
J
H
E
P
0
1
(
2
0
1
7
)
1
0
1

Published for SISSA by Springer

Received: November 15, 2016

Accepted: January 11, 2017

Published: January 24, 2017

Large-N correlation functions in N = 2

superconformal QCD

Marco Baggio,a Vasilis Niarchos,b Kyriakos Papadodimasc,d and Gideon Vosd

aInstitute for Theoretical Physics, KU Leuven,

3001 Leuven, Belgium
bDepartment of Mathematical Sciences and Center for Particle Theory,

Durham University,

Durham, DH1 3LE, U.K.
cTheory Group, Physics Department, CERN,

CH-1211 Geneva 23, Switzerland
dVan Swinderen Institute for Particle Physics and Gravity, University of Groningen,

Nijenborgh 4, 9747 AG Groningen, The Netherlands

E-mail: marco.baggio@kuleuven.be, vasileios.niarchos@durham.ac.uk,

kyriakos.papadodimas@cern.ch, g.vos@rug.nl

Abstract: We study extremal correlation functions of chiral primary operators in the

large-N SU(N) N = 2 superconformal QCD theory and present new results based on

supersymmetric localization. We discuss extensively the basis-independent data that can

be extracted from these correlators using the leading order large-N matrix model free

energy given by the four-sphere partition function. Special emphasis is given to single-

trace 2- and 3-point functions as well as a new class of observables that are scalars on the

conformal manifold. These new observables are particular quadratic combinations of the

structure constants of the chiral ring. At weak ’t Hooft coupling we present perturbative

results that, in principle, can be extended to arbitrarily high order. We obtain closed-form

expressions up to the first subleading order. At strong coupling we provide analogous

results based on an approximate Wiener-Hopf method.

Keywords: 1/N Expansion, Conformal Field Theory, Supersymmetric gauge theory

ArXiv ePrint: 1610.07612

Dedicated to the memory of Ioannis Bakas

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2017)101

mailto:marco.baggio@kuleuven.be
mailto:vasileios.niarchos@durham.ac.uk
mailto:kyriakos.papadodimas@cern.ch
mailto:g.vos@rug.nl
https://arxiv.org/abs/1610.07612
http://dx.doi.org/10.1007/JHEP01(2017)101


J
H
E
P
0
1
(
2
0
1
7
)
1
0
1

Contents

1 Introduction 2

2 Exact 2- and 3-point functions in the N = 2 chiral ring 5

2.1 SU(N) N = 2 chiral ring 5

2.2 Extremal correlation functions in the N = 2 chiral ring 6

2.3 2- and 3-point functions from S4 partition functions and matrix models 7

2.3.1 Deformed partition functions on S4 and their localization 7

2.3.2 Relation between the S4 partition function and 2-point functions on R4 8

2.3.3 Formulae for 3-point functions 9

3 Correlation functions at large N 10

3.1 Correlation functions and the matrix model free energy at large N 11

3.2 Single-trace 2- and 3-point functions 12

3.2.1 Mixing with multi-trace operators 13

3.3 Basis-independent 3-point functions 14

3.3.1 tt∗ equations and |C(2,∆)|2 15

4 Weak coupling results 16

4.1 Single trace 2- and 3-point functions at tree-level 17

4.2 Single-trace 2- and 3-point functions at higher orders in λ 17

4.3 3-point functions in the parallel transported basis 20

4.4 Basis-independent 3-point functions 21

5 Partial strong coupling results 22

A Deformed matrix integrals from supersymmetric localization 24

A.1 Large-N limit and the saddle-point equations 25

A.2 Aside: density for connected 2-point functions of single-trace operators 28

B Proof of (3.12) 33

C Large-N matrix model at weak coupling 34

C.1 Results at tree-level 35

D Large-N matrix model at strong coupling 37

D.1 Wiener-Hopf method 37

D.2 Computing the moments 39

D.3 Computing correlators 41

– 1 –



J
H
E
P
0
1
(
2
0
1
7
)
1
0
1

1 Introduction

References [1, 2] computed the exact (extremal) correlation functions of N = 2 chiral pri-

mary operators in the 4d N = 2 superconformal gauge theory with SU(2) gauge group

coupled to Nf = 4 massless hypermultiplets. These correlation functions are highly non-

trivial functions of the complexified coupling constant τ = θ
2π + i4π

g2 and include all-order

perturbative and instanton corrections. At the moment, they are the only known example

of nontrivial, exactly computed 3-point functions in a 4d QFT. The computation of [1, 2]

relied on the constraints imposed on the chiral ring correlators by the 4d tt∗ equations [3],

together with input from supersymmetric localization [4], and made use of the relation,

proposed in [5], between the sphere partition function ZS4 and the Zamolodchikov metric

on the conformal manifold. The relationship between extremal correlation functions in the

N = 2 chiral ring and the sphere partition function was further clarified and extended

in [6], which paved the way towards concrete computations in general 4d N = 2 SCFTs

with conformal manifolds. More generally, it would be interesting to know if there are

also other correlation functions that can be computed in practice by employing similar

techniques (see [7] for a recent analogous computation of correlation functions in 3d N = 4

superconformal field theories).

In this paper we consider the family of N = 2 superconformal field theories with gauge

group SU(N) and Nf = 2N hypermultiplets. We focus on the large-N ’t Hooft-Veneziano

limit and explain how correlators of chiral primary operators can be computed as a function

of the ’t Hooft coupling λ = g2N . One reason why these correlators are interesting is that

they encode information about a putative string theory dual for this family of large-N

theories1 (see [9] for an earlier discussion of such duality). Moreover, similar techniques

could be applied to closely related theories (e.g. N = 2 orbifolds of N = 4 super-Yang-Mills

theory (SYM) [10]) with known AdS/CFT duals, and lessons obtained in this paper could

be easily extended there as well. A recent discussion of conformal manifolds in the context

of the AdS/CFT correspondence from the supergravity point of view can be found in [11].

More generally, having a solid understanding of a large-N correlator as an exact function

of λ in QFT, at leading and subleading orders in the 1/N -expansion, could be a useful

guide towards a concrete analysis of various formal aspects of the large-N expansion in a

full-fledged 4d gauge theory.

N = 2 chiral primary correlators in the ’t Hooft limit of the N = 2 SU(N) , Nf = 2N

theory were recently considered in [12, 13], where 2-point functions of single-trace chiral

primaries were computed perturbatively in λ at leading order in 1/N . In this paper we

substantially extend these results by computing more general correlation functions at large

N . Specifically, we focus on two main classes of observables.

The first are 3-point functions of chiral primary single-trace operators. 3-point func-

tions of chiral primary operators in N = 4 SYM theory have of course been widely stud-

1Since we consider a ’t Hooft-Veneziano limit where the ratio Nf/N = 2 is fixed and non-vanishing, this

duality would have the peculiar feature where mesonic hypermultiplet bilinears would lead to an O(N2)

number of gauge invariant operators with low conformal dimension. A related discussion of similar limits in

two-dimensional theories can be found in [8]. We thank S. Minwalla for comments related to this feature.
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ied in the context of holography starting with [14, 15]. In the N = 2 theory, all the

non-vanishing 3-point functions are extremal, and are especially sensitive to mixing with

multi-trace operators [16]. We point out that there is a well-motivated and unambigu-

ous definition of the basis of chiral primary operators near the weak-coupling point based

on parallel transport that is formulated in terms of a natural connection on the space

of operators in conformal perturbation theory. This definition works particularly well in

our class of theories in the large-N limit, where the conformal manifold is essentially one-

dimensional. A different basis of chiral primary operators is defined implicitly through the

relation with the S4 partition function ZS4 [6]. We compute 3-point functions of the form

〈Trϕk1 Trϕk2 Trϕk1+k2〉 in the first few orders in λ around the weak coupling point in both

bases. We check that to leading order our methods reproduce the results of [14] for the

N = 4 SYM, as expected. Unlike the N = 4 SYM theory, however, in N = 2 theories

correlators of chiral primaries receive quantum corrections that we can easily compute up

to any desired order in λ.

In order to bypass the subtleties that arise from the mixing between single-trace and

multi-trace operators we also consider a new class of observables obtained by certain

quadratic combinations of the chiral ring structure constants. These quantities are ge-

ometric scalars on the conformal manifold, they are manifestly independent of the choice

of basis, and therefore can be meaningfully computed and compared at arbitrary values of

the coupling constant. Furthermore, an infinite subset of them obey a very simple recursion

relation, coming from the tt∗ equations, that can be solved explicitly in terms of 2-point

function data immediately available at large N .

We show how both classes of observables can be computed at leading order in the

large-N limit from the planar free energy F0 of the theory on S4 deformed by higher chiral

primary sources. The latter is also the planar free energy of a corresponding matrix model,

which arises from localization, and can be determined from the solution of the saddle-point

integral equation∫ µ+

µ−

dx

[
1

x− y
−K(x− y)

]
ρ(y) =

8π2

λ
x−K(x) +

M∑
n=2

tnx
n (1.1)

where K(x) = 2x
∑∞

n=1

(
1
n −

n
n2+x2

)
. The sum on the r.h.s. originates from the higher

chiral primary source deformations of the theory. It is a polynomial whose degree is sui-

tably adjusted to the correlator we want to compute. The planar free energy F0 follows

directly from the eigenvalue density ρ(x). Eq. (1.1) was first considered in [17] and further

used in [12]. We have not been able to solve (1.1) analytically for arbitrary values of λ,

so we will limit ourselves to analyzing its solutions in two regimes, at weak and strong

coupling λ. Given a solution of (1.1) (approximate or exact), there is a well-defined proce-

dure [1, 6] to recover correlation functions of the physical theory by combining appropriate

derivatives of F0.

Computations based on the weak coupling expansion of the solutions of (1.1) are pretty

straightforward and, technically, they follow closely the logic of [12, 17]. At strong coupling

the analysis of eq. (1.1) is considerably harder. As was first pointed out in [17] approximate

– 3 –



J
H
E
P
0
1
(
2
0
1
7
)
1
0
1

solutions can be obtained with the use of the Wiener-Hopf method.2 Using this method we

estimate the large-λ scaling of 2-point functions of single-trace operators in the chiral ring,

extending partial results in [12], and the large-λ scaling of 3-point functions. The large-λ

scaling of 2-point functions is also discussed from an independent point of view based on

the analysis of the density of connected 2-point functions in the matrix model.

Plan of the paper and summary of the main results. In the main text of the paper

we focus on properties and results of correlators on R4. Intermediate results based on

localization and the corresponding matrix model are relegated to the appendices, where

the reader can find all the pertinent details.

In section 2 we discuss in detail the correlation functions of interest and we set the

conventions that are used in the rest of the paper. In addition, we review the relation

between extremal correlation functions in the N = 2 chiral ring, the deformed partition

function on S4 and the matrix model that arises from localization.

In section 3 we discuss general properties of correlation functions in the large-N limit.

We explain what contributions can be extracted from the leading order large-N free energy

of the S4 partition function and how issues involving the mixing of single-trace and multi-

trace operators affect our computations. We also define appropriate quadratic combinations

of the structure constants and show that they obey a recursion relation, coming from the

tt∗ equations, that can be solved in closed form.

Results specific to the weak coupling expansion of the theory are presented in section 4.

We provide closed form expressions for 2- and 3-point functions both at tree level and at

the first nontrivial subleading order in perturbation theory. Along the way, we present a

method, specific to the large-N limit, that allows us to determine the correlation functions

of single-trace operators without going through the full Gram-Schmidt orthogonalization

procedure proposed in [6]. In this section we also discuss how the use of parallel transport

on the conformal manifold leads to unambiguous perturbative expressions for the single-

trace 3-point functions. The basis-independent structure constant squared combinations,

defined in section 3, are computed perturbatively in λ at the end of the section.

Finally, partial results in the strong coupling limit of the theory are discussed in sec-

tion 5. We emphasize the large-λ scaling of 2- and 3-point functions and discuss the

technical difficulties associated to the current use of the Wiener-Hopf method.

Four appendices at the end of the paper provide the technical background for the

computations presented in the main text. Appendix A summarizes the matrix model that

arises from localization and the corresponding saddle-point equations in the large-N limit.

In this appendix the reader can also find the derivation of an integral equation obeyed by

the density of connected 2-point functions, as well as an explicit solution of this equation

at infinite ’t Hooft coupling. Appendix C describes the perturbative solution of the saddle-

point equations at weak coupling and appendix D the approximate solution based on the

Wiener- Hopf method. Appendix B provides the proof of a technically efficient general

2We should point out that these approximations are not parametrically controlled, so we cannot prove

conclusively that the large-λ scalings obtained in this way persist in the exact solution of the saddle-

point equations.
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relation between 3-point functions in the gauge theory and derivatives of the matrix model

planar free energy in the large-N limit.

2 Exact 2- and 3-point functions in the N = 2 chiral ring

In this paper we focus on extremal correlation functions of N = 2 chiral primary oper-

ators in a specific class of N = 2 superconformal field theories defined as N = 2 SYM

theory with gauge group SU(N) coupled to 2N hypermultiplets (in short, SU(N) N = 2

superconformal-QCD, or N = 2 SCQCD). We will mostly follow the conventions of [1, 18],

where one can also find a detailed description of generic properties of the N = 2 chiral

primary operators and further useful references to the literature.

We begin with a quick summary of the operators of interest tailored to the specific fea-

tures of the N = 2 SCQCD theories and the goals of this paper. Then, we proceed to define

the correlation functions that will play a central role in our discussion and to summarize

recent developments that allow their exact non-perturbative computation. Along the way,

we emphasize the implications of the recent developments on 2- and 3-point functions.

Operator notation. In the course of the paper we will consider the N = 2 theory

either on R4 or S4. To keep the distinction between these cases explicit at all times, we

will refer to the chiral primary operators on R4 as OK and the corresponding operators

on S4 as OS
4

K . K is an appropriate multi-index that labels the operator. Moreover, for

notational economy we will frequently refer to single-trace generators Tr[ϕk] on R4 as k

inside correlation functions, double-trace operators Tr[ϕk1 ]Tr[ϕk2 ] as k1k2, etc. The S4

operators may acquire a further label, OR4
, that refers to specific linear combinations of

single/multi-trace operators to be defined.

