block diagonal matrices of sizes σi. Notice that the original partition

σ determines the structure of blocks in P while the transpose partition σT determines the

Jordan type of the nilpotent orbit.

The conditions for the existence of a polarization of σ∨ for other classical groups have

been discussed in [46–48]. The structure of parabolic groups is more complicated than

for SU(N), see for example section 2 of [48]. The Levi subgroup L(σ) is now of the form

L(σ) = g ×
∏n
i=1 U(li)

2 where g is a classical group of the same type (B,C or D) as G

and each factor U(li) appears an even number of times. We denote with σL the set of

numbers (l1, l1, · · · , ln, ln, p), where p is the dimension of the block corresponding to g.

Notice that σL is not strictly a partition of G. There is yet another map from the Levi

type of a parabolic group G to a partition of G [46]

S : σL → {partitions of G } (6.5)

defined as follows. Let π be the set obtained by ordering the parts of σL in non-increasing

order. Define the set of indices

I(π) = {j ∈ N| j 6= n (mod 2), πj even for SO and odd for USp, πj ≥ πj+1 + 2} (6.6)

where n is the dimension of the matrix giving the classical representation of the group

G. The map S is defined by a series of moves. For all the indices j belonging to I(π) we

simultaneosly decrease by one unit the parts πj and increase by one unit the corresponding

part πj−1. S(σL) is then a partition of G (see for example, Theorem 2.7 in [48]). Moreover,

σL is the Levi type of a polarization of σ∨ if and only if S(σL) = σ∨. All the polarizations

of classical groups of small rank are explicitly tabulated in [46], including all the cases

considered in this paper.

In contrast with G = SU(N), polarizations are not unique for other classical groups.

Moreover the map (6.3) is not necessarily one-to-one and, therefore, it is not necessarily a

resolution. The degree of the map (6.3) can be explicitly computed from (6.6): it is 2|I(π)|

except for the special case of σL of SO groups with no special part p and all other parts

odd where it is given by 2|I(π)|−1 (see Theorem 8 in [48]). When the degree is one the

map (6.3) is a Springer resolution of Oσ∨ .

6.2 The generalised Hall-Littlewood formula for a classical group G

The generalised Hall-Littlewood formula for a classical group is expressed in terms of

geometric data of the dual group. It is then convenient to write the generalised Hall-

Littlewood formula for the dual group G∨.
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The Coulomb branch Hilbert series for Tσρ (G∨) is

H[Tσρ (G∨)](t;x;n) = tpσ(n)(1− t2)r(G)Kρ(x; t)Q̂nσ(aρ(t,x); t) (6.7)

where the notations are defined as follows.

1. σ is a partition of G∨ and ρ is a partition of G.

2. Here Q̂nσ is the modified dual Hall-Littlewood polynomial associated to a Lie group

G, given by

Q̂nσ(x1, . . . , xr; t)

=
1

|WL(σ)|
∑
w∈WG

xw(n)
∏
α∈∆σ

(1− x−w(α))(1− t2xw(α))
∏

γ∈∆+(G)

1− t2x−w(γ)

1− x−w(γ)
,

(6.8)

where

• ∆+(G) the set of positive roots of G.

• L(σ) denote the Levi subgroup associated with the partition σ∨. L(σ) can

be computed as described above and is explicitly tabulated in [46] for all cases

considered in this paper.

• ∆σ is the set of positive roots in the diagonal blocks associated with L(σ).

• WG denotes the Weyl group of G.

• WL(σ) denotes the Weyl group of the Levi subgroup L(σ).

• n =
∑r

i=1 niei, with {e1, . . . , er} the standard basis of the weight lattice and

r the rank of G. The Hall-Littlewood formula applies when n is a dominant

weight of G invariant under the action of WL(σ).

3. The power pσ(n) is a linear function of n that generalizes the expression (4.4).

Examples are given in table 10.

4. The argument aρ(t,x), which we shall henceforth abbreviate as a, is determined by

the following decomposition of the fundamental representation of G to Gρ×ρ(SU(2)):

χGfund(aρ) =
∑
k

χ
Gρk
fund(xk)χ

SU(2)
[ρk−1](t) , (6.9)

where Gρk denotes a subgroup of Gρ corresponding to the part k of the partition

ρ. Formula (4.5) determines a as a function of t and {xk} as required. Of course,

there are many possible choices for a; choices that are related to each other by outer

automorphisms of G are equivalent.

