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ABSTRACT 18 

As the major component, Archean granitoids provide us with an insight into the formation of 19 

the early continental crust. In this paper, we report the study of a series of Neoarchean granitoids, 20 

including TTG (tonalite, trondhjemite and granodiorite) and potassic granitoids, in the 21 

Xingcheng region of the eastern North China Craton. Zircon U-Pb dating shows that the TTG 22 

granitoids were emplaced in the Neoarchean within a 75 Myr period (2595-2520 Ma), with 23 

coeval mafic magmatic enclaves, followed by intrusion of potassic granitoids. The 24 

geochemistry of the TTG granitoids is consistent with partial melting of Mesoarchean enriched 25 

mafic crustal sources at different depth levels (up to 10-12 kbar) during a continental collision 26 

event. The potassic granitoids are derived from either low-degree melting of Mesoarchean 27 

enriched mafic crustal sources or re-melting of Mesoarchean TTGs in response to post-28 

collisional extension, and hybridized with Neoarchean mantle-derived mafic melts by various 29 

degrees. The TTG and potassic granitoids in the Xingcheng region record the evolution from 30 

collision of micro-continental blocks to post-collisional extension, consistent with other studies, 31 

suggesting that the amalgamation of micro-continental blocks is what gave rise to the 32 

cratonization of the North China Craton at the end of the Archean. The rock assemblage of these 33 

granitoids resembles the syn- and post-collisional magmatism in the Phanerozoic orogenic belt, 34 

and the estimated average composition is similar to that of the present-day upper continental 35 

crust, suggesting that a proto-type upper continental crust might have been developed at the end 36 

of the Archean by a mixture of TTG and potassic granitoids. Together with the prevailing 37 

concurrent high-grade metamorphism in the North China Craton, we thus conclude that 38 

collisional orogenesis is responsible for the continental cratonization at the end of Archean in 39 



the North China Craton.  40 

Keywords: TTG and potassic granitoids; cratonization at the end of Archean; micro-continental 41 

collision; proto-type upper continental crust; the North China Craton.  42 
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INTRODUCTION 44 

Our knowledge of when and how the mature continental crust may have developed remains 45 

incomplete. As the main components of Archean terranes or primary architecture of the 46 

continental crust, sodic granitoids of varying composition collectively called the tonalite-47 

trondhjemite-granodiorite (TTG) suites have been extensively studied with the aim of 48 

understanding the evolution of the Earth and constraining the differentiation processes of the 49 

continental crust (Barker et al., 1979; Jahn et al., 1981; Martin, 1999; Smithies, 2000; Condie, 50 

2005b, 2014; Martin et al., 2005; Moyen, 2011; Moyen & Martin, 2012). Many studies suggest 51 

that TTGs are generated by partial melting of mafic rocks under either amphibolite facies (less 52 

than 15 kbar; e.g., Foley et al., 2002) or eclogite facies (more than 15-20 kbar; e.g., Rapp et al., 53 

2003) conditions. The compositional similarity between the Archean TTGs and the Phanerozoic 54 

subduction-related adakites (e.g., Defant & Drummond, 1990; Castillo, 2012) has led to the 55 

popular acceptance that the TTGs may have formed in Archean-type subduction settings (e.g., 56 

Condie, 2005b; Martin et al., 2005; Niu et al., 2013). Potassic granitoids are also an important 57 

component and closely associated with the TTGs, especially in the Neoarchean terranes. They 58 

have been previously interpreted as products of re-melting of pre-existing TTGs (Sylvester, 59 

1994; Moyen et al., 2001, 2003; Bleeker et al., 2003; Whalen et al., 2004; Watkins et al., 2007), 60 

and as the marker for the final consolidation of the cratonic continental crust (Frost et al., 1998; 61 

Whalen et al., 2004; Martin et al., 2005). However, the role of the potassic granitoids in the 62 

growth of the continental crust has been less studied than TTGs.  63 

The present-day upper continental crust is relatively rich in K2O and HREEs (K2O/Na2O = 64 

0.86, (La/Yb)N = 11; Rudnick & Gao, 2003), and much different from the Archean TTGs 65 



(K2O/Na2O = 0.35, (La/Yb)N = 32; Moyen & Martin, 2012). It is thus important to explore how 66 

the present-day upper continental crust may have evolved from the Archean TTG-dominated 67 

upper continental crust over the Earth’s history. Condie (1993, 2014) proposed that after the 68 

Archean the TTG-dominated upper continental crust was gradually replaced by other calc-69 

alkaline granitoids with geochemical features distinct from Archean TTGs, to reach a mature 70 

present-day upper continental crust. As there are coeval calc-alkaline granitoids and TTGs 71 

reported in some Archean terranes (e.g., Samsonov et al., 2005) and potassic granitoids are 72 

widely distributed in Archean cratons worldwide (Bleeker et al., 2003; Moyen et al., 2003), 73 

there exists the possibility that in some cases the Archean upper continental crust might have 74 

already possessed the present-day upper continental crust composition. 75 

The formation and evolution of the North China Craton (NCC) has been the focus of 76 

research for decades with extensive investigations carried out to decipher its Precambrian 77 

history (e.g., Zhao et al., 1998, 1999, 2001, 2005; Zhai et al., 2010; Nutman et al., 2011; Zhai 78 

& Santosh, 2011; Zhao & Cawood, 2012;). The widely distributed Neoarchean to 79 

Paleoproterozoic igneous rocks of the NCC offer insights into its Archean to Paleoproterozoic 80 

crustal growth and its geodynamic evolution (e.g., Compston et al., 1983; Jahn & Ernst, 1990; 81 

Kröner et al., 1998; Yang et al., 2008). However, the geodynamic regime of the NCC during 82 

the Neoarchean remains controversial; some researchers suggested a mantle plume-related 83 

setting (e.g., Zhao et al., 2001, 2005; Yang et al., 2008), while others argued for a subduction-84 

related environment (e.g., Liu et al., 2010, 2011; Nutman et al., 2011; Wan et al., 2010, 2011; 85 

Wang et al., 2011, 2012, 2013). 86 

In this study, we present results of in-situ zircon U-Pb dating, bulk rock geochemistry and 87 



