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Abstract

The problem of validating the Modéle d’Écoulement de Trafic sur Autoroute
NETworks (METANET) model of a motorway section is considered. Model
calibration is formulated as a least squares error minimisation problem with
explicit penalisation of fundamental diagram parameter variation. The Au-
tomatic Differentiation by Overloading in C++ (ADOL-C) library is incor-
porated into the METANET source code and is coupled with the Resilient
Back Propagation (RPROP) heuristic for solving the minimisation problem.
The result is a very efficient system which is able to be calibrate METANET
by determining the density and speed equation parameters as well as the fun-
damental diagrams used. Information obtained from the system’s Jacobian
provides extra insight into the dynamics showing how sensitivities propagate
into the network. A 22 km site near Sheffield, UK, using data from three
different days is considered. In addition to the ADOL-C/RPROP system,
three particle swarm optimisation algorithms are used for solving the cali-
bration problem. In all cases, the optimal parameter sets found are verified
on data not used during calibration. Although, all three sets of data display
a similar congestion pattern, the verification process showed that only one
of them is capable of leading to parameter sets that capture the underlying
dynamics of the traffic flow process.
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propagation, automatic differentiation, particle swarm optimisation.

1. Introduction and Background

The macroscopic description of traffic along a motorway was introduced
in the seminal papers of Lighthill and Whitham (1955) and Richards (1956),
resulting to the LWR model relating the density ρ and flow q at location s
and time t

∂ρ(s, t)

∂t
+
∂q(s, t)

∂s
= 0. (1)

The nonlinear relationship between flow and density is

q(s, t) = ρ(s, t)V [ρ(s, t)] (2)

where V [ρ(s, t)] (km/h) is the equilibrium relationship between density and
mean speed, i.e. the Fundamental Diagram (FD) of traffic. For any given
site a number of FD may be used reflecting changes in the number of lanes
and road geometry, bottleneck locations and significant gradient variability.

Typically, a space and time discretised version of eqn. (1), along with
the FD constitute the basic elements of a first order macroscopic traffic flow
model, see e.g. (Lighthill and Whitham, 1955; Richards, 1956; Daganzo,
1994).

Payne-Whitham type second order models result from coupling eqn. (1)
with an empirical equation governing the mean speed v(x, t) dynamics (Payne,
1971; Whitham, 1974), with the form

∂v(s, t)

∂t
+ v(s, t)

∂v(s, t)

∂s
+

1

ρ(s, t)

∂P (s, t)

∂s
=

1

τ
{V [ρ(s, t)]− v(s, t)} (3)

where τ is a relaxation constant and P (s, t) a pressure term, which gives rise
to a range of different models of this family, (Helbing et al., 2002).

Irrespective of the model’s order, a number of parameters characteris-
ing the aggregate infrastructure-vehicle-driver behaviour are used. Using
data sets of traffic counts and vehicle speeds, typically obtained by means
of inductive loop detectors embedded in the motorway, a rigorous model
validation procedure needs to take place, for identifying an optimal set of
parameters. This procedure is performed in two steps, calibration and veri-
fication. Calibration requires the solution of an error minimisation problem
and verification involves testing the solutions obtained on data that were not
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used for furnishing the corresponding calibration optimisation problem. This
paper is concerned with model validation of a traffic flow model along the
lines given in (Cremer and Papageorgiou, 1981) and (Papageorgiou, 1983).

First order traffic flow model calibration is concerned mostly with de-
termining the FD parameters of discrete road sections, depending on the
discretisation scheme used for (1). The most commonly used model of this
order is the Cell Transmission Model (CTM) by Daganzo (1994) and detailed
calibration efforts may be found in (Munoz et al., 2006, 2004).

A comparative study of the CTM and the second order Modéle d’Écoulement
de Trafic sur Autoroute NETworks (METANET) by Messmer and Papageor-
giou (1990) for a motorway in Greece based on the Nelder-Mead algorithm
(Nelder and Mead, 1965) is provided by Spiliopoulou et al. (2014).

An extensive validation study of METANET, using a source code different
than the one employed here, for the Paris ring road is reported by Papageor-
giou et al. (1990). The METANET validation of the large scale network
of the Amsterdam orbital motorways is described in (Kotsialos et al., 2002,
1998). In (Frejo et al., 2012) a METANET model parameter identification
algorithm is discussed using data from a 4.65 km stretch of a California high-
way; the original expression used for FD in METANET is replaced with a
two-regime model and the resulting optimisation problem is solved using a
sequential quadratic programming algorithm.

A linear varying parameter method is described by Luspay et al. (2010,
2011, 2009) for identifying second order model parameters. A simultane-
ous perturbation stochastic approximation method is used by Alessandri
et al. (2006) for the same purpose using information from mobile phones.
In (Treiber and Kesting, 2012) a method calculating the model parameters
by comparing the congestion pattern of the data and model output aiming
at avoiding incorrect data forms, was used. The model used by Treiber and
Kesting (2012) is validated by Ngoduy and Maher (2012) on a 10km section
of a UK highway.

As is mentioned by Ngoduy and Maher (2012), the optimisation problem
related to model calibration has numerous local minima. Hence, efficient
optimisation algorithms need to be used for obtaining parameter sets that
make models capable of representing traffic dynamics. Most of the proposed,
if not all, algorithms used are population based derivative free methods,
employing direct or stochastic search. In a recent overview of nonlinear
programming methods used for macroscopic traffic flow model calibration
by Kontorinaki et al. (2015), gradient based optimisation algorithms are not
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considered as a viable option due to the nonlinear and non-convex nature
of the least-squares optimization problem. However, it is shown here that
a simple globalisation strategy based on a multistart scheme of a gradient
based heuristic is capable of efficiently solving this problem.

For the modelling of the Paris and Amsterdam sites discussed by Papa-
georgiou et al. (1990); Kotsialos et al. (2002, 1998), the deterministic search
algorithm of Box (1965) was used. A cross entropy method is used by Ngo-
duy and Maher (2012). A simplex based algorithm was used by Ngoduy et al.
(2004) to validate various numerical schemes used for solving the macroscopic
model equations. A number of population based derivative free optimisation
algorithms used for calibration are discussed by Spiliopoulou et al. (2015).

A nonlinear mixed integer optimisation formulation was introduced for
the macroscopic traffic flow model calibration problem which was solved by
means of a genetic algorithm by Poole and Kotsialos (2012). METANET was
treated as a simulation black box. An additional requirement introduced
was the automatic spatial assignment, i.e. determination of the location
and extension, of fundamental diagrams (FD). The motivation behind this
is that current calibration practice either uses expert engineering opinion
to make a decision about the FD or use a separate FD for every discrete
road segment. In the first case, intuition, past experience, visual inspection
and preliminary data analysis result to an ad-hoc approach leading away
from systems that embed knowledge in their own structure and the display
of more intelligent forms of automation, (Kotsialos and Poole, 2013, 2016).
In the latter case, overparametrisation is a clear risk since typically three
parameters are necessary for defining a FD.

The problem formulation suggested by Poole and Kotsialos (2012) allows
the selection of FD location for homogeneous road stretches, which them-
selves are split into segments. It also penalises the variance between their
parameters. The rationale behind this penalisation is that by treating the
FD as an extensive quantity whose start and end are decision variables in
an optimisation problem, the parameter variance penalty will result to solu-
tions that favour similar FD. This kind of similarity was employed as guidance
when validating the large scale model of the Amsterdam motorway networks,
(Kotsialos et al., 1998, 2002).

A more detailed calibration work using classic and recent variants of par-
ticle swarm optimisation (PSO) and cuckoo search algorithms is reported
by Poole and Kotsialos (2016). These evolutionary algorithms (EA) were
used for calibrating a site near Heathrow Airport and a site near Sheffield,
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UK. Optimal parameters were determined capturing the essential character-
istics of the underlying traffic dynamics as was shown in the ensuing model
verification. In total, ten different EA, seven variations of particle swarm
optimisation (PSO), two of cuckoo search and a simple genetic algorithm
acting as a baseline, were considered by Poole and Kotsialos (2016). One
of the main conclusions drawn regarding algorithmic performance, was that
the PSO family of algorithms outperformed the cuckoo search and genetic
algorithm; interestingly it was one of the simplest types of PSO, a variant
called Local PSO (LPSO) (Kennedy and Mendes, 2002), that proved to be
the more efficient among the PSO variants, in terms of number of iterations
and error. Based on the analysis of Poole and Kotsialos (2016), three PSO
algorithms were selected for this paper.

One of this paper’s original contributions is providing the details of a gra-
dient based optimisation method for solving the calibration problem. Extra
information that becomes available from the process of calculating partial
derivatives is highlighted as well. The gradient calculation is performed by
use of the automatic differentiation (AD) software ADOL-C, (Walther and
Griewank, 2012). AD software technology is used for avoiding hard-coding
analytic expressions of the gradient vector. ADOL-C performs these calcu-
lations based on the computation source code without resorting to perturba-
tions, which require multiple objective function evaluations, and therefore a
lot of simulation runs, for approximating partial derivatives. The full set of
the necessary derivatives is obtained by a single simulation run. This allows
the development of the space-distance diagrams of the model’s sensitivity.