5. The prefactor Kρ(x; t) is independent of n and can be determined as follows. The

embedding specified by ρ induces the decomposition

χGAdj(a) =
∑

j∈ 1
2
Z≥0

χ
Gρ

Rj
(xj)χ

SU(2)
[2j] (t) , (6.10)
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B2-part. σ Quiver of Tσ(SO(5)) Tσ(USp(4)) C2-part. σ Quiver of Tσ(USp(4)) Tσ(SO(5))

(15) •
O(1)
− •

2∗
− •
O(3)
−

�5
|
•
4∗

•
2
− •

2
−

�4
|
•
4

(14) •
2
− •

2
−

�4
|
•
4

•
O(1)
− •

2∗
− •
O(3)
−

�5
|
•
4∗

(22, 1) •
O(1)
− •

2∗
−

�2
|
•

O(3)
−

�1
|
•
2∗

•
4∗
−�

4
(2, 12) •

2
−

�1
|
•
2
−

�2
|
•
3

•
3∗
−

�5
|
•
2

(3, 12) •
O(1)
−

�1
|
•
2∗
− •

2
−

�2
|
•
2∗

(II) •
2
−�

4
(II) (22) •

2
−

�2
|
•
2
− •

2
(II)

•
1
−

�5
|
•
2

(II)

equiv. to

�6
|
•
2

Table 2. Quiver diagrams for Tσ(SO(5)) and their mirror theories. The asterisk ∗ indicates the

gauge group that renders the quiver a ‘bad’ theory. Each black node labeled by M denotes a

USp(M) group, each gray node labeled by N denotes an SO(N) group and for an orthogonal group

O(N) is spelt out explicitly. Whenever a gauge group O(N) is indicated by ∗, such a gauge group

can be taken as O(N) or SO(N) without changing the Higgs branch; see appendix B.3. Subscripts

near the quiver allow to distinguish theories with different choices of SO/O factors.

where a on the left hand side is the same a as in (4.5). Each product in the previous

formula gives rise to a term in the plethystic exponential

Kρ(x; t) = PE

t2 ∑
j∈ 1

2
Z≥0

t2jχ
Gρ

Rj
(xj)

 . (6.11)

6.3 T σ(SO(5)) and T σ(USp(4))

We now consider the case of the theories Tσ1(SO(5)) and Tσ2(USp(4)) where many of

the differences with the unitary case are manifest. Here σ1 is a B2-partition and σ2 is

a C2-partition. The possible partitions and the mirror pairs are summarized in table 2.

Important data associated with each partition and the Hilbert series for the Coulomb

branch of the Tσ(G) theory are given in table 3.

We make some general observations about these tables.

• We expect that the Tσρ (G) theories for isomorphic groups should be equivalent with

an appropriate mapping between the partitions, even if the quivers are different.

We verify this explicitly at the level of Hilbert series for SO(5) ∼ USp(4). In the

tables we report in parallel the results for SO(5) and USp(4) and the correspondence

between partitions.

• In table 2 we have taken some of orthogonal groups to be SO. The distinction

between an SO(N) and an O(N) gauge group is important. Theories with SO(N)

gauge groups have typically more BPS gauge invariant operators compared with

the same theory with gauge group O(N). In the Higgs branch, an SO(N) gauge

symmetry allows for baryonic operators and extra mesonic operators which are odd

under parity. In the Coulomb branch, the magnetic lattice of SO(N) is different from

that of O(N). As a general rule, we have only considered quivers without baryonic
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operators. Even with this restriction, we have often different interesting quivers

which we can write under the name of Tσρ (G) and differ in the choice of O/SO

factors. We use the notation Tσρ (G)(I) and Tσρ (G)(II) to differentiate these theories.

In our conventions, Tσρ (G)(I) is a quiver with Coulomb branch moduli space equal

to (6.1). The Coulomb branch of Tσρ (G)(II) is instead a double cover of (6.1).

• In table 3 we present the Hilbert series for the Coulomb branch of the Tσ(G) theory

based on the Hall-Littlewood formula (6.7). The last two rows in table 3 contain the

two non-trivial partitions σ of SO(5) or USp(4). We see that they both correspond

to the same σ∨. The Hilbert series in the last two rows in table 3 correspond to

two different polarizations of σ∨, one of degree one and one of degree two. We have

chosen the O/SO factors in the quivers table 2 in order to match the two different

Hilbert series. This involves choosing the theory Tσ(G)(II) in some cases.

• We have explicitly computed the Hilbert series for the Higgs branch (using the

Molien-Weyl integral) and the Coulomb branch (using the monopole formula) of all

the quivers given in the tables whenever they are well defined. The result obviously

coincides with that given in table 3 based on the Hall-Littlewood formula. The

monopole formula fails when the quiver is bad. In particular, we can only compute

the monopole formula the Coulomb branch Hilbert series of Tσ(USp(4)), since in

general the Tσ(SO(5)) theories are bad. Recall that, in general, a linear quiver

theory is ‘bad’ if it contains one of the following items:

– SU(Nc) gauge group with Nf < 2Nc − 1;

– SO(Nc) gauge group with Nf < Nc − 1;

– USp(2Nc) gauge group with Nf < 2Nc + 1.

In the case of a bad quiver, there is no complete Higgsing along the Higgs branch and

the F-flat moduli space is not a complete intersection. As a result the Hilbert series

needs to be computed using other techniques, for example using Macaulay2 [21].7

To fully appreciate the differences between the quivers and the subtlelties about O/SO

factors we need a longer discussion which is given in the next subsections.