Nd isotopes, and in-situ zircon Hf isotopes for the TTG granitoids and their mafic magmatic 88 

enclaves (MMEs) as well as the associated potassic granites in the eastern NCC. We show that 89 

these granitoids are products of partial melting of proto-crust during micro-continental collision 90 

and post-collisional extension at the end of the Archean. Therefore, a proto-type upper 91 

continental crust might have been already developed by the end of the Archean in the NCC.  92 

REGIONAL GEOLOGY 93 

The NCC is the largest and oldest craton in China and preserves records of ≥ 3.8 Ga crustal 94 

remnants (Liu et al., 1992; Song et al., 1996; Wan et al., 2005). It is suggested to have formed 95 

by collision between the Eastern Block and the Western Block along the Trans-North China 96 

Orogen (TNCO) at ~1.85 Ga (Fig 1a; Zhao et al., 2001, 2005; Guo et al., 2002) or at ~1.95 Ga 97 

as argued by Qian et al. (2013), Zhang et al. (2013) and Wei et al. (2014). The Eastern Block 98 

underwent Paleoproterozoic intra-continental rifting along its eastern continental margin in the 99 

period of 2.2-1.9 Ga and the rift system was finally terminated by subduction and continental 100 

collision at ~1.9 Ga, leading to the formation of the Jiao-Liao-Ji Belt (Fig 1a; Li & Zhao, 2007; 101 

Tam et al., 2011). The Western Block comprises two Archean micro blocks, i.e., the Yinshan 102 

Block in the north and the Ordos Block in the south, which were amalgamated along the east-103 

west trending Khondalite Belt at ~1.95 Ga (Fig 1a; Santosh et al., 2007a, 2007b; Zhao et al., 104 

2010). 105 

The exposures of the Precambrian basement rocks of the Eastern Block are shown in Fig 106 

1a; except for a few outcrops in the central part (Western Shandong and Eastern Shandong), 107 

and mainly distributed in the northern part as three major regions: Jidong (Eastern Hebei), 108 



Northern Liaoning-Southern Jilin and Western Liaoning. These Archean terranes contains ~ 3.8 109 

Ga tonalites (Song et al., 1996; Wan et al., 2005) and experienced a complicated evolution 110 

history from 3.8 to 2.5 Ga (Nutman et al., 2011; Zhai & Santosh, 2011). 111 

Our study area is in the northwestern part of the Eastern Block, one of the key regions with 112 

the well-exposed Precambrian basement rocks of the NCC (Fig 1a). It mainly consists of the 113 

Jidong-Jianping high-grade gneissic terrane with varying protoliths and metamorphic ages (2.6-114 

2.5 Ga; Kröner et al., 1998; Zhao et al., 2001, 2005; Nutman et al., 2011) and the Suizhong 115 

granitic terrane (e.g. Yang et al., 2008) with some low to medium-grade greenstone in the Fuxin 116 

region (Fig 1b; Liu et al., 2010; Wang et al., 2011, 2012, 2015b). They are partially obscured 117 

by Paleoproterozoic to Paleozoic platform strata and Mesozoic volcano-sedimentary sequences, 118 

and intruded by Late Paleozoic to Mesozoic igneous rocks.  119 

The Suizhong granitic terrane, previously termed as “Suizhong granitoids”, is dominated 120 

by granitoids with the TTG assemblage plus minor monzogranite and potassic granite (Figs 1b 121 

and c). However, their precise ages and geochemical characteristics have not been well studied. 122 

The Qinhuangdao granitoid in the southern part of the Suizhong granitic terrane has long been 123 

treated as part of the Eastern Hebei Archean terrane, which has a rock assemblage of diorite, 124 

granodiorite and monzogranite emplaced at 2526-2515 Ma and metamorphosed at 2500-2490 125 

Ma with younger K-feldspar granite (2440 Ma) (Fig 1b; Nutman et al., 2011; Yang et al., 2008). 126 

FIELD OCCURRENCE AND SAMPLES 127 

The Xingcheng region lies in the central part of the Suizhong granitic terrane, which has been 128 

covered by late sedimentary rocks in places. Several outcrops of the Neoarchean granitoids are 129 



exposed along the west coast of the Bohai Sea (Fig 1b). Samples of this study were collected 130 

from four representative locations: Taili, Xingcheng, Juhuadao and Huludao (Fig 1c). The 131 

lithologies present in these four representative locations include gneissic granites, tonalites, 132 

trondhjemites, granodiorites with mafic magmatic enclaves (MMEs), red-colored potassic 133 

granites and locally red pegmatite dykes, which enclose almost all the rock types observed 134 

within the Suizhong granitic terrane. Due to the heavy sedimentary covers, the field 135 

relationships between most of these lithologies are difficult to determine and map on outcrop 136 

scales. Nevertheless, study on samples from these representative outcrops can provide 137 

insightful information about the petrogentic history of the Suizhong granitic terrane. 138 

Taili gneissic tonalite-granites 139 

All the Archean granitoids in Taili are strongly deformed with E-W foliations. They are intruded 140 

by 230-220 Ma adakitic plutons (Wang et al., 2015a), 155 Ma undeformed granites (our 141 

unpublished data) and as yet undated mafic dykes (Fig 2a). The adakitic plutons show the same 142 

deformation character as their intruded gneisses (Fig 2a), indicating that the Taili Archean 143 

granitoids have experienced latest deformation between 220 Ma and 155 Ma.  144 

Two Archean rock types have been identified in Taili: (1) gneissic tonalites and (2) 145 

porphyritic gneissic granites, which are interleaved with each other (Fig 2b). The gneissic 146 

tonalites are dark-grey, homogeneous and medium- to fine-grained without porphyroblasts. 147 

This rock type has a mineral assemblage of plagioclase (50–60 %), K-feldspar (10-20 %), quartz 148 

(10-20 %), amphibole (~ 5 %), minor biotite and accessory zircon, magnetite and titanite. The 149 

porphyritic gneissic granites are pale grey, medium- to coarse-grained with feldspar phenocrysts, 150 



and are composed of K-feldspar (40-50 %), plagioclase (20-30 %), quartz (20-30 %), amphibole 151 

