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aLAGA, Université Paris 13, 99 Av J.B. Clement, 93430 Villetaneuse, France
bSchool of Engineering and Computing Sciences, University of Durham, South

Road, DH1 3LE, UK

Abstract

A simple and accurate projection finite volume method is developed for solving shal-
low water equations in two space dimensions. The proposed approach belongs to
the class of fractional-step procedures where the numerical fluxes are reconstructed
using the method of characteristics, while an Eulerian method is used to discretize
the conservation equations in a finite volume framework. The method is conser-
vative and it combines advantages of the method of characteristics to accurately
solve the shallow water flows with an Eulerian finite volume method to discretize
the equations. Numerical results are presented for several applications in rotating
shallow water problems. The aim of such a method compared to the conventional
finite volume methods is to solve shallow water equations efficiently and with an
appropriate level of accuracy.

Key words: Finite volume discretization, Projection method, Method of
characteristics, Shallow water equations, Rotating flows

1 Introduction

Modeling shallow water flows with Coriolis forces is useful to study hydraulic
engineering problems involving rotating flows in meteorology and climate re-
search, and other applications in coastal hydrodynamics. The mathematical
governing equations are commonly achieved by vertical integration of the
Navier-Stokes equations along with the assumptions of a hydrostatic pressure
and a vertically uniform horizontal velocity profile. Many numerical methods
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are available in the literature to solve the shallow water equations. The most
popular techniques are based on the well-known Roe scheme [11] originally
designed for hyperbolic systems of conservation laws without accounting for
source terms. The authors in [1] have also developed exact solutions for the
Riemann problem at the interface with a sudden variation of the topography
in shallow water equations. The main idea in their approach was to define the
bottom level such that a sudden variation in the topography occurs at the
interface of two cells. An approach based on a local hydrostatic reconstruc-
tion has been proposed in [2] for open channel flows with topography. The
extension of ENO and WENO schemes to shallow water equations has been
studied in [15]. Unfortunately, most ENO and WENO schemes that solves real
flows correctly are still very computationally expensive. On the other hand,
numerical methods based on kinetic reconstructions have been studied in [13]
among others, but the complexity of these methods is relevant.

In [4], the authors proposed a simple and accurate method for solving the
one-dimensional shallow water equations on non-flat beds. This method in-
corporates the techniques from method of characteristics into the reconstruc-
tion of numerical fluxes. The performance of the proposed method has been
demonstrated for several test examples on shallow water equations in one space
dimension. In this paper we extend this method to two-dimensional shallow
water equations with Coriolis forces. Our main goal is to present a class of
numerical methods that are simple, easy to implement, and accurately solves
the shallow water equations without relying on a Riemann solver. This goal is
reached by a projection of the shallow water system in the local coordinates
and a method of characteristics is used. In the first step, the conservation
equations are integrated over an Eulerian control volume. We term this step
by corrector stage applied to the conservation equations. In the second step,
the shallow water equations are projected in a non-conservative form and
integrated along the characteristics defined by the water velocity. This step
is called predictor stage and used to calculate the numerical fluxes required
in the corrector stage. Our method can be treated as a conservative modi-
fied method of characteristics for shallow water equations or as a Riemann
solver-free finite volume method for shallow water equations. The discretiza-
tion of flux gradients and source terms are well-balanced and the method
satisfies the exact C-property. The proposed scheme has the ability to han-
dle calculations of slowly varying flows as well as rapidly varying flows over
continuous and discontinuities bottom beds. These features are demonstrated
using several benchmark problems for two-dimensional shallow water flows.
Results presented in this paper show high resolution of the proposed finite
volume characteristics method and confirm its capability to provide accurate
and efficient simulations for shallow water flows including Coriolis forces.

This paper is organized as follows. The rotating shallow water equations and
their projection finite volume discretization are presented in section 2. In sec-
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tion 3, the method of characteristics is formulated for the reconstruction of
the numerical fluxes. This section includes also the discretization of the source
terms. Section 4 is devoted to numerical results for several test examples for
rotating shallow water equations. Our new approach is shown to enjoy the
expected accuracy as well as the robustness. Section 5 contains concluding
remarks.