7For example, for T(2,1,1)(SO(5)) : [SO(5)]−(USp(2))−(SO(3)), the gauge group SO(3) is not completely

broken on the hypermultiplet moduli space; rather, at a generic point, SO(3) is broken to SO(2). Indeed,

Macaulay2 reveals that Higgs branch HS of [USp(2)]-(SO(3)) = Higgs branch HS of [USp(2)]-(O(1)) = HS

of C2/Z2. Hence, upon gluing these quivers with [SO(5)] − [USp(2)] via the USp(2) group, we reach the

conclusion that Higgs branch HS of T(2,1,1)(SO(5)) : [SO(5)] − (USp(2)) − (SO(3)) = Higgs branch HS of

[SO(5)]− (USp(2))− (O(1)), with the unrefined Hilbert series presented in table 3.
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6.3.1 Relations between quivers with O and SO gauge groups: the Higgs

branch of Tσ(G)

The Higgs branch of the theories Tσ(SO(N)) when all orthogonal gauge groups are of

O type (and not SO) was explicitly shown to be the nilpotent orbit Oσ∨ in [49]. The

argument can be generalized to Tσ(USp(N)) [44]. One can see with methods similar to

those in appendix B.3 that the presence of SO groups in table 2, table 5 and table 4 does

not introduce extra baryonic operators in the chiral ring and in most of the cases does not

affect the Higgs branch.

For some particular theories, ungauging the parity in a group O might introduce ex-

tra mesonic operators. Consider for example the theory T(3,1,1)(USp(4)). We have two

choices for the corresponding quiver, [USp(4)]−O(2), which we call T(3,1,1)(USp(4))(I) and

[USp(4)]−SO(2), which we call T(3,1,1)(USp(4))(II). As discussed in details in appendix B.3,

the Higgs branch of [USp(4)]−O(2) is the nilpotent orbit (2, 2) of USp(4). The Higgs branch

of [USp(4)] − SO(2) is obviously a two-fold covering of the nilpotent orbit (2, 2). This is

an example of the theories that we call Tσ(G)(I) and Tσ(G)(II), with Tσ(G)(I) giving the

hyperKähler quotient description of a nilpotent orbit and Tσ(G)(II) a covering of it.

Let us also notice that hyperKähler quotient constructions for all the nilpotent orbits

of all classical groups have been given in the mathematical literature a long time ago [38].

The corresponding hyperKähler quotient is sometimes different from ours, allowing for

USp groups with odd number of half-hypermultiplets. The quiver corresponding to the

Tσ(G) theories have always an even number of half-hypermultiplets for any USp gauge

group in order to cancel parity anomalies and provide a somehow non-minimal (in terms of

groups in the quiver) hyperKähler quotient construction of the nilpotent orbits of G. One

can use the result in appendix B.3 to show that the various different formulations for the

hyperKähler quotient construction of the same nilpotent orbit are equivalent.

6.3.2 Relations between quivers with O and SO gauge groups: the Coulomb

branch of T σ(USp(4))

In this section we focus for simplicity on the theories Tσ(USp(4)). A parallel analysis can

be done for Tσ(SO(5)).

Part of the story about the theories that we have called Tσ(G)(I) and Tσ(G)(II) is

related to the fact the map ∨ is not injective. The C2-partitions σ = (2, 1, 1) and σ =

(2, 2) correspond both to the orbit σ∨ = (3, 1, 1). We should expect that the theories

T (2,1,1)(USp(4)) and T (2,2)(USp(4)) describe the same physics although they have different

quivers. We now discuss in what sense this is true. To understand the following discussion,

it is important to notice that σ∨ has two different polarizations, of Levi type σL = (12, 3)

and (22, 1) corresponding to maps (6.3) of degree one and two respectively.

• The quivers for T (2,1,1)(USp(4)) and for its mirror T(2,1,1)(SO(5)) are given in the

second row of table 2. The Coulomb branch of T (2,1,1)(USp(4)) is the nilpotent orbit

O(3,1,1) of SO(5) and its Hilbert series is given by the Hall-Littlewood formula (6.7)

for the choice of parabolic group associated to σL = (12, 3) which gives rise to a

smooth resolution T ∗(G/P ) of the orbit Oσ∨ .
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T (2,1,1)(USp(4)) T (2,2)(USp(4))(I) T(2,1,1)(SO(5)) T(2,2)(SO(5))(I)

•
2
−
�1
|
•
2
−
�2
|
•
3

•
2
−
�2
|
•
2
− •
O(2)

(I) •
3∗
−

�5
|
•
2

•
O(1)
−
�5
|
•
2

(I)

Table 4. Tσ(USp(4))/Tσ(SO(5)) theories with the same Coulomb/Higgs branches for vanishing

background charges.

• The quivers for T (2,2)(USp(4))(II) and its mirror T(2,2)(SO(5))(II) are given in the third

row of table 2. The Coulomb branch of T (2,2)(USp(4))(II) is a double cover of the

nilpotent orbit O(3,1,1) of SO(5) and its Hilbert series is given by the Hall-Littlewood

formula (6.7) for the choice of parabolic group P corresponding to σL = (22, 1). If we

further gauge a Z2 parity in both the quiver for T (2,2)(USp(4))(II) and T(2,2)(SO(5))(II)

we obtain the pair of mirror quivers T (2,2)(USp(4))(I) and T(2,2)(SO(5))(I) given in ta-

ble 4. The effect of the gauging on the moduli space is a Z2 quotient which now makes

it equivalent to the moduli space of T (2,1,1)(USp(4)) and T(2,1,1)(SO(5)) respectively.