Correlation function notation. Correlation functions on R4 will be denoted as 〈· · · 〉R4

(or simply as 〈· · · 〉 without index), correlation functions on S4 as 〈· · · 〉S4 and correlation

functions on the associated matrix model as 〈〈· · ·〉〉.

2.1 SU(N) N = 2 chiral ring

We begin by considering the SU(N) N = 2 SCQCD theory on flat space, R4. The N = 2

chiral primary operators are, by definition, local superconformal primary operators anni-

hilated by all four left-chiral Poincaré supercharges Q
i
α̇, where i = 1, 2 is an SU(2)R index

and α̇ = ± a spinor index. In the N = 2 SCQCD theory these operators have a simple

description as generic multi-trace operators of the adjoint complex scalar field ϕ in the

N = 2 vector multiplet. Using a multi-index K = {n`} we denote them as

OK ≡ O{n`} ∝
N−1∏
`=1

(
Tr
[
ϕ`+1

])n`
, (2.1)

where n` are arbitrary non-negative integers. The proportionality symbol refers to an

overall normalization factor that will be fixed later. Corresponding multi-trace operators

built out of the complex conjugate field ϕ will be denoted as OK ; those are N = 2 anti-

chiral primary operators annihilated by all four right-chiral Poincaré supercharges Qiα.
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The scaling dimension ∆K of each of the operators OK is half their U(1)R charge RK

∆K =
RK
2

=

N−1∑
`=1

(`+ 1)n` . (2.2)

This relation holds non-perturbatively for generic values of the exactly marginal coupling

constant of the theory τ = θ
2π + i4π

g2 , where as usual θ is the theta-angle of the theory and

g the gauge coupling.

It is clear from the definition (2.1) that the full class of chiral primary multi-trace

operators OK can be generated by Operator Product Expansion (OPE) multiplication from

a finite set of N − 1 single-trace operators Tr
[
ϕ`+1

]
, ` = 1, . . . , N − 1. In what follows we

will adopt a normalization convention, consistent with the so-called holomorphic gauge [1],

where the leading term in the OPE between two chiral primary operators,

OK(x)OL(0) = CMKLOM (0) + . . . , (2.3)

is

OK(x)OL(0) = OK+L(0) + . . . . (2.4)

The dots indicate higher-dimension descendant operators. OK+L is the multi-trace operator

: OKOL : . The absence of a spacetime singularity in the OPE of two chiral primary

operators is a characteristic property of chiral primary operators. The convention (2.4),

which sets3

CMKL = δMK+L , (2.5)

allows us to fix the normalization of all multi-trace operators OK in terms of the normal-

ization of the single-trace generators Tr
[
ϕ`+1

]
.

2.2 Extremal correlation functions in the N = 2 chiral ring

The main interest of the paper lies in the so-called extremal correlation functions, defined

as correlation functions of chiral and anti-chiral primary operators with a single anti-

chiral insertion

〈OK1(x1)OK2(x2) · · ·OKn(xn)〉 . (2.6)

The U(1)R charge conservation requires the R-charge relation

n−1∑
i=1

RKi = −RKn , (2.7)

otherwise the correlator vanishes.

In [1, 2] it was argued that all extremal correlation functions can be reduced to the

computation of the 2- and 3-point functions, respectively

〈OK(x1)OL(x2)〉 =
gKL̄
|x12|2∆

, x12 ≡ x1 − x2 , (2.8)

〈OK(x1)OL(x2)OM (x3)〉 =
CKLM

|x12|∆K+∆L−∆M |x13|∆K+∆M−∆L |x23|∆L+∆M−∆K
. (2.9)

3In this expression δJI is the obvious multi-index Kronecker delta.
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∆ is the common scaling dimension of the two insertions in the 2-point function (2.8),

and ∆K etc. the scaling dimensions of each operator in the 3-point function (2.9). The

interesting datum in each of these correlation functions is the position independent, but

generally coupling constant dependent, numerator gKL̄ in the 2-point functions and CKLM
in the 3-point functions. In the rest of the text it will be convenient to refer to these

coefficients using the notation

〈OK , OL〉 ≡ gKL , 〈OK , OL, OM 〉 ≡ CKLM . (2.10)

There is a simple well-known relation between the 2- and 3-point function coefficients

and the OPE coefficients CMKL in the N = 2 chiral ring

CKLM = CIKL gIM . (2.11)

Notice that by using the convention (2.5) equation (2.11) reduces to

CKLM = gK+L,M . (2.12)

As an explicit illustration of this relation, consider the computation of the 3-point

function of single-trace operators

〈k1, k2, k1 + k2〉 =
〈

Tr
[
ϕk1

]
,Tr

[
ϕk2

]
,Tr

[
ϕk1+k2

]〉
, (2.13)

where following the aforementioned convention we denote the single trace operator Tr[ϕk]

simply as k in a correlation function. Equation (2.12) implies that this is equal to

〈k1, k2, k1 + k2〉 = 〈k1k2, k1 + k2〉 =
〈(

Tr
[
ϕk1

]
Tr
[
ϕk2

])
,Tr

[
ϕk1+k2

]〉
, (2.14)

which is a 2-point function between a double-trace operator and a single-trace operator.

2.3 2- and 3-point functions from S4 partition functions and matrix models

So far we exclusively discussed correlation functions of the N = 2 SCQCD theory on

R4. In recent developments, however, a concrete relation has been put forward between

the 2-point function coefficients 〈OK , OM 〉 of the theory on R4 and the derivatives of a

suitably deformed partition function of the theory on the four-sphere S4 [5, 6, 19, 20]. The

latter is further related by supersymmetric localization [4] to the partition function of a

corresponding matrix model.

Let us briefly review the main elements of this relation and set up the appropriate

notation. For additional explanations and details we refer the reader to the original work

in [5, 6, 19, 20].

2.3.1 Deformed partition functions on S4 and their localization

The first step of the procedure starts, quite generally, by placing the N = 2 superconformal

field theory on S4 in a manner that preserves the supergroup of a general massive theory,

osp(2|4). In addition, we deform the theory by F-term interactions that are upper compo-

nents of short multiplets containing the N = 2 chiral primary fields OK . It is enough for

– 7 –
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our purposes to consider deformations restricted to the single-trace chiral primary fields

Tr
[
ϕk
]
. In superspace form the deformations of interest are

δS = − 1

32π2

N∑
n=2

∫
d4x

∫
d4θ EτnTr[ϕn] + c.c. , (2.15)

where E is the N = 2 chiral density. τ2 ≡ τ = θ
2π + i4π

g2 is the exactly marginal deformation

of the N = 2 SCQCD theory.

Now consider the partition function of this theory

ZS4 (τn, τ̄n) . (2.16)

The finite part of this quantity is physical [5, 20] and depends non-trivially on the complex

couplings (τn, τ̄n). Interestingly, although this quantity is given by a complicated path in-

tegral, it can be reduced by supersymmetric localization to a corresponding matrix integral

that can be analyzed with standard methods [4]. The precise form of the matrix integral

in the case of the N = 2 SCQCD theories is presented in appendix A.

2.3.2 Relation between the S4 partition function and 2-point functions on R4

Recently, [6] put forward a concrete general prescription that relates the τn-derivatives of

ZS4 to the flat-space 2-point function coefficients 〈OK , OM 〉. One way to summarize the

prescription is the following.

Assume we want to evaluate the 2-point function coefficient 〈OK , OM 〉R4
4 for two

operators OK , OM of the same scaling dimension ∆ in the N = 2 chiral ring. Consider

the same (single or multi-trace) operators on S4 — OS
4

K fory the counterpart of OK — and

construct linear combinations OR4

K where operators at scaling dimension ∆ mix with all

operators of smaller dimension ∆ − 2,∆ − 4, . . . (including the identity operator when ∆

is even)

OR4

K = OS
4

K +
∑
I∈S∆

aIO
S4

I , O
R4

M = O
S4

M +
∑
I∈S∆

bIO
S4

I . (2.17)

The sum
∑

I runs over the set S∆, which is defined to include all the chiral primaries of

scaling dimension ∆I < ∆, ∆I = ∆ mod 2. The coefficients aI , bI are clearly dimensionful

and therefore proportional to an appropriate power of the sphere radius. They are fully

fixed by implementing the Gram-Schmidt orthogonalization procedure,

〈OR4

K , O
S4

L 〉S4 = 0 , 〈OR4

L , O
S4

M 〉S4 = 0 for all L ∈ S∆ . (2.18)

The key statement of [6] is the relation5

〈OK , OM 〉R4 = 〈OR4

K , OR4

M 〉S4 . (2.19)

4At this point we will include an index R4 or S4 in the notation of the correlation functions to denote

explicitly whether we refer to correlation function on R4 or S4.
5Notice that the conformal mapping between the sphere and the plane introduces an additional factor of

4∆ in the relation between the sphere and the plane 2-point functions. To avoid clutter in the equations, we

absorb this factor in the normalization of the operators OK . Of course this has no effect on the normalized

correlators that we discuss in the rest of the paper.
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Employing eqs. (2.17), (2.18) we obtain

〈OK , OM 〉R4 = 〈OS4

K , O
S4

M 〉S4 −
∑

I,J∈S∆

〈OS4

K , O
S4

I 〉S4

(
A−1

)
IJ
〈OS4

J , O
S4

M 〉S4 , (2.20)

where the matrix A has, by definition, the elements

AIJ = 〈OS4

I , O
S4

J 〉S4 , I, J ∈ S∆ . (2.21)

In eq. (2.20) we assumed that the matrix A is invertible, which is a prerequisite for the

prescription of [6] to work properly.

The final element is the statement that the 2-point function coefficients 〈OS4

I , O
S4

J 〉S4

are simply given by derivatives of the deformed S4 partition function as follows

〈OS4

{k`}, O
S4

{m′`}
〉S4 =

1

ZS4

N−1∏
`,`′=1

∂

∂τ`+1

∂

∂τ̄`′+1
ZS4

∣∣∣∣
τ2=τ, τk=0, k 6=2

≡
N−1∏
`,`′=1

〈〈
(

Tr
[
ϕ`+1

])n` (
Tr
[
ϕ`
′+1
])n`′ 〉〉 . (2.22)

〈〈· · ·〉〉 denotes a correlation function in the matrix model of appendix A.

Having determined the 2-point functions in this manner we have essentially fixed the

normalization conventions for all the N = 2 chiral primary operators. At this point one

should wonder if this prescription is consistent with the choice (2.5) for the OPE coefficients.

Following the work in [1], ref. [6] demonstrated that the ansatz (2.22) satisfies the full set of

tt∗ equations with (2.5) incorporated. This is a strong explicit check that (2.22) is indeed

consistent with (2.5).

2.3.3 Formulae for 3-point functions

Combining equations (2.12), (2.20), (2.22) we are now in position to write down an explicit

formula for 3-point functions on R4

〈OK , OL, OM 〉R4 = 〈OS4

K+L, O
S4

M 〉S4 −
∑

I,J∈S∆M

〈OS4

K+L, O
S4

I 〉S4

(
A−1

)
IJ
〈OS4

J , O
S4

M 〉S4 .

(2.23)

All 2-point functions on the r.h.s. of this equation can be expressed via (2.22) in terms of

derivatives of the deformed S4 partition function, or alternatively in terms of derivatives

of the free energy

F = − logZS4 (2.24)

of the corresponding matrix model.

As an explicit example consider again the 3-point function of three single-trace oper-

ators. The above prescription gives〈
Tr
[
ϕk1

]
,Tr

[
ϕk2

]
,Tr

[
ϕk1+k2

]〉
R4

= 〈〈Tr
[
ϕk1

]
Tr
[
ϕk2

]
Tr
[
ϕ̄k1+k2

]
〉〉

−
∑

I,J∈Sk1+k2

〈〈Tr
[
ϕk1

]
Tr
[
ϕk2

]
O
S4

I 〉〉
(
A−1

)
IJ
〈〈OS4

J Tr
[
ϕ̄k1+k2

]
〉〉 . (2.25)
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Obviously, the structure of the sum on the r.h.s. becomes increasingly complicated with

increasing scaling dimension.

For a more concrete illustration consider a 3-point function that involves the lowest

lying single-trace operators, e.g.
〈
Tr
[
ϕ2
]
,Tr

[
ϕ2
]
,Tr

[
ϕ4
]〉

R4 . In this case the matrix A
appearing on the r.h.s. of eq. (2.25) is

A =

(
〈〈Tr

[
ϕ2
]

Tr
[
ϕ̄2
]
〉〉 〈〈Tr

[
ϕ2
]
〉〉

〈〈Tr
[
ϕ̄2
]
〉〉 1

)
=

(
−∂τ2∂τ̄2F + ∂τ2F ∂τ̄2F − ∂τ2F

−∂τ̄2F 1

)
. (2.26)

Explicit evaluation gives the following simple 2- and 3-point function formulae〈
Tr
[
ϕ2
]
,Tr

[
ϕ̄2
]〉

R4 = −∂τ2∂τ̄2F , (2.27)〈
Tr
[
ϕ4
]
,Tr

[
ϕ̄4
]〉

R4 = −∂τ4∂τ̄4F +
∂τ2∂τ̄4F ∂τ4∂τ̄2F

∂τ2∂τ̄2F
, (2.28)

〈
Tr
[
ϕ2
]
,Tr

[
ϕ2
]
,Tr

[
ϕ4
]〉

R4 = −∂2
τ2∂τ̄4F +

∂τ2∂τ̄4F ∂
2
τ2∂τ̄2F

∂τ2∂τ̄2F
, (2.29)

where the final result is expressed directly in terms of derivatives of the matrix model free

energy F .

The correlation functions of operators with higher scaling dimensions can be expressed

similarly solely in terms of F , but the final expression is considerably more complicated.

Further simplifications occur, however, in the large-N limit, which is the main topic of the

following sections.