The resilient backpropagation (RPROP) heuristic (Riedmiller and Braun,
1993) is the optimisation scheme used for utilising the calculated partial
derivatives. RPROP is capable of solving non linear, non smooth and non
convex problems, and is equally efficient if not superior to more sophisticated
optimisation approaches, as demonstrated by Kotsialos (2013, 2014). Only
one evaluation of the gradient vector per iteration is required, as opposed
to other line search and trust region methods (Nocedal and Wright, 2006;
Fletcher, 2013). It is robust in view of errors in the partial derivatives’
calculation since it does not make explicit use of their values but of their
sign. Errors in the partial derivatives’ calculation can be tolerated as long
as their sign is correct.

The work presented here differs from what is reported in (Poole and
Kotsialos, 2016) at three main points. First, a slightly different objective
function is used here, where only the space mean speed error is considered
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explicitly as opposed to a total error of weighted flow and mean speed errors.
Second, only evolutionary algorithms are considered there. Here, the best
performing ones are presented next to the gradient based heuristic algorithm
RPROP. Third, the system architecture of the population based optimisation
discussed in (Poole and Kotsialos, 2016) does not require any change in the
source code of the METANET simulator; it is a more modular design which
avoids source code intervention. The integration of the ADOL-C software
technology with macroscopic traffic flow simulation and the RPROP heuristic
is one of the main novel contributions of this paper.

Although the use of AD results to an increase of the computation over-
head, compared to the use of analytical expressions for the partial derivatives,
the resulting iterative scheme in its multistart version still outperforms evo-
lutionary based approaches. Long convergence times are not necessarily a
drawback for the operational time scales of a model validation application.
Such an application hosted within the information infrastructure ecosystem
of a traffic control centre would face relatively large time scales to operate.
A well-calibrated model can remain valid for several months before becoming
obsolete due to data ageing. This allows a modelling application to follow
a “rest and digest” policy collecting and processing streams of data from
the surveillance database. Periodic updates and evaluation of optimisation
solvers’ performance can be part of a self-managing modelling application
maintaining model relevance, (Kotsialos and Poole, 2013, 2016).

The rest of this paper is organised as follows. Section 2 provides an
overview of the METANET model. The calibration problem formulation is
discussed in 3. The optimisation algorithms used and developed for this
paper are described in 4 along with their implementation. Section 5 provides
the details of the site and available data. The calibration process and results
are discussed in 6 and the verification of the obtained solution in Section 7.
Section 8 concludes this paper and an outline of future research is given as
well.

2. METANET Model Overview

The METANET simulator is a discrete form of Payne’s model (3) and is
able to model arbitrary motorway networks of any topology. A network is
represented as a directed graph consisting of nodes and links. Links represent
homogeneous road sections, where the number of lanes is a constant and there
is no significant change of geometry, curvature or gradient. Furthermore, no
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traffic sources or sinks (junctions) exist within a link. Nodes connect links
and are used at places where the geometry of the motorway changes or at on-
/off-ramp junctions. Each node has at least one incoming and one outgoing
link. Traffic enters via origin links and leaves through destination links.

Time is discretised globally by a time step T and there are K steps in
the time horizon. Each motorway link m is discretised into Nm segments of
equal length Lm as shown in Figure 1. The traffic conditions in segment i
of link m, at time instant t = kT , k = 0, 1, . . . , K, described by the density
ρm,i(k) (veh/km/lane), the mean speed vm,i(k) (km/h) and the traffic flow
qm,i(k) (veh/h).

[Figure 1 about here.]

By discretising equations (1) and (3), (Papageorgiou et al., 1990; Mess-
mer and Papageorgiou, 1990; METANET, 2008), the discrete time motorway
traffic flow model is the following.

ρm,i(k + 1) = ρm,i(k) +
T

Lmλm
[qm,i−1(k)− qm,i(k)] (4)

qm,i(k) = ρm,i(k)vm,i(k)λm (5)

vm,i(k + 1) = vm,i(k) +
T

τ
{V [ρm,i(k)]− vm,i(k)}

+
T

Lm
vm,i(k)[vm,i−1(k)− vm,i(k)]

− νT

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
(6)

where λm is the number of lanes of link m, ν an anticipation constant and κ
a numerical stability constant. The FD functional expression used is

V [ρm,i(k)] = vf,m · exp

[
− 1

αm

(
ρm,i(k)

ρcr,m

)αm]
(7)

where ρcr,m is the critical density of link m and αm a parameter. Parameters
vf,m, ρcr,m, αm, define a link’s FD.

In order to account for speed drops due to on-ramp inflow and merging
phenomena the term −δTqµ(k)vm,1(k)/(Lmλm(ρm,1(k) + κ)) is added at the
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right hand side of (6), where δ a constant, µ the merging link and m the leav-
ing link. This term is included only when the speed equation is applied to the
first segment of the downstream link m. Speed decreases due to weaving are
accounted for by adding the term −φT∆λρm,Nm(k)vm,Nm(k)2/(Lmλmρcr,m)
to the right hand side of (6), where ∆λ is the reduction in the number of
lanes and φ another parameter. This term is only applied to the last segment
of the link upstream of a lane drop.

METANET employs a simple queuing model for collecting the demand
during period k at origin o, and subsequently forwarding it into the main-
stream. This is used for the calculation of the origin link’s o outflow qo(k)
into the motorway. However, for the model validation problem, qo(k) is a
direct measurement from the loop detectors. Hence, the queueing model is
bypassed, since the measurement is directly fed into the model and there is
no need for it.

In order for the speed equation to be applied at every exit location s, the
density trajectories ρs(k) are provided as boundary conditions over the time
horizon.

Finally, a node model is used to assign flows at motorway junctions.
Let In and On denote the set of incoming and outgoing links to and from,
respectively, node n. Then the sum of all flow entering the node n during
time period k, Qn(k) is given by

Qn(k) =
∑
µ∈In

qµ,Nµ(k) ∀n. (8)

The turning rate βmn (k) is defined as the percentage of Qn(k) leaving through
out link m ∈ On during period k. qm,0(k) required by eqn. (4) when i = 1 is
calculated from

qm,0(k) = βmn (k) ·Qn(k) ∀m ∈ On. (9)

For a full description of the METANET, see (Messmer and Papageorgiou,
1990) or Appendix A of (METANET, 2008).

By substituting (5), (8), (9) into (4) and the calculation of mean speeds
and densities acting over nodes into (6) the model can be expressed in the
following discrete dynamic state-space form

x(k + 1) = f [x(k),d(k); z] . (10)

The state vector is

x =
[
ρ1,1 v1,1 . . . ρ1,N1 v1,N1 . . . ρM1,1 vM1,1 . . . ρM1,NM1

vM1,NM1

]T
(11)
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where M1 is the number of motorway links in the network.
The disturbance vector d consists of the inflows qo entering the system

from entry points (origin links) and optionally their speeds vo; the densities
ρs at the destination links; and the turning rates at every split junction.
These quantities are organised into vector

d =
[
q1 v1 . . . qM2 vM2ρ1 . . . ρM3 β

µ1

1 . . . β
µM4
M4

]T
(12)

where M2 is the number of origins, M3 the number of destinations, M4 the
number of split junctions and µn ∈ On the index of the destination link
sending flow out of the system at node n.

Vector z consists of the model parameters as encountered in the dynamic
density (4), speed (6) and fundamental diagram (7) equations. It includes
the network-wide global parameters ρmax, vmin, τ , ν, φ, δ and κ. It also
contains parameters related to the fundamental diagram, i.e. vf , α and ρcr
for each FD used.

3. The Calibration Optimisation Problem Formulation

From a known initial state x0 and known disturbance trajectories d(k),
k = 0, . . . , K − 1, a forward integration of (10) results to a full profile of the
traffic conditions over the time horizon. A set of measurements y from a
number of locations along the motorway, is used for comparing reality with
model output. The error minimisation problem takes the form

min
z
J [x(k),y(k)] (13)

subject to

x(k + 1) = f [x(k),d(k); z] , x(0) = x0 (14)

zmin ≤ z ≤ zmax (15)

where J [x(k),y(k)] is the error function and zmin and zmax are the lower
and upper bounds, respectively, of z’s elements. The evaluation of J for a
particular value of z requires the forward integration of (14) given as input
the measured x0 and d(k).

The parameter vector z consists of two parts, the global parameters and
those defining the FD used. Prior to the solution of problem (13)–(15), there
has to be a decision based on knowledge of the network’s congestion dynamics
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related to the number of FDs to be used and for each one the list of motorway
links using them.

Let N̂ be the number of FDs used; each ones’ parameters ρcr, α and vf
need to be included in z, which takes the form

z =
[
τ κ ν ρmax vmin δ φ v

1
f α

1 ρ1
cr . . . v

N̂
f α

N̂ ρN̂cr

]T
. (16)

When N̂ = 1 then a single fundamental diagram is used for the site. If
N̂ = M1 then every link has its own FD.

The minimal use of FDs can either be explicitly enforced by introducing
an inequality constraint or be implicitly penalised in the objective function.
If the first option is followed, then z needs to be restructured to allow for
this constraint to be expressed.

Let l` be the number of links FD ` is applied to, i.e. its spatial limitation.
The revised vector of model parameters is

z =
[
τ κ ν ρmax vmin δ φ v

1
f α

1 ρ1
cr l

1 . . . vN̂f α
N̂ ρN̂cr l

N̂
]T

(17)

where l` ∈ [0,M1], ` = 1, . . . , N̂ . The evolutionary algorithms used by Poole
and Kotsialos (2016) for solving problem (13)–(15) use the form of z given
in (17) and more details on the method can be found there. However, the
requirement of specifying the spatial extension of an FD in terms of the links
defined in the METANET network description file requires the introduction
of the integer decision variable l` that creates problems in the calculation of
partial derivatives. The variable l` provides a mapping to the links’ list that
cannot be differentiated.

