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Online Quantitative Mass Spectrometry for the Rapid Adaptive 

Optimization of Automated Flow Reactors** 

Nicholas Holmes,[a] Geoffrey R. Akien,[a],[b] Robert J. D. Savage,[c] Christian Stanetty,[d] Ian R. 

Baxendale,[d]  A. John Blacker,[a],[c] Brian A. Taylor[e]
, Robert L. Woodward[e], Rebecca E. Meadows[e] 

and Richard A. Bourne[a],[b],[e]*

An automated continuous reactor for the synthesis of organic 

compounds, which uses online mass spectrometry (MS) for reaction 

monitoring and product quantification, is presented. Quantitative and 

rapid MS monitoring was developed and calibrated using HPLC. The 

amidation of methyl nicotinate with aqueous MeNH2 was optimized 

using design of experiments and a self-optimization algorithm 

approach to produce >94% yield.  

Flow reactors are increasing in popularity for the synthesis of 

organic compounds. Their advantages over batch reactors 

include higher reproducibility; safer operating conditions 

(particularly at increased temperatures and pressures); ease of 

automation; and facile integration of analysis. Therefore great 

success has been achieved for the optimization of chemical 

systems using continuous reactors.[1] Automated flow reactors 

typically combine online analysis with a feedback loop or PC 

interface to carry out reactions without any further human 

interference.[2] This technology has been used for the 

optimization of reactions using evolutionary algorithms (self-

optimization),[3] design of experiments (DoE)[4] and kinetic 

parameters.[4b, 5] 

Process analytical technologies (PAT) for automated flow 

reactors include UV-Vis,[3a] IR[1e, 3f, 3h, 5-6], Raman[7] and NMR 

spectroscopy;[3g] Gas Chromatography[3c-e] and High 

Performance Liquid Chromatography (HPLC).[3b] Spectroscopy 

benefits from rapid analytical method times, which can be used 

as real-time feedback to assess the steady state of a continuous 

reactor.[3f] However, vibrational spectroscopy generates complex 

spectra, which may require extensive deconvolution, and can be 

difficult to calibrate for multi-component systems. NMR 

spectroscopy is typically easier to analyze and provides more 

structural information than IR. The resolution and sensitivity of 

miniaturized low-field bench-top NMR spectrometers, which due 

to their small size can be used for inline analysis, means that 

subtle chemical transformations may not be detected and 

accurate quantification of low level impurities may prove 

difficult.[3g] Chromatography generates data that is easy to 

analyze and can provide structural information if combined with 

Mass Spectrometry (MS) detection. However the long method 

times significantly decrease throughput.  

To overcome the issues in analysis duration, demanding 

calibration and sensitivity in these PAT techniques in this 

communication we explore the use of online MS to enable rapid 

quantification (<1 min analysis duration). Online MS has been 

used to monitor reactions carried out in continuous reactors but 

thus far has been limited to the identification of compounds[8] or 

qualitative analysis of composition.[9] MS can provide structural 

information and product composition, all in real-time due to its 

short method times. Therefore it could be the ideal analytical 

technique for optimizing an automated flow reactor as it can 

determine steady state and then calculate a product yield with 

minimal data manipulation.  

This hypothesis was tested by carrying out a self-

optimization and DoE, to optimize the synthesis of N’-methyl 

nicotinamide 2 by reacting methyl nicotinate 1 with aqueous 

methylamine in methanol (Scheme 1). 1 can also hydrolyze to 

form niacin 3. This reaction was selected due to the presence of 

an easily ionizable pyridine nitrogen, loss of selectivity due to the 

presence of water in the aqueous methylamine and the 

requirement of high loadings of methylamine which may cause 

suppression effects. Overcoming such suppression effects is an 

important factor if direct MS is used for quantitative analysis. 

 

Scheme 1. The reaction of methyl nicotinate 1 with aqueous methylamine to 

form the desired N’-methyl nicotinamde 2 and the impurity niacin 3. 

The ester and amine solutions were pumped using dual 

piston LC pumps, with an additional pump of solvent to clean the 

reactor between experiments and prevent accumulation of 

analyte in the mass spectrometer. Reagent feeds were mixed in 

tee-pieces before entering a tubular reactor (Cambridge Reactor 

Design, Polar Bear Flow Synthesizer) with active heating and 

cooling, significantly reducing the time required to perform 

subsequent experiments at different temperatures. Upon exiting 

the reactor, aliquots of reaction mixture were introduced to the 

mobile phase of the MS using a 4 port microvolume (0.06 μL) 

[a] N. Holmes, Dr G. R. Akien, Prof A. J. Blacker, Dr R. A. Bourne 

Institute of Process Research and Development 

School of Chemistry, University of Leeds 

Leeds, LS2 9JT, UK 

E-mail: r.a.bourne@leeds.ac.uk 

 

[b] Dr. G. R. Akien 

 Department of Chemistry, Faraday Building, 

 Lancaster University, Lancaster, LA1 4YB, UK 

 

[c] R. J. D. Savage, Prof. A. J. Blacker, Dr. R. A. Bourne 

School of Chemical and Process Engineering 

University of Leeds, Leeds, LS2 9JT, UK 

 

[d] Dr. C. Stanetty, Prof. I. R. Baxendale 

 Department of Chemistry, Durham University 

 South Road, Durham, DH1 3LE, UK 

 

[e] B. A. Taylor, Dr. R. L. Woodward, Dr. R. E. Meadows, Dr. R. A. 