2 Projection method for shallow water equations

The two-dimensional shallow water equations represent mass and momentum
conservation and have been widely used to model water flows under the influ-
ence of gravity. In a conservative form these equations are formulated as
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where g is the gravitational acceleration, fc is the Coriolis parameter defined
by fc = 2ω sinφ, with ω denoting the angular velocity of the earth and φ is the
geographic latitude, h(t, x, y) is the water depth, u(t, x, y) and v(t, x, y) are
the depth-averaged velocities in the x- and y-direction, respectively. In the
present work, we neglect diffusion by viscous or turbulent effects, the wind
effects and friction forces in the momentum equation. It is well known that
the system (1) is strictly hyperbolic with real and distinct eigenvalues. For
simplicity in presentation we rewrite the equations (1) in a conservative form
as
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Fig. 1. An illustration of control volumes Ci,j used in the proposed method.
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 ,

Note that the equations (2) has to be solved in a bounded spatial domain Ω
with smooth boundary Γ, equipped with given boundary and initial conditions.
In practice, these conditions are problem dependent and their discussion is
postponed for section 3 where numerical examples are discussed.

Let us cover the spatial domain Ω with cells Cij = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
]

shown in Figure 1. The cells, Cij, are centered at (xi = i∆x, yj = j∆y) with
uniform sizes ∆x and ∆y for simplicity in the presentation only. Integrating (1)
over the element Cij, the basic equations of the finite volume method obtained
using the divergence theorem are given by

∂

∂t

∫
Ci,j

h dV +
∮
Si,j

(hunx + hvny) dσ = 0,

∂

∂t

∫
Ci,j

hu dV +
∮
Si,j

(hu2 +
1

2
gh2

)
nx + huvny

 dσ =

−gh
∮
Si,j

Znx dσ +
∫
Ci,j

fchv dV,

∂

∂t

∫
Ci,j

hv dV +
∮
Si,j

huvnx +
(
hv2 +

1

2
gh2

)
ny

 dσ =

−gh
∮
Si

Zny dσ −
∫
Ci,j

fchu dV,

4



y

x

C
i,j

τ
η

nx

ny

u

uη

uτ

Fig. 2. Illustration of the projected velocities on the control volume Ci,j .

where η = (nx, ny)
T denotes the unit outward normal to the surface Si,j of

the element Cij. Using the local cell outward normal η and tangential τ = η⊥

depicted in Figure 2, the above equations can be projected as

∂
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where the normal projected velocity uη = unx + vny and the tangential
projected velocity uτ = vnx−uny. In order to simplify the system (3), we first
sum the equation (3b) multiplied by nx to the equation (3c) multiplied by ny,
then we subtract the equation (3b) multiplied by ny from the equation (3c)
multiplied by nx. The outcome of these operations is
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which can be rewritten in a differential form as
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The system (4) can also be reformulated in a non-conservative form as
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is the total material derivative. The system (5) can also
be rearranged in a compact vector form as
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Note that using the projection method on the local coordinates the two-
dimensional shallow water equations (1) in the control volume Ci,j reduce to
the one-dimensional system (6) on each surface Si,j of this control volume. In
the proposed method the system (6) is used only to reconstruct the numerical
fluxes while the finite volume method is applied directly to the conservative
system (1). Similar projection techniques have also been used in [12,5] among
others.

3 Finite volume characteristics method

In this section we formulate the finite volume characteristics method for the
numerical solution of the shallow water equations (1). The method consists of
two steps and can be interpreted as a predictor-corrector approach. The first
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step deals with the finite volume discretization of the equations whereas in
the second step, reconstruction of the numerical fluxes is discussed.