3 Correlation functions at large N

In this section we study extremal correlation functions in the large-N limit and their

relation to the matrix model. Due to large-N factorization, the behavior of correlators

involving multi-trace operators is dominated at large N by the factorized answer. There-

fore, we introduce a notion of “connected” 2-point functions, which involves, as usual, the

full 2-point functions minus the factorized pieces. We argue that these correlators can be

determined by the leading contribution to the free energy in the large-N limit, which in

turn can be computed by the saddle-point method.

At a later part of this section we specialize to the two main classes of observables

that we are interested in. First, we study in detail the relation between single-trace 3-

point functions and the free energy, and discuss some useful simplifications that occur at

large N . We also discuss in detail issues related to mixing between single- and multi-trace

operators, which in principle can affect the results of our computation, and propose one

way to get around these difficulties by using the natural connection provided by conformal

perturbation theory.

Lastly, we define a new interesting class of observables, which are quadratic combina-

tions of the structure constants that enjoy many useful properties. Most notably, these

observables are manifestly free from ambiguities related to the choice of basis of chiral

operators, so they are not affected by the subtleties associated to large-N mixing between
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single- and multi-trace operators. In addition, the tt∗ equations provide a very simple

recursion relation for these observables, which can be solved in closed form in terms of

simple geometric data on the conformal manifold.

The explicit analysis of these quantities at weak and strong coupling is the subject of

subsequent sections.

3.1 Correlation functions and the matrix model free energy at large N

We consider the large-N limit at fixed ’t Hooft coupling constant λ = g2N . Similarly, we

rescale the sources of the higher Casimir operators so that the parameters6

gn =
2

N
Im τn , n = 2, 3, . . . (3.1)

are kept fixed in the limit, as was done in [12]. The free energy (2.24) has the following

large-N expansion

F = N2F0({gn}) + F1({gn}) + . . . (3.2)

F0 is the leading large-N contribution. It can be evaluated using the saddle-point approx-

imation, details of which we review in appendix A.

In the previous section, we reviewed how generic 2-point functions (of single-trace

or multi-trace operators) in the chiral ring on R4 can be expressed in terms of an alge-

braic functional of derivatives of the free energy F . In the large-N limit, and after the

Gram-Schmidt procedure has been properly applied, the result contains a finite number of

derivatives of F with respect to the parameters gn. The leading contribution to this result

comes from F0, and may scale with N in different ways depending on the specifics of the

operator insertions.

For instance, the 2-point function of two single-trace operators〈
k , k

〉
∼ O(N0) , (3.3)

scales at large N as a constant. Similarly, the 2-point function of a multi-trace operator

with a single-trace operator scales like〈
k1 · · · km , k

〉
∼ O(N−m+1) . (3.4)

So, for example, the leading order scaling of the 2-point function of a double-trace and a

single-trace operator is of order O(N−1) in agreement with the 3-point function scaling

and eq. (2.12). 3-point functions of single-trace operators are one of the main quantities

we will consider explicitly in the rest of the paper.

6In [12], a different convention for the couplings was used, namely gthere
n = π

n
2 ghere

n . We find that

our choice is more convenient for the purpose of this paper, as it avoids various explicit factors of π

that would otherwise appear in intermediate formulae. This effectively corresponds to a different overall

normalization of the chiral operators compared to [12], which of course does not have any effect on the

normalized correlators.
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The scaling of 2-point functions between general multi-trace operators is more intricate

because of large-N factorization. For example, the 2-point function of two double-trace

operators behaves at leading order as〈
k1 k2 , k3 k4

〉
∼
〈
k1 , k3

〉 〈
k2 , k4

〉
+
〈
k1 , k4

〉 〈
k2 , k3

〉
∼ O(N0) . (3.5)

The leading order behavior is dominated by factorization, unless the single-trace 2-point

functions above vanish. Clearly, at this order the 2-point function (3.5) does not contain

any new information beyond (3.3). However, the connected version of
〈
k1 k2 , k3 k4

〉
,〈

k1 k2 , k3 k4

〉
c
≡
〈
k1 k2 , k3 k4

〉
−
〈
k1 , k3

〉 〈
k2 , k4

〉
−
〈
k1 , k4

〉 〈
k2 , k3

〉
∼ O(N−2) , (3.6)

is far more interesting and scales with a subleading power of N , as O(N−2). The leading

contribution to the connected correlator is also determined by suitable combinations of

derivatives of the free energy term F0. Hence, quantities like (3.6) are also accessible within

the saddle-point approximation of the matrix model and contain useful information about

the large-N gauge theory. We will consider observables related to (3.6) in subsection 3.3.

More generally, we can consider the 2-point function of multi-trace operators〈
k1 · · · km , km+1 · · · km+n

〉
c
≡
〈
k1 · · · km , km+1 · · · km+n

〉
− (factorized pieces)

∼ O(N2−m−n) . (3.7)

This quantity is precisely what we would get if we started from a connected (m+n)-point

function and took the limit where the insertions of all the chiral operators go to infinity

and the insertions of the anti-chiral operators go to zero. Again, since these objects are

expressed in terms of 2-point functions of chiral primaries, they can be computed in terms

of the matrix model free energy F . Their leading behavior in 1/N is determined by the

leading term of the free energy, F0.

3.2 Single-trace 2- and 3-point functions

Next let us take a closer look at the Gram-Schmidt procedure, [6], at large N . It was argued

in [12] that mixing between single- and multi-trace operators can be ignored for the purpose

of computing single-trace 2-point functions in flat space from the sphere correlators. As a

consequence, the 2-point functions on the plane can be easily calculated from F0. Using

standard formulae for the Gram-Schmidt diagonalization in terms of matrix determinants,

we thus obtain7

〈k, k〉 ≡
〈

Tr
[
ϕk
]
,Tr

[
ϕk
]〉

R4
=

detMk

detMk−2
, (3.8)

where Mk is the k × k matrix given by

Mk = {−∂gm∂gnF0}m,n=k,k−2,... . (3.9)

As a trivial check, eq. (3.8) is in agreement with the examples (2.27), (2.28). Explicit

expressions around the weakly coupled point will be presented in section 4.

7As explained in [12], when we map 2-point functions from the sphere to the plane, we get an additional

factor 4∆ coming from the conformal mapping.
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The single-trace 3-point functions can also be determined in terms of F0. More con-

cretely, we are interested in computing〈
k1 , k2 , k3

〉
≡
〈

Tr
[
ϕk1

]
,Tr

[
ϕk2

]
,Tr

[
ϕk3

]〉
R4
, k3 = k1 + k2 . (3.10)

The following (streamlined) procedure leads to the desired result. First, we perform the

Gram-Schmidt orthogonalization procedure by diagonalizing the matrix of sphere 2-point

functions of single-trace operators only. This leads to the following formal identification

OR4

k =
∑
`

c`k O
S4

` , (3.11)

where ckk = 1 and the remaining c`k’s are determined from the condition
〈
OR4

k1
, O

R4

k2

〉
S4

= 0

for k1 6= k2. Our claim is that〈
k1 , k2 , k3

〉
=

∑
`1,`2,`3

c`1k1
c`2k2

c`3k3

〈[
OS

4

`1 O
S4

`2

]
, O

S4

`3

〉
S4

=
1

N

∑
`1,`2,`3

c`1k1
c`2k2

c`3k3
∂g`1∂g`2∂g`3F0 . (3.12)

The proof of this statement is presented in appendix B. This formula is non-trivial because

in principle it differs from the prescription presented in subsection 2.3.3. According to that

prescription , to compute (3.10) we would have to perform the Gram-Schmidt diagonal-

ization for the operator
[
OR4

k1
OR4

k2

]
directly, whose expression in terms of sphere operators

differs from the square of (3.11). The reason why we can work directly with the single-

trace operators at large N is due to large-N factorization of correlators, as explained in

appendix B.

3.2.1 Mixing with multi-trace operators

The single-trace 3-point functions are affected by the following subtlety: R-charge con-

servation implies that the only non-vanishing 3-point functions are “extremal”, or more

specifically k3 = k1 + k2 in (3.10). This means that the single-trace 3-point functions,

unlike the 2-point functions, are sensitive to mixing with multi-trace operators [16]. As

a consequence, different choices for the basis of operators away from the weakly coupled

point will lead to different answers for these 3-point functions.

This is best illustrated in an example. Let us consider the operator

O′4 ≡ O4 +
α(λ)

N
(O2)2 , (3.13)

where α(λ) is an arbitrary function of the coupling constant λ. Its 2-point function at

large N is identical to the one for O4, so it cannot be used to distinguish the two operators.

However, the 3-point function of this operator with two O2 operators reads

〈2, 2, 4′〉 ≈
N�1

〈2, 2, 4〉+ 2
α(λ)

N
〈2, 2〉2 . (3.14)
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Since both terms on the r.h.s. contribute at the same order, 1/N , the leading term at

large N for this correlator depends on the arbitrary function α(λ). At tree level, we can

explicitly check that the correlators computed from the sphere partition function match

the ones computed with Feynman diagrams in the standard trace basis (4.19), (4.20), so

α(0) = 0. As we move away from the weakly coupled point, however, it is not obvious a

priori that the scheme we are employing matches the one of ordinary perturbation theory

in flat space.

There are two possibilities to get around this issue. One is to work with quantities that

are manifestly free from ambiguities related to the choice of basis. This is the approach

that is described in the following subsection. Alternatively, one can fix the basis of oper-

ators away from the weakly-coupled point using the following well-motivated procedure.

Conformal perturbation theory provides us with a preferred connection on the space of

operators [3]. This connection can be used to parallel transport the operators away from

the weakly-coupled point. While this procedure depends on the path chosen to connect

the points on the conformal manifold, at large N a preferred path emerges, since the con-

formal manifold effectively becomes one-dimensional. We explain how to implement this

procedure explicitly, and provide various examples, in section 4.3.

3.3 Basis-independent 3-point functions

So far we have discussed correlation functions in a specific basis of chiral operators, where

both 2- and 3-point functions are non-trivial. In general, however, it is customary to

work in a different basis, where the 2-point functions are unit normalized, and all the

non-trivial information is encoded in the coupling-constant dependence of higher-point

correlators. Alternatively, we can work directly with quantities that are manifestly free

from ambiguities arising from the choice of basis. In geometric language, we can look

at scalar quantities on the conformal manifold. The simplest such quantity that can be

constructed solely from the chiral ring data is

|C(∆1,∆2)|2 ≡ gM∆1
J∆1C

P∆1+∆2
J∆1

K∆2
gP∆1+∆2

Q∆1+∆2
C
∗Q∆+2

M∆1
R∆2

gR∆2
K∆2 . (3.15)

This object is closely related to the “properly normalized” 3-point functions defined in [1].

For example, in the case of gauge group SU(2), the chiral ring is generated by O2 =

Tr[ϕ2] and the 2-point functions in the chiral ring are given by g2n ≡
〈
On2 , O

n
2

〉
, so we have

|C(2m,2n)
SU(2) |

2 =
g2m+2n

g2m g2n
≡ (Ĉ2m+2n

2m 2n )2 , (3.16)

where Ĉ2m+2n
2m 2n are the 3-point functions written in a basis where the 2-point functions are

unity. These quantities were computed exactly in [1].

In order to compute (3.15) at large N , we would need to compute the 2-point functions

of all the chiral operators (both single- and multi-trace) to the appropriate order in N and

then take the large-N limit. The leading order O(N0) term in |C(∆1,∆2)|2 is a combinatoric

constant determined by large-N factorization, so to get non-trivial results we have to

consider the terms of order 1/N2 in (3.15).
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It is easy to see that these 1/N2 corrections are captured by the leading order free

energy F0. Indeed, we can work in a basis where CKIJ = δKI+J , so that (schematically)

|C(∆1,∆2)|2 = gM∆1
J∆1 gR∆2

K∆2 gJ∆1
+K∆2

,M∆1
+R∆2

(3.17)

= gM∆1
J∆1 gR∆2

K∆2

(
gJ∆1

M∆1
gK∆2

R∆2

+gJ∆1
R∆2

gK∆2
M∆1

+ gc
J∆1

+K∆2
,M∆1

+R∆2

)
. (3.18)

gc
J∆1

+K∆2
,M∆1

+R∆2

is the limit of the connected 4-point function
〈
OJ∆1

OK∆2
OM∆1

OR∆2

〉
c

where the (anti-)chiral operators are sent to the same point. In the large-N limit, the first

two terms in the expression above give the O(N0) factorized contribution to |C(∆1,∆2)|2,

while the connected 4-point function behaves as O(1/N2). The free energy is the generating

function for the connected correlators, hence we conclude that the 1/N2 correction to

|C(∆1,∆2)|2 can indeed be computed (at least in principle) from the leading term in the free

energy F0.

In fact, in the case where ∆1 = 2, ∆2 = ∆, we can derive an explicit relation for the

1/N2 correction to |C(2,∆)|2 in terms of the single-trace 2-point functions (3.8). This is

possible because this quantity obeys a very simple recursive relation coming from the tt∗

equations that can be solved explicitly.

3.3.1 tt∗ equations and |C(2,∆)|2

We recall the general tt∗ equations for a (complex) 1-dimensional moduli space

∂τ

(
gM∆L∆∂τgK∆M∆

)
(3.19)

= C
P∆+2

2K∆
gP∆+2Q∆+2

C
∗Q∆+2

2R∆
gR∆L∆ − gK∆N∆

C∗N∆

2U∆−2
gU∆−2V∆−2CL∆

2V∆−2
− g2 δ

L∆
K∆

.

If we contract the indices appropriately and define the quantity

R(∆) ≡ (g2)−1∂τ

(
gM∆K∆∂τgK∆M∆

)
, (3.20)

the equations (3.19) simply become

|C(2,∆)|2 = |C(2,∆−2)|2 +R(∆) + n(∆) , (3.21)

where n(∆) is the number of chiral primary operators of dimension ∆. This recursion

equation can be solved explicitly, and it gives

|C(2,∆)|2 =
∑

∆′≤∆

(n(∆′) +R(∆′)) , (3.22)

where the sum runs over even conformal dimensions only.