Bourne 

 Astrazeneca Pharmaceutical Development, 

 Silk Road Business Park, Macclesfield, SK10 2NA, UK 

** Supporting information for this article is given via a link at the end of 

the document. 

mailto:r.a.bourne@leeds.ac.uk


COMMUNICATION          

 

 

 

 

sample valve. The reactor was maintained under fixed pressure 

using a back pressure regulator. Pump flow rates; reactor 

temperature and sample intervals were controlled by a custom 

written MatLab program, see Figure 1. 

The spectrometer used was an Advion Expression CMS 

operating in positive APCI (Atmospheric Pressure Chemical 

Ionization) mode. APCI was selected over Electrospray 

Ionization (ESI) due to a reduction in baseline noise and being 

able to handle a larger mobile phase flow rate. 

The yield of each component was calculated by internal 

normalization of the [M+H] adducts. The internally normalized 

areas were corrected for the isotope abundance as the [M+1+H] 

isotope of 2 could be confused with the [M+H] adduct of 1. 

Calibration curves for 1 to 3 were calculated for HPLC and it was 

possible to quantify accurately the MS to the calibrated HPLC 

using experiments in a central composite face centred (CCF) 

plot, with very good fit (R2 0.997 – see ESI for full details of 

calibration).  

 

  

Figure 1. Reactor set-up. Reagents were pumped using Jasco PU980 pumps 

and were mixed in Swagelok tee-pieces. A Polar Bear Flow Synthesizer was 

used for heating and cooling of the tubular reactor. Aliquots of reaction mixture 

were delivered to the MS mobile phase using a VICI Valco 4 port sample loop 

(SL). The reaction was maintained under fixed back pressure using an 

Upchurch Scientific back pressure regulator (BPR). PTFE tubing (1/16” OD, 

1/32” ID) provided by Polyflon was used throughout the reactor. Swagelok 

unions and fittings were used throughout apart from the sample loop (VICI) 

and BPR (Upchurch). An Agilent 1100 G1311A quaternary pump provided the 

mobile phase to the Advion Expression CMS. The automated reactor was 

controlled by a custom written MatLab program.  

Fully automated optimizations were carried out using the 

SNOBFIT algorithm and a DoE statistical design (see ESI for full 

details) using the reactor in Figure 1 and the boundary limits 

shown in Table 1. SNOBFIT is a branch and fit algorithm that fits 

polynomials to experimental points and can find multiple 

optima.[10] For each experiment, the reactor is set to the desired 

temperature and methanol is pumped at 0.5 mL min-1 and the 

other pumps at 0.02 mL min-1 to minimize reagent usage during 

temperature changes. When the reactor reaches the set 

temperature the reagent pumps are set to their desired flow 

rates and allowed to pump for one residence time. During this 

time, the MS is directly sampled at 40 s intervals using a 5:2 flow 

splitter to further reduce sample concentration. We believe that 

the nanolitre injection volumes, combined with the flow splitter 

and APCI ionization technique reduce the sample concentration 

within the MS detector to the linear range allowing accurate 

quantification. After 1.1 reactor volumes of fluid are pumped, a 

steady state function monitors the last three samples and when 

variation of the amide % yield was less a deviation of ± 0.75% 

the system is deemed to be at steady state. The composition of 

the fluid is then recorded and the next experiment conditions are 

set and the process above repeated. Detection of steady state 

with near real-time monitoring reduces material usage and more 

accurate quantification than single data point analysis. 

The change in the responses of 1-3 for the first 4 

experiments in the self-optimization is shown in Figure 2. 

Optimum conditions were reached in 21 experiments, which 

corresponded to less than 12 hours of experiment time. The 

optimum conditions generate 2 in 94 % yield (Ester 1 flow rate 

0.1 mL min-1, MeNH2 10 eq, 10.6 °C, Figure 3). 

 

Figure 2. MS plot for the first 4 experiments in the self-optimization where red 

is 1, green is 2 and blue is 3. The filled points show the last three points where 

steady state was reached. 
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Table 1. Optimization limits for the self-optimization and DoE. Ester 1 

concentration 1.46 mol L
-1

, MeNH2 concentration 5.77 mol L
-1

. 

Limit Ester 1 flow rate 

(mL min
-1

) 

MeNH2 molar eq Temperature (°C) 

Lower 0.100 1 0 

Upper 0.400 10 130 
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Figure 3. Optimization plot for the SNOBFIT self-optimization of amide 2. 