(~ 5 %), minor biotite and accessory zircon, magnetite and titanite. Strongly deformed mafic 152 

dyke (sills) are present (Fig. 2b), but difficult to sample. 153 

Xingcheng porphyritic tonalite-trondhjemites and potassic granites 154 

The tonalite-trondhjemites in Xingcheng are grey, medium- to coarse-grained with plagioclase 155 

phenocrysts and contain some MMEs and syn-plutonic dykes. They show porphyritic texture 156 

and consist of quartz, plagioclase, K-feldspar, minor hornblende and accessory zircon, 157 

magnetite and titanite (Figs 2c-f). The MMEs are dark grey to black and irregular in shape, 158 

ranging in size from several to tens of centimeters, with relatively clear boundaries but no 159 

chilled margins (Figs 2c-e). They show fine- to medium-grained texture with plagioclase 160 

phenocrysts, and their matrix consists of hornblende, plagioclase, minor biotite and accessory 161 

zircon, magnetite and titanite. The syn-plutonic dykes show darker color than, and display clear 162 

boundaries with their host, together with the irregularly layered-like MMEs, indicating a 163 

cumulate origin (Fig 2e). The tonalite-trondhjemites were intruded by later potassic granites 164 

with sharp intrusive contacts (Fig 2f). The potassic granites are pinkish red, medium- to coarse-165 

grained and are composed of quartz, K-feldspar, minor biotite and accessory zircon, magnetite 166 

and titanite. Both tonalite-trondhjemites and potassic granites are intruded by parallel, red-167 

colored pegmatite dykes (Figs 2e and f). 168 

Juhuadao granodiorites  169 

The granodiorites in Juhuadao are pale grey in color with medium- to coarse-grain size and also 170 

contain MMEs. They are intruded by Mesozoic plutons (Fig. 1c). The granodiorites have the 171 



mineral assemblage of quartz, plagioclase, hornblende, minor K-feldspar and accessory zircon, 172 

magnetite and titanite. The MMEs are fine- to medium-grained with the mineral assemblage of 173 

hornblende, plagioclase, minor biotite and accessory zircon, magnetite and titanite, showing 174 

clear contact with the host granodiorites (Fig 2g). 175 

Huludao potassic granites 176 

The potassic granites in Huludao show pinkish red color, fine- to medium-grained texture and 177 

are dominated by quartz, K-feldspar, minor biotite and accessory zircon, magnetite and titanite. 178 

They are unconformably overlain by the Paleoproterozoic sedimentary rocks of the 179 

Changcheng formation (Pt2c) (Figs 1c and 2h). 180 

ANALYTICAL TECHNIQUES 181 

In-situ zircon U-Pb dating 182 

Zircon grains were extracted from crushed samples by standard heavy-liquid and magnetic 183 

techniques, and purified by hand-picking under a binocular microscope. The selected grains 184 

were embedded in epoxy resin discs and polished down to about half-sections to expose the 185 

grain interiors. Cathodoluminescence (CL) images were acquired using a cathodoluminescent 186 

spectrometer (Garton Mono CL3+) equipped on a Quanta 200F ESEM at scanning conditions 187 

of 15 kV and 120 nA at Peking University. 188 

Measurements of U, Th and Pb in zircons were carried out on an Agilent-7500a quadrupole 189 

inductively coupled plasma mass spectrometer coupled with a New Wave UP-193 solid-state 190 

laser-ablation system (LA-ICP-MS) in the Geological Lab Center, China University of 191 



Geosciences, Beijing (CUGB) following the analytical procedures in Song et al. (2010a). Laser 192 

spot size of 36 μm, laser energy density of 8.5 J/cm2 and a repetition rate of 10 Hz were applied 193 

for analysis. The ablated sample material was carried into the ICP-MS by high-purity Helium 194 

gas. NIST 610 glass and Harvard standard zircon 91500 (Wiedenbeck et al., 1995) were used 195 

as external standards, Si as the internal standard and the standard zircon TEMORA (417 Ma) 196 

from Australia (Black et al., 2003) as secondary standard. The software GLITTER (ver. 4.4, 197 

Macquarie University) was used for data reduction. The common lead correction was done 198 

following Andersen (2002). Age calculations and plots of concordia diagrams were made using 199 

Isoplot (ver. 3.0) (Ludwig, 2003). 200 

Bulk rock major and trace element analyses 201 

All the samples are fresh cuttings away from late veinlets with surface contaminants trimmed 202 

off before being thoroughly cleaned. Fresh portions of the trimmed samples were crushed to 1-203 

2 cm size chips using a percussion mill. These rock pieces were then ultrasonically cleaned in 204 

Milli-Q water, dried and powdered in a thoroughly cleaned agate mill to 200 mesh in the clean 205 

laboratory at the Langfang Regional Geological Survey, China. 206 

Bulk rock major and trace element analysis was done at CUGB following Song et al. 207 

(2010b). Major elements were analyzed on a Leeman Prodigy inductively coupled plasma-208 

optical emission spectroscopy (ICP-OES) system with high dispersion Echelle optics. Based on 209 

USGS (US Geological Survey) rock standards AGV-2 and W-2, and CNGR (Chinese National 210 

Geological Reference) materials GSR-1 and GSR-3, the analytical precisions (1σ) for most 211 

major element oxides are better than 1% with the exception of TiO2 (~1.5%) and P2O5 (~2.0%). 212 



Loss on ignition (LOI) was determined by placing 1 g of samples in a furnace at 1000 °C for a 213 

few hours and then reweighting the cooled samples.  214 

Bulk rock trace elements were analyzed using an Agilent-7500a quadrupole inductively 215 

coupled plasma mass spectrometry (ICP-MS). About 35 mg powder of each sample was 216 

dissolved in distilled acid mixture (1:1 HF + HNO3) with Teflon digesting vessels and heated 217 

on a hot-plate at 195 °C for 48 hours using high-pressure bombs for digestion/dissolution. The 218 

sample was then evaporated to incipient dryness, refluxed with 1 mL of 6 N HNO3 and heated 219 

again to incipient dryness. The sample was again dissolved in 2 mL of 3 N HNO3 and heated at 220 

165 °C for further 24 hours to guarantee complete digestion/dissolution. The sample was finally 221 

diluted with Milli-Q water to a dilution factor of 2000 in 2 % HNO3 solution for analysis. Rock 222 

standards USGS AGV-2, W-2 and BHVO-2 were used to monitor the analytical accuracy and 223 

precision. Analytical accuracy, as indicated by relative difference between measured and 224 

recommended values is better than 5% for most elements, and 10 ~ 15% for Cu, Zn, Gd, and 225 