Let us now examine how the recursion equation (3.21) and its solution (3.22) behave

in the large-N limit. We begin by analyzing the “curvature” term (3.20). Recall that the

large-N limit is taken by keeping the ’t Hooft coupling constant fixed

λ = g2N =
8πiN

τ − τ
. (3.23)

– 15 –



J
H
E
P
0
1
(
2
0
1
7
)
1
0
1

Since instanton corrections are suppressed in this limit, we can assume that all the quan-

tities (in particular, the 2-point functions) depend on λ only. Therefore

R(∆) = (g2)−1∂τ

(
gM∆K∆∂τgK∆M∆

)
= (g2)−1 λ2

64π2N2
∂λ

(
λ2 gM∆K∆∂λgK∆M∆

)
. (3.24)

The matrix of 2-point functions can be written as

gK∆M∆
= g0,K∆M∆

+
1

N
g1,K∆M∆

+ . . . , (3.25)

and its inverse has a similar expansion, where the leading term is just (g0,K∆M∆
)−1. There-

fore we have

R(∆) =
1

N2
R

(∆)
0 + . . . , (3.26)

where the ellipses indicate higher order terms in 1/N and R
(∆)
0 is given by

R
(∆)
0 = (g2)−1 λ2

64π2
∂λ

(
λ2 gM∆K∆

0 ∂λg0,K∆M∆

)
. (3.27)

g0,K∆M∆
is in turn given by the 2-point functions of single-trace operators only, which can

be computed using (3.8).

We can now consider the behavior of |C(2,∆)| at large-N . Using (3.22) we see that

|C(2,∆)|2 =
∑

∆′≤∆

n(∆′) +
1

N2

∑
∆′≤∆

R
(∆′)
0 +O

(
1

N3

)
. (3.28)

It is clear that the 1/N2 correction to |C(2,∆)|2 can be determined directly from F0 using

equation (3.8). We will give explicit formulae for |C(2,∆)|2 as a perturbative series in λ

around λ = 0 in section 4.4.

4 Weak coupling results

In this section we analyze in detail the correlators described in the previous section around

the weak coupling point λ = 0. We begin by implementing explicitly the Gram-Schmidt

diagonalization procedure at tree-level. This allows us to compute the flat-space tree-

level 2-point functions and 3-point functions of single-trace operators. At this order, the

computation is identical to N = 4 SYM and indeed we reproduce the results of [14].

We then show that the first non-trivial subleading corrections to these correlators can

also be computed explicitly in flat space, thanks to a simplifying property of the 1-loop

determinant of the matrix model noticed in [6]. Using the techniques of appendix C, we

also present several examples of 3-point functions computed to much higher order in λ. We

also deal with the subtleties related to mixing with multi-trace operators, anticipated in

section 3.2.1, by introducing a notion of parallel transport of operators, which is natural

in conformal perturbation theory.

Finally, we analyze the squared structure constants |C(2,∆)|2 defined in (3.15); we

explicitly compute the leading and subleading (order λ2) results for general ∆ and we

present results to higher orders in λ in examples.
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4.1 Single trace 2- and 3-point functions at tree-level

Here we consider the Gram-Schmidt procedure at large N and at tree-level in λ. For

simplicity we present the procedure for the sector of even chiral primaries. We start with

the matrix of 2-point functions of single-trace operators on the sphere, which is given by [12]〈
OS

4

2k1
, O

S4

2k2

〉
S4

=

(
λ

4π

)k1+k2 Γ
(
k1 + 1

2

)
Γ
(
k1 + 1

2

)
π(k1 + k2)Γ(k1)Γ(k2)

. (4.1)

We will also need the 3-point functions on the sphere [12]〈
OS

4

2k1
, OS

4

2k2
, O

S4

2k3

〉
S4

=

(
λ

4π

)k1+k2+k3 Γ
(
k1 + 1

2

)
Γ
(
k2 + 1

2

)
Γ
(
k3 + 1

2

)
π3/2Γ(k1)Γ(k2)Γ(k3)

. (4.2)

A more general formula for even and odd chiral primary three-point functions on the sphere

is given in appendix C. Performing the Gram-Schmidt procedure we find

OR4

2k =
∑
`

c`kO
S4

2` (4.3)

with

c`k = −2k

(
− λ

16π

)k−` Γ(k + `)

Γ(2`+ 1)Γ(k − `+ 1)
. (4.4)

These coefficients agree with the Chebyshev prescription of [13]. We can then use our

previous formulae to compute 2- and 3-point functions on R4. We find

〈
2k , 2k

〉
= 2k

(
λ

16π

)2k

, (4.5)

〈
2k1 , 2k2 , 2k1 + 2k2

〉
= 8k1k2(k1 + k2)

(
λ

16π

)2k1+2k2

(4.6)

If we normalize canonically the 2-point functions, we find〈
2k1 , 2k2 , 2k1 + 2k2

〉
= 2
√

2k1k2(k1 + k2) , (4.7)

which agrees with the results of [14].

4.2 Single-trace 2- and 3-point functions at higher orders in λ

Using (3.8) and (3.12), it is straightforward to explicitly compute the 2- and 3-point func-

tions up to arbitrarily high order in λ. Remarkably, it is possible to obtain a closed form

expression for the 2- and 3-point functions in flat space to second order in λ. Indeed, it

was noticed in [6] that the 1-loop determinant of the matrix model expanded around a = 0

(for finite N) is given by

Z1−loop(a) = 1− 3ζ(3)(Tra2)2 + . . . , (4.8)

which means that the ζ(3) correction to a correlation function can be obtained from the

tree-level result by applying an appropriate derivative operator. We now find this operator

explicitly and study its behavior at large N .
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We can rewrite (4.8) in the form

〈〈A〉〉 ≈ 1

Z

(
1− 3ζ(3)

∂2

∂(2πImτ)2

)
Z0[A] , (4.9)

where Z0[A] is the matrix model partition function at tree-level with the insertion of the

operator A. Notice that in converting the expansion of the 1-loop determinant into a

derivative, we have assumed that A itself does not depend on τ in its representation inside

the integral. In particular, this means that this equation cannot be applied directly to

connected correlators, since the mixing of an operator with the identity on the sphere

will exhibit a non-trivial dependence on τ . It is easy to show that the equation above is

equivalent to

〈〈A〉〉 ≈ 〈〈A〉〉0 − 3ζ(3)

(
2

Z0
∂Z0 ∂〈〈A〉〉0 + ∂2〈〈A〉〉0

)
, (4.10)

where 〈〈A〉〉0 is the expectation value of A at tree-level and we have defined

∂ ≡ ∂

∂(2πImτ)
(4.11)

to avoid clutter in the equations. A connected correlator will then satisfy

〈〈A1A2〉〉c ≡ 〈〈A1A2〉〉−〈〈A1〉〉〈〈A2〉〉 (4.12)

≈ 〈〈A1A2〉〉0,c−3ζ(3)

(
2

Z0
∂Z0 ∂〈〈A1A2〉〉0,c+∂

2〈〈A1A2〉〉0,c+2∂〈〈A1〉〉0 ∂〈〈A2〉〉0
)
.

In the large-N limit, only the first and third terms in the brackets will contribute, since

they scale like N0 while the second term scales like N−2.

Translating these formulae to the language of connected correlation functions on the

sphere we have〈
OS

4

k1
, O

S4

k2

〉
S4
≈
〈
OS

4

k1
, O

S4

k2

〉
S4,0

(4.13)

− 6

π2
ζ(3)

(
λ3

128π2
∂λ

〈
OS

4

k1
, O

S4

k2

〉
S4,0

+
〈
OS

4

2 , OS
4

k1

〉
S4,0

〈
OS

4

2 , O
S4

k2

〉
S4,0

)
.

Analogously, one can derive the ζ(3) correction to the connected 3-point function as〈
OS

4

k1
, OS

4

k2
, O

S4

k3

〉
S4
≈
〈
OS

4

k1
, OS

4

k2
, O

S4

k3

〉
S4,0
− 6

π2
ζ(3)

(
λ3

128π2
∂λ

〈
OS

4

k1
, OS

4

k2
, O

S4

k3

〉
S4,0

+
〈
OS

4

2 , O
S4

k1

〉
S4,0

〈
OS

4

2 , OS
4

k2
, O

S4

k3

〉
S4,0

+ permutations

)
. (4.14)

Remarkably, these formulae are valid even for flat-space correlators. To prove this,

consider for definiteness the case of 2-point functions (4.13) applied to the case k1 = k2 = k.

Employing the Gram-Schmidt procedure as in section 2.3.2

OR4

k =
∑
i≤k

ciO
S4

i , O
R4

k =
∑
j≤k

c̄jO
S4

j (4.15)
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we deduce that the leading perturbative correction to the flat-space 2-point function can

be written as

δ
〈
k , k

〉
R4 =

∑
i,j

cic̄j δ
〈
OS

4

i , O
S4

j

〉
S4

+
∑
i

δci

〈
OS

4

i , O
R4

k

〉
S4

+
∑
j

δc̄j

〈
OR4

k , O
S4

j

〉
S4

=
∑
i,j

cic̄jδ
〈
OS

4

i , O
S4

j

〉
S4
, (4.16)

where in the last equality we used that the operators OR4

k are orthogonal to all the operators

of lower conformal dimension by definition. Applying (4.13) to the previous expression,

and using the same argument to move the derivative in front of the sum, we find〈
k , k

〉
≈
〈
k , k

〉
0
− 6

π2
ζ(3)

(
λ3

128π2
∂λ
〈
k , k

〉
0

+
〈
2 , k

〉
0

〈
2 , k

〉
0

)
. (4.17)

The same argument applies to the 3-point functions as well. Consequently, if we know

the tree-level 2- and 3-point functions on the plane, we can determine their ζ(3) correction

using (4.13) and (4.14). The final result is

〈
k , k

〉
= k

(
λ

16π

)k (
1− 3 ζ(3)

4(2π)4
(k + δk,2)λ2 + . . .

)
, (4.18)

〈
k1 , k2 , k3

〉
= k1 k2 k3

(
λ

16π

)(k1+k2+k3)/2

(4.19)

×
(

1− 3 ζ(3)

4(2π)4

(
k1 + k2 + k3

2
+ δk1,2 + δk2,2 + δk3,2

)
λ2 + . . .

)
,

〈
k1 , k2 , k3

〉
n
≡

〈
k1 , k2 , k3

〉√〈
k1 , k1

〉 〈
k2 , k2

〉 〈
k3 , k3

〉
=
√
k1 k2 k3

(
1− (δk1,2 + δk2,2 + δk3,2)

3ζ(3)

8(2π)4
λ2 + . . .

)
. (4.20)

We first notice that the tree-level results match the ones computed in [14], as they

should. Furthermore, the λ2 corrections only appear when one of the operators is O2 =

Tr[ϕ2]. This property does not hold at higher orders in λ. Indeed, it is easy to use (3.12)

to explicitly compute some examples of 3-point functions to higher order in λ, even though

we do not have a closed form expression for them valid for arbitrary operators:〈
2 , 2 , 4

〉
n

= 4

(
1− 3ζ(3)

64π4
λ2 +

45ζ(5)

512π6
λ3 +

3(72ζ(3)2 − 1085ζ(7))

32768π8
λ4 + . . .

)
, (4.21)

〈
2 , 4 , 6

〉
n

= 4
√

3

(
1− 3ζ(3)

128π4
λ2 +

15ζ(5)

256π6
λ3 +

99ζ(3)2 − 2275ζ(7)

32768π8
λ4 + . . .

)
, (4.22)

〈
4 , 4 , 8

〉
n

= 8
√

2

(
1 +

15ζ(5)

512π6
λ3 − 665ζ(7)

16384π8
λ4 + . . .

)
, (4.23)

〈
4 , 6 , 10

〉
n

= 4
√

15

(
1 +

15ζ(5)

512π6
λ3 − 35(263520ζ(3)2 − 501551ζ(7))

32768π8
λ4 + . . .

)
, (4.24)

. . .
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In particular, notice that while the λ2 corrections are absent in the normalized 3-point

functions that do not involve the operator O2, the λ3 and higher corrections are present.

4.3 3-point functions in the parallel transported basis

As we anticipated in section 3.2.1, the 3-point functions defined above are sensitive to

mixing with multi-trace operators. At the weakly coupled point, the canonical trace basis

is particularly convenient, and we can ask if this basis can be extended (or transported)

in a canonical way across the conformal manifold. Since conformal perturbation theory

defines a natural connection on the space of operators, it is sensible to use this connection

to parallel transport the canonical trace basis defined at the weakly coupled point to other

points in the conformal manifold. In general, this is an ambiguous operation, because

the parallel transported basis will depend on the particular path chosen due to curvature.

Fortunately, at large N , the conformal manifold becomes effectively 1-dimensional, and a

preferred path emerges, the one “along λ”.

Let us define the vielbein-like objects eIk(λ) such that

eIk(λ)OI ∝ Ok +O(λ2) . (4.25)

Here the index I is allowed to run over all the chiral primaries (both single- and multi-

trace) of dimension ∆ = k and the arbitrary proportionality constant can be chosen so

that the diagonal part of the 2-point functions is unity. A choice of eIk(λ) corresponds to

a choice of basis of chiral primaries that agree (up to an overall normalization) with the

tree-level trace basis when λ = 0. The parallel transported basis will be determined by

demanding that

∇λeIk(λ) = 0 , (4.26)

where ∇λ is the covariant derivative along λ. The parallel transported 3-point functions

will then be given by

eIk1
(λ) eJk2

(λ) eKk3
(λ)
〈
OI , OJ , OK

〉
. (4.27)

It is clear that these correlators will agree with (4.20) at leading order in λ.

In order to implement this procedure explicitly in the present case, we need to de-

termine the connection from the S4 partition function. To do so, we will assume that

the basis of operators on the plane implicitly defined by the Gram-Schmidt procedure is a

holomorphic basis.8 This assumption passes an important consistency check, namely that

the resulting 2-point functions do obey the tt∗ equations written in a holomorphic basis [6].