3.1 Finite volume discretization

For the space discretization of the equations (2), we use the notations

Wi± 1
2
,j(t) = W(t, xi± 1

2
, yj), Wi,j± 1

2
(t) = W(t, xi, yj± 1

2
),

and Wi,j(t) =
1

∆x

1

∆y

∫ x
i+1

2

x
i− 1

2

∫ y
i+1

2

y
j− 1

2

W(t, x, y)dydx,

to denote the point-values and the approximate cell-average of the variable W
at the gridpoint (t, xi± 1

2
, yj), (t, xi, yj± 1

2
), and (t, xi, yj), respectively. Integrat-

ing the equation (2) with respect to space over the control volume Ci,j shown
in Figure 1, we obtain the following semi-discrete equation

dWi,j

dt
+

Fi+1/2,j − Fi−1/2,j

∆x
+

Gi,j+1/2 −Gi,j−1/2

∆y
= Qi,j + Ri,j, (7)

where Fi±1/2,j = F(Wi±1/2,j) and Gi,j±1/2 = G(Wi,j±1/2) are the numerical
fluxes at the cell interfaces x = xi±1/2 and y = yi±1/2, respectively. In (7),
Qi,j and Ri,j are consistent discretizations of the source terms Q and R in
(2). The spatial discretization of equation (7) is complete when a time inte-
gration is performed and a numerical construction of the fluxes Fi±1/2,j and
Gi,j±1/2 is chosen. In general, this construction requires a solution of Riemann
problems at the interfaces xi±1/2 and yi±1/2, see for example [11,12,5]. From a
computational viewpoint, this procedure is very demanding and may restrict
the application of the method to shallow water equations for which Riemann
solutions are available.

To integrate the equations (7) in time we divide the time interval into N
subintervals [tn, tn+1] with length ∆t = tn+1 − tn for n = 0, 1, . . . , N . We
use the notation wn to denote the value of a generic function w at time tn.
We may consider a first-order two-step time stepping scheme, in which the
fully-discrete formulation of the system (2) is given by

W̃i,j = Wn
i,j + ∆tRn

i,j,

Wn+1
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∆t

∆x

(
F̃n
i+1/2,j − F̃n

i−1/2,j

)
− (8)
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(
G̃n
i,j+1/2 − G̃n

i,j−1/2

)
+ ∆tQ̃n

i,j,

where F̃n
i±1/2,j = F(W̃n

i±1/2,j) and G̃n
i,j±1/2 = G(W̃n

i,j±1/2). Note that other
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Fig. 3. Sketch of the method of characteristics: A water particle at gridpoint xi+1/2

is traced back in time to Xi+1/2 where the intermediate solution Ûn
i+1/2,j is inter-

polated.

high-order time stepping methods can also be applied without major concep-
tual modifications. It should also be noted that using the splitting (8) the
Coriolis forces are supposed to be updated separately in the first step of the
splitting whereas, the second step deals with the remaining source terms.

3.2 Method of characteristics

In the present study, we reconstruct the numerical fluxes Fi±1/2,j and Gi,j±1/2

using the method of characteristics. The fundamental idea of this method
is to impose a regular grid at the new time level and to backtrack the flow
trajectories to the previous time level, see for example [10,14]. At the old time
level, the quantities that are needed are evaluated by interpolation from their
known values on a regular grid. Hence, the characteristic curves associated
with the equations (6) are solutions of the initial-value problems

dXi+1/2(s)

ds
=uη

(
s,Xi+1/2(s)

)
, s ∈ [tn, tn + ∆t],

(9)
Xi+1/2(tn + ∆t) =xi+1/2,

with a similar system of the characteristic curves Yj+1/2(s) in the y-direction.
Note that Xi+1/2(s) (respectively Yj+1/2(s)) is the departure point at time s
of a particle that will arrive at the gridpoint xi+1/2 (respectively yj+1/2(s)) in
time tn+∆t, compare Figure 3. The method of characteristics does not follow
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the flow particles forward in time, as the Lagrangian schemes do, instead it
traces backwards the position at time tn of particles that will reach the points
of a fixed mesh at time tn + ∆t. By doing so, the method avoids the grid
distortion difficulties that the conventional Lagrangian schemes have. Hence,
the solution of (9) can be expressed in an integral form as