Let us check explicitly that the Coulomb branch of T (2,2)(USp(4))(II) is a double cover

of the Coulomb branch of T (2,1,1)(USp(4)) at the level of Hilbert series with vanishing

background fluxes. This can be seen by gauging the parity in an SO(2) factor in the quiver

T (2,2)(USp(4))(II). The result is the quiver T (2,2)(USp(4))(I) given in table 4, which is

different from the quiver of T (2,1,1)(USp(4)) but it is has the same Coulomb branch. The

two quivers indeed differ by replacing SO(3) gauge group with O(2) together with shifts in

flavor symmetries. We argue now that this move does not change the monopole formula.

The reason is the following. As we discuss in appendix A the weight lattice and the

classical P factors for O(2) are the same as those for SO(3). Moreover, the dimension of

the monopole operator, as a function of the dynamical magnetic charges (but for vanishing

background magnetic charges), does not change because the shift in flavors compensates

the contribution of the vector multiplet that has been changed. In this way, the monopole

formula for the two theories is the same.

To illustrate this, we give the formulae for the dimension of the monopole operators in

the two quivers below:

∆

•
2
−
�1
|
•
2
−

�2
|
•
3

 = |u− a|+ |u+ a|+ 1

2

1∑
s=0

1∑
β=−1

|(−1)sa− βb|+ 1

2
(|a|+ | − a|)

+
1

2

1∑
s=0

1∑
β=−1

|βb− (−1)sn| − 2|2a|−2|b| ,

(6.12)

where u, a, b are topological charges for SO(2), USp(2) and SO(3) gauge groups, and n is

the background monopole flux for the global symmetry USp(2).

∆

•
2
−

�2
|
•
2
− •
O(2)

 = |u−a|+ |u+a|+ |a− b|+ |−a− b|+ |a−n|+ |−a−n|−2|2a| , (6.13)
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|
•
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−
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•
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•
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−
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•
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O(2)
−
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|
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(I) •
4∗
−�

4
•

O(2)
−�
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Table 5. Tσ(SO(5))/Tσ(USp(4)) theories with the same Coulomb/Higgs branches for vanishing

background charges. The Hilbert series for the Higgs branch of the quiver [USp(4)] − O(2) was

given in (D.10) of [7] and coincides with the second row of table 3. The equality between the Higgs

branches of the theories Tρ(USp(4)) is proved in appendix B.3.

where u, a, b are topological charges for SO(2), USp(2) and O(2) gauge groups, and n is the

background monopole flux for the global symmetry SO(2). Observe that when n = 0, the

two blue terms in (6.12) cancel with each other and the equality between (6.12) and (6.13)

can be established. It would be interesting to understand better the role of background

fluxes in these theories.

The mirror statement is that the Higgs branch of T(2,2)(SO(5))(II) is a Z2 covering

of the Higgs branch of T(2,1,1)(SO(5)). This again can be seen by gauging the parity in

T(2,2)(SO(5))(II). The result is the quiver T(2,2)(SO(5))(I) given in table 4. The fact that

the Higgs branch of T(2,2)(SO(5))(I) coincides with the Higgs branch of T(2,1,1)(SO(5)) is

proven in appendix B.3.

A similar analysis applies to SO(5) and the relevant quivers are given in table 5. In all

other examples considered in appendix D, whenever two partitions σ1 and σ2 correspond

to the same σ∨, we have two different quivers. One has moduli space (6.1). The other

comes in two versions, related by ungauging the parity in one of the O(N) gauge groups,

with moduli space (6.1) or a covering of it, respectively. It is interesting to notice that,

in the mathematical literature, the map ∨ comes equipped with a local system, typically a

set of discrete symmetries, which is non-trivial precisely when ∨ is not injective [50, 51].

It would be interesting to see if there is a relation with our results.
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Monopole fluxes Residual gauge symmetry P -factor

(0, 0) SO(4) 1
(1−t4)2

(1,±1) U(2) 1
(1−t2)(1−t4)

(1, 0) U(1)× SO(2) 1
(1−t2)2

(2, 1) U(1)2 1
(1−t2)2

Table 6. Data for SO(4) group.
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A Monopole formula for orthogonal and special orthogonal gauge groups

We state the following general observation

The P -factor and the GNO lattice of magnetic charges (in the sum-

mation of the monopole formula) of an O(2k) group are the equal to

those of SO(2k + 1) group.8

We demonstrate this with an example. Let us compare the following data for SO(4), O(4)

and SO(5) groups.

• For SO(4) group, the magnetic fluxes is (m1,m2) with m1 ≥ |m2| ≥ 0 and

−∞ < m2 < ∞. The residual gauge symmetries in the presence of various mag-

netic charges are presented in table 6. For SO(4) group, there are two independent

Casimir invariants, namely δjkδilφijφkl and εijklφijφkl, with i, j, k, l = 1, . . . , 4.