Ta. 226 

Bulk rock Nd isotope analyses 227 

Separation and purification of Nd were done using conventional two-column ion exchange 228 

procedures in the ultraclean laboratory of MOE Key Laboratory at Peking University. 229 

Approximately 250 mg powder of each sample was dissolved with distilled acid mixture (HF 230 

+ HClO4) in a sealed Savillex beaker on a hot-plate for 168 hours. The ion exchange procedures 231 

include (1) a group separation of light REE through a cation-exchange column (1×7.5 cm2, 232 

packed with 200 mesh AG50W resin); and (2) a purification of Nd through a second cation-233 



exchange column(0.5×5.5 cm2, packed with 200 mesh P507 resin), conditioned and cleaned 234 

with dilute HCl. Nd isotopic ratios were measured using a Thermo-Finnigan Triton thermal 235 

ionization mass spectrometer (TIMS) at the Isotope Laboratory of Tianjin Institute of Geology 236 

and Mineral Resources. The 147Sm/144Nd ratios were calculated using ICP-MS analyzed Sm and 237 

Nd concentrations. Mass fractionation was corrected for by normalizing the measured 238 

143Nd/144Nd against 146Nd/144Nd ratio of 0.7219. Rock standard USGS BCR-2 was used to 239 

evaluate the separation and purification process of Nd, which yielded weighted mean 240 

143Nd/144Nd ratio of 0.512632 ± 4 (2σ, n = 100). In order to monitor the data quality during the 241 

period of data acquisition, LRIG Nd standard was analyzed and gave a weighted mean 242 

143Nd/144Nd ratio of 0.512206 ± 6 (2σ, n = 100). 243 

In-situ zircon Hf isotope analyses 244 

In-situ zircon Lu-Hf isotope analysis of dated samples from the Xingcheng region was carried 245 

out using a Neptune multi-collector ICP-MS attached with a New Wave UP-213 laser-ablation 246 

system (LA-MC-ICP-MS) at MLR Key Laboratory of Metallogeny and Mineral Assessment, 247 

Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing. Analytical 248 

details are given in Hou et al. (2007) and Wu et al. (2006). Laser spot size of 40 μm was adopted 249 

for analysis and Helium gas was used as carrier gas to transport the laser ablated sample from 250 

the laser-ablation cell to the ICP-MS torch via a mixing chamber mixed with Argon gas. 251 

Correction for the isobaric interferences of 176Lu and 176Yb on 176Hf was after Hou et al. (2007) 252 

and Wu et al. (2006). Before the analysis, standard zircons (TEMORA, GJ1 and FM02) were 253 

analyzed and the efficacy of the correction method of isobaric interferences in Hou et al. (2007) 254 



and Wu et al. (2006) was tested to be efficient. Zircon GJ1 was used as the reference standard 255 

to monitor data quality during analysis, giving a weighted mean 176Hf/177Hf ratio of 0.282007 256 

± 7 (2σ, n=36), which is in accordance with the weighted mean 176Hf/177Hf ratio of 0.282000 ± 257 

5 (2σ) measured by the solution analysis method (Morel et al., 2008). 258 

RESULTS 259 

Geochronology 260 

Eight samples were selected for zircon U-Pb analysis, including gneissic granite (10TL13), 261 

tonalite-trondhjemite (10XC02), granodiorite (12XC22 and 12XC28), MME (11XC03 and 262 

12XC15) and potassic granite (10XC05 and 10XC08) from the four outcrops in the Xingcheng 263 

region: Taili, Xingcheng, Juhuadao and Huludao (see Fig 1c for sampling locations). The CL 264 

images of representative zircons are shown in Fig 3 and the in-situ LA-ICP-MS U-Pb data are 265 

given in Table 1 and plotted in Fig 4.  266 

Zircon grains from all the eight dated samples are euhedral/prismatic, and have varying 267 

size (50-250 μm) with length/width ratio of 2:1-5:1. They show typical oscillatory growth 268 

zoning of magmatic origin in cathodoluminescent (CL) images (Fig 3), suggesting that these 269 

zircons from the granitoids and their MMEs were crystallized from magmas parental to these 270 

host rocks. Most of the zircon grains have Th/U ratios varying from 0.3 to 1.8, a few less than 271 

0.3 possibly due to late-stage alteration. 272 

Taili gneissic tonalite-granites 273 

Sample 10TL13 is a gneissic granite from Taili (Figs 1 and 2a-b). U-Pb analysis for twenty-five 274 



zircon grains yields 207Pb/206Pb ages ranging from 2581 ± 21 to 2525 ± 21 Ma (1σ) apart from 275 

2 strongly discordant ages due to lead loss (2285 ± 47 and 2463 ± 47 Ma) (Table 1). They form 276 

a discordant line with an upper intercept age of 2558 ± 16 Ma (MSWD = 0.50) (Fig 4a). 277 

Nineteen analyses on or close to the concordia give a weighted mean 207Pb/206Pb age of 2551 ± 278 

9 Ma (MSWD = 0.53), which is in accordance with the upper intercept age. Therefore, the Taili 279 

gneissic granites were emplaced at ~2558 Ma. 280 

Xingcheng tonalite-trondhjemites and MMEs 281 

Sample 10XC02 is a tonalite from Xingcheng (Figs 1 and 2c-f). Twenty-five zircon grains were 282 

analyzed and have a wide 207Pb/206Pb age range of 2578 ± 22 to 2388 ± 23 Ma (1σ) (Table 1). 283 

They fall on a discordant line with an upper intercept with concordia at 2559 ± 23 Ma (MSWD 284 

= 0.88) (Fig 4b). Seven near-concordant analyses of zircon grains give a weighted mean 285 

207Pb/206Pb age of 2548 ± 17 Ma (MSWD = 1.05), agreeing well with the upper intercept age. 286 

Thus, the Xingcheng tonalite-trondhjemites crystalized at ~2559 Ma. 287 

Sample 11XC03 is an MME hosted in the Xingcheng tonalite-trondhjemites (Figs 2c-e). 288 

Ten zircon grains were analyzed to give a 207Pb/206Pb age range of 2487 ± 27 to 2236 ± 26 Ma 289 