However, as we noted previously at the end of section 2.3.2, we are not aware of a complete

proof of this statement. If the assumption is correct, then it is easy to show [1] that the

connection along λ is

∇λ = ∂λ +
1

2
g−1∂λg , (4.28)

8Strictly speaking, the basis that we are considering is holomorphic only when the operators are multi-

plied by the factor e
R
c
K, where K is the Kähler potential of the theory. For more details and a discussion

on the effect of Kähler ambiguities, we refer the reader to [1].
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where g is the matrix of 2-point functions at the appropriate level. Using this and the

explicit results up to order λ2 of the previous subsection, it would be easy to compute (4.27)

up to this order. However, due to the property in equation (4.8), this correction will vanish.

To exemplify how the procedure works in practice, we explicitly work out the case

k1 = k2 = 2, k3 = 4 up to order λ3. The relevant matrices of 2-point functions are then

g(2) = 2

(
λ

16π

)2(
1− 9 ζ(3)

64π4
λ2 +

15 ζ(5)

128π6
λ2 + . . .

)
, (4.29)

g(4) = 4

(
λ

16π

)4
2− 9ζ(3)

16π4 λ
2 + 15ζ(5)

32π6 λ
3 + . . . 1

N

(
4− 9ζ(3)

8π4 λ
2 + 145ζ(5)

128π6 λ
3 + . . .

)
1
N

(
4− 9ζ(3)

8π4 λ
2 + 145ζ(5)

128π6 λ
3 + . . .

)
1− 3ζ(3)

16π4 λ
2 + 5ζ(5)

32π6 λ
3 + . . .

 .

(4.30)

We now have everything we need to solve (4.26). The result is
√

2λ

16π
e2(λ) = 1 +

9ζ(3)

128π4
λ2 − 15ζ(5)

256π6
λ3 + . . . , (4.31)

2λ2

(16π)2
eI4(λ) =

 3ζ(3)
32π4 N

λ2 − 65ζ(5)
512π6 N

λ3

1 + 3ζ(3)
32π4 λ

2 − 5ζ(5)
64π6 λ

3

+ . . . . (4.32)

We notice that e4 acquires a component along the multi-trace chiral primary (O2)2 at order

λ2. This means that as we parallel transport the operator O4 to non-zero λ, it mixes with

(O2)2. This mixing is a 1/N effect, as expected.

Finally, the 3-point function in the parallel transported basis reads

e2 e2 e
I
4

〈
O2 , O2 , OI

〉
=

1

N

(
4 +

25ζ(5)

256π6
λ3 +O(λ4)

)
. (4.33)

The tree-level piece is of course the same as before. We also notice that the λ2 correction

is absent, as expected from (4.8), but the correlator does receive quantum corrections from

order λ3 and higher.

4.4 Basis-independent 3-point functions

In this final subsection, we study the objects |C(2,∆)|2 defined in (3.15) at weak coupling.

We start by giving an analytic expression of the curvatures R
(∆)
0 , defined in (3.27), to

order λ2. Since only the leading order O(N0) part of the metric contributes, the problem

simplifies considerably. First of all, the metric is diagonal. Also, the diagonal elements are

either single-trace 2-point functions or multi-trace 2-point functions that factorize into the

product of single-trace 2-point functions at leading order in 1/N . The curvature for the

single-trace part is given by

Rk0 ≡
1

〈2 , 2̄〉
∂τ∂τ̄ log

〈
k , k̄

〉
= 2 k − 9 k ζ(3)

32π4
λ2 − δk,2

9 ζ(3)

16π4
λ2 + . . . . (4.34)

The piece of the curvature coming from the 2-point functions of the operators
∏
k k

nk will

then be given by

R
{nk}
0 =

∑
k

nkR
k
0 , (4.35)

– 21 –



J
H
E
P
0
1
(
2
0
1
7
)
1
0
1

where we used large-N factorization. Therefore, the leading large-N contribution to the

curvature on the space of chiral primaries of conformal dimension ∆ is given by

R
(∆)
0 =

∑
{nk}∑
k nkk=∆

∑
k

nkR
k
0 = 2 ∆n(∆) −

(
∆n(∆) + 2 p(∆)

) 9 ζ(3)

32π4
λ2 + . . . , (4.36)

where n(∆) is the dimension of the space of chiral primaries at level ∆ (https://oeis.org/

A182746) and p(∆) is the number of 2’s in all partitions of ∆ that do not contain 1 as part

(https://oeis.org/A182716). Combining this result with (3.28) gives us the 1/N2 piece to

order λ2 exactly. As before, it is very easy to compute higher-order corrections by following

the algorithm of section 3.2, but we do not have a closed form expression for them.

The case where ∆ = 2 is particularly interesting, as it gives the leading contribution

to the conformal block expansion of the 4-point function〈
φ2(x1)φ2(x2)φ2(x3)φ2(x4)

〉
(4.37)

in the chiral channel, namely x1 → x2, x3 → x4. In the case of N = 4 SYM, the

analogous object was studied both from the field theory side [21] and the gravity side [22],

and the results turned out to be independent of the coupling constant consistent with the

N = 4 non-renormalization theorem [14–16, 23–29]. In our case, we can explicitly see

that this quantity does depend non trivially on the coupling constant, its first perturbative

corrections around λ = 0 being

|C(2,2)|2 = 2+
1

N2

(
4− 9ζ(3)

8π4
λ2+

75ζ(5)

32π6
λ3+

9(27ζ(3)2−350ζ(7))

1024π8
λ4+O(λ5)

)
+O(N−3) .

(4.38)

This result is consistent with the lower bound

|C(2,2)|2 ≥ 2 +
2

3c
(4.39)

in [30] that follows from conformal bootstrap techniques.

5 Partial strong coupling results

The analysis of 2- and 3-point functions at strong coupling requires a solution of the large-

N saddle-point equation of the matrix model at large λ. The saddle point equation has

the qualitative form∫ µ+

µ−

dx

[
1

x− y
−K(x− y)

]
ρ(y) =

8π2

λ
x−K(x) +

M∑
n=2

tnx
n . (5.1)

Details about the function K(x), as well as the meaning of the couplings tn can be found

in appendix A. We are interested in a single-cut solution with the density of eigenvalues

ρ(x) supported in the interval [µ−, µ+]. Unfortunately, we have not been able to find an

analytic solution of the integral equation (5.1) at arbitrary finite values of the couplings.
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However, in [17] it was argued that µ = µ+ = −µ− → ∞ in the strong coupling limit,

λ→∞, at tn = 0. It was further argued that the leading order relation between λ and µ

in this limit is

µ ' 2

π
log λ , λ� 1 . (5.2)

The presence of small higher single-trace couplings tn (n ≥ 2) will not affect this quali-

tative behavior of µ±, but the specifics of the dependence of µ± on the general tn, that

generalizes (5.2), requires a careful analysis of the integral equation (5.1).

Ref. [17] further proposed an approximate analysis of (5.1) based on the Wiener-Hopf

method. Details of this approach, suitably generalized to include the effects of the couplings

tn, are presented in appendix D. By running the approximate Wiener-Hopf method for the

saddle-point equations, evaluating matrix model correlation functions and performing the

eventual Gram-Schmidt orthogonalization procedure we can obtain approximate results for

2- and 3-point functions of single-trace operators in the R4 theory. For example, in this way

we obtain the following large-λ behavior of the correlation functions (2.27),9 (2.28), (2.29)〈
Tr
[
ϕ2
]
,Tr

[
ϕ2
]〉

R4 ∼ (log λ)2 , (5.3)〈
Tr
[
ϕ4
]
,Tr

[
ϕ4
]〉

R4 ∼ (log λ)6 , (5.4)〈
Tr
[
ϕ2
]
,Tr

[
ϕ2
]
,Tr

[
ϕ4
]〉

R4 ∼ λ (log λ)3 . (5.5)

Many more explicit results like this can be obtained from the computations of appendix D.

Determining the precise numerical prefactor in these expressions is hard. As we detail

in appendix D the employed Wiener-Hopf approximations are not based on a well-controlled

expansion in terms of a parametrically small number. In fact, performing this computa-

tion at the next iteration we found corrections to the leading order coefficients that are

numerically comparable to the leading contribution.

In search of an independent check of the leading large-λ scaling of correlation functions

obtained with the Wiener-Hopf method, let us consider the connected 2-point functions of

single-trace operators in the matrix model. Using the independent results of appendix A.2,

in particular equations (A.21) and (A.52), we focus on the following contribution to the

general connected 2-point function in the matrix model

〈Tr[ϕn]Tr[ϕm]〉c ∼
∫ µ

−µ
dx

∫ µ

−µ
dy ρ2(x, y)xnym + . . . . (5.6)

The dots indicate corrections from the integration of subleading terms in the density of

connected 2-point functions ρ̄2(x, y). We assume that such contributions either exhibit the

same scaling in the large-µ limit or subleading scaling. In the case of the standard matrix

model, where the exact two-point function density is known (see eq. (A.49)) we can check

that these corrections exhibit the same large-µ scaling as (5.6) correcting the numerical

coefficients one finds from (5.6).

9The behavior of
〈
Tr

[
ϕ2

]
,Tr

[
ϕ2

]〉
R4 at strong coupling, determined by the same approximation

method, was reported also in [12] and agrees with our results below.
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In any case, focusing on the leading scaling of the term on the r.h.s. of (5.6) we find∫ µ

−µ
dx

∫ µ

−µ
dy ρ2(x, y)xnym = µn+m+2

∫ 1

−1
dx

∫ 1

−1
dy ρ2(µx, µy)xnym (5.7)

∼ − 3√
2π3/2

µn+m+2

∫ 1

−1
dx

∫ 1

−1
dy

xnym

(µx− µy)4
∝ µn+m−2 .

To obtain the second line we used the large-µ asymptotics of the expression (A.52) at finite

non-vanishing x−y. If (5.7) is indeed a term that contributes to the leading large-µ scaling

of 〈Tr[ϕn]Tr[ϕm]〉c we deduce that

〈Tr[ϕn]Tr[ϕm]〉c ∼ O(µn+m−2) = O((log λ)n+m−2) . (5.8)

This prediction agrees well with the large-µ scaling obtained with the approximate Wiener-

Hopf method. This is partially reassuring.

Let us also note in passing that the result (5.3) is trivially consistent with the bootstrap

bound (4.39). The coefficient of the 1/N2 correction to |C(2,2)|2 is a large positive number

scaling as λ2/(log λ)3. The λ2 factor is consistent with the linear λ factor in (5.5).

It would be very interesting to obtain a better handle on the precise numerical coeffi-

cients in front of the above scalings of the 2- and 3-point functions, either by improving the

Wiener-Hopf method, or by developing further the computation of connected 2- and higher-

n-point function densities (we refer the reader to appendix A.2 for additional comments

on this approach).
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A Deformed matrix integrals from supersymmetric localization

In section 2.3 we reviewed how extremal correlation functions are related to derivatives of

the free energy of the N = 2 theory on S4. Via supersymmetric localization this is also

the free energy of a corresponding matrix model. In the case of the SU(N) N = 2 SCQCD

theory the deformed partition function of interest is (after localization) [4]

ZS4 =

∫
dNa δ

(
N∑
i=1

ai

)∏
i<j

[
(ai − aj)2H2(ai − aj)

]∣∣∣∣ei∑N
n=2 π

n/2τn
∑N
i=1(ai)

n

∣∣∣∣2
× e−2N

∑N
i=1 logH(ai)|Zinst|2 . (A.1)
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The function H(x) is defined as

H(x) =

∞∏
n=1

(
1 +

x2

n2

)n
e−

x2

n . (A.2)

Zinst are instanton contributions. The integral is performed over the N − 1 elements of the

SU(N) Cartan subalgebra. In the U(N) theory there is no δ-function restriction on the

N elements of the Cartan subalgebra. From now on, and in appendices C, D, it is more

convenient to work in the U(N) matrix model. Eventually, the translation of the matrix

model results to the SCFT on R4 are identical in the SU(N) and U(N) cases as far as the

leading large-N contribution to correlators is concerned.

A.1 Large-N limit and the saddle-point equations

In the large-N limit we can further set the instanton contributions Zinst → 1, and express

the single-trace couplings τn in terms of their ’t Hooft combinations (3.1). Since the end

result depends only on the imaginary part of the couplings τn we set

gn ≡
2

N
Imτn . (A.3)

Then, the large-N (U(N)) partition function takes the form

ZS4 = e−N
2F({gn}) =

∫
dNa

∏
i<j

[
(ai−aj)2H2(ai−aj)

]
e−N

∑N
i=1[

∑N
n=2 gn π

n/2(ai)
n+2 logH(ai)].

(A.4)

In the large-N limit it is also convenient to introduce the density of eigenvalues

ρ(x) =
1

N

∑
i

δ(x− ai) , (A.5)

which is normalized so that ∫
dx ρ(x) = 1 . (A.6)

Below we will deal exclusively with single-cut solutions, where the saddle-point eigenvalues

are located in a single connected interval [µ−, µ+].

The saddle-point equations of the integral (A.4) are a special case of the general inte-

gral equation

−
∫
dy ρ(y)

(
1

x− y
−K(x− y)

)
= f(x) , (A.7)

where

K(x) = −H
′(x)

H(x)
= 2x

∞∑
n=1

(
1

n
− n

n2 + x2

)
, (A.8)

f(x) =
1

2

dV

dx
−K(x) , V (x) =

∞∑
n=2

πn/2gnx
n . (A.9)
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−
∫

denotes a principal value integral. The function K controls the measure of the matrix

integral, and the function f controls its potential.

The undeformed version of these equations, with gn = 0 for all n > 2, was analyzed

previously in [17]. An analysis of the deformed equations, with gn = 0 for all odd n, was

initiated more recently in [12]. We revisit this analysis below and extend it in several di-

rections.