Such a complication does not create a significant problem for population
based methods. Therefore, for the EA used here, z has the form given in
(17). For the gradient based optimisation method z has the form given by

(16) and N̂ = M1. In both cases, the parameters’ upper and lower bounds
in (15) are given by Table 1. Irrespective of which of the two is used, z’s
dimension is denoted as Γ.

[Table 1 about here.]

Let us assume that there areM5 loop detectors on the motorway providing
flow and speed measurements. As observed by Spiliopoulou et al. (2014), the
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flow and speed errors are not antagonistic in the sense that if the model mean
speed given by (6) is correct then the flow will also be correct by virtue of the
density equation (4). Hence, the measurements vector used for calculating
the error term in the objective function includes only speeds and takes the
form

y = [y1,v . . . yM5,v]
T (18)

where yj,v is the space mean speed from sensor j, j = 1, . . . ,M5.
A global list is retained assigning each sensor to the corresponding motor-

way link it belongs to. If sensor j is installed at segment ij of link mj, then
the discrepancy between yj,v(k) and vmj ,ij(k) gives a measure of the model’s
accuracy. Typically, the sensors’ measurement sample time Ts is larger than
the model sample time T . For example, for the data used here, Ts = 60 sec-
onds whereas T = 8 seconds. For each model time period k the measurement
sample period it belongs to is identified and the model outputs are compared
to the same set of measurements.

Measurement location j’s contribution to the speed square error terms is
given by

Ej,v [x(k),y(k)] =
[
yj,v(k)− vmj ,ij(k)

]2
. (19)

The total error over the whole network and time horizon is given by the
expression

Jv [x(k),y(k)] =
1

KM5

K∑
k=1

M5∑
j=1

Ej,v [x(k),y(k)] . (20)

In order to implicitly achieve more relevant assignments of FD the fol-
lowing penalty term Jp(z) is included in the objective function.

Jp(z) =
N̂−1∑
`=1

N̂∑
r=`+1

[
wv
(
v`f − vrf

)2
+ wρ

(
ρ`cr − ρrcr

)2
+ wα

(
α` − αr

)2
]

(21)

where wv, wρ and wα are weighting parameters and are set to 0.001, 0.0015
and 1.0, respectively. This term considers all combinations of different FD
used for a site and penalises large variances of their parameters.

The problem’s objective function (13) takes the form

J [x(k),y(k), z] = Jv [x(k),y(k)] + wpJp(z) (22)
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where wp a weighting parameter of the total penalty term, which depends on
the problem size and properties; a value of 5.0 is used here.

Optimization problem (13)–(15), (22) is different from the one solved in
(Poole and Kotsialos, 2016) in terms of the objective function used, which
is based on a measurement vector which includes flows in addition to the
speeds of (18). As a result, the weights used in the objective function (22)
are also different.

4. Optimisation Algorithms Used for the Calibration Problem

4.1. PSO Algorithms

PSO (Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995) algo-
rithms employ the notion of particles for searching the Γ dimensional solu-
tion space C ⊂ RΓ having knowledge of the best previous solutions found by
themselves and by other particles in their neighbourhood. This information is
used to update a velocity (not to be confused with the vehicular mean speed)
vector governing each particle’s new position resulting to a flock converging
towards the current best solution and evaluating the objective function at
points along its flight path. An inertia weight (Shi and Eberhart, 1998) al-
lows for the particles’ velocity to have a momentum resulting to overshooting
over the current optimum and explore more of the solution space.

PSO algorithms use different topologies for determining a particle’s neigh-
bourhood. Local-PSO (LPSO), also known as lbest PSO (Engelbrecht, 2013),
(Kennedy and Mendes, 2002) uses a ring structure where each particle has
two neighbours. There is a large body of literature concerned with variations
of the basic search method. Seven different variants were used and their
convergence properties are reported in (Poole and Kotsialos, 2016). Based
on this work, LPSO (Kennedy and Mendes, 2002), Adaptive PSO (APSO)
(Zhan et al., 2009) and High Exploration PSO (HEPSO) (Mahmoodabadi
et al., 2014) have been selected for discussion along with RPROP. These three
algorithms converged to the best model parameter sets; for further details
see (Poole and Kotsialos, 2016).

The overall system architecture for EA based calibration is depicted in
Figure 2. A simple interface between the search code and METANET allows
to automatically set up all the necessary input files for METANET to run
using any vector z given by (17). The objective function value (22) is calcu-
lated based on the simulation’s output files. Since it is used as a black box
the discretisation scheme followed does not depend explicitly on the sensors’
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location. Instead, it is the sensors that are mapped to motorway segments
after discretisation.

[Figure 2 about here.]

4.2. RPROP with ADOL-C
Problem (13)–(15) is a nonlinear constrained optimisation problem with

equality and simple bound constraints. The equality constraints are given
by the state equation (14) and simple bound constrains given by (15). The
model’s state equation, can be embedded iteratively directly into the objec-
tive function J and allowing to consider its dependence only on z. In other
words,

J [x(k),y(k), z] =
J {z,y(k),x(k) : x(k + 1) = f [x(k),d(k), z] ,x(0) = x0, k = 0, . . . , K − 1} =
J(z) = Jv(z) + wpJp(z) (from (22)) .

(23)
where the dependence on y(k) has been dropped since these are known mea-
surements.

The optimisation problem (13)–(15) can be expressed in view of (23) as

min
z
J(z) (24)

subject to

zmin ≤ z ≤ zmax (25)

which is a simply bounded nonlinear optimisation problem. From (23)

∂J

∂z
=
∂Jv(z)

∂z
+
∂Jp(z)

∂z
. (26)

∂Jp(z)/∂z can be calculated analytically from (21) since it consists of quadratic
penalty terms and therefore

∂Jp(z)

∂zγ
= 2

N̂∑
`=1,` 6=Zγ

wv,ρ,α (zγ − z`) , γ = 1, . . . ,Γ (27)

where Zγ is the fundamental diagram index decision variable zγ refers to and
wv,ρ,α is given from

wv,ρ,α =


wv if zγ corresponds to a free speed
wρ if zγ corresponds to a critical density
wα if zγ corresponds to an exponent
0 otherwise.

(28)
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From the chain rule
∂Jv(z)

∂z
=
∂x(z)

∂z

T ∂J(z)

∂x(z)
. (29)

In view of (11) ∂J(z)/∂x(z) has the form

∂Jv(z)

∂x(z)
=

[
∂Jv(z)

∂x1(k)

T

. . .
∂Jv(z)

∂xM1(k)

T
]T

, k = 1, . . . , K (30)

where

∂Jv(z)

∂xm(k)

T

=

[
∂Jv(z)

∂ρm,1(k)

∂Jv(z)

∂vm,1(k)
. . .

∂Jv(z)

∂ρm,Nm(k)

∂Jv(z)

∂vm,Nm(k)

]T
m = 1, . . . ,M1 (31)

Because of the quadratic nature of the error terms (19) and the fact that Jv
in (20) does not explicitly depend on the densities

∂Jv(z)

∂ρm,i(k)
= 0 (32)

∂Jv(z)

∂vm,i(k)
=

2

KM5

[vm,i(k)− yj,v(k)] Im,i (33)

∀m = 1, . . .M1, i = 1, . . . , Nm, k = 1, . . . , K

with Im,i a binary indicator function showing if there is a measurement for
segment (m, i) used in the error calculation and j is the corresponding mea-
surement station in (18).

Equations (30)–(33) allow the analytical calculation of one of the right
hand side terms of eqn. (29); in order to complete this calculation and
determine its left hand side, the model’s Jacobian matrix ∂x/∂z needs to be
calculated. The matrix’s structure is

∂x(z)

∂z
=


∂x(1)
∂z1

T
. . . ∂x(1)

∂zΓ

T

. . . . . . . . .
∂x(K)
∂z1

T
. . . ∂x(K)

∂zΓ

T

 (34)

where

∂x(k)

∂zγ

T

=

[
∂ρ1,1(k)

∂zγ

∂v1,1(k)

∂zγ
. . .

∂ρM1,NM1
(k)

∂zγ

∂vM1,NM1
(k)

∂zγ

]T
(35)
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and because of (32) only the ∂vm,i(k)/∂zγ for every segment i of link m at
time instant k with respect to every model parameter zγ need to be cal-
culated. This quantity is calculated by the ADOL-C AD library for every
simulation time step. The whole Jacobian is calculated in a single simula-
tion run based on the information encoded within METANET’s source code.
Hence, in order to obtain ∂J(z)/∂z in (26), ∂Jp/∂z and ∂Jv/∂x are calculated
analytically from (27) and (32)-(33), respectively, and ∂x/∂z is calculated
by ADOL-C during a simulation run with METANET configured with z.

It is this gradient calculation that RPROP utilises. RPROP has proved to
be a fast and reliable search heuristic for converging to local minima for un-
constrained, simply bounded, smooth and non-smooth problems, (Kotsialos,
2013), (Kotsialos, 2014) and for optimal control problems related to road traf-
fic (Kotsialos and Papageorgiou, 2004) and production networks (Maropoulos
et al., 2006). Since the optimisation problem (24), (25) is simply bounded,
the projection operator is used on the gradient vector and decision variables’
updates, see (Kotsialos, 2013).