(1σ) (Table 1). They are extremely discordant due to lead loss and lie along a discordant line 290 

under the concordia with a projected upper intercept age of 2546 ± 55 Ma (MSWD = 0.61) (Fig 291 

4c). Thus, the crystalization age of the MMEs in Xingcheng is ~2546 Ma and coeval with the 292 

host tonalite-trondhjemites within error. 293 

Juhuadao granodiorites and MMEs 294 

Sample 12XC22 is a granodiorite from Juhuadao (Figs 1 and 2g). Thirty zircon grains were 295 



analyzed to give a wide 207Pb/206Pb age range of 2660 ± 17 to 2145 ± 18 Ma (1σ) due to lead 296 

loss (Table 1). They define a discordant line and intercept the concordia at 2595 ± 14 Ma 297 

(MSWD = 1.20), which is in accordance with the weighted mean 207Pb/206Pb age of 9 analyses 298 

indistinguishable from concordia (2587 ± 11 Ma; MSWD = 0.86) (Fig 4d). Another 299 

granodiorite sample 12XC28 was also selected for dating. Thirty zircon grains were analyzed 300 

to give a wide 207Pb/206Pb age range of 2582 ± 24 to 1822 ± 58 Ma (1σ) resulting from lead loss 301 

(Table 1). They are strongly discordant and form a discordant line intercepting the concordia at 302 

2573 ± 28 Ma (MSWD = 2.90) (Fig 4e). Therefore, the emplacement timing of the Juhuadao 303 

granodiorites is between 2595 and 2574 Ma. 304 

Sample 12XC15 is an MME hosted in the Juhuadao granodiorites (Fig 2g). Twenty-four 305 

zircon grains were analyzed and give a wide 207Pb/206Pb age range of 2583 ± 26 to 1626 ± 95 306 

Ma (1σ) showing effects of lead loss (Table 1). They fall on a discordant line with an upper 307 

intercept age of 2568 ± 13 Ma (MSWD = 2.80) (Fig 4f). Thus, the MMEs crystalized at ~2568 308 

Ma, also coeval with the hosting granodiorite within error. 309 

Xingcheng and Huludao potassic granites 310 

Sample 10XC05 is a potassic granite intruding the Xingcheng tonalite-trondhjemites (Figs 1 311 

and 2f). Fifteen zircon grains were analyzed to give a 207Pb/206Pb age range of 2573 ± 16 to 312 

2327 ± 15 Ma (1σ) in addition to two strongly discordant ones due to lead loss (1985 ± 51 and 313 

2021 ± 15 Ma) (Table 1). They define a discordant line intercepting the concordia at 2545 ± 20 314 

Ma (MSWD = 0.98) (Fig 4g), in accordance with the weighted mean 207Pb/206Pb age of 8 315 

analyses (2531 ± 23 Ma; MSWD = 2.7) near or close to the concordia. Therefore, the 316 



crystallization age of the Xingcheng potassic granites is ~2545 Ma and slightly younger than 317 

that of the intruded tonalite-trondhjemites, which is consistent with the field observations of 318 

their relative ages (Fig 2f). 319 

Sample 10XC08 is a potassic granite from Huludao (Figs 1 and 2h). Nineteen zircon grains 320 

were analyzed to give a 207Pb/206Pb age range of 2544 ± 41 to 2334 ± 19 Ma (1σ) (Table 1). 321 

They are also strongly discordant and define a discordant line intercepting the concordia at 2520 322 

± 25 Ma (MSWD = 1.04) (Fig 4h). Therefore, the crystallization ages of the potassic granites 323 

in the Xingcheng region range from 2545 Ma to 2520 Ma. 324 

In summary, the emplacement age of Neoarchean granitoids in the studied region is 325 

between 2595 and 2520 Ma. The TTG granitoids were emplaced during 2595-2558 Ma, which 326 

is coeval with the hosted MMEs of 2568-2546 Ma, followed by intrusion of potassic granites 327 

at 2545-2520 Ma. 328 

Geochemistry 329 

Bulk rock major and trace elements 330 

Forty-eight fresh or least altered samples from the four representative outcrops of Neoarchean 331 

granitoids in the Xingcheng region, including gneissic granites, tonalite-trondhjemites, 332 

granodiorites, MMEs and potassic granites, were selected for bulk rock major and trace element 333 

analyses, and the data are reported in Table 2. They vary in composition from dioritic to 334 

granodioritc, to quartz monzonitic and to granitic. Most of them are sub-alkaline, with some 335 

samples plotted in the alkaline field (Fig 5a). 336 

Taili gneissic tonalite-granites. The gneissic granite samples from Taili are characterized by 337 



enriched K2O over Na2O (K2O/Na2O = 0.96-2.41) and total alkaline contents (Figs 5a, 5d and 338 

6a) and show a relatively large compositional range in terms of other major elements (Table 2; 339 

Figs 5 and 6). They are all metaluminous plotting in the granite field in the An-Ab-Or diagram 340 

(Table 2; Figs 5b and c). The Taili gneissic granite samples with lower SiO2 contents have 341 

elevated P2O5 and TiO2 contents (Figs 6b and c). They also have low concentrations of Cr and 342 

Ni but relatively high Y and variable Sr abundances (Table 2; Fig 6e and f). They are all enriched 343 

in light rare earth elements (LREEs) with varying (La/Yb)N ratios of 8-51 (Table 2; Fig 12a). 344 

They have obvious negative Eu anomalies (Eu/Eu* = 0.50-0.93) and super-chondritic heavy 345 

rare earth element (HREE) contents (Fig 7a). In the primitive mantle (PM)-normalized trace 346 

element diagram (Fig 8a), they are relatively enriched in large ion lithophile elements (LILEs; 347 

e.g., Cs, Rb, Ba and Th) with limited variation and depleted in high field strength elements 348 

(HFSEs; negative Nb and Ta anomalies, but no Zr and Hf depletion). They also show a large 349 

range of Sr/Y ratios of 7-62 (Fig 12b). 350 

The Taili gneissic tonalite samples have relatively high SiO2 and K2O/Na2O (0.71-0.82) 351 

(Table 2; Fig 5d). They are all metaluminous and fall near the TTG field in the An-Ab-Or 352 

diagram (Table 2; Figs 5b and c). They also have low concentrations of Cr, Ni and Y but 353 

relatively high Sr (Table 2; Fig 6e and f). They show typical fractionated REE patterns of TTGs 354 