Xi+1/2,j(tn) = xi+1/2,j −
∫ tn+∆t

tn
uη
(
s,Xi+1/2,j(s)

)
ds. (10)

In our simulations we used a first-order Euler method to approximate the inte-
gral in (10), however other high-order Runge-Kutta methods are also possible.
In general Xi+1/2,j(tn) (respectively Yj+1/2(tn)) will not coincide with the spa-
tial position of a gridpoint. Thus, once the characteristic curves Xi+1/2,j(tn)
(respectively Yj+1/2(tn)) are accurately calculated, the intermediate solutions
W n
i+1/2,j and W n

i,j+1/2 of a generic function W are reconstructed using

W n
i+1/2,j = Ŵ n

i+1/2,j, W n
i,j+1/2 = Ŵ n

i,j+1/2, (11)

where Ŵ n
i+1/2,j = W

(
tn, Xi+1/2(tn), yj

)
and Ŵ n

i,j+1/2 = W
(
tn, xi, Yj+1/2(tn)

)
are the solutions at the characteristic feet computed by interpolation from the
gridpoints of the control volume where the departure points reside, see Figure
3 for an illustration. For instance, a Lagrange-based interpolation polynomials
can be formulated as

Ŵ n
i+1/2,j =

∑
k,l

Lk,l(Xi+1/2, yj)W
n
k,l,

(12)
Ŵ n
i,j+1/2 =

∑
k,l

Lk,l(xi, Yj+1/2)W n
k,l,

with Lk,l are the Lagrange basis polynomials given by

Lk,l(x, y) =
∏
p=0
p 6=k

∏
q=0
q 6=l

x− xp
xk − xp

y − yq
yl − yq

.

Note that other interpolation procedures such as Spline or Hermite interpo-
lation methods or interpolation techniques based on radial basis functions
can also be applied. Assume an accurate approximation of the characteristics
curves Xi+1/2,j(tn) is made, the predictor stage in the FVC method applied to
the shallow water equations is defined by the solution of the system (6) as

Un
i+1/2,j = Ûn

i+1/2,j + ∆tS
(
Ûn
i+1/2,j

)
. (13)

Following similar techniques in [4] for the one-dimensional shallow water equa-
tions, a difference discretization of the source terms in (13) yields
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hni+1/2,j = ĥni+1/2,j −
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−

∆tfc (ûτ )
n
i+1/2,j , (14)
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(
(uτ )

n
i+1,j − (uτ )

n
i,j

)
+

∆tfc (ûη)
n
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where

ĥni+1/2,j = h
(
tn, Xi+1/2(tn), yj

)
, (ûη)

n
i+1/2,j = uη

(
tn, Xi+1/2(tn), yj

)
,

(ûτ )
n
i+1/2,j = uτ

(
tn, Xi+1/2(tn), yj

)
.

The the intermediate states Un
i,j+1/2 in the y-direction can be evaluated in the

same manner. Once the projected states are calculated in the predictor stage
(14), the states Wn

i±1/2,j and Wn
i,j±1/2 are recovered by using the transforma-

tions v = (uτ , uη) · η and u = (uτ , uη) · τ .

In the proposed method, the discretization of the source terms Qi,j in (7) is
carried out such that the discretization of the source terms are well balanced
with the discretization of flux gradients using the concept of C-property [6].
Recall that a numerical scheme is said to satisfy the C-property for the equa-
tions (1) if the condition

hn + Z = C = constant, un = vn = 0, (15)

holds for stationary flows at rest. Therefore, the treatment of source terms
Qi,j in (7) is reconstructed such that the condition (15) is preserved at the
discretized level. Following the same steps in our study reported in [4] for the
one-dimensional shallow water equations, the discretization of the terms in (7)
is carried out as

(
gh
∂Z

∂x

)n
i,j

= g
hni+1/2,j + hni−1/2,j

2

Zn
i+1,j − Zn

i−1,j

2∆x
,

(16)(
gh
∂Z

∂y

)n
i,j

= g
hni,j+1/2 + hni,j−1/2

2

Zn
i,j+1 − Zn

i,j−1

2∆y
,

where the averaged solutions are defined by

hni+1/2,j =
hni+1,j + hni−1,j

2
, hni,j+1/2 =

hni,j+1 + hni,j−1

2
.