Because RPROP does not posses the descent property it can perform
search space exploration if allowed. Nevertheless, it needs to be paired by a
globalisation technique in order to accelerate convergence and improve search
space exploration. A simple multistart initialisation scheme where a number
of individual instances of the same optimisation problem with initial points
sampled from a Latin hypercube is sufficient.

A more complicated system architecture is necessary when coupling ME-
TANET with ADOL-C and RPROP, Figure 3. The RPROP application is
the parent process invoking at each optimisation iteration the METANET
executable. METANET is the child process and its role is to perform a single
simulation run with the set of parameters sent by the parent and return back
the Jacobian ∂x/∂z. The two processes communicate using standard pipes
commonly used in unix-like operating systems (linux in our case), writing
the matrix in a shared memory area. The matrix ∂x/∂z is stored in memory
shared by the child (METANET joined with ADOL-C) until the end of the
simulation, i.e. until k = K. At this point, the whole ∂x/∂z is accessible
by RPROP (the parent process) and the matrix multiplication (29) takes
place. This way, bottleneck delays from the interprocess communication
are avoided. This solution is depicted in Figure 3, where the Jacobian is
directly accessible by the parent as it is stored in the shared memory after
the simulation run.
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[Figure 3 about here.]

Since a synchronized multistart version of RPROP is used, the parent
process creates at each iteration the same number of child processes as the
number of the different starting points sequentially. Once all the child pro-
cesses deliver the required information the optimisation loop iteration index
of the parent process is allowed to increase.

4.3. Algorithm Parameters
APSO, LPSO, HEPSO and RPROP are initialised using Latin hyper-

cubes. Each decision variable is assumed to have a uniform distribution
within its range, as defined in Table 1. For APSO, LPSO and HEPSO those
limits are handled by moving solutions that are outside the domain, back to
the boundary. The velocity component for dimensions that are adjusted this
way is multiplied by −0.5 preventing solutions from attempting to leave the
space at the next iteration. PSO algorithms have a population size set equal
to 30. Other parameters are those given by the papers they were proposed
in. The probabilities for the artificial bee colony and GA operators used by
HEPSO are the same as those suggested by Mahmoodabadi et al. (2014). For
LPSO the best results were obtained by using the parameter values suggested
by Zambrano-Bigiarini et al. (2013).

RPROP convergence is heavily affected by the restart period. Restart is
a typical feature of iterative gradient based algorithms whereby periodically
a step along a different search direction, usually the steepest descent, is
taken rather than the one selected by the algorithm. The restart process
for RPROP is described in (Kotsialos, 2014), but here it is not periodic any
more.

A short restart period allows the algorithm to rapidly try to explore
new areas increasing this way the probability of finding a global minimum.
However, time is required for the algorithm to fully exploit each basin of
attraction, something that may be hindered by frequent restarts. It is not
possible to know beforehand if a restart is going to be successful or not ending
in the basin of attraction of a better local minimum. Instead of using a fixed
restart period that could be too small or too large to be effective, a value was
used that followed a chaotic sinusoidal mapping as suggested by Gandomi
et al. (2013). The restart period randomly fluctuates then between its upper
bound which was set at 200 and its minimum at 10 iterations. Similar to the
swarm size of 30 used for the PSO algorithms, RPROP starts from 30 initial
points which are updated synchronously.
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5. Site Description and Data Availability

The test site is the Northbound M1 motorway as it enters Sheffield. It
extends over 21.9 km and the METANET model consists of 20 links, Figure
4. Typically, recurrent congestion has the form of a shock wave originating
at the centre. Usually it occurs at the end of the link L6.

[Figure 4 about here.]

It can be seen from Figure 4(b) that the entrance of M18 is modelled
as two independent origins separated by link L6a. This reflects the junc-
tion’s design where the on-ramp splits into two different merging lanes. The
leftmost one leads the merging point 800 meter downstream the rightmost,
hence link L6a.

For this site, MIDAS data were used from Monday the 1st, 8th and 15th

of June 2009. The only criterion used for selecting these datasets was that
they should cover free flow, critical and congested conditions in order for the
full spectrum of traffic dynamics to be represented. There was not any pre-
liminary pre-selection phase or testing. Data from the same day of the week,
a Monday, and the same time of day, 6:00 to 9:30 am, were extracted from
the database. The data are quite similar because they represent the same
time of the same day, but our study clearly shows that not all of them are
suitable for use in a calibration problem. Differences in the boundary con-
ditions are sufficient to render one them as unsuitable due to spillback. The
MIDAS database provides large amounts of data reflecting the traffic condi-
tions throughout the year. This provides the possibility of calibrating traffic
flow models for different days and times of day. More detailed data oriented
investigations may be organised based on the methodology provided here.
However, this paper focuses on the details of the calibration and verification
methods and provides a critical discussion of the results in terms of traffic
quantities of interest. Emphasis is on describing the coupling of RPROP,
METANET and ADOLC and the coupling of METANET with Evolutionary
Algorithms, rather than the details of a possible data selection and model
calibration campaigns under different sets of data varying time of day, day
of week, environmental conditions and time of year.

The MIDAS data are collected from loop detectors installed on the mo-
torways and the on-/off-ramps. MIDAS is a system owned by Highways
England, which collects and archives on daily basis minute by minute flow,
speed, and occupancy measurements per lane from highways in England.
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It is well known that vm,i in eqn. (5) is the space mean speed, which for a
small area centred around a loop detector is estimated by the harmonic mean
of individual vehicle speeds passing over the detector. A method for estimat-
ing the space mean speed based on the lane time mean speed is described
by Han et al. (2010) in an effort to improve travel time estimation accuracy.
Here, a simpler approach is followed making the assumption that the traffic
conditions are homogeneous along a lane, i.e. vehicles along a lane have the
same speed. In this case the space and time mean speeds are identical for a
lane flow stream.

Let k′ denote the minute during which Nj,p(k
′) vehicle counts are recorded

yielding a time mean speed v̂j,p(k
′) at lane p of location j. Also, let v̂j,p,a(k

′)
be the individual vehicle speeds whose arithmetic mean gives v̂j,p(k

′), i.e.

v̂j,p(k
′) =

1

Nj,p(k′)

Nj,p(k′)∑
a=1

v̂j,p,a(k
′). (36)

Because of the assumption of equality of the time with the space mean speed
at a lane, the measured speed can be expressed as the harmonic mean of
individual speeds, i.e.

v̂j,p(k
′) =

Nj,p(k
′)∑Nj,p(k′)

a=1
1

v̂j,p,a(k′)

⇒
Nj,p(k′)∑
a=1

1

v̂j,p,a(k′)
=
Nj,p(k

′)

v̂j,p(k′)
. (37)

The space mean speed of the road segment of link m which has λm lanes is
estimated as the harmonic mean of all vehicles in it, i.e.

yj,v(k
′) =

 1∑λm
p=1Nj,p(k′)

λm∑
p=1

Nj,p(k′)∑
a=1

1

v̂j,p,a(k′)

−1

=

∑λm
p=1Nj,p(k

′)∑λm
p=1

∑Nj,p(k′)
a=1 [v̂j,p,a(k′)]

−1
(and from (37))

=

[
λm∑
p=1

Nj,p(k
′)

v̂j,p(k′)

]−1 λm∑
p=1

Nj,p(k
′). (38)

Equation (38) accounts for the lateral speed variance in a road segment
assuming no longitudinal variance in the estimation of the space mean speed.
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This estimate is always smaller than the arithmetic of the measured lane
speeds (36) with the difference increasing in congested traffic conditions. No
other transformations on the data like those by Treiber and Kesting (2012)
are used.

The site was modelled following METANET’s nomenclature and the nec-
essary files, as specified in (METANET, 2008), were developed. The informa-
tion provided to the simulator is both static and dynamic. Static information
is about the simulation mode (no control applied, with or without incidents,
non-destination oriented and measurements’ input pattern), which do not
change during the optimisation iterations irrespective of the z’s value and
remain the same for repeated calls to the METANET executable. The net-
work topology is static as well, but is encoded in a file together with the
parameters z. As a result when the objective function, and corresponding
gradient, are evaluated for a particular z, the network description file needs
to be created on the fly.

Dynamic information comes in the form of trajectories of measurements
over time at boundaries and at locations inside the site where data used for
comparison exist. These data provide the model inputs, i.e. the initial state
vector of eqn. (11) x(0), d as defined in eqn. (12) and the measurements’
vector y in (18).

The demands at the origins for the three different days are shown in Figure
5 (a). METANET can accept speeds at origins but they are not necessary
for the simulation to run. Still, they may improve model accuracy. With
the exception of the main motorway entrance O1 at the upstream main site
boundary and the leftmost lane of the M18 on-ramp O32-1, the speed is not
given for on-ramps. Preliminary work showed improved convergence in the
presence of speeds for those two locations. O1 is essentially the upstream
motorway, hence the speed there is necessary as it influences the system
dynamics; O32-1 is also a motorway lane where vehicles accelerate more
than in the typical urban road. The speed trajectories are shown in Figure
5(b). Both the demand and the speed trajectories are very similar for the
three days, reflecting the fact that they were taken from the Monday of three
consecutive weeks of the same month.

[Figure 5 about here.]