• Let us now go from SO(4) to O(4). The parity symmetry Z2 identifies the monopole

fluxes (n,m) and (n,−m). Therefore, the monopole fluxes associated with O(4)

becomes (m1,m2) with m1 ≥ m2 ≥ 0. We emphase that m2 ≥ 0 instead of −∞ <

m2 <∞. For O(4), the invariants involving epsilon tensors are projected out by the

parity and the Casimir invariant at order 4 becomes another independent one; hence

we have

PO(4)(t; 0, 0) =
1

(1− t4)(1− t8)
. (A.1)

For U(1) × O(2), the P -factor receives two contribution: one from U(1), namely

1/(1− t2), and the other from O(2), namely 1/(1− t4). Thus,

PO(4)(t;m, 0) =
1

(1− t2)(1− t4)
, m > 0 . (A.2)

8On the other hand, the weights and the roots of O(2k) gauge group appearing in the dimension formula

are the same as those of SO(2k) gauge group.
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Monopole fluxes Residual gauge symmetry P -factor

(0, 0) O(4) 1
(1−t4)(1−t8)

(1, 1) U(2) 1
(1−t2)(1−t4)

(1, 0) U(1)×O(2) 1
(1−t2)(1−t4)

(2, 1) U(1)2 1
(1−t2)2

Table 7. Data for O(4) group.

Monopole fluxes Residual gauge symmetry P -factor

(0, 0) SO(5) 1
(1−t4)(1−t8)

(1, 1) U(2) 1
(1−t2)(1−t4)

(1, 0) U(1)× SO(3) 1
(1−t2)(1−t4)

(2, 1) U(1)2 1
(1−t2)2

Table 8. Data for O(5) group.

• Let us now compare O(4) with SO(5). The monopole fluxes for SO(5) gauge group

take the form (m1,m2) with m1 ≥ m2 ≥ 0. The relevant data for SO(5) are

tabulated in table 8.

This example generalizes to all orthogonal groups.

B Different theories with the same Higgs branch

In this section we analyze the Higgs branch of various N = 4 theories with single gauge

group in three dimensions, focussing on pairs of theories that have the same Higgs branch.

The results for orthogonal groups are useful to understand the Higgs branch of the Tσ(G)

theories, the choice of SO/O factors and the equivalence of Higgs branches of different

theories.

B.1 Unitary gauge groups

We analyze a U(Nc) theory with Nf flavors in terms of nilpotent orbits. The F -terms

relevant to the Higgs branch of this theory are

Q̃biQ
i
a = 0 , (B.1)

where a, b = 1, · · · , Nc are U(Nc) gauge indices and i, j = 1, · · · , Nf are U(Nf ) flavor

indices. The Higgs branch of this theory is generated by the mesons

M i
j = QiaQ̃

a
j (B.2)

satisfying the relations [52]

M i
i = 0 , rank M ≤ min

{
Nc,

[
Nf

2

]}
, M2 = 0 . (B.3)
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These conditions imply that the Higgs branch of this theory corresponds to a nilpotent orbit

of SU(Nf ). The orbit is specified by the Jordan type of M , which is determined by the

previous equations. For a matrix M with Jordan blocks of sizes (n1, n2, . . . , nb) with n1 ≥
n2 ≥ · · · ≥ nb, the rank of Mp is

∑
p:np≥p(np− p). Since M2 = 0 the ni can only be 1 or 2.

We now analyse the following two theories:

• U(Nc) gauge theory with Nf = 2Nc − k flavors. The meson M in this theory

satisfies M2 = 0 and rank M ≤ Nc. If k is odd, then the maximal dimensional

Higgs branch corresponds to the orbit (2Nc−(k+1)/2, 1), in which case M has rank

Nc − (k + 1)/2. On the other hand, if k is even, the orbit is (2Nc−k/2) and M has

rank Nc − k/2.

• U(Nc − k) gauge theory with 2Nc − k flavors. The meson M ′ in this theory

satisfies M ′2 = 0 and rank M ′ ≤ Nc − k. Hence the maximal dimensional Higgs

branch corresponds to the orbit (2Nc−k, 1k), in which the meson M ′ has rank Nc− k.

(2Nc−k, 1k) is a suborbit of (2Nc−(k+1)/2, 1) when k is odd and of (2Nc−k/2) when k is even,9

hence the Higgs branch of the latter theory is a subvariety of that of the former theory.

Note that the two varieties coincide for k = 1 (i.e. when the U(Nc) gauge theory is ugly).

In the general case they are different but the two varieties coincide when FI terms are

turned on. Indeed, part of the moduli space of the first theory is lifted by the presence of

FI terms and it reduces to the suborbit (2Nc−k, 1k).10 In fact, this is a special case of the

general isomorphism between the Higgs branches of U(Nc) gauge theory with Nf flavors

and U(Nf −Nc) gauge theory with Nf flavors at non-vanishing FI parameter [53], which

follows from the Grassmannian duality Gr(Nc, Nf ) ∼= Gr(Nf −Nc, Nf ).