(or adakites), with high (La/Yb)N ratios of 72-74 without negative Eu anomalies (Eu/Eu* = 355 

1.11-1.19) (Table 2; Fig 7a). In the PM-normalized trace element diagram (Fig 8a), they are 356 

enriched in LILEs, with significant negative anomalies of some HFSEs (e.g., Nb, Ta and Ti) 357 

without Zr and Hf depletion. They have positive Sr anomalies with high Sr/Y ratios of 161-172 358 

(Fig 12b).  359 



Xingcheng tonalite-trondhjemites and MMEs. The tonalite-trondhjemite samples from 360 

Xingcheng are intermediate to felsic (Table 2). They are relatively enriched in Na2O relative to 361 

K2O (K2O/Na2O = 0.20-0.67) (Fig 5d), and all plot in or near the trondhjemite field in the An-362 

Ab-Or diagram (Fig 5b). They also have low Cr, Ni and Y, but relatively high Sr (Table 2; Figs 363 

6e and f). They are uniform in REE patterns with moderate depletion in HREEs ((La/Yb)N = 364 

25-47) and weakly negative to positive Eu anomalies (Eu/Eu* = 0.76-1.16) (Fig 7b). In the PM-365 

normalized trace element diagram (Fig 8b), they are enriched in LILEs and depleted in Nb, Ta 366 

and Ti and show positive Sr anomalies with high Sr/Y ratios of 83-145 (Fig 12b). 367 

The MMEs hosted within the Xingcheng tonalite-trondhjemites are mafic to intermediate 368 

in composition (Table 2). In contrast with their host, the MMEs have higher TiO2, Al2O3, total 369 

Fe2O3, MgO, CaO, similar Cr, Ni, Sr, and K2O/Na2O (0.42-0.87) (Fig 5d), but lower Ba, Th and 370 

U (Table 2; Fig 6). They have higher HREEs with lower (La/Yb)N ratios of 11-13 than their host 371 

and show weakly negative Eu anomalies (Eu/Eu* = 0.68-0.94) (Fig 7b). In the PM-normalized 372 

trace element diagram (Fig 8b), the MMEs are relatively depleted in some LILEs (e.g., Ba and 373 

Th) and show depletion of HFSEs with negative anomalies of Nb, Zr, Hf and Ti and moderate 374 

positive Sr anomalies with relatively high Sr/Y ratios of 39-86 (Fig 12b). 375 

Juhuadao granodiorites and MMEs. The granodiorite samples from Juhuadao are 376 

compositionally intermediate to felsic (Table 2) and with high Na2O and thus lower K2O/Na2O 377 

(0.32-0.76), similar to the Xingcheng tonalite-trondhjemites (Table 2; Fig 5d). They fall in the 378 

tonalite-trondhjemite-granodiorite field in the An-Ab-Or diagram (Fig 5b). They have 379 

intermediate Y and Sr abundances. They are all enriched in LREEs with significantly varying 380 

HREE depletion, thus giving varying (La/Yb)N (8-50) (Fig 7c). They have varrying Eu/Eu* 381 



(0.67-1.29) and an inverse Yb-SiO2 correlation (Table 2; figure not shown). In the PM-382 

normalized trace element diagram (Fig 8c), they are enriched in LILEs and depleted in Nb, Ta 383 

and Ti with varying Sr/Y ratios (19-57; Fig 12b). 384 

The MMEs in the Juhuadao granodiorites are mafic with relatively low SiO2 and high 385 

K2O/Na2O (0.41-0.62), consistent with the host granodiorite (Table 2; Fig 5d). They have low 386 

TiO2, MgO, Cr, Ni, and Sr (Table 2; Fig 6). In contrast with their host, they have flat LREE 387 

patterns with high HREEs and thus weak REE fractionation ((La/Yb)N = ~ 4), lower Sr/Y ratios 388 

(12-15) with no obvious Eu anomaly (Figs 7c and 12b). In the PM-normalized trace element 389 

diagram (Fig 8c), they are depleted in some LILEs (e.g., Th and U) and have negative anomalies 390 

of HFSEs (Nb, Ta, Zr, Hf and Ti).  391 

Xingcheng and Huludao potassic granites. The potassic granites intruding the Xingchegn 392 

tonalite-trondhjemites have high SiO2, and are metaluminous to slightly peraluminous (Table 393 

2; Fig 5c), enriched in K2O (K2O/Na2O = 1.50-1.78; Fig 5d), and fall in the granite field in the 394 

An-Ab-Or diagram (Fig 5b). They have relatively low Cr, Ni, Y and Sr concentrations (Table 395 

2; Figs 6e and f). They show fractionated REE patterns ((La/Yb)N = 18-24) with negative Eu 396 

anomalies (Eu/Eu* = 0.52-0.74) and concave HREE patterns (Fig 7d). In the PM-normalized 397 

trace element diagram (Fig 8d), they are enriched in LILEs and depleted in some HFSEs such 398 

as Nb and Ti but with no depletion of Zr and Hf. Also shown is the depletion of Sr with moderate 399 

Sr/Y ratios of 13-48 (Fig 12b). 400 

The potassic granite samples from Huludao are peraluminous (Fig 5c) and are strongly 401 

enriched in K2O with elevated K2O/Na2O (1.17-23.04; Fig 5d). They have low Cr, Ni, Y and Sr 402 

abundaces (Table 2; Figs 6e and f). They have fractionated REE patterns ((La/Yb)N = 21-46) 403 



and negative Eu anomalies (Eu/Eu* = 0.74-0.95), with HREE patterns being flat to concave 404 

(Fig 7d). In the PM-normalized trace element diagram (Fig 8d), they are enriched in LILEs, and 405 

depleted in Nb, Ta and Ti. They are strongly depleted in Sr with moderate Sr/Y ratios of 4-59 406 

(Fig 12b). 407 

Bulk rock Nd isotopic compositions 408 

Bulk rock Sm-Nd isotopic data for the Neoarchean TTG and potassic granitoids in the 409 