Figure 6 shows the density trajectories at the network’s destinations.
There is no congestion at the end of the site at destination D1, hence there is
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no congestion coming from downstream. The recurrent congestion occurring
inside the network is endogenous. It is this kind of congestion a traffic flow
model needs to be able to replicate and predict. Destinations D31, D32 and
D34 are practically free flowing, with very low congestion levels. The road
network just after those destinations has enough capacity for accommodat-
ing the outflows. This is not true, however, for destination D33, where an
increase in density can be observed during the second half of the time hori-
zon. The surface streets after D33 cannot accommodate the flow leaving the
system and there is a density built up filling up the off-ramp lanes. This is
a problematic condition because spillbacks are not explicitly modelled. To
accommodate this situation, motorway link, L33 in Figure 4, was introduced.

[Figure 6 about here.]

Finally, Figure 7 shows the turning rates at each of the off-ramps. Driver’s
routing behaviour remains very similar for the 1st and 15th, with only small
differences for the 8th. D32 and D33 carry out significant proportions of the
total flow served by the network.

[Figure 7 about here.]

6. Model Calibration

As mentioned before, three data sets were selected for calibrating the
model, from July 1st, 8th and 15th, 2009. The same METANET model
was calibrated using APSO, LPSO, HEPSO (we refer to those as EA) and
RPROP. Figures 8(a) and (b) depict the convergence profiles for the EA and
RPROP, respectively, when solving problem (24)–(25) using the 15th’s data.
Subfigure (a) shows the objective function value over the number of iterations
of particle number 1 in the swarm for each of the three EA. The corresponding
algorithm’s best of the whole swarm is depicted using lines. Particle number
1 achieves the best only for APSO after about 1,300 iterations, hence the
concentration of points near the best line. For the other two algorithms, this
specific particle does not achieve the optimum; the solid line (best particle) is
produced by one of the untraced particles in the swarm. The erratic nature
of EA’s random search is clearly shown.

On the other hand, RPROP has a smoother, more targeted profile as
can be seen in Figure 8(b). This reflects the nature of the gradient based
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search performed. The spikes observed at each trajectory, are due to the
restart. Because of the chaotic restart used, they occur at seemingly random
iterations. RPROP does not require the large variance sampling EA use and
is able to converge to the neighbourhood of the optimum faster.

[Figure 8 about here.]

LPSO and HEPSO required 75,030 function evaluations; for APSO this
number is not static and approximately 76,500 were required for 2,500 itera-
tions. An RPROP run with six points requires 15,012 function evaluations
for the same number of iterations. An objective function evaluation per-
formed within the framework of an EA algorithm, which does not require
the evaluation of partial derivatives, takes 0.015 seconds. The same calcu-
lation in conjunction with the gradient vector evaluation based on ADOL-C
and the matrix multiplication (29) requires 0.35 seconds. The ADOL-C rou-
tines were not optimised and speed up of the implementation is possible. It
should be noted that contrary to gradient based line search and trust re-
gion methods, RPROP requires only one objective function value and one
gradient vector evaluation per iteration. If such a method is used, the cor-
responding computation time increase should be compensated by increased
speed of convergence.

Since the main aim of this paper is to demonstrate the coupling of ME-
TANET, ADOL-C and RPROP, rather than compare the performance of
swarm and gradient based algorithms, each algorithm was run three times,
each time with 30 particles (EA) and 30 start points (RPROP), to get some
indicative comparison results. A more detailed investigation on the optimi-
sation algorithmic performance will be reported for a much larger and more
challenging network rather than the one used here.

Table 2 shows the objective function value (22) for each run of each day’s
data set and the corresponding square error averaged over time and number
of detector stations, i.e. the expression given in (20). Since Jv is a square
error, the resulting mean absolute error is in the order of 6 to 7 km/h.

[Table 2 about here.]

With the exception of HEPSO for the data of the 8th, the best result
for J achieved by any of the swarm algorithms is also the best result with
respect to the mean square error Jv. This is not true for RPROP as the
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best Jv does not correspond to the best J . The penalty term for the optimal
solution is larger in RPROP. This is to be expected, since RPROP has a
larger number of degrees of freedom in the form of available decision variables
representing a more detailed profile of model parameters. RPROP has 13
different fundamental diagrams at its disposal, which can be tuned, whereas
the swarm algorithms are restrained to a maximum of 7 for the mainstream
plus 2 separate ones for L32 and L33. In other words, in addition to the
global parameters, which are the same for both types of algorithms, RPROP
has 39 parameters (vf , ρcr and α) for the available fundamental diagrams
and PSO a maximum of 27. In fact, PSO algorithms converge to a solution
where not all available fundamental diagrams are used. The difference in
performance is quite small, since the mean absolute error remains in the area
of 6 to 7 km/h.

The optimal solutions achieved by each algorithm for each of the data sets
indicated by the bold font at Table 2 are given by Tables 3–6. The resulting
spatial distribution of the capacity, free speed, critical density and α given
by the optimal solutions obtained using the data of the 15th are depicted in
Figures 9–11.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

The results based on the data of the 8th are quite different from those
obtained based on the other two days. What is observed at the table is the
effect of using data that are unsuitable for model calibration. The reasons
for this difference will be discussed in the next section.

It can be seen from Tables (4)–(6) and Figures 9–11 that APSO(1st),
HEPSO(1st) and HEPSO(15th) converge to solutions that result to the same
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capacity assignment pattern. Two different FD are used to model the main-
stream; the first one starts from link L1 (beginning of the site) and extends
to link L7. The second one starts from L8 extends up to L10 (the site’s end).
HEPSO(1st) and HEPSO(15th) split the mainstream into two sections with
the upstream one to have high capacity and the downstream with lower. A
slightly different pattern is followed by APSO(15th) where an additional FD
is used for L10. LPSO(1st) also follows a two FD pattern but with different
extension. The split takes place at L5 rather than L7.

RPROP(1st) and RPROP(15th) have a more complicated capacity pat-
tern due to the larger number of available FD. The capacity pattern for
section L7-L10 is the same and the two solutions differ on the mainstream
part from L1–L5. These patterns reflect the fact that congestion is generated
in the area of L6, hence the variance upstream of it.

A common feature of all solutions’ capacity patterns is that the section
that contains the last link L10 has always relatively smaller capacity. This is a
very pronounced feature at the RPROP solutions as well as in APSO(15th).
This tendency of the optimisation is not misplaced since the speed levels
predicted by the model are close to those measured. This can be seen in
Figure 12, where the measured and calibrated model speed trajectories based
on RPROP(1st) and RPROP(15th) for the two segments of L10. It can be
seen that the selection of the link’s capacity is a trade-off between the two
speed trajectories from the two segments, hence the small bias observed at
the model speed for the second segment sending flows out of the system.

[Figure 12 about here.]

Another feature of the solutions are links L32 and L33, which have their
own FD. They are auxiliary motorway links where dynamics are important
for the overall model and they need to be described in more detail than
the simple queueing of the origin links or the destinations’ discharge. For
RPROP(1st, 15th) L32’s capacity is very similar to that of L6, into which it
is feeding its traffic volume. Although this observation does not hold for the
EA the RPROP solutions clearly support this.

No such connection can be identified for L33. This small link models
a problematic interface with the surface street network, where congestion
spilbacks occur. An explanation for the different capacities at the solutions
of the 1st and 15th can be based on a closer examination of Figure 6 and
the subdiagram showing the density at destination D33 where L33 leads.
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During the period 8:55–9:10 am there is a pronounced difference between the
destination density trajectories given as boundary conditions for D33. This
density on the 15th remains high whereas on the 1st a sharp downwards
peak can be seen. The hypothesis is that this difference on the boundary
conditions is the cause for leading the capacity at the high level of 2,766
veh/km/lane for the 1st and at the level of 1,622 veh/km/lane for the 15th.
Further evidence supporting it are the solutions delivered by the EA for L33.

Overall, all algorithms provide parameter sets that are able to repro-
duce the traffic dynamics with very good accuracy. Figure 13 provides the
calibrated model, based on the optimal solutions found by each algorithm,
versus speed measurements diagrams. Figure 14 depicts the distance-time
diagrams of the calibrated METANET model of the 15th using the parameter
sets resulting to the minimum Jv on Table 2 for each of the four optimisation
algorithms. Empty spaces on them indicate areas where there are no data
available.

[Figure 13 about here.]

[Figure 14 about here.]

An additional insight on how the mean speeds are related to the model
parameters for which the calibration problem is solved, can be obtained by
the information contained in the Jacobian matrix ∂x/∂z. In effect this ma-
trix provides the sensitivities of the segments’ mean speed at every point
in time with respect to all variables included in z. These sensitivities can
be displayed on distance-time diagrams similar to Figure 14. The result is
an additional insight on systems dynamics and how sensitivities propagate
inside the network.

Figure 15 shows the sensitivity of the network’s speeds over the whole
time horizon with respect to the FD parameters of links L1, L6 and L10
for the solution obtained by RPROP(15th). Sensitivity shockwaves can be
seen depending on the links’ locations. Forwards moving shockwaves can
be observed for the sensitivity to L1’s parameters, from the site’s start to-
wards its end. Backwards shockwaves can be seen for the sensitivities with
respect to the L10 FD parameters propagating from the site’s end towards
the start. A more complicated pattern in the area where congestion forms
can be seen on link’s L6 diagram. Figure 16 depicts the speed sensitivities
with respect to the global parameters. All sensitivities are evaluated for the
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specific boundary conditions of the particular day at the solutions given by
Tables 3–6.