Let us mention certain features of the Higgs branch corresponding to the orbit

(2Nc−k/2), where k is even. As discussed above, the rank of the meson is r = Nc − k/2.

According to (2.14) of [52], this corresponds to a submanifold with enhanced gauge group

U(k/2).

B.2 Symplectic gauge groups

We now consider the Higgs branches of USp(2Nc) and USp(2Nc − 2k) gauge theories with

2Nc + 1− k flavors.

• The Higgs branch of USp(2Nc) gauge theory with SO(4Nc + 2− 2k) flavor symmetry

has a meson M as the generator. It is a matrix of size (4Nc + 2 − 2k) × (4Nc +

2 − 2k) satisfying M2 = 0. The maximal rank of M can be 2Nc + 1 − k. Keeping

the constraints on D-partitions into account, we conclude that the Higgs branch

corresponds to the orbit (22Nc+1−k) for odd k and (22Nc−k, 12) for even k.

• The Higgs branch of USp(2Nc − 2k) gauge theory with SO(4Nc + 2 − 2k) flavor

symmetry has the meson of the maximal rank 2Nc − 2k. Hence, this branch of the

moduli space corresponds to the orbit (22Nc−2k, 12k+2).

9An orbit of Jordan type ρ is a subvariety of an orbit of Jordan type ρ′ if ρ < ρ′ [26].
10This can be understood from the general analysis of how mesonic and baryonic branches intersect [52],

or by comparing baryonic Hilbert series.
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These orbits correspond to the dual partitions ρ∨ which can be obtained by transposing

and D-collapsing of the following partitions ρ:

ρ = (2Nc + 1− k, 2Nc + 1− k) −→ ρ∨ =

{
(22Nc+1−k) , k odd

(22Nc−k, 12) k even

ρ = (2Nc + 1, 2Nc − 2k + 1) −→ ρ∨ = (22Nc−2k, 12k+2) .

(B.4)

Using the rule given in section 2, we conclude that

• The Higgs branch of USp(2Nc) gauge theory with SO(4Nc + 2− 2k) flavor symmetry

is equal to that of T(2Nc+1−k,2Nc+1−k)[SO(4Nc+2−2k)], even though the quiver of the

latter is not the same as that of the former, having gauge group USp(2(Nc − [k/2])).

• The theory USp(2Nc − 2k) with SO(4Nc + 2 − 2k) flavor symmetry is identical to

T(2Nc+1,2Nc−2k+1)(SO(4Nc + 2− 2k)).

Since the orbit (22Nc−2k, 12k+2) is a suborbit of (22Nc+1−k) and of (22Nc−k, 12), we reach

the conclusion that the Higgs branch of the USp(2Nc− 2k) gauge theory is a subvariety of

the USp(2Nc) gauge theory.

B.3 Orthogonal gauge groups

Now we turn to O(Nc) and O(2Nf −Nc + 2) gauge theories with Nf = Nc − k flavors.

• The Higgs branch of O(Nc) gauge theory with USp(2Nc − 2k) flavor symmetry has

a meson M as the generator. It is a matrix of size (2Nc− 2k)× (2Nc− 2k) satisfying

M2 = 0. The maximal rank of M can be Nc−k. Hence the Higgs branch corresponds

to the orbit (2Nc−k).

• The Higgs branch of O(2Nf − Nc + 2) gauge theory with USp(2Nc − 2k) flavor

symmetry has the meson of the maximal rank 2Nf −Nc + 2. Hence, this branch of

the moduli space corresponds to the orbit (2Nc−2k+2, 12k−4).

In some cases, these orbits correspond to the dual partitions ρ∨ which can be obtained by

transposing and C-collapsing of the following partitions ρ:

ρ = (Nc − k,Nc − k, 1) −→ ρ∨ = (2Nc−k)

ρ = (Nc − 1, Nc − 2k + 1, 1) −→ ρ∨ = (2Nc−2k+2, 12k−4), Nc even.
(B.5)

Using the rule given in section 2, we conclude that

• The Higgs branch of O(Nc) gauge theory with USp(2Nc − 2k) flavor symmetry is

equal to that of T(Nc−k,Nc−k,1)[USp(2Nc − 2k)], even though the quiver of the latter

is not the same as that of the former.

• The theory O(2Nf −Nc + 2) with USp(2Nc − 2k) flavor symmetry with of Nc even

is identical to T(Nc−1,Nc−2k+1,1)(USp(2Nc − 2k)).

Since (2Nc−2k+2, 12k−4) is a suborbit of (2Nc−k), the Higgs branch of the O(2Nf −Nc + 2)

gauge theory is a subvariety of the O(Nc) gauge theory. When k = 2 they are the same.
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O(N) vs SO(N) gauge group

For SO(N) gauge theory with Nf flavor, as discussed below (2.7) of [54], the baryon can

acquire a non-zero vacuum expectation value on the branch on which the meson has rank

r only if r = N ≤ Nf . If this condition does not hold, the gauge group SO(N) can be

taken as SO(N) or O(N) with no distinction on the Higgs branch.

As a consequence, for the orbit (2Nc−k) with k ≥ 1, the corresponding gauge theory

can be taken as either O(Nc) or SO(Nc) gauge group with Nc − k flavors; they both have

the same Higgs branch.