The discretization of source terms in (16) is achieved by projecting the original
shallow water model into the local system where a dimension by dimension

10



discretization is used. Details on this approach can be found in [4] and for
brevity they are omitted here. It should be stressed that the C-property is
obtained by assuming a linear interpolation procedure in the predictor stage
of the FVC method. However, a well-balanced discretization of flux gradients
and source terms for a quadratic or cubic interpolation procedures can be
carried out using similar techniques.

4 Numerical results

In this section we perform numerical tests with our finite volume charac-
teristics method for the two-dimensional shallow water equations. In all our
computations a fixed courant number CFL = 0.8 is used while the time step
∆t is varied according to the stability condition

∆t = CFL
min (∆x,∆y)

max
(
|un|+

√
ghn, |vn|+

√
ghn

) .
In all results presented in this section the linear interpolation procedure is used
in the predictor stage. For comparison reasons, we also compare the results
obtained using our Finite Volume Characteristics (FVC) method to those
obtained using the well established Roe scheme in [11] and a modified Roe
method (SRNH) developed in [12]. The following test examples are selected:

4.1 Accuracy test examples

We first check the accuracy of the proposed FVC method for a shallow water
system with know analytical solution [7]. We solve the shallow water equations
(1) without Coriolis force in the squared domain Ω = [−50, 50]×[−50, 50] with
analytical solution for the water depth and the velocity

h(t, x, y) = 1− a

4bg
e
−2b

(
x̄2 + ȳ2

)
, u(t, x, y) =

1

2
cosα + aȳe

−b
(
x̄2 + ȳ2

)
,

(17)

v(t, x, y) =
1

2
sinα− ax̄e−b

(
x̄2 + ȳ2

)
,

where x̄ = x + 20 − t
2

cosα and ȳ = y + 10 − t
2

sinα. Initial and boundary
condition are set according to the exact solution (17). Here we use the same
parameters as in [7] for g = 1, a = 0.04, b = 0.02 and results are displayed at
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Table 1
Relative L1-error and CPU times (in seconds) obtained for the accuracy test exam-
ple at time t = 100 using the Roe, SRNH and FVC methods.

Roe SRNH FVC

Gridpoints L1-error CPU L1-error CPU L1-error CPU

50× 50 3.0626E-04 9.95 2.9673E-04 10.70 2.6409E-04 2.59

100× 100 2.6969E-04 81.26 2.6224E-04 87.96 1.9851E-04 12.01

200× 200 2.2984E-04 658.75 2.2269E-04 741.40 1.3651E-04 84.37

400× 400 1.7808E-04 5533.40 1.6791E-04 5914.53 8.280E-05 738.85

time t = 100. We consider the relative L1-error norm defined as

M∑
i=1

M∑
j=1

∣∣∣hni,j − h(tn, xi, yj)
∣∣∣∆x∆y

M∑
i=1

M∑
j=1

|h(tn, xi, yj)|∆x∆y

, (18)

where hni,j and h(tn, xi, yj) are respectively, the computed and exact water
depth at gridpoint (xi, yj), whereas M stands for the number of gridpoints
in each direction used in the spatial discretization. The obtained results are
listed in Table 1 along with their corresponding CPU times. It reveals that
increasing the number of gridpoints in the computational domain results in
a decay of L1-error in all methods. A faster decay of the error is observed
in the FVC method than in Roe and SRNH methods. A simple inspection
of Table 1 also reveals that, for meshes with low number of gridpoints, the
measured CPU time is comparable for Roe and SRNH methods. However, for
all considered meshes the FVC method is the most efficient. For instance, for
a mesh of 400× 400 gridpoints, the FVC method is about 7 and 8 faster than
the Roe method and SRNH scheme, respectively. Similar results not reported
here have been obtained for the relative L1-error in the velocities u and v. Note
that the Roe and SRNH schemes require a solver for the Riemann problem
at each time step to reconstruct the numerical fluxes, which is completely
avoided in our FVC scheme.