[Figure 15 about here.]

[Figure 16 about here.]

This information can be used for systematic analysis of motorway fea-
tures, such as bottlenecks over time and space. Control strategy design can
benefit as well as infrastructure improvement projects. It is beyond the scope
of this paper to present a detailed study of the model’s sensitivity dynamics
and how this information is to be exploited and is left as future work.

In order to judge the quality of solutions obtained and their relevance to
real traffic, a verification process needs to take place. This entails the use of
the optimal parameter sets on data that were not used for the corresponding
calibration optimisation problem. The next section is concerned with model
verification.

7. Model Verification

The discussion on model verification requires testing of the optimal pa-
rameter sets obtained from the solution of the calibration problems. In order
to facilitate it, the optimal parameter sets obtained by algorithm based on
data from date are denoted as z∗algorithm(date). When algorithm is omitted we
refer to the best z of the day.

Each of the optimal parameter sets given by Tables 3–6 was used for
running a simulation with boundary conditions data (demands, densities and
turning rates) from the other two. In each case Jv was calculated according
to (20). Table 7 provides the values of Jv for the all z∗, algorithms and dates.

[Table 7 about here.]

The diagonal elements in each algorithm block of the table are the mini-
mum row values since they are the calibrated solutions to the specific date.
The degradation of the model quality as demonstrated at the other two row
entries is to be expected, since the parameters were not optimised for the
corresponding set of data.

It can be seen from Table 7 that the optimal parameter vectors of the
15th are able to reproduce the congestion pattern of the 1st better than the
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other way around. When z∗1st is applied on the data of the 15th, Jv increases
by a nearly constant factor of 2.8 times the calibration error of the 1st. When
z∗15th is applied on the data of the 1st, the error increases by a factor of about
1.6 for the EA and 2.6 for RPROP. Hence, it can be concluded that the data
of the 15th provide more information about the underlying traffic dynamics
and the optimisation algorithms produce more relevant sets of parameters
The value of Jv in these cases ranges from 77 to 83 (km/h)2, i.e. from 8.8 to
9.1 km/h per measurement, which is a very small difference and is consistent
to what is reported in the literature (Spiliopoulou et al., 2014), (Ngoduy and
Maher, 2012).

The main source of verification error comes from underestimating the
congestion’s queue tail extension and duration. Figure 17 shows the model
and corresponding speed measurements when z∗15th is used for the data of the
1st. The speed dynamics are accurately represented for the site, with the ex-
ception of an area outlined by two detector stations that is about 700 meters
long. The model predicts for this length of road a faster speed recovery than
the one observed, by about 40 minutes. The reasons for this result are not
clear, but in view of the fact that solutions based on the 1st do not generalise
as well as those based on the 15th, it could be attributed to an exogenous or
irregular event factor. This behaviour is consistent with verification results
reported in the literature, (Spiliopoulou et al., 2014). However, the overall
congestion dynamics are reproduced with sufficient accuracy as can be seen
from the resulting distance-time diagram in Figure 18.

[Figure 17 about here.]

[Figure 18 about here.]

Another pronounced feature on Table 7 is the poor generalisation of the
parameters obtained based on data from the 8th. Although the calibration
error is at the same level as for the other dates, once the z∗8th of any algo-
rithm is applied to any other date, the error becomes very large. A similar
degradation is observed when one of the z∗1st or z∗15th is applied on the data
of the 8th, signalling a problematic situation on that particular day.

A closer examination of the data leads to the conclusion that there is
a prolonged spilback of congestion from the surface are into the motorway
from D33 for this date. Figure 19 depicts the mean speed trajectories of
every lane of link L6 for the three days of data. A recurrent drop of speed
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can be observed. The speed drop on the 8th for the first lane is much higher
than in the other days but also it is higher compared with the other two
lanes. This is a spilback of congestion from L33 and D33 during the short
period of 07:40–07:54.

[Figure 19 about here.]

This effect is exogenous to the traffic dynamics of the system since it is
caused by the traffic conditions of the surface streets. In order to compensate
for it a small incident was introduced at L33 for the duration of the speed
drop. L33’s capacity was dropped to 875 veh/hour/lane, or 1,750 veh/hour
for both lanes, during this period. The outcome of this intervention is shown
on the last column of Table 7; the average square mean error is reduced for
all parameter sets. Based on the results of Table 7, z∗RPROP (15th) is the best
set of parameters identified.

8. Conclusion and Future Work

This paper has presented a detailed study on macroscopic traffic flow
model validation using a number of different optimisation algorithms. The
focus has been on gradient based optimisation but results from evolution-
ary algorithms were presented as well. The underlying model used is the
well-known METANET simulator, which has been combined with automatic
differentiation software (ADOL-C) and numerical optimisation (RPROP) for
developing a system of traffic flow model parameter estimation. The addi-
tional requirement of automatically selecting each fundamental diagram’s
location and extension is an explicit feature of the evolutionary optimisa-
tion algorithms but not of the gradient based. This constraint is implicitly
considered in the optimisation problem formulation where variations of fun-
damental diagram parameters are penalised.

Data from three different days were used for calibration and verification.
It has been shown that not all data given as input for parameter identifi-
cation were suitable for this purpose. Their ability to guide optimisation
algorithms to converge to solutions encapsulating the underlying traffic flow
dynamics is not always present. In fact this study raises the question of how
to qualify sets of data to be used for calibration. All three data sets used
display a recurrent and relatively regular pattern of congestion. However,
only one of them proved to be suitable for calibration. A good result from
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the optimisation algorithm minimising the error is not a sufficient indicator
of a valid model. The general rule of thumb for selecting data sets ensuring
representative measurements of free, critical and congested conditions is not
enough neither. Complex interactions may be overlooked resulting to non-
representative parameters and therefore a severe model–reality mismatch.
Sufficient criteria and conditions need to be determined in order to automate
this qualification process, something which can be based on the notion of
persistence of excitation.

The solution of the calibration problem using gradient based optimisa-
tion is one of this paper’s original contributions. It has been demonstrated
here that the calculation of the necessary partial derivatives is possible by
using automatic differentiation software technology. The ADOL-C library
employed has proven to be a highly flexible and robust piece of software that
can be easily incorporated into the source code of a macroscopic traffic flow
simulator. A by-product of the overall gradient calculation, is the calculation
of the state’s Jacobian matrix with respect to the model parameters. This
yields additional information regarding the mean speeds’ sensitivities with
respect to the infrastructure-vehicle-driver parameters that can be exploited
for improving control design and interventions to the traffic system. A more
detailed investigation of how these sensitivities can be utilised in a rigorous
and systematic manner is a future direction of research.

The fact that gradient information has become available opens the way
for using well known and established optimisation methods. In this paper the
RPROP algorithm as an optimisation search heuristic has been used. It has
been shown that it is capable of solving this highly complicated and demand-
ing problem. Its simplicity of implementation has allowed the integration of
the three different source codes into a single system, i.e. METANET, ADOL-
C and RPROP.

Results from swarm intelligence and RPROP have been presented here.
A more detailed evaluation of algorithmic speed of convergence and solution
quality will take place for a significantly larger and challenging network. An-
other line of research following this work is using other second order macro-
scopic traffic flow models that do not suffer from the isotropy assumption.
Further work will also focus on improving the software implementation is-
sues and RPROP’s speed of convergence. Implementing integer programming
methods for the problem formulation where a maximum number of used FD
constraint is imposed is another important area of work. Finally, more de-
tailed experiments need to be conducted in order to correlate the capacity, as
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calculated by the calibration, and traffic composition with respect to different
vehicle classes in it.
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Lighthill, M., Whitham, G., 1955. On kinematic waves II: a traffic flow theory
on long crowded roads. Proc. Roy. Soc. London Series A 229, 317–345.

Luspay, T., Kulcsár, B., van Wingerden, J., Verhaegen, M., 2009. On the
identification of lpv traffic flow model. In: Control Conference (ECC),
2009 European. IEEE, pp. 1752–1757.

Luspay, T., Kulcsár, B., van Wingerden, J., Verhaegen, M., Bokor, J., Jan
2011. Linear parameter varying identification of freeway traffic models.
IEEE Transactions on Control Systems Technology 19 (1), 31–45.

Luspay, T., Kulcsár, B., Varga, I., Bokor, J., 2010. Parameter-dependent
modeling of freeway traffic flow. Transportation Research Part C: Emerging
Technologies 18 (4), 471–488.

Mahmoodabadi, M. J., Salahshoor Mottaghi, Z., Bagheri, A., 2014. HEPSO:
High exploration particle swarm optimization. Information Sciences 273,
101–111.

Maropoulos, P., Kotsialos, A., Bramall, D., 2006. A theoretical framework for
the integration of resource aware planning with logistics for the dynamic
validation of aggregate plans within a production network. CIRP Annals-
Manufacturing Technology 55 (1), 483–488.

Messmer, A., Papageorgiou, M., 1990. METANET: A macroscopic simulation
program for motorway networks. Traffic Engineering and Control 31, 466–
470; 549.

31



METANET, 2008. “METANET Documentation”. Dynamic Systems and
Simulation Laboratory, Technical University of Crete, Chania, Crete,
Greece.