Example: SO(4) and O(2) gauge theories with 2 flavors. O(4) with two flavors

and O(2) with two flavors are a pair of theories as discussed above with Nc = 4 and k = 2.

Therefore they have the same hypermultiplet moduli space. Moreover, Since k ≥ 1, SO(4)

with two flavors is the same as O(4) with two flavors by the previous remark.

Example: SO(3) and O(3) gauge theories with 1 flavor. Using Macaulay2, we

find that the Hilbert series of the F -flat moduli space is

H[F [](t; z;x) =
[
1− t2χSO(3)

[2] (z) + t3χ
USp(2)
[1] (x)

]
PE
[
tχ

SO(3)
[2] (z)χ

USp(2)
[1] (x)

]
. (B.6)

Observe that the F -flat space is a 4 complex dimensional non-complete-intersection space.

Integrating over the SO(3) gauge group, we obtain the Hilbert series of C2/Z2.

H[SO(3) w/ 1 flv](t;x) =

∫
dµSO(3)(z)H[F [](t; z;x) =

∞∑
p=0

χ
USp(2)
[2m] t2m . (B.7)

The generator of this space contains only the meson, which does not involve a contraction

with the epsilon tensor (i.e. no baryon). This moduli space may as well be viewed as the

Higgs branch of O(3) gauge theory with one flavor, since the parity symmetry does not

project out any gauge invariant quantity from the SO(3) counterpart.

It is worth pointing out that the gauge symmetry is not completely broken at a generic

point on the hypermultiplet moduli space; rather SO(3) or O(3) gauge symmetry is broken

to SO(2) so that the space is 3− (3− 1) = 1 quaternionic dimensional.

As argued above, the O(1) gauge theory with 1 flavor has the same Higgs branch. The

Higgs branch of O(1) with 1 flavor is the reduced moduli space of 1 USp(2) instanton on

C2; this space is C2/Z2, in agreement with the above computation.

C Computing residues in the Higgs branch

In this appendix we derive the baryonic generating function of Tρ
′

σ (SU(N)) from that of

Tρσ (SU(N)), where ρ′ is obtained from ρ by moving the last box to a previous column, by

computing residues at certain poles of the latter. Since all partitions can be obtained by

the partition (1, 1 . . . , 1) by repeatedly moving a single box, it suffices to consider

ρ = (ρ1, . . . , ρd−h, H, 1
h) , ρ′ = (ρ1, . . . , ρd−h, H + 1, 1h−1) , (C.1)
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where the lengths of partitions ρ and ρ′ are d+ 1 and d respectively, and

H = ρd−h+1 . (C.2)

Let us suppose that H > 1 and return to the special case of H = 1 later. The quiver

diagram of Tρσ (SU(N)) is as follows:

N1 N2 · · · NH NH+1 · · ·

h 1 MH+1

(C.3)

The quiver diagram of Tρ
′

σ (SU(N)) is

N1 − 1 N2 − 1 · · · NH − 1 NH+1 · · ·

h− 1 MH+1 + 1

(C.4)

Let us start with the baryonic generating function of Tρσ (SU(N)) given by (3.9). Taking

fugacities w1,h for the last Cartan U(1) in the flavor symmetry U(h) and wH,1 for the flavor

symmetry U(1) to be as follows

w1,h = (tz)−Hw̃ , wH,1 = (tz)w̃ , (C.5)

we find that there is a pole at z = 1 with the contributions from the residues

si,Ni = ti−Hw̃z−H = tiw1,h , with i = 1, . . . ,H . (C.6)

Evaluating the residues, we obtain

Res
z→1

g[Tρσ (SU(N))](t;w1, . . . ,ŵ̀;B)

∣∣∣∣∣w1,h=(tz)−H w̃
wH,1=(tz)w̃

=
1

H + 1
w̃−

∑H
i=1Bit

∑H
i=1(H−i)BiPE

t2 + t

h−1∑
q=1

(t1−Hw̃w−1
1,q + tH−1w̃−1w1,q)

×
× g[Tρ

′
σ (SU(N))](t; w̃1, . . . , w̃̂̀′ ;B)

∣∣∣∣∣
w̃H+1,MH+1+1=w̃

,

(C.7)

Note that the prefactor w̃−
∑H
i=1Bi becomes 1/xs(n) given by (3.13) of the new quiver

Tρ
′

σ (SU(N)) after substituting Bi = ni − ni+1, w̃ = w̃H+1,MH+1+1.

– 45 –



J
H
E
P
0
1
(
2
0
1
5
)
1
5
0

For the case of H = 1, the quiver diagrams of Tρσ (SU(N)) and Tρ
′

σ (SU(N)) are respec-

tively as follows:

N1 N2 · · ·

h+ 1 M2

N1 − 1 N2 − 1 · · ·

h M2 + 1

(C.8)

Formula (C.7) becomes

Res
z→1

g[Tρσ (SU(N))](t;w1;B)

∣∣∣∣∣ w1,1=tzx1
w1,q=xq q=2,···N−1

w1,N=(tz)−1x1

= (C.9)

=
1

2
x−B1

1 PE

t2 + t
h−1∑
q=1

(x1x
−1
q + x−1

1 xq)

 g[Tρ
′

σ (SU(N))](t; w̃1, . . . , w̃̂̀′ ;B) ,

where the first line receives the contribution from the residue:

s1,N1 = tw1,h = x1z
−1 . (C.10)

For H = 1 and h = N , we reproduce (4.25) presented in the main text.