Following [17], it is possible, for a general single-cut configuration, to recast the saddle-

point equations (A.7) into the form

ρ(x) = − 1

π2
−
∫ µ+

µ−

dy

x− y

√
(µ+ − x)(x− µ−)

(µ+ − y)(y − µ−)

∫
dzρ(z)

(
f(y) +K(y − z)

)
=

1

2π

∞∑
n=2

n−2∑
k=0

n−k−2∑
r=0

ngnπ
n/2brbn−k−2−rµ

r
+µ

n−k−r−2
−

√
(µ+ − x)(x− µ−)xk

− 1

π2
−
∫ µ+

µ−

dy

x− y

√
(µ+ − x)(x− µ−)

(µ+ − y)(y − µ−)

∫
dzρ(z)

(
K(y − z)−K(y)

)
. (A.10)

To obtain this result we used the identity [12]

−
∫ µ+

µ−

dy

x− y
yn−1√

(µ+ − y)(y − µ−)
= −π

n−2∑
k=0

n−k−2∑
r=0

brbn−k−r−2µ
r
+µ

n−k−r−2
− xk (A.11)

with

bk =
1√
π

Γ
(
k + 1

2

)
k!

. (A.12)

Integrating this equation further over the domain of eigenvalues gives, in conjunction with

the normalization condition (A.6),

1 = −1

2

∞∑
n=2

n−2∑
k=0

n−k−2∑
r=0

k+2∑
s=0

ngnπ
n/2brbn−k−2−rσsσk−s+2µ

r+s
+ µn−s−

− 1

π2
−
∫ µ+

µ−

dx−
∫ µ+

µ−

dy

x− y

√
(µ+ − x)(x− µ−)

(µ+ − y)(y − µ−)

∫
dzρ(z)

(
K(y − z)−K(y)

)
. (A.13)

We used the identities [12]

∫ µ+

µ−

dx
√

(µ+ − x)(x− µ−)xk = −π
k+2∑
s=0

σsσk−s+2µ
s
+µ

k−s+2
− , (A.14)

where

σk =
1

2
√
π

Γ
(
k − 1

2

)
k!

. (A.15)

The simultaneous solution of the above equations determines µ± and ρ(x) parametri-

cally in terms of the single-trace coupling constants gn. Technical aspects of the solution are
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discussed in detail in the two subsequent appendices in different regimes. Once a solution

is known the free energy is determined by the expression

F({gn}) = −−
∫
dx dy ρ(x)ρ(y) log

(
(x−y)H(x−y)

)
+

∫
dx ρ(x)

(
V (x)+2 logH(x)

)
, (A.16)

which can be manipulated further, using the saddle-point equations, to the more conve-

nient form

F({gn}) =

∫ µ+

µ−

ρ(x)

(
1

2
V (x)− log |x|

)
(A.17)

that does not contain directly the special function H(x).

It is useful to highlight here the following properties of the saddle-point equations and

their solutions.

A. Self-contained system of equations. There are obviously enough equations

((A.10), (A.13)) to obtain the eigenvalue density ρ(x) and the bounds of the support

µ± when µ− = −µ+. This occurs when the deformation is even, i.e. when only gn with n

even are present. In that case the density is symmetric around the origin, ρ(x) = ρ(−x).

More generally, e.g. when odd interactions are allowed in the potential V , the eigenvalue

density is not symmetric and µ+ 6= −µ−. In that case, there is an additional non-trivial

condition [12, 31] that can be used to fix the relation between µ+ and µ−. It follows from

the requirement that the resolvent

ω(x) = −
∫ µ+

µ−

dy
ρ(y)

x− y
∼ 1

x
(A.18)

at large x. To ensure this drop-off the resolvent cannot contain any terms proportional to

xn with n > 0. This is equivalent to the requirement

−
∫ µ+

µ−

dx
ω(x)√

(µ+ − x)(x− µ−)
= 0 . (A.19)

This equation is automatic when µ+ = −µ− and the density is even.

B. Special cases vs generic K. When the function K vanishes (this occurs in the

case of N = 4 SYM theory) the matrix integral has the standard measure and the exact

solution of the saddle point equations follows immediately from (A.10)

ρ(x)
∣∣
K=0

=
1

2π

∞∑
n=2

n−2∑
k=0

n−k−2∑
r=0

ngnπ
n/2brbn−k−2µ

r
+µ

n−k−r−2
−

√
(µ+−x)(x−µ−)xk . (A.20)

In the presence of a non-trivial function K, however, an exact solution is not known in

closed form. In appendices C and D we analyze the density ρ and free energy F pertur-

batively in the strong and weak g2 = 8π2

λ regime, respectively. Although it is possible to

perform a comprehensive analysis of the weak-λ regime at any desired order of perturbation

theory, current techniques do not provide an equally satisfactory treatment of the strong

coupling side.
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C. Universality. Once a solution of the saddle-point equations is obtained, the result

can be inserted into the free energy F to obtain a generating function for the connected

correlation functions of the model. Remarkably, the final expression of the correlation

functions can be written solely in terms of µ± (the limits of the eigenvalue support), and

is independent of the details of the potential function f . We will give an example of

this property of universality in a moment for connected 2-point functions. The explicit

dependence on the single-trace couplings that appear in the function f arises from the

corresponding dependence of the quantities µ±.

A.2 Aside: density for connected 2-point functions of single-trace operators

In the previous subsection, and in appendices C, D, we evaluate the free energy of the de-

formed matrix model at general values of the single-trace couplings gn and take derivatives

at gn = 0 for n > 2, and g2 = 8π
λ free. This allows us to compute connected correlation

functions of the matrix model at any value of g2 and gn = 0 for n > 2.

In this appendix we consider a different evaluation of the same connected correlation

functions that does not go through the computation of the free energy in the deformed

matrix model with gn 6= 0 (n > 2). We focus on the 2-point functions of single-trace oper-

ators. The result is expressed as a double integral over the eigenvalues with an appropriate

2-point function density ρ̄2(x, y)

〈Tr[ϕn+1]Tr[ϕm+1]〉c =

∫
dx

∫
dy ρ̄2(x, y)xn+1ym+1 . (A.21)

There are well-known results in the literature regarding ρ̄2 (and its higher n-point

generalizations) — for a recent comprehensive review we refer the reader to [32]. For

example, in the case of the standard Hermitian matrix model

Z =

∫
dM e−N TrV (M) (A.22)

where V is a real polynomial of some degree, the leading large-N contribution to the

connected 2-point function density ρ̄2 takes the form

ρ̄2(x, y) =
1

2π2

1

(x− y)2

xy − µ2√
x2 − µ2

√
y2 − µ2

. (A.23)

We have assumed a single-cut solution of the saddle-point equations in the symmetric

interval [−µ, µ]. In accordance to point C in the previous subsection, this expression is

universal, namely independent of the details of the potential V .

Integral equation for ρ2. At this point we take the opportunity to derive a general

integral equation obeyed by ρ2 (we are not aware of a similar derivation in the literature).

In an attempt to be fairly general, let us consider the large-N limit of the matrix integral

ZO =

∫
dNa

∏
i<j

∆2(ai − aj) e−N
∑N
i=1 V (ai)

∏
L

OL(ai) , (A.24)
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where OL are (local) single-trace operator insertions of the N ×N Hermitian matrix over

which we integrate. Z1, the matrix integral without any operator insertions, denotes the

partition function of the matrix model. By definition, the normalized correlation functions

in this matrix model are of the form

〈
∏
L

OL〉 =
ZO
Z1

. (A.25)

An elementary computation of ZO in the saddle-point approximation leads to the following

expressions.

For starters, the effective action for the eigenvalues ai is

Seff(ai) =
N∑
i=1

V (ai)−
1

N

∑
i 6=j

log ∆(ai − aj)−
1

N

∑
L

logOL(ai) . (A.26)

The leading-order saddle-point equations are

∂V

∂ai
− 2

N

∑
k 6=i

(log ∆)′(ai − ak) = 0 . (A.27)

We dropped the term

− 1

N

∑
L

∂ai logOL (A.28)

which is O(1/N) (the other terms are O(N0)). We denote the solution of the system of

equations (A.27) as a
(0)
i .

Then, setting (in standard fashion)

ai = a
(0)
i +

1√
N
δi (A.29)

and performing the Gaussian integrations over δi we obtain

ZO =
∏
i<j

∆2
(
a

(0)
i − a

(0)
i

)
e−N

∑N
i=1 V (a

(0)
i )
∏
L

OL
(
a

(0)
i

)
e

1
2
NPTQ−1P e

− 1
2

log
det QO
detQ1 , (A.30)

where P and QO are respectively the vector and matrix

Pi := ∂aiSeff

∣∣
0

= −1

2

∑
L

∂ai logOL
∣∣
0
, (A.31)

Qij := ∂aiajSeff

∣∣∣
0

=
∂V

∂ai∂aj
δij −

1

N

∑
L

∂ai∂aj logOL −
1

N

∑
k 6=m

∂ai∂aj log ∆(am − ak)
∣∣∣
a(0)

.

(A.32)

After a few straightforward algebraic manipulations one can show that up to order O(N−2)

〈
∏
L

OL〉 =
ZO
Z1

=
∏
L

OL
(
a

(0)
I

)(
1 +

1

2
NP TQ−1P − 1

2
Tr
[
Q−1dP

]
+O(N−4)

)
. (A.33)
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dP is the matrix with elements

(dP )ij = − 1

N

∑
L

∂ai∂aj logOL
∣∣∣
0
. (A.34)

On the r.h.s. of equation (A.33) the first term is the factorizable disconnected part of the

correlation function and the second part is the first subleading contribution in 1/N .

Now assume that the saddle-point configuration is a one-cut solution on the symmetric

interval [−µ, µ] with eigenvalue density ρ(x), and consider the two-point function of two

single-trace operators, namely set∏
L

OL = Tr[ϕn+1]Tr[ϕm+1] . (A.35)

Moreover, for concreteness, let us specialize further to the matrix model of interest in this

paper where

∆(x) = |x|H(x) , V (x) = g2x
2 + 2 logH(x) . (A.36)

Then, in the continuum limit explicit evaluation gives

1

2
N P TQ−1P − 1

2
Tr
[
Q−1dP

]
=

1

N

∫ µ

−µ
dx

∫ µ

−µ
dy ρ(x)ρ(y)Q−1(x, y)

(n+ 1)(m+ 1)

mn+1mm+1
xnym

+
1

2N

∫ µ

−µ
dx ρ(x)Q−1(x, x)

[
n(n+ 1)

mn+1
xn−1 +

m(m+ 1)

mm+1
xm−1

]
, (A.37)

where mn are the moments

mn =

∫ µ

−µ
dx ρ(x)xn , (A.38)

and Q−1(x, y) is the functional inverse of Q(x, y)

−
∫ µ

−µ
dz ρ(z)Q(x, z)Q−1(z, y) =

1

N2

δ(x− y)

ρ(y)
. (A.39)

Combining this equation with the definition of Q (A.32) (in its continuous form) we deduce

that the leading O(N−1) part of Q−1 obeys the more explicit integral equation

−
∫ µ

−µ
dz ρ(z)

(
1

(x− z)2
+K ′(x− z)

)
Q−1(z, y) =

1

2N

δ(x− y)

ρ(y)
. (A.40)

Equation (A.37) has two characteristic features:

(i) The first term on the r.h.s. depends only on the combination

F2(x, y) := ρ(x)ρ(y)Q−1(x, y) . (A.41)

(ii) The second term on the r.h.s. involves the singular quantity Q−1(x, x). Part of the

prescription we propose to adopt in the evaluation of the above expressions is to

remove this singular term by hand. We will soon see that this prescription works

quite well and in agreement with known results in the standard Hermitian matrix

model, which corresponds to the special case K = 0.
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Consequently, with these specifications the connected two-point function

〈Tr[ϕn+1]Tr[ϕm+1]〉c that follows from (A.33) takes the form

〈Tr[ϕn+1]Tr[ϕm+1]〉c =
1

N
−
∫ µ

−µ
dx−
∫ µ

−µ
dy F2(x, y)∂x(xn+1)∂y(y

m+1) . (A.42)

Requiring the boundary conditions

F2(±µ, y) = 0 , ∂xF2(x,±µ) = 0 (A.43)

we can perform two integrations by part to recast (A.42) as

〈Tr[ϕn+1]Tr[ϕm+1]〉c =
1

N
−
∫ µ

−µ
dx−
∫ µ

−µ
dy ∂x∂yF2(x, y)xn+1 ym+1 . (A.44)

This implies

ρ̄2(x, y) = N∂x∂yF2(x, y) . (A.45)

We will discuss the self-consistency of the boundary conditions (A.43) in a moment.

Armed with the relation (A.45) and the equation (A.40) obeyed by the inverse

Q−1(x, y) we are now in position to formulate an integral equation for the density of con-

nected 2-point functions ρ̄2. Integrating by parts on the integral of the l.h.s. in eq. (A.40)

and using the first of the boundary conditions (A.43) we obtain

−
∫ µ

−µ
dz

(
1

x− z
−K(x− z)

)
∂zF2(z, y) = − 1

2N
δ(x− y) . (A.46)

Applying the integral

−
∫ µ

−µ
dx
√
µ2 − x2

1

w − x
(A.47)

on both sides of (A.46) we obtain

∂wF2(w, y) = − 1

2Nπ2

√
µ2−y2

µ2−w2

1

w−y
− 1

π2
−
∫ µ

−µ
dx

√
µ2−x2

µ2−w2

1

w−x

∫
dz K(x−z)∂zF2(z, y) ,

(A.48)

which is an integral equation for the derivative of F2, ∂xF2(x, y). Solving this equation,

or its progenitor (A.46), and applying a second derivative on the second argument of F2

we obtain the density ρ2 that allows us to determine the connected two-point function

of single-trace operators at any value of the ’t Hooft coupling at leading order in the

1/N expansion.