Munoz, L., Sun, X., Horowitz, R., Alvarez, L., 2006. A piecewise-linearized
cell transmission model and parameter calibration methodology. In: Proc.
of the 85th Transportation Research Board Annual Meeting. Washington
D.C., USA, pp. 183–191.

Munoz, L., Sun, X., Sun, D., Gomes, G., Horowitz, R., 2004. Methodological
calibration of the cell transmission model. In: Proc. of the 2004 American
Control Conf. Boston, MA, USA, pp. 798–803.

Nelder, J., Mead, R., 1965. A simplex method for function minimization.
The Computer Journal 7 (4), 308–313.

Ngoduy, D., Hoogendoorn, S., Van Zuylen, H., 2004. Comparison of numer-
ical schemes for macroscopic traffic flow models. Transportation Research
Record 1876 (1), 52–61.

Ngoduy, D., Maher, M., 2012. Calibration of second order traffic models
using continuous cross entropy method. Transportation Research Part C
24, 102–121.

Nocedal, J., Wright, S., 2006. Numerical optimization. Springer Science &
Business Media.

Papageorgiou, M., 1983. Applications of automatic control concepts to traf-
fic flow modeling and control. Vol. 50 of Lecture Notes in Control and
Information Sciences. Springer.

Papageorgiou, M., Blosseville, J.-M., Hadj-Salem, H., 1990. Modelling and
real-time control of traffic flow on the southern part of Boulevard Periph-
erique in Paris: Part I: Modelling. Transportation Research Part A 24 (5),
345–359.

Payne, H. J., 1971. Models of freeway traffic and control. Proc. Simulation
Council 28, 51–61.

Poole, A., Kotsialos, A., 2012. METANET model validation using a genetic
algorithm. In: Proc. of the 13th IFAC Symp. on Control in Transportation
Systems. pp. 7–12.

32



Poole, A., Kotsialos, A., 2016. Swarm intelligence algorithms for macroscopic
traffic flow model validation with automatic assignment of fundamental
diagrams. Applied Soft Computing 38, 134–150.

Richards, P. I., 1956. Shock waves on the highway. Operations Research 4,
42–51.

Riedmiller, M., Braun, H., 1993. A direct adaptive method for faster back-
propagation learning: The rprop algorithm. In: Neural Networks, 1993.,
IEEE International Conference on. IEEE, pp. 586–591.

Shi, Y., Eberhart, R., 1998. A modified particle swarm optimizer. In: Proc.
IEEE World Congress on Computational Intelligence. IEEE, pp. 69–73.

Spiliopoulou, A., Kontorinaki, M., Papageorgiou, M., Kopelias, P., 2014.
Macroscopic traffic flow model validation at congested freeway off-ramp
areas. Transportation Research Part C 41, 18–29.

Spiliopoulou, A., Papamichail, I., Papageorgiou, M., Tyrinopoulos, I.,
Chrysoulakis, J., 2015. Macroscopic traffic flow model calibration using dif-
ferent optimization algorithms. Transportation Research Procedia 6, 144–
157.

Treiber, M., Kesting, A., 2012. Validation of traffic flow models with respect
to the spatiotemporal evolution of congested traffic patterns. Transporta-
tion Research Part C 21 (1), 31–41.

Walther, A., Griewank, A., 2012. Getting started with ADOL-C. Combina-
torial Scientific Computing, 181–202.

Whitham, G. B., 1974. Linear and nonlinear waves. John Wiley & Sons.

Zambrano-Bigiarini, M., Clerc, M., Rojas, R., 2013. Standard particle swarm
optimisation 2011 at CEC-2013: A baseline for future PSO improvements.
In: IEEE Congress on Evolutionary Computation. pp. 2337–2344.

Zhan, Z., Zhang, J., Li, Y., Chung, H., 2009. Adaptive particle swarm opti-
mization. IEEE Transactions on Systems Man and Cybernetics B 39 (6),
1362–1381.

33



List of Figures

1 Link discretisation. . . . . . . . . . . . . . . . . . . . . . . . . 36
2 PSO based system architecture. . . . . . . . . . . . . . . . . . 37
3 RPROP–METANET–ADOL-C system architecture (SHM stands

for shared memory). . . . . . . . . . . . . . . . . . . . . . . . 38
4 (a) Outline of Sheffield site. (b) METANET model. (not to

scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 Measurements used as input at origin links for the three days.

(a) Demand. (b) Mean speed. . . . . . . . . . . . . . . . . . . 40
6 Density trajectories at the destinations for the three sets of

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7 Turning rates trajectories for each off-ramp for the three sets

of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8 Convergence profiles for the data of the 15th. (a) APSO,

APSO and HEPSO particle 1 of the swarm and best value
(algorithm-b). (b) Multistart RPROP from five initial points
and the current best. “Best” lines show the minimum value
of the objective function found by the current iteration. . . . . 43

9 FD parameters’ spatial distribution from the calibration opti-
mal solutions found by the four optimisation algorithms using
data of the 1st. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10 FD parameters’ spatial distribution from the calibration opti-
mal solutions found by the four optimisation algorithms using
data of the 8th. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11 FD parameters’ spatial distribution from the calibration opti-
mal solutions found by the four optimisation algorithms using
data of the 15th. . . . . . . . . . . . . . . . . . . . . . . . . . 46

12 Measured and model speeds for the two segments of L10 cali-
brated using RPROP based on the data of (a) the 1st and (b)
the 15th. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

13 Calibrated model versus measured speeds for the data of the
15th. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

14 Distance-time diagram for calibration using the data of the 15th. 49
15 Network mean speed sensitivities to the FD parameters calcu-

lated by RPROP(15th) of links (a) L1 (b) L6 (c) L10. . . . . . 50
16 Network mean speed sensitivities to the global model param-

eters calculated by RPROP(15th). . . . . . . . . . . . . . . . . 51

34



17 Model versus speed measurements when z∗15th is used with the
data of the 1st. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

18 Distance-time diagrams of model output when z∗15th is applied
on the data of the 1st. . . . . . . . . . . . . . . . . . . . . . . 53

19 Link L6 lane mean speeds. . . . . . . . . . . . . . . . . . . . . 54

35



1

Motorway link m

i

ρm,i

vm,i qm,iqm,i−1

... Nm...

Figure 1: Link discretisation.

36



Start

Run Model

Inputs

Output

Traffic Model
i.e. METANET

NO

YES

YES

NO

EA

End

Create Population
of solutions

Update Pop.
using EA

Create model
input files

Calculate Objective
Function

Is
convergence criteria
or max iterations

reached?

Apply calibrated
parameters to different

data sets

Is model
accurate?

Figure 2: PSO based system architecture.

37



Parent Child

Start

End

Create model
input files

Create Child

Wait for child
to complete

∂x
∂z

Jacobian

k

1

2
.
.
.

K

Run model:
SHM

SHM

Create SHM
for x and ∂x

∂z

S
H

M

Figure 3: RPROP–METANET–ADOL-C system architecture (SHM stands for shared
memory).

38



(a) J30 J31 M18 J33 J34

Leeds

0.9km 7.1km 1.9km 0.8km 3.4km 2.4km 1.6km 2.3km 0.7km 0.8km
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Leicester

Nottingham

(b)

L1 L2 L3 L4 L5 L6a L6

L32

J30

O1

O30 O31D31 D32

O32-1

O32

J31
J32
M18

ORIGIN

900m 7100m 1900m 800m 3400m 800m

800m

1600m

L7 L8 L9 L10

L33

J34D33

O33 D34

D1

L6

J33

Sheffield

DESTINATION
350m

1600m 1600m 2300m 700m 800m

Figure 4: (a) Outline of Sheffield site. (b) METANET model. (not to scale)

39



(a)

0

1000

2000

3000

4000

5000

6000

06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30

F
lo
w

(v
eh
/
h
r)

Time

O1

0

500

1000

1500

2000

2500

3000

06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30
F
lo
w

(v
eh
/
h
r)

Time

O30

0

500

1000

1500

2000

2500

3000

06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30

F
lo
w

(v
eh
/
h
r)

Time

O31

0

500

1000

1500

2000

2500

3000

06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30

F
lo
w

(v
eh
/
h
r)

Time

O32-1

0

500

1000

1500

2000

2500

3000

06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30

F
lo
w

(v
eh
/
h
r)

Time

O32-2

0

500

1000

1500

2000

2500

3000

06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30

F
lo
w

(v
eh
/
h
r)

Time

O33

1
8
15

1
8
15

1
8
15

1
8
15

1
8
15

1
8
15

(b)

0

20

40

60

80

100

120

06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30

V
el
o
ci
ty

(k
m
/
h
r)

Time

O1

0

20

40

60

80

100

120

06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30

V
el
o
ci
ty

(k
m
/
h
r)

Time

O32-1

1
8

15

1
8

15

Figure 5: Measurements used as input at origin links for the three days. (a) Demand. (b)
Mean speed.
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Figure 6: Density trajectories at the destinations for the three sets of data.
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Figure 10: FD parameters’ spatial distribution from the calibration optimal solutions
found by the four optimisation algorithms using data of the 8th.
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Figure 11: FD parameters’ spatial distribution from the calibration optimal solutions
found by the four optimisation algorithms using data of the 15th.
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Figure 12: Measured and model speeds for the two segments of L10 calibrated using
RPROP based on the data of (a) the 1st and (b) the 15th.
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Figure 13: Calibrated model versus measured speeds for the data of the 15th.
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Figure 14: Distance-time diagram for calibration using the data of the 15th.
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Figure 15: Network mean speed sensitivities to the FD parameters calculated by
RPROP(15th) of links (a) L1 (b) L6 (c) L10.
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Figure 16: Network mean speed sensitivities to the global model parameters calculated by
RPROP(15th).
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Figure 17: Model versus speed measurements when z∗15th is used with the data of the 1st.
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Figure 18: Distance-time diagrams of model output when z∗15th is applied on the data of
the 1st.
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Table 1: Traffic flow model parameters upper and lower limits.