Xingcheng region are given in Table 3 and plotted in Fig 9. Two Taili gneissic granite samples 410 

have uniform initial 143Nd/144Nd ratios (0.509320-0.509325) with εNd(t) values of -0.2 and two-411 

stage depleted mantle Nd model ages (TDM2) of 2.91-2.90 Ga. Four Xingcheng tonalite-412 

trondhjemite samples have a narrow range of initial 143Nd/144Nd ratios (0.509248-0.509364) 413 

with εNd(t) values from -1.6 to -0.6 and two-stage depleted mantle Nd model ages (TDM2) of 414 

3.02-2.84 Ga. The MMEs within the Xingcheng tonalite-trondhjemites exhibit homogeneous 415 

initial 143Nd/144Nd ratios (0.509261-0.509314) with εNd(t) values of -1.7 to -0.6 and TDM2 values 416 

of 3.02-2.94 Ga, essentially the same as their host. Four Juhuadao granodiorite samples have 417 

initial 143Nd/144Nd ratios (0.509167-0.509335) with εNd(t) values from -2.3 to +1.0 and TDM2 418 

values of 3.10-2.84 Ga. The MMEs contained within the Juhuadao granodiorites have uniform 419 

143Nd/144Nd ratios (0.509295-0.509313) with εNd(t) values of -1.9 to -0.4 and TDM2 values of 420 

3.06-2.94 Ga. The Xingcheng potassic granite samples have initial 143Nd/144Nd ratios 421 

(0.509313-0.509403) with εNd(t) values of -1.4 to +1.0 and TDM2 values of 2.97-2.80 Ga. The 422 

Huludao potassic granite samples show narrow ranges of initial 143Nd/144Nd ratios (0.509313-423 

0.509328) with εNd(t) values of -1.4 to -1.1 and TDM2 values of 2.97-2.95 Ga.  424 



Zircon Hf isotopic compositions 425 

Zircon Hf isotopic data for these Neoarchean granitoids are given in Table 4 and plotted in Figs 426 

10 and 11. Zircons of the Taili gneissic granite (sample 10TL13) have narrow ranges of initial 427 

176Hf/177Hf ratios (0.281207-0.281277) with εHf(t) values of +2.0 to +7.3 and two-stage depleted 428 

mantle Hf model ages (TDM2) of 2.85-2.59 Ga, slightly younger than the Nd model ages. Zircons 429 

of the Xingcheng tonalite-trondhjemite (sample 10XC02) have uniform initial 176Hf/177Hf ratios 430 

of 0.281179-0.281242, εHf(t) values of 1.1 to 3.3 and TDM2 values of 2.89-2.79 Ga. Zircons of 431 

the Juhuadao granodiorite (samples 12XC22 and 12XC28) show initial 176Hf/177Hf ratios of 432 

0.281192-0.281356 with εHf(t) values of 1.9 to 7.7 and TDM2 values of 2.87-2.58 Ga. Zircons of 433 

the MMEs hosted within the Juhuadao granodiorite (sample 12XC15) have uniform initial 434 

176Hf/177Hf ratios of 0.281276-0.281320, εHf(t) values of 4.8 to 6.3 and TDM2 values of 2.72-435 

2.65 Ga. Zircons of the Xingcheng potassic granite (sample 10XC05) have homogeneous Hf 436 

isotopic compositions with initial 176Hf/177Hf ratios of 0.281165-0.281261, εHf(t) values of 0.2 437 

to 3.7 and TDM2 values of 2.92-2.76 Ga. Zircons of the Huludao potassic granite (sample 438 

10XC08) have relatively large range of initial 176Hf/177Hf ratios from 0.281175 to 0.281301, 439 

εHf(t) values from 0.0 to +6.7 and TDM2 values of 2.91-2.57 Ga. 440 



DISCUSSION 441 

Petrogenesis of Neoarchean TTG granitoids and MMEs  442 

TTG granitoids: partial melting of Mesoarchean enriched mafic crust at varying 443 

depths 444 

Even though exposed in different locations and showing large compositional variation from 445 

sodic-rich tonalite-trondhjemite-granodiorite (the Xingcheng tonalite-trondhjemites and the 446 

Juhuadao granodiorites) to potassic gneissic tonalite (the Taili gneissic tonalites), the age and 447 

isotopic data (Tables 3 and 4; Figs 9-11) suggest that the TTG granitoids in the Xingcheng 448 

region were emplaced contemporaneously and thus should share similar magma sources. 449 

The Neoarchean TTG granitoids in the Xingcheng region have relatively high SiO2 and 450 

low MgO, Cr and Ni, indicating a crustal source rather than being directly originated from the 451 

mantle (Table 2; Fig 6d). They have bulk rock εNd(t) values of -2.3 to 1.0 and Nd TDM2 values 452 

of 3.10-2.84 Ga (Table 3 and Fig 9), and their zircons have positive εHf(t) values of 1.1 to 7.7 453 

and Hf TDM2 values of 2.89-2.62 Ga (Table 4 and Figs 10 and 11), pointing to a Mesoarchean 454 

(3.1-2.9 Ga) crustal sources without the involvement of Paleo- to Eoarchean crustal materials 455 

(Fig 11). Additionally, their major element compositions are similar to those of experimental 456 

metabasalt melts (Figs 5-6 and 12c). However, Mesoarchean rocks in the eastern NCC are 457 

mainly TTGs and no mafic magmatism has been reported so far. Some of the Mesoarchean 458 

TTGs are characterized by negative zircon εHf(t) values (e.g., Tiejiashan granites in the Anshan 459 

area; Wan et al., 2007; Fig 11), which is consistent with an origin of reworking of Paleo- to 460 

Eoarchean crustal materials and cannot act as the sources of the Neoarchean TTG granitoids in 461 



the Xingcheng region. Some Mesoarchean TTGs exhibit depleted zircon Hf isotopic 462 

compositions (e.g., Mesoarchean TTGs in Eastern Shandong; Liu et al., 2013a; Wang et al., 463 