Optimum point highlighted by the star, ester 1 flow rate 0.1 mL min
-1

, MeNH2 

10 eq, 10.6 °C.  

A DoE statistical design was constructed using a central 

composite faced (CCF) design. The CCF design enables 

curvature of the response surface to be modeled statistically. 

The reaction conditions were ranked into blocks of ascending 

temperature and then randomized within these blocks. 

Traditionally, statistical experiments require full randomization to 

eliminate systematic errors that can create bias in the results.[11] 

However, we have found that waiting for heating and cooling of 

the reactor is the biggest contributor to the total optimization 

time, and that randomization did not lead to any difference in 

experimental results. Therefore it was decided that a higher 

intensification of experiments could be achieved with ascending 

ordering of temperature.  

 

Figure 4. 3-D plot showing the yield of 2 for each experimental data point in 

the CCF DoE. 

Models for the composition of compounds 1-3 were 

generated by generating a saturated model including all square 

and interaction terms and then manually removing any non-

significant terms.[12] The yield of 2 for each data point is shown in 

Figure 4, and further model information can be found in the 

supplementary information. These models were generated using 

experiments conducted over a period of 5.5 hours with excellent 

fit and predictability (R2 = 0.999 and Q2 = 0.977). An optimum for 

2 was predicted by minimizing 1 and 3 and maximizing 2, which 

predicted conditions to generate 2 in 96 % yield (Ester 1 flow 0.1 

mL min-1, MeNH2 9.7 eq, 7 °C, Figure 5).  

 

 

Figure 5. Contour plot for the optimum conditions derived from the CCF model, 

generated in MODDE. Temperature fixed at 7 °C, optimum point highlighted by 

the crosshair. 

Online MS has been shown to optimize a model reaction 

using an automated continuous reactor. It was possible to 

calibrate the MS signal to HPLC using linear relative response 

values, with minimal effort in data manipulation. It was also 

possible to distinguish between product adducts and isotope 

patterns. The MS was subsequently used to determine steady 

state and calculate the yield in two separate optimizations. The 

optimum conditions achieved match very well showing the high 

reproducibility using this approach (Table 2) and either approach 

could be used to optimize the reaction system, It is important to 

consider that SNOBFIT experimentally verifies the optimum as 

part of the algorithm process giving higher confidence but took 

significantly longer (12 hours vs. 5.5 hours) than the structured 

DoE optimization as these experiments were ordered to 

minimize reactor temperature changes. However it should be 

noted that a fully randomized statistical design would take 

considerably longer.  
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Table 2. Comparison of the optimum conditions obtained through the CCF 

(predicted) and self-optimization (experimental) 

Optimization Ester 1 

flow rate 

(mL min
-1

) 

MeNH2 

molar eq 

Temperature 

(°C) 

Amide 2 yield 

(%) 

DoE 

Predicted 

0.100 9.7 7 96  

(predicted) 

Experimental 

SNOBFIT 

0.100 10 10.6 94 

(experimental) 

 

In addition, statistical modeling of the SNOBFIT data could 

also be performed to generate similar response surface models 

to the DoE model due to good coverage of the reaction space. It 

is also possible to verify model performance by inputting the 

SNOBFIT dataset into the DoE model. For example the optimal 

SNOBFIT data point from Table 2 was predicted to have a yield 

of 96% by the DoE model. 

MS has the potential to be a powerful process analytical 

technology. Discrete separation and product quantification can 

be achieved with minimal method development, and significantly 

reduced method times when compared to chromatography. 

Therefore rapid analysis with detailed molecular characterization 

information can be obtained. This has been exploited to enable 

rapid optimization using both a black-box algorithm and 

statistical optimization of an automated flow reactor and we aim 

to extend the scope to more complex chemistries using 

compounds that are difficult to analyze using other techniques. 

Experimental Section 

Experiments were carried out using the reactor described in Figure 1. 

RS232 serial communication send commands from the Jasco PU980 

pumps and VICI sample loop; Ethernet communication from the Polar 

Bear reactor and Agilent pump; and USB communication from the Advion 

MS. MS control and monitoring was achieved using Advion Mass 

Express; Agilent pump using Agilent Chemstation, and the rest of the 

reactor using a custom written MatLab program. Conditions for the DoE 

were calculated by running a script based on the ‘ccdesign’ MatLab 

function. Analysis of the DoE was carried out using commercially 

available DoE software MODDE. Conditions for the self-optimization 

were generated from within user-defined limits of the SNOBFIT algorithm 

and based on the results of existing experiment yields.  

Solution reservoirs for the pumps were prepared by dissolving the methyl 

nicotinate (50 g, 36.5 mmol) in methanol (200 mL); and methylamine 

solution (40% wt aq, 200 mL, 5.15 mol) in distilled water (200 mL). Ester 

solution concentration = 1.46 mol L-1, methylamine solution = 5.77 mol L-1. 

The reactor was primed by pumping from the pump reservoirs at 1 mL 

min-1 until product was detected by MS. 
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