Variable τ κ ν vmin ρmax δ φ αm vf,m ρcr,m

Maximum 40 30 80 8 190 4 4 3.5 130 45.0
Minimum 1 5 1 0.5 160 5E-5 5E-5 0.5 60 18.0
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Table 2: Calibration results for J and Jv.

Algorithm
Calibration APSO LPSO HEPSO RPROP
day & repeat J Jv J Jv J Jv J Jv
1st
Repeat 1 56.54 55.84 55.17 54.20 66.76 66.00 48.50 39.66
Repeat 2 74.34 73.40 57.51 56.22 54.85 53.14 49.21 36.96
Repeat 3 59.04 57.93 59.43 58.86 67.33 65.59 51.37 40.47
8th
Repeat 1 58.67 55.63 45.05 42.09 72.70 66.41 43.27 36.96
Repeat 2 59.34 56.21 46.00 42.99 74.41 70.87 42.91 36.55
Repeat 3 58.80 55.94 40.69 38.36 78.81 66.12 43.36 36.53
15th
Repeat 1 53.22 51.45 52.74 51.08 76.48 75.12 52.17 33.73
Repeat 2 57.41 56.49 48.86 47.62 65.04 62.51 52.37 32.13
Repeat 3 53.31 51.66 51.66 50.13 58.00 55.36 62.21 38.92
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Table 3: Global parameter set part of the optimal solutions with respect to Jv at Table 2.

Algorithm τ κ ν vmin ρmax δ φ

and day (s) (veh/km/lane) (km2/h) (km/h) (veh/km/lane) (h/km) (h/km)
1st

APSO 34.61976 29.98992 69.29486 0.50681 176.39493 1.22392 0.38401
LPSO 27.18447 24.42183 62.90250 6.07502 163.78077 0.00292 0.97145

HEPSO 25.27353 30.00000 49.95481 0.50000 182.88233 1.21320 0.44915
RPROP 22.66770 22.39974 56.68164 6.17592 182.74620 0.07998 0.00005
Average 27.43636 26.70287 59.70845 3.31444 176.45106 0.63001 0.4511

8th
APSO 10.01407 22.69213 37.39691 6.94787 171.58465 1.19801 1.13019
LPSO 9.00043 29.99409 37.05295 0.65599 189.80508 0.00012 0.37390

HEPSO 9.64155 15.47807 29.94731 7.71891 166.33726 0.70086 0.00005
RPROP 11.38901 29.17435 41.96460 7.99811 173.29710 0.00008 0.00005
Average 10.01126 24.33466 36.59044 5.83022 175.25602 0.47477 0.37605

15th
APSO 20.40073 26.02473 41.00612 7.33238 181.03158 0.00017 0.68438
LPSO 20.94335 29.68857 48.24827 5.87563 189.84335 0.00025 0.34124

HEPSO 25.12054 13.15713 41.30585 8.70860 155.08886 0.57899 0.65611
RPROP 18.57291 24.71475 40.34273 8.00000 177.83464 0.09266 0.00005
Average 21.25938 23.39629 42.72574 7.47915 175.94960 0.16802 0.42045
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Table 4: Fundamental diagram parameter parts of the optimal solutions for the data set
of the 1st.

Algorithm FD link start FD link end vf ρcr α Capacity
(name) (name) (km/h) (veh/km/lane) (–) (veh/h/lane)

APSO L1 L7 114.66 24.714 2.677 1951
L8 L10 107.88 22.574 2.657 1671
L32 L32 114.57 29.396 2.663 2314
L33 L33 116.77 30.447 2.681 2449

LPSO L1 L5 112.21 28.197 2.668 2175
L6a L10 111.19 23.967 2.704 1841
L32 L32 112.90 28.463 2.663 2208
L33 L33 115.84 32.422 2.736 2606

HEPSO L1 L7 113.88 25.671 2.609 1993
L8 L10 106.08 24.256 2.543 1737
L32 L32 110.88 20.454 2.930 1612
L33 L33 103.23 27.696 2.650 1960

RPROP L1 L1 112.71 27.365 2.698 2129
L2 L2 112.63 28.958 2.683 2247
L3 L3 108.39 28.165 2.696 2107
L4 L4 103.60 28.092 2.706 2011
L5 L5 106.61 28.631 2.717 2112
L6a L6a 125.79 23.938 2.702 2080
L6 L6 113.10 23.510 2.698 1835
L7 L7 118.38 26.472 2.691 2161
L8 L8 100.59 26.493 2.690 1838
L9 L9 113.76 26.508 2.700 2082
L10 L10 83.51 24.009 2.696 1384
L32 L32 102.98 25.920 2.696 1842
L33 L33 125.79 31.860 2.696 2766
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Table 5: Fundamental diagram parameter parts of the optimal solutions for the data set
of the 8th.

Algorithm FD link start FD link end vf ρcr α Capacity
(name) (name) (km/h) (veh/km/lane) (–) (veh/h/lane)

APSO L1 L9 112.23 23.399 2.864 1852
L10 L10 91.08 24.829 2.724 1567
L32 L32 115.55 24.264 2.838 1971
L33 L33 104.55 27.719 3.062 2091

LPSO L1 L3 112.53 29.889 2.574 2281
L4 L7 113.50 23.657 2.467 1790
L8 L9 104.69 27.843 2.446 1937
L10 L10 90.09 27.265 2.336 1601
L32 L32 116.99 27.265 2.479 2131
L33 L33 112.13 25.847 2.625 1980

HEPSO L1 L2 112.67 35.766 2.275 2596
L3 L3 111.11 29.986 2.407 2199
L4 L7 113.71 22.923 2.556 1763
L8 L10 101.18 31.830 2.274 2075
L32 L32 107.78 31.362 2.062 2081
L33 L33 105.37 30.530 2.125 2009

RPROP L1 L1 116.52 26.531 2.265 1988
L2 L2 115.52 30.264 2.236 2235
L3 L3 113.54 27.525 2.252 2004
L4 L4 109.12 24.626 2.261 1727
L5 L5 114.99 21.082 2.276 1562
L6a L6a 111.42 23.672 2.278 1700
L6 L6 115.31 23.696 2.285 1764
L7 L7 117.50 26.335 2.267 1991
L8 L8 105.29 27.230 2.261 1842
L9 L9 111.81 28.433 2.260 2042
L10 L10 83.41 28.078 2.258 1504
L32 L32 123.15 26.015 2.277 2065
L33 L33 125.79 26.085 2.279 2116
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Table 6: Fundamental diagram parameter parts of the optimal solutions for the data set
of the 15th.

Algorithm FD link start FD link end vf ρcr α Capacity
(name) (name) (km/h) (veh/km/lane) (–) (veh/h/lane)

APSO L1 L7 112.24 28.155 2.651 2167
L8 L9 110.47 24.808 2.641 1877
L10 L10 95.44 23.078 2.448 1464
L32 L32 113.82 27.641 2.656 2159
L33 L33 107.41 28.510 2.534 2064

LPSO L1 L4 111.95 28.376 2.673 2185
L5 L7 112.17 24.383 2.693 1887
L8 L10 101.93 23.843 2.645 1665
L32 L32 111.00 27.813 2.703 2133
L33 L33 112.17 24.383 2.693 1887

HEPSO L1 L7 114.91 24.666 2.710 1960
L8 L10 102.07 25.583 2.682 1799
L32 L32 115.20 30.074 2.730 2402
L33 L33 103.97 30.539 2.330 2067

RPROP L1 L1 114.10 28.843 2.221 2098
L2 L2 115.76 30.951 2.200 2274
L3 L3 112.05 28.667 2.212 2044
L4 L4 108.08 25.811 2.216 1777
L5 L5 118.44 22.997 2.219 1736
L6a L6a 128.23 22.976 2.230 1882
L6 L6 108.89 26.499 2.252 1851
L7 L7 119.48 29.163 2.225 2223
L8 L8 101.22 29.104 2.215 1876
L9 L9 112.03 29.115 2.214 2076
L10 L10 80.00 27.140 2.212 1381
L32 L32 103.81 28.328 2.240 1882
L33 L33 69.09 36.751 2.231 1622
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Table 7: Jv for optimal parameter sets from calibration using data from different dates.

Algorithm Calib. Verification date
date 1st 8th 15th 8th (incident)

APSO 1st 55.84 154.98 151.99 88.61
8th 579.97 55.63 604.04 137.45
15th 77.83 149.90 51.45 64.38

LPSO 1st 54.20 159.83 155.87 82.76
8th 826.59 38.36 727.41 140.89
15th 77.44 155.76 47.62 73.45

HEPSO 1st 53.14 155.81 153.88 85.98
8th 459.95 66.41 514.61 76.25
15th 83.07 159.63 55.36 73.87

RPROP 1st 36.96 141.00 106.65 55.66
8th 338.26 36.55 327.48 103.38
15th 83.22 140.47 32.13 61.65
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