D More examples for orthogonal and symplectic groups

We present another set of examples for USp(6) and SO(8). The relevant information are

contained in the following series of tables. For partitions σ with the same σ∨ we have two

different quivers; one of the two comes in two versions, (I) and (II), corresponding to a

moduli space that is a nilpotent orbit or its double covering. The same subscripts are used

to distinguish an orbit and its covering in table 10 and table 13. We list in the tables only

the quivers whose Hilbert series can be obtained in terms of the Hall-Littlewood formula.

D.1 T σ(USp(6))

We present the quiver diagrams of Tσ(USp(6)) and their mirror duals Tσ(SO(7)) for various

C3-partitions σ in table 9. Information about the associated nilpotent orbits are provided in

table 10. All statements of equality of Coulomb/Higgs branches between different theories

hold for vanishing background charges.
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E More on T ρσ (USp′(2N)) theories

In this appendix we provide more details on Tρσ (USp′(2N)) theories, which are realised on

the worldvolume of N D3 branes parallel to an Õ3
+

plane and ending on systems of half

D5 branes and of half NS5 branes. σ and ρ, which determine how the D3 branes end on

the D5 and on the NS5 branes, are both C-partitions of USp(2N).

Some examples of the Tσρ (USp′(2N)) theory were given in sections 7 and 9 of [6].

In section (2.5) we provided a prescription to write down the quiver diagram for general

C-partitions σ and ρ. Let us present some examples here:

• If σ = ρ = (12N ), we refer to the theory as T (USp′(2N)). The quiver diagram is

T (USp′(2N)) :

[USp(2N)]− (O(2N + 1))− · · · − (USp(4))− (O(5))− (USp(2))− (O(3)) . (E.1)

• If σ = (12N ) and ρ = (2, 12N−2), the quiver diagram is

T
(12N )

(2,12N−2)
(USp′(2N)) :

[USp(2N)]− (O(2N − 1))− · · · − (USp(4))− (O(3))− (USp(2))− (O(1)) . (E.2)

E.1 The Higgs branch

The Coulomb branch of the quiver gauge theory associated to Tσρ (USp′(2N)) cannot be

studied using the monopole formula because the theory is bad. We can however study the

Higgs branch of the mirror theory Tρσ (USp′(2N)), which is protected against quantum cor-

rections. In analogy to (6.1), it is natural to expect that the Higgs branch of Tρσ (USp′(2N))

is given by the closure of a nilpotent orbit intersected with a Slodowy slice:

Oσ∨ ∩ Sρ . (E.3)

Sρ is the Slodowy slice associated to the homomorphism ρ : Lie(SU(2))→ Lie(USp(2N)),

where ρ is a C-partition. The type σ∨ of the nilpotent orbit is given by a C-partition that

is determined by a map ∨ : σ → σ∨ from C-partitions to C-partitions, because USp′ is

self-dual. We propose that this map is defined as follows. We first map the C-partition

σ into a B-partition σ̃ that is defined as the B-collapse of the partition (σ, 1). Then we

apply to σ̃ the previously defined map (6.2) from B-partitions to C-partitions [42, 43] to

obtain the desired σ∨.

According to our proposal, the Higgs branch of Tρσ (USp′(2N)), with σ and ρ two

C-partitions of 2N , is equal to that of Tρσ̃ (USp(2N)), with σ̃ the B-partition of 2N + 1

defined above. We have checked explicitly the equalities of the Higgs branch Hilbert series

of the following sets of theories

{T(15)(USp(4)), T(14)(USp′(4)), T(2,12)(USp′(4))},

{T (2,12)
(15)

(USp(4)), T
(2,12)
(14)

(USp′(4)), T
(2,12)
(2,12)

(USp′(4))}
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{T(22,1)(USp(4)), T(22)(USp′(4))}
{T(17)(USp(6)), T(16)(USp′(6)), T(2,14)(USp′(6))}
{T(22,13)(USp(6)), T(22,12)(USp′(6)), T(23)(USp′(6))}

{T (2,14)
(22,13)

(USp(6)), T
(2,14)
(22,12)

(USp′(6)), T
(2,14)
(23)

(USp′(6))}

{T(32,1)II(USp(6)), T(32)(USp′(6)), T(4,2)(USp′(6))} ,

where indeed the B-partition σ̃ in Tρσ̃ (USp(2N)) is obtained as the B-collapse of the par-

tition (σ, 1), with σ the C-partition appearing in Tρσ (USp′(2N)). Note that the ∼ map

from C-partitions to B-partitions is not injective, therefore Tρσ (USp′(2N)) theories with

different σ can have the same Higgs branch.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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