Next we examine the preservation of the C-property for the proposed FVC
method. To this end we consider a two-dimensional version of the benchmark
problem of a lake at rest flow proposed in [6] to test the conservation property
of numerical methods for one-dimensional shallow water equations. Here we
solve the two-dimensional shallow water equations (1) in a channel 1000 m
long and 10 m wide using the bed data provided in [6]. For this test problem
the gravitational force g = 9.8 m/s2 and the Coriolis force fc = 0. The channel
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Fig. 4. Cross-sections of the free-surface (left plot) and the error (right plot) for the
lake at rest in the middle of the channel y = 5 m and at time t = 10800 s.
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Fig. 5. Initial water depth for the circular dam-break problem on flat bottom (left
plot) and its diagonal cross-section at y = x (right plot).

bed is irregular, so this test example is a good illustration of the significance of
the source term treatment for practical applications to natural watercourses.
It is expected that the water free-surface remains constant and the water
velocity should be zero at all times. We run the FVC method using a mesh of
100×100 gridpoints and the obtained results are displayed at time t = 10800 s.
In Figure 4 we present the water free-surface along with the bed profile and the
surface plot of the absolute error in the water depth defined as |h+ Z − 20|.
For a better insight we also include in this figure the horizontal cross-section
at y = 5 m of the water free-surface and the absolute error along with the
channel bed. As can be seen, the water free-surface remains constant during
the simulation time and the proposed FVC method preserves the C-property
to the machine precision. It should be stressed that the performance of the
FVC method is very attractive since the computed solution remains stable
and accurate even when coarse meshes are used without requiring complicated
techniques to balance the source terms and flux gradients.
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Fig. 6. Water depth for the circular dam-break problem on flat bottom obtained at
different times using Roe (first column), SRNH (second column) and FVC (third
column). From top to bottom t = 4, 8 and 16.

4.2 Circular dam-break problem

This example was proposed in [8] to study cyclone/anticyclone asymmetry in
nonlinear geostrophic adjustment. We solve the shallow water equations (1)
on a flat bottom in the spatial domain Ω = [−10, 10] × [−10, 10] subject to
Neumann boundary conditions and equipped with the following initial condi-
tions

h(0, x, y) = 1+
1

4

(
1− tanh

(√
ax2 + by2 − 1

c

))
, u(0, x, y) = v(0, x, y) = 0,

where a = 5
2
, b = 2

5
and c = 0.1. In our simulations g = 1 and fc = 1 as in [8]

and two meshes of 50× 50 and 100× 100 gridpoints are considered. In Figure
5 we illustrate the initial conditions used for this test example. The plots of
the computed water height are shown in Figure 6 at three different times
t = 4, 8 and 16 using a mesh of 100 × 100 gridpoints. In this figure we have
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Fig. 7. Vorticity plots and velocity fields for the circular dam-break problem on flat
bottom obtained at different times using Roe (first column), SRNH (second column)
and FVC (third column). From top to bottom t = 4, 8 and 16.

also included the results obtained using the Roe and SRNH for comparison.
As can be seen a bore has formed and the water drains from the deepest
region as a rarefaction wave progresses outwards. It is clear from the presented
results that the initial elliptical mass imbalance evolves in a nonaxisymmetric
way. The two expected shock waves are very well captured by the proposed
FVC method. These results are qualitatively in good agreement with those
published in [8].