2014b; Wu et al., 2014; Xie et al.; 2014; Fig 11), which are best explained as resulting from 464 

melting of mantle-derived basaltic materials of Mesoarchean age. This would point to the 465 

existence of Mesoarchean juvenile mafic magmatism in the eastern NCC. Furthermore, the 466 

wide range of SiO2 contents of the Neoarchean TTG granitoids and their MMEs required a 467 

mafic precursor instead of felsic sources like TTGs. All these observations and inferences 468 

indeed suggest that the Neoarchean TTG granitoids in the Xingcheng region must have derived 469 

from Mesoarchean juvenile mafic crustal sources. 470 

The Neoarchean TTG granitoids in the Xingcheng region show large major and trace 471 

element compositional variation with enrichment of LILEs (e.g., Rb, Ba and Sr) and depletion 472 

of HFSEs (e.g., Nb, Ta and Ti) (Figs 5-9). As suggested previously (e.g., Moyen et al., 2007, 473 

2010), the compositions of TTGs are mainly controlled by the source compositions and the 474 

pressures/depths of melting. The enrichment of LILEs (Figs 6a and 8) and relatively higher 475 

K2O/Na2O of the studied TTG granitoids suggest that their Mesoarchean juvenile mafic sources 476 

should be more enriched than those of the typical sodic TTGs (typical Archean TTGs K2O/Na2O 477 

= 0.35; Moyen & Martin, 2012; Fig 5d). Therefore, the Neoarchean TTG granitoids in the 478 

Xingcheng region are predicted to have derived from Mesoarchean mafic crustal rocks that are 479 

more enriched than the present-day MORB (EMORB-like?) (Smithies, 2000; Qian & Hermann, 480 

2013). An enriched mafic source has also been proposed to explain the compositions of TTGs 481 

in other Archean cratons (e.g., Champion & Smithies, 2007; Moyen et al., 2007; Smithies et 482 

al., 2009). In addition, most Archean mafic magmatic rocks are characterized by somewhat 483 



enriched trace element signatures (Jahn et al., 1980; Condie, 2005a; Hollings & Kerrich, 2006; 484 

Moyen & Martin, 2012; van Hunen & Moyen, 2012). It should be noted that to accurately 485 

determine the nature and the enrichment mechanism of the Mesoarchean enriched mafic crustal 486 

rocks is not straightforward because no Mesoarchean mafic magmatism has been reported in 487 

the eastern NCC. It is possible that the enrichment reflects a prior mantle source metasomatism 488 

caused by recycled even earlier crustal components (Smithies et al., 2009). 489 

The Xingcheng tonalite-trondhjemites, the Taili gneissic tonalites and some of the 490 

Juhuadao granodiorites are characterized by high (La/Yb)N and Sr/Y ratios and thus plot in the 491 

TTG-adakite field in the (La/Yb)N-(Yb)N and Sr/Y-Y diagrams (Figs 12a and b), suggesting the 492 

presence of garnet as a residual phase in the magma source region. They all have positive or 493 

slightly negative Eu anomalies and belong to the high-Sr series defined by Moyen et al. (2007), 494 

implying that there was no or little plagioclase left in the magma sources (Fig 7). In Fig 13, the 495 

pressure-controlled ΔX parameters on the vertical axes of these samples suggest that they were 496 

formed under higher pressures than other samples, reflecting the presence or absence of some 497 

pressure-sensitive minerals such as garnet, plagioclase and rutile in the magma sources (Moyen 498 

et al., 2010). Thus these samples were most likely derived from mafic crustal sources at 499 

relatively high pressures (~10-12 kbar) with garnet and amphibole present as residual phases 500 

with little or no plagioclase (Rapp et al., 1991; Sen & Dunn 1994; Qian & Hermann, 2013). 501 

Geochemical modeling illustrated in Fig 12a shows that they could be generated by 10-25 % 502 

partial melting of a mafic crustal source (EMORB-like) with varying proportions of garnet. 503 

Thus, the appropriate source lithology for samples with high Sr/Y and (La/Yb)N ratios is likely 504 

to be garnet amphibolite rather than eclogite. These samples should correspond to the medium 505 



pressure group of TTGs defined by Moyen (2011). 506 

In contrast, other samples of the Juhuadao granodiorites are distinct in having lower Sr, 507 

Sr/Y and (La/Yb)N and higher Y and negative Eu and Sr anomalies (Figs 6e and f), plotting in 508 

the field of typical arc rocks in (La/Yb)N-(Yb)N and Sr/Y-Y diagrams (Figs 12a and b). However, 509 

they are similar to samples with high Sr/Y and (La/Yb)N ratios in terms of major elements and 510 

bulk rock Nd and zircon Hf isotopic compositions. Thus, they may be derived from a similar 511 

Mesoarchean mafic crustal source, but at lower pressures (< 10 kbar) (Qian & Hermann, 2013), 512 

which is further supported by relative positions of these samples compared with their high-513 

pressure counterparts in Fig 13. The obvious negative Eu and Sr anomalies of these samples 514 

(Figs 7 and 8) are best explained as the presence of plagioclase as a residual phase during partial 515 

melting although the effect of plagioclase crystallization cannot be ruled out. The relatively flat 516 

to concave HREE patterns also point to the presence of amphibole as a residual phase. 517 

Geochemical modeling illustrated in Fig 12a shows that they could be generated by partial 518 

melting of a mafic crustal source (EMORB-like) metamorphosed into garnet-free amphibolite. 519 

The appropriate source lithology for these samples with lower Sr/Y and (La/Yb)N ratios should 520 

be amphibolite (Foley et al., 2002), corresponding to a shallower depth and the medium 521 

pressure group of TTGs defined by Moyen (2011). Therefore, it is reasonable to conclude that 522 

the Neoarchean TTGs in the Xingcheng region resulted from partial melting of an enriched 523 

basaltic protolith at varying depths (Moyen, 2011).  524 

The bulk rock Nd isotopic compositions of the Neoarchean TTG granitoids in the 525 

Xingcheng region have a small range of variation around chondritic values (Table 3; Fig 9), 526 

while their zircon Hf isotopic compositions show larger variation from chondritic up to depleted 527 



mantle values (Table 4; Figs 10 and 11). Some would explain such differential variation as due 528 

to the shorter half-life of 176Lu (36 Ga) relative to the longer half-life of 147Sm (108 Ga) and the 529 

variation of Lu/Hf ratios is larger than Sm/Nd ratios during partial melting processes, resulting 530 

in the fact that during a given timespan, the variation of 176Hf/177Hf is larger than 143Nd/144Nd 531 

(Wu et al., 2007). On the other hand, zircons can record changes of the ambient melts during 532 

their growth and crystallization. It is common that zircons have homogeneous U