As an additional comment on the boundary conditions (A.43), notice that the first

one is a natural consequence of the assumption that the inverse Q−1(x, y) is regular at

x = ±µ (or not singular enough — an example is provided by the standard Hermitian

matrix model, K = 0, below) and the fact that the density of eigenvalues vanishes at the

boundaries of the eigenvalue support, ρ(±µ) = 0. The second boundary condition in (A.43)

is a self-consistent ansatz from the point of view of the integral equation (A.48).
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Recovering the standard Hermitian matrix model formula. As a test of the pro-

posed relation (A.45) consider the case of the Hermitian matrix model (A.22), which cor-

responds to the special case K = 0 in the above analysis. Then, a derivative of eq. (A.48),

where only the first term on the r.h.s contributes, gives

ρ̄2(x, y) = N∂x∂yF2(x, y) =
1

2π2

1

(x− y)2

xy − µ2√
x2 − µ2

√
y2 − µ2

(A.49)

in exact agreement with the known result (A.23).

ρ2 at infinite ’t Hooft coupling in the matrix model of SU(N) N = 2 SCQCD.

An analytic solution of eq. (A.46), or (A.48), at all values of the ’t Hooft coupling λ

is currently not known. It is straightforward, however, to obtain the analytic solution

at infinite coupling. Since, the strong coupling regime is hard to analyze with existing

methods, it is of some value to report here the analytic profile of ρ̄2 at infinite coupling.

For this purpose it is convenient to return to eq. (A.46). Since ∂xF2(x, y) is a function

of the difference x− y, we can perform a simple Fourier transformation

∂xF2(x) =
1√
2π

∫ ∞
−∞

dk eikx∂̂xF2(k)

∂̂xF2(k) =
1√
2π

∫ ∞
−∞

dx e−ikx∂xF2(x) (A.50)

to obtain

∂̂xF2(k) =
i

Nπ
sgn(k)

sinh2 k
2

cosh k
, (A.51)

which gives in real space

ρ2(x− y)
∣∣
λ=∞ =

1

16
√

2Nπ3/2

[
16

(x− y)2
+ ψ′

(
1

4
(1 + i(x− y))

)
+ ψ′

(
1

4
(1− i(x− y))

)
+ψ′

(
1

4
(3 + i(x− y))

)
+ ψ′

(
1

4
(3− i(x− y))

)]
. (A.52)

As usual, ψ(z) = Γ′(z)
Γ(z) is the logarithmic derivative of the Γ-function.

Unfortunately, this datum is not enough to determine the large-λ behavior of the

connected single-trace two-point functions. When we apply the formula (A.21) at large

but finite λ we need to know also the first subleading (in 1
λ) correction to ρ̄2. The mere

knowledge of (A.52) appears to provide the correct leading large-µ scaling of the connected

two-point functions but fails to capture the exact numerical coefficient.

Towards higher connected n-point functions. Working directly with the densities of

connecting n-point functions (as we did above for n = 2) is a direction with a potential for

promising results. In the past considerable results have been obtained in standard matrix

models through the analysis of the matrix model loop equations which provide recursive

equations between the generating functions of connected n-point functions (see [32] for a

modern review and references to the original literature). Such results can be extended to

more general cases (like (A.24)) — see, for instance, the recent work [33]. It would be

interesting to pursue this approach for the matrix models of interest in this paper. We

hope to return to this aspect in a future publication.
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B Proof of (3.12)

In this appendix we prove formula (3.12). Let us first recall that the 3-point function we

are interested in is given by the formula〈
(Ok1Ok2)R

4

, OR4

k3

〉
, (B.1)

where, as always, the R4 indices on the operators indicate that we have applied the full

Gram-Schmidt procedure, i.e. the primed operators are orthogonal to all the operators of

lower conformal dimension, both single- and multi-trace. We want to prove that in the

large-N limit the 2-point function above is given by the simpler expression〈(
OR4

k1
OR4

k2

)
, OR4

k3

〉
, (B.2)

where the operators OR4

k are orthogonal to all the single-trace operators of lower conformal

dimension only, and
(
OR4

k1
OR4

k2

)
is simply the product of the operators OR4

k1
and OR4

k2
.

We first examine the difference between the operators (Ok1Ok2)R
4

and
(
OR4

k1
OR4

k2

)
.

We have

(Ok1Ok2)R
4

= OS
4

k1
OS

4

k2
+(single-trace)+

∑
`1≤`2

c`1,`2k1,k2
(O`1O`2)R

4

+
1

N
(higher traces) , (B.3)

where the last three terms on the r.h.s. involve operators of conformal dimension less than

k1 + k2. Let us analyze the double-trace coefficients c`1,`2k1,k2
. They are given by

c`1,`2k1,k2
=

〈
OS

4

k1
OS

4

k2
, (O`1O`2)R

4
〉

〈
(O`1O`2)R

4
, (O`1O`2)R

4
〉 . (B.4)

Using large N -factorization, we obtain∑
`1≤`2

c`1,`2k1,k2
(O`1O`2)R

4

=
∑
`1,`2

c`1k1
c`2k2

OR4

`1 O
R4

`2 +O(1/N2) (B.5)

where c`k is given by

c`k =

〈
OS

4

k , OR4

`

〉
〈
OR4

` , OR4

`

〉 . (B.6)

From this we conclude that

(Ok1Ok2)R
4

=
(
OR4

k1
OR4

k2

)
+ (single-trace) +

1

N
(higher traces) +O(1/N2) . (B.7)

Also recall that up to O(1/N) corrections the linear combinations OR4

k involve only single-

trace operators.

If we now examine again equation (B.1), we see that the single-trace operators on the

r.h.s. of (B.7) do not contribute since OR4

k3
is orthogonal to all of them, while the higher-

trace operators are suppressed in the large-N limit. This proves (3.12). Notice that it is
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important that the operator
(
OR4

k1
OR4

k2

)
does not appear in the r.h.s. of the definition of OR4

k3
,

otherwise it could give a contribution of the same order as (B.2) by large-N factorization.

For correlators that respect R-charge conservation, namely k3 = k1 + k2, the higher-trace

operators in the full definition of OR4

k3
must have conformal dimension ∆ < k1 + k2, so(

OR4

k1
OR4

k2

)
indeed cannot appear. In the case k3 > k1 + k2, applying (3.12) would give

a non-zero result, inconsistent with R-charge conservation. However, this is precisely the

case where we cannot ignore the double-trace operator
(
OR4

k1
OR4

k2

)
in the expansion of OR4

k3
;

its effect is to precisely cancel the non-zero contribution coming from (3.12).

In summary, we have proven that the formula (3.12) gives the correct 3-point function

in the large-N limit for operators that respect R-charge conservation, which are the only

non-zero 3-point functions on the plane.

C Large-N matrix model at weak coupling

In this short appendix we collect some explicit expressions for the three-point functions at

tree-level. Similar results were presented in [12]. Here we generalize the results of appendix

C in [12] to obtain three-point functions for single-trace operators of both even and odd

powers at tree-level. This serves as input for the closed form diagonalization procedure

discussed in section 4.

As reviewed in appendix A (see equations (A.7), (A.8), (A.9)) in the continuum limit

we obtain the saddle-point equation

1

2

∑
n=1

gnπ
n
2 nxn−1 −K(x) = −

∫ µ+

−µ−
dy ρ(y)

(
1

x− y
−K(x− y)

)
. (C.1)

This equation can be inverted to get an expression for ρ(x) by applying the integral operator

−
∫ µ+

−µ−
dx√

(µ+−x)(µ−+x)(x−z)
. Further use of the integral identities (A.11), (A.14) provides

implicit relations for the moments up to an arbitrary but finite number of loops

mq = −1

2

∑
n=1

ngnπ
n
2

n−2∑
k=0

n−k−2∑
r=0

brbn−k−r−2

q+k+2∑
s=0

σsσk+q−s+2µ
r+s
+ µn+q−r−s

−

+ 2
M∑
p=1

(−1)pζ(2p+ 1)

2p∑
k=1

(−1)k
(

2p+ 1

k

)
mk

2p−k∑
l=0

2p−k−l∑
r=0

brb2p−k−r−l

×
q+l+2∑
s=0

σsσq+l+2−sµ
r+s
+ µ2p+q+2−k−r−s

− . (C.2)

The moments appear linearly in this expression, hence by truncating the perturbation

theory to a finite order and solving the corresponding system of linear equations we obtain

expressions for the moments accurate up to that order.

In what follows it will be useful to define a separate expression for the first line of the

previous expression

φq(gn) = −1

2

∑
n=1

nπ
n
2 gn

n−2∑
k=0

n−k−2∑
p=0

bpbn−k−p−2

k+q+2∑
s=0

µp+s+ µn+q−p−s
− σk+q−s+2σs . (C.3)
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The function φq(gn) is equal to the tree-level contribution to the moments. For quick

reference, we note here its second derivative with all couplings set to zero, except g2 (and

hence appropriately µ− set to −µ+)

∂2φq
∂ga∂gc

= −1

2

∂µ+

∂gc
aπ

a
2

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+q+2∑
s=0

(p+ s)(−1)a+q−p−sµa+q−1
+ σk+q−s+2σs

− 1

2

∂µ+

∂ga
cπ

c
2

c−2∑
k=0

c−k−2∑
p=0

bpbc−k−p−2

k+q+2∑
s=0

(p+ s)(−1)c+q−p−sµc+q−1
+ σk+q−s+2σs

+
1

2

∂µ−
∂gc

aπ
a
2

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+q+2∑
s=0

(a+q−p−s)(−1)a+q−p−s−1µa+q−1
+ σk+q−s+2σs

+
1

2

∂µ−
∂ga

cπ
c
2

c−2∑
k=0

c−k−2∑
p=0

bpbc−k−p−2

k+q+2∑
s=0

(c+ q − p− s)(−1)c+q−p−sµc+q−1
+ σk+q−s+2σs

+

(
∂µ+

∂ga

∂µ−
∂gc

+
∂µ−
∂ga

∂µ+

∂gc

)
πg2

q+2∑
s=0

s(q − s+ 2)(−1)q−s+1µq+σq−s+2σs

− πg2

q+2∑
s=0

σsσq−s+2s(−1)q−s
(

(s− 1)
∂µ+

∂ga

∂µ+

∂gc
+ µ+

∂2µ+

∂ga∂gc

)
µq+

− πg2

q+2∑
s=0

σsσq−s+2(q − s+ 2)(−1)q−s
(

(q − s+ 1)
∂µ−
∂ga

∂µ−
∂gc

+ µ+
∂2µ−
∂ga∂gc

)
µq+ . (C.4)

C.1 Results at tree-level

At tree-level the moments simply reduce to mq = φq(gn). In addition, when all the cou-

plings except g2 have been set to zero the endpoints of the eigenvalue distribution are given

by the expressions µ+(g2) = −µ−(g2) =
√

2
πg2

. To specify the derivatives of the endpoints

with respect to the coupling gn we require two conditions. The first condition comes from

the normalization of the eigenvalue density

m0 =

∫ µ+

−µ−
ρ(x)dx = 1. (C.5)

The second condition, (A.19), turns into the constraint

0 =
π

2

∑
n=1

ngnπ
n
2

n−1∑
k=0

bkbn−k−1µ
k
+µ

n−k−1
− . (C.6)

By taking implicit derivatives of the conditions (C.5) and (C.6) we can determine the

derivatives of the endpoints by means of Gaussian elimination

∂µ+

∂ga
= − aπ

a
2

2
√

2πg2

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+2∑
s=0

σsσk−s+2(−1)a−p−s
(

2

πg2

)a
2

− aπ
a
2

2πg2

a−1∑
k=0

bkba−k−1(−1)a−k−1

(
2

πg2

)a−1
2

, (C.7)
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and

∂µ−
∂ga

= − aπ
a
2

2
√

2πg2

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+2∑
s=0

σsσk−s+2(−1)a−p−s
(

2

πg2

)a
2

+
aπ

a
2

2πτ

a−1∑
k=0

bkba−k−1(−1)a−k−1

(
2

πg2

)a−1
2

. (C.8)

By means of quadratic transformations these expressions can be further simplified to

∂µ+

∂ga
= − aπ

a
2

4πg2
((−1)a−1 + 1)

(
2

πg2

)a−1
2

ba−1
2
− aπ

a
2

4
√

2πg2
((−1)a + 1)

(
2

πg2

)a
2

ba
2
, (C.9)

and

∂µ−
∂ga

=
aπ

a
2

4πg2

(
(−1)a−1 + 1

)( 2

πg2

)a−1
2

ba−1
2
− aπ

a
2

4
√

2πg2
((−1)a + 1)

(
2

πg2

)a
2

ba
2
. (C.10)

Similarly, by taking an additional derivative of the conditions we can find expressions

for the second derivatives

∂2µ+

∂ga∂gc
= −f(g2, a, c)

π2g2
− h(g2, a, c)√

2πg2
, (C.11)

and
∂2µ−
∂ga∂gc

=
f(g2, a, c)

π2g2
− h(g2, a, c)√

2πg2
, (C.12)

where respectively

f(g2, a, c) =
1

2
aπ

a+2
2 (−1)a

(
2

πg2

)a−2
2

×
[(

∂µ+

∂gc
+
∂µ−
∂gc

)
σa−2 2F1

(
3

2
, 2−a;

5

2
−a;−1

)
+

1

2

∂µ−
∂gc

((−1)a−1+1)ba−1
2

]
+ (a↔ c) , (C.13)

and

h(g2, a, c) = −1

2
aπ

a
2
∂µ+

∂gc

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+2∑
s=0

(p+ s)(−1)a−p−s
(

2

πg2

)a−1
2

σk−s+2σs

+
1

2
aπ

a
2
∂µ−
∂gc

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+2∑
s=0

(a− p− s)(−1)a−p−s−1

(
2

πg2

)a−1
2

σk−s+2σs

1

8
πg2

(
∂µ+

∂ga

∂µ+

∂gc
+
∂µ−
∂ga

∂µ−
∂gc

+
∂µ+

∂ga

∂µ−
∂gc

+
∂µ−
∂ga

∂µ+

∂gc

)
+ (a↔ c) . (C.14)

Substituting these expression for the derivatives of the endpoints back into expres-

sion (C.4) gives us an explicit expression for the second derivative of the moments which

can be related back to the tree-level three-point function of single-trace operators on the

sphere by

〈Tr [ϕa] Tr [ϕc] Tr [ϕq]〉S4 = π
q
2
∂2φq
∂ga∂gc

. (C.15)

The combination of these results with the formulae developed in section 4.2 yields results

on the tree-level flat-space three-point functions and their first subleading correction.
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D Large-N matrix model at strong coupling

The analysis of [17] at infinite coupling shows that the size of the cut of the eigenvalue

distribution grows with the value of the ’t Hooft coupling. In that case, a more sophisti-

cated treatment of the saddle-point equations is needed. Ref. [17] proposed an approximate

Wiener-Hopf approach. Similar to the weak coupling case we can extend this method by

adding appropriate polynomial sources to the free energy. In this appendix we consider

only the case of even source terms. This extension was also suggested and partially imple-

mented in [12].