In Figure 7 we exhibit the results for the vorticity variable and the velocity
field obtained using the considered methods. As can be seen the two shock
waves originated behind the water elevation are slowly spinning clockwise in
the computational domain. The velocity field is well represented by the FVC
method and recirculation regions within the flow domain are well captured.
For the considered simulation times, numerical results obtained using FVC
method appear to be more accurate than those obtained using Roe and SRNH
methods. For instance, the numerical diffusion is very pronounced in Roe and
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Fig. 8. Diagonal cross-sections of the water depth at y = x for the circular dam-break
problem on flat bottom obtained at different times using 50 × 50 gridpoints (first
row) and 100× 100 gridpoints (second row).

SRNH schemes applied to this flow problem on the mesh with 100 × 100
gridpoints. Furthermore, the numerical diffusion is more pronounced in the
results obtained using Roe and SRNH schemes than the FVC method. To
further illustrate this effect we present in Figure 8 diagonal cross-sections of the
water depth at y = x for two meshes with 50×50 and 100×100 gridpoints. It
is clear that on the coarse mesh with 50×50 gridpoints the numerical diffusion
in the results obtained using Roe and SRNH schemes is larger than the FVC
method. Refining the mesh to 100× 100 gridpoints the numerical diffusion in
Roe and SRNH schemes reduces but the results obtained using FVC method
are the most accurate. It is worth mentioning that for this test problem, the
computational time required for the FVC method is about 5 times less than
for Roe and SRNH schemes. This is a huge saving in the computational cost as
the proposed FVC method is faster and more accurate than the Roe method
widely used in the literature to solve this class of applications in shallow water
flows.

Our next concern is to assess the performance of our FVC method to solve
this circular dam-break problem on a non-flat bottom. Hence, we solve the
same test problem on a non-flat bed defined as

Z(x, y) = 0.3
(

1 + tanh
(

3x

2

))
.

The computed results for the water depth obtained at t = 2, 8 and 16 using
two meshes with 100×100 and 200×200 gridpoints are displayed in Figure 9.
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Fig. 9. Water depth for the circular dam-break problem on non-flat bottom obtained
using a mesh with 100× 100 gridpoints (first row) and 200× 200 gridpoints (second
row). From left to right t = 2, 8 and 16.

The corresponding results for vorticity variable and velocity field are presented
in Figure 10. From a numerical point of view this test example is more difficult
than the previous one as the flow is expected to exhibit complex features due to
the interaction between the water surface and the bed. As in the previous test
a bore has formed and the water drains from the deepest region as a rarefaction
wave progresses outwards. However, a slower propagation is detected for the
water free-surface in this test compared to the previous one and larger values
of the vorticity are also observed for this example compared to the simulations
on flat-bottom. The FVC method resolves accurately the flow structures and
the vortices seem to be localized in the correct place in the flow domain.
In addition, the resolution of the FVC method is clearly observed and no
oscillations have been detected in the vicinity of the bed transition.

As for the previous test example, in Figure 11 we compare the results obtained
using FVC scheme to those obtained using Roe and SRNH methods. Here we
present diagonal cross-sections of the water depth at y = x on the mesh with
50× 50 gridpoints at different times. For a better insight zooming plots have
been included within the results. Numerical results obtained using the FVC
scheme appear to be more accurate than those obtained using Roe and SRNH
methods, observe the differences at the hydraulic jump at times t = 8 s and
t = 16 s. A comparison of CPU times is also carried out for this problem
and it is summarized in Table 2. It is clear that the FVC scheme is more
efficient than the Roe and SRNH methods. For instance, at time t = 16 s the
CPU time for Roe and SRNH schemes is about 12 times more than the FVC
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Fig. 10. Vorticity plots and velocity fields for the circular dam-break problem on
non-flat bottom obtained using a mesh with 100 × 100 gridpoints (first row) and
200× 200 gridpoints (second row). From left to right t = 2, 8 and 16.
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Fig. 11. Diagonal cross-sections of the water depth at y = x for the circular
dam-break problem on non-flat bottom obtained at different times using a mesh
with 50× 50 gridpoints.

scheme. Balancing the accuracy reported in Figure 11 and the computational
cost in Table 2, the FVC scheme can be considered as a highly efficient solver
for this type of shallow water flows over non-flat beds.

4.3 Periodic shear-layer flow

Our final test example consists of the periodic shear-layer problem solved in [9]
using the Navier-Stokes equations. In the current study we consider the case
with zero viscosity which is most challenging to numerically solve. Similar
periodic shear-layer problems have also been studied in [3] among others. The
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Table 2
CPU times (in seconds) obtained for the circular dam-break problem on non-flat
bottom obtained at different times using a mesh with 50× 50 gridpoints.

t = 2 s t = 8 s t = 16 s

Roe 2.18 8.10 16.44

SRNH 2.38 8.27 16.57

FVC 0.28 0.78 1.41

computational domain Ω = [−1
2
, 1

2
] × [−1

2
, 1

2
] and the initial conditions are

h(0, x, y) = 1,

u(0, x, y) =


−1

2
, (x, y) ∈ [−1

2
,
1

2
]× [− 1

20
,

1

20
],

1

2
, elsewhere,

and

v(0, x, y) =


1

10
sin (4πx) , (x, y) ∈ [−1

2
,
1

2
]× [− 1

20
,

1

20
],

0, elsewhere.

Periodic boundary conditions are used and the remaining parameters are g = 1
and fc = 0.01. The objective of this test problem is to check the performance
and stability of the proposed FVC method to resolve the small perturbations
on the water free-surface and vorticity in the rotating and mixing shallow
water flows. We use a mesh with 100× 100 gridpoints in our simulations.

Figure 12 presents the obtained results for water depth, vorticity and velocity
field at times t = 1, 2 and 4. From a simple inspection on this figure we
can see, the two small regions of the circulation occurring in the center of the
computational domain, the predicted vortices with increased water depth near
the upper and lower bands, and the predicted velocity distribution that causes
the water surface to recirculate. It can be easily seen that the small complex
structures of the water flow being captured by our FVC method. There is
excellent agreement between these results and those published in [9] using a
different approach based on the well-known Navier-Stokes equations.

It should be stressed that the proposed FVC method is a modular algorithm
into which any high-order interpolation procedure and any high-order time
stepping scheme can easily be incorporated. Note that the method presented
in this paper can be highly optimized for the vector computers, because they
not require nonlinear solvers and contain no recursive elements.
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Fig. 12. Water depth (first row), vorticity plots and velocity fields (second row) for
the periodic shear-layer problem obtained using a mesh with 100× 100 gridpoints.
From left to right t = 1, 2 and 4.

5 Conclusions

We have presented a fast and accurate projection finite volume characteris-
tics method to solve two-dimensional shallow water equations on both flat
and non-flat beds. The proposed method uses advantages of the method of
characteristics in a finite volume discretization of the shallow water system.
In terms of advantages, the method can solve steady flows over irregular beds
without large numerical errors, thus demonstrating that the proposed scheme
achieves perfect numerical balance of the gradient fluxes and the source terms.
In addition, the method can compute the numerical flux corresponding to the
real state of water flow without relying on Riemann problem solvers. Reason-
able accuracy can also be obtained easily and no special treatment is needed to
maintain a numerical balance, because it is performed automatically in the in-
tegrated numerical flux function. In addition, the proposed approach does not
require either nonlinear solution of algebraic equations or special front track-
ing techniques. Furthermore, it has strong applicability to various problems
in rotating shallow water flows as shown in the presented numerical results.

The proposed finite volume characteristics method has been tested on systems
of shallow water equations at different flow regimes. The method has also been
compared to other well-established finite volume methods for shallow water
equations. The obtained results indicate good shock resolution with high ac-
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curacy in smooth regions and without any nonphysical oscillations near the
shock areas. The well-balancing property of the method has been verified in
flow at rest on non-flat bottom. Although we have restricted our numerical
computations to structured meshes, the current finite volume characteristics
scheme can be extended to rotating shallow water flows in two space dimen-
sions with bottom friction using unstructured grids. These and further issues
are subject of future investigations.
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