For the benefit of the reader, and in order to set up the appropriate notation, we begin

with a quick review of the Wiener-Hopf method used in [17].

D.1 Wiener-Hopf method

Employing the following integral identity for the function K(x)

K(x) =

∫ ∞
−∞

dw
w coth(πw)

x− w
(D.1)

we can rewrite our saddle-point equation as a slightly generalized version of equation (4.15)

of [17]

ρ(x)−
∫
dy ρ(y)(x− y) cothπ(x− y) + x coth(πx)

=
1

2π

√
µ2 − x2

∑
n=1

ng2nπ
n
n−1∑
p=0

2n− 2p− 3

n− n− 1
µ2n−2p−2bn−p−2x

2p

− 1

π

∫
|w|>µ

dw

w − x

√
µ2 − x2

w2 − µ2

∫
dy ρ(y) [(w − y) cothπ(x− y)− w coth(πw)] , (D.2)

where the coefficients bk are given in (A.12). As an integral equation this expression

strictly holds true only within the interval [−µ, µ]. This means that as an operator the

integration kernel is singular. In the Wiener-Hopf method we can exploit the knowledge

that ρ(x) is zero outside of the interval. Accordingly, the goal is to find an expression

whose inverse Fourier transfrom vanishes outside of the interval. A general method for this

was given in [34], but it requires solving a very non-trivial factorization problem. We will

not attempt to solve this factorization problem here. Instead, following [17], we will aim

to find a function that is guaranteed to vanish only for x > µ. We will then argue that as

long as µ � 1 the other endpoint will not be of major concern. As a result, we need to

find an expression of the form

ρ(k) = eiµkf(k) , (D.3)

where f(k) is a function that is analytic in the lower half-plane. Computing the inverse

Fourier transform by means of contour integration shows us that this satisfies the boun-

dary condition.
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To find an expression of the form (D.3) we proceed by first computing the Fourier

transform of equation (D.2):∫ ∞
−∞

dk

2π
e−ikx

(
cosh(k)

2 sinh2(k2 )
ρ(k)− 1

2 sinh2(k2 )
− F (k) + e−iµkX−(k) + eiµkX+(k)

)
= 0 ,

(D.4)

where F (k) is the Fourier transform of the right-hand side of (D.2), and where everything

that is not strictly determined by the integral equation is encapsulated by the two free

functions X−(k) and X+(k). Note that if X±(k) is analytic in, respectively, the upper or

lower half-plane then X±(x) = 0 for either x > µ or x < −µ.

The key step in what follows is that the integration kernel in Fourier space has a known

analytic decomposition
cosh(k)

2 sinh2
(
k
2

) =
1

G−(k)G+(k)
(D.5)

where

G±(k) =

√
8π32±

ik
π Γ
(

1
2 ∓

ik
π

)
kΓ2

(
∓ ik

2π

) . (D.6)

Most notably, these functions are respectively analytic in either the upper or lower half-

plane and they go to zero sufficiently fast as k →∞. Also note that their poles are located

at respectively ∓iνl where νl = π(l + 1
2). At these poles the residues are given by

rl =
(−2)l+1Γ2

(
l
2 + 5

4

)
√
π
(
l + 1

2

)
Γ(l + 1)

. (D.7)

Next we multiply the integrand of (D.4) with G+(k) and subtract the poles in the

lower half-plane by means of the integral transform

F−(k) = −
∫ ∞
−∞

dk′

2π

F(k′)

k′ − k + iε
. (D.8)

This operation provides the expression

ρ(k)e−iµω

G−(k)
= −

∫ ∞
−∞

dk′

2πi(k′ − k + iε)
G+(k′)

(
1

2 sinh2
(
k′

2

) + F (k′)

)
e−iµk

′

−
∫ ∞
−∞

dk′

2πi(k′ − k + iε)
G+(k′)X−(k′)e−2iµk′ . (D.9)

In the regime of very large, but finite µ, the last term can be argued to be small. Treating

this term perturbatively leads to an approximation scheme where we have an accurate

description only at the right endpoint of the eigenvalue density. However, since we add

only even sources to the action we can find a valid description for ρ(x) in the interval [0, µ],

assume that ρ(x) is an even function, and reflect it around x = 0. In this way, one finds [17]

ρ(k) = −G−(k)eikω
∫ ∞
−∞

dk′

2πi(k′ − k + iε)
G+(k′)

(
1

2 sinh2
(
k′

2

) + F (k′)

)
e−iµk

′
. (D.10)
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The integral has the effect of subtracting the poles in the lower half-plane, therefore this

expression is of the form (D.3). The integral that appears in this equation can be evaluated

further by closing the contour around the lower half-plane

ρ(k) =
1

cosh(k)
+

2 sinh2(k2 )

cosh(k)
F (k) +G−(k)eiµk

∞∑
l=0

rle
−µνl

k + iνl
(1− F (−iνl)) . (D.11)

At the first iteration of this scheme

F (k) =
1

2
√
π

∑
n=1

ng2nµ
2nπn

n−1∑
p=0

bn−p−1
Γ(p+ 1

2)

Γ(p+ 2)
1F2

(
n+

1

2
;

1

2
, p+ 2;−1

4
k2µ2

)
. (D.12)

D.2 Computing the moments

The condition that arises from the normalization of the eigenvalue distribution was found

in [17] by exploiting the fact that the eigenvalue density is an even function

1 = 2

∫ µ

0
dx ρ(x) =

∫ ∞
−∞

dk

2π

ρ(k)

k − iε
. (D.13)

By closing the contour in the lower half-plane, [17] finds

∞∑
l=0

rle
−µνlF (−iνl)
νl + ν0

=
r0

2ν0
e−µν0 . (D.14)

Moreover, we have the eigenvalue density in Fourier space we can find an expression

for the moments as follows

m2n = 2

∫ µ

0
dxx2n

∫ ∞
−∞

dk

2π
e−ikxρ(k) =

i2n

π

∫
dk ρ(k)

∫ µ

0

d2n

dk2n
e−ikx

=
i2n+1

π

∫ ∞
−∞

dk ρ(k)
d2n

dk2n

e−ikµ − 1

k
' (−1)n(2n)!

iπ

∫ ∞
−∞

dk
ρ(k)

k2n+1
. (D.15)

In the last step we have eliminated all terms that oscillate rapidly in the µ � 1 regime.

From the form of ρ(k) it is clear that we can close the contour in the positive half-plane

and pick up all the poles, which are the ones originating from G−(k) and the higher

order poles at zero. Let us consider the manipulations of each of the terms appearing

in (D.15) individually.

First, the term

(−1)n(2n)!

iπ

∫ ∞
−∞

dk
2 sinh2(k2 )

k2n+1 cosh(k)
F (k) (D.16)

is simply given by evaluating the residue at zero

(−1)n lim
k→0

d2n

dk2n

2 sinh2(k2 )

cosh(k)
F (k) . (D.17)
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The last term is only slightly more complicated

(−1)n(2n)!

iπ

∫ ∞
−∞

dk

k2n+1
G−(k)eiµk

∞∑
l=0

rle
−µνl

k + iνl
(1− F (−iνl))

= (−1)n lim
k→0

d2n

dk2n
G−(k)eiµk

∞∑
l=0

rle
−µνl

k + iνl
(1− F (−iνl))

+ 2(−1)n(2n)!

∞∑
l,m=0

rlrme
−µ(νl+νm)

(iνm)2n+1(iνl + iνm)
(1− F (−iνl)) . (D.18)

By noting that limk→0G−(k) = 0, the first line of the r.h.s. can be simplified to

(−1)n lim
k→0

d2n

dk2n
G−(k)eiµk

∞∑
l=0

rle
−µνl

k + iνl
(1− F (−iνl))

= (−1)n
[
d2n

dk2n
(−i)G−(k)

]
k=0

∞∑
l=0

rle
−µνl

νl
(1− F (−iνl)) . (D.19)

For the last line, note that it is dominated by the first term in the sum over m

∞∑
l,m=0

rlrme
−µ(νl+νm)

(iνm)2n+1(iνl + iνm)
(1 − F (−iνl)) '

∞∑
l=0

rlr0e
−µ(νl+ν0)

(iν0)2n+1(iνl + iν0)
(1 − F (−iνl)) = 0,

(D.20)

and is therefore killed due to the normalization condition (D.14).

Putting everything together we find the following expression for the moments

m2n = hn + (−1)n lim
k→0

d2n

dk2n

2 sinh2(k2 )

cosh(k)
F (k)

+ (−1)n
[
d2n

dk2n
(−i)G−(k)

]
k=0

∞∑
l=0

rle
−µνl

νl
(1− F (−iνl)), (D.21)

where hn is an unimportant set of constants. We want to calculate correlators which are

derivatives of the moments with respect to coupling constants, so the explicit value of the

constants hn is not needed.

Next let us focus on the infinite sum in the rightmost term of the last equation, (D.21).

We rewrite this term by means of the normalization condition (D.14) and by removing terms

that are exponentially suppressed in the regime µ� 1,

∞∑
l=0

rle
−µνl

νl
(1− F (−νl)) =

r0e
−µνl

ν0
−
∞∑
l=0

rle
−µνl

νl
F (−iνl)

=

∞∑
l=0

2rle
−µνl

νl + ν0
F (−iνl)−

rle
−µνl

νl
F (−iνl)

=
∞∑
l=0

(νl − ν0)rle
−µνl

νl(νl + ν0)
F (−iνl) . (D.22)
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Continuing to ignore the exponentially suppressed terms the hypergeometric function con-

tained within F (−iνl) has the following asymptotic expansion

1F2

(
n+

1

2
;

1

2
, n+ 2;

ν2
l µ

2

4

)
∼ Γ(n+ 2)

Γ(n+ 1
2)
eµνl

∞∑
k=0

√
2ck(µνl)

−k− 3
2 , (D.23)

where the coefficients ck obey the recursive equation

ck = − 1

8k
(1 + 2k)(7− 6k + 8n)ck−1 −

1

16k
(1 + 2k)(2k − 1)(2k − 4n− 5)ck−2 (D.24)

with c0 = 1 and c1 = −3n − 3
8 . Now expanding each term of F (−iνl) up to the order of

interest we obtain

∞∑
l=0

(νl − ν0)rle
−µνl

νl(νl + ν0)
F (−iνl)=

1√
2π

∑
n=1

ng2n

n−1∑
p=0

bn−p−1

2n−2∑
k=0

ckαkπ
n−k− 3

2µ2n−k− 3
2 , (D.25)

where αk is a set of numerical constants defined as

αk ≡
∞∑
l=0

lrl
l + 1

(
l +

1

2

)−k− 5
2

. (D.26)

This series converges and can therefore be determined up to arbitrary numerical precision

by computing partial sums.

Including this result into the expression (D.21) we find the following expression for

the moments

m2n = hn + (−1)n lim
k→0

d2n

dk2n

2 sinh2(k2 )

cosh(k)
F (k) (D.27)

+ (−1)n
1√
2π

[
d2n

dk2n
(−i)G−(k)

]
k=0

∑
n=1

ng2nπ
n
n−1∑
p=0

bn−p−1

2n−2∑
k=0

ckαkπ
n−k− 3

2µ2n−k− 3
2 .

This formula gives the moments at the first iteration of the above scheme, where the last

term on the r.h.s. of equation (D.9) has been completely dropped.

D.3 Computing correlators

Unlike the computation of correlators in the weak coupling regime, in this subsection we

will bypass the evaluation of the planar free energy by means of the following relation

∂

∂g2n
F = πn

∫ µ

−µ
dz z2nρ(z) = πnm2n . (D.28)

Since the correlators are, by default, given by higher derivatives of the free energy we can

obtain them by taking derivatives of the moments [12]〈
Tr[φ2]n2Tr[φ3]n3 . . .Tr[φm]nm ,Tr[φ̄2]n̄2 . . .Tr[φ̄m]n̄m

〉
S4

= −N2
∏
k

(
∂

∂gk

)nk+n̄k

F (λ, gn)

= −N2
∏
k 6=i

πi
(

∂

∂gk

)nk+n̄k
(
∂

∂gi

)nk+n̄k−1

m2i . (D.29)
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Figure 1. The dotted line represents the numerical solution of µ as a function of log(λ) after

all other source terms have been set to zero, for comparison the solid line represents a plot of

µ = 2
π log(λ).

This relation also provides a non-trivial check for the moments as they naturally have to

satisfy the following commutativity property πm ∂
∂g2n

m2m = πn ∂
∂g2m

m2n.

As in the weak coupling computation, one of the most difficult steps is the inversion of

the normalization condition. In its present form it is an implicit function relating the size

of the cut µ to the coupling constants g2n. We should use this to eliminate µ from the cor-

relators in favor of the couplings. The normalization condition is given by equation (D.14).

The plot of the numerical solution of the normalization condition as a function of log(λ)

(see figure 1) suggests that µ ∼ 2
π log(λ) in the strong coupling regime where λ� 1. This

scaling was already conjectured in [17] by means of an interpolation between the weak

coupling and infinite ’t Hooft coupling regime.

Using this proposed behavior for µ as a function of λ and the orthogonalization pro-

cedure of [6] we find the leading order behavior for the correlators quoted in section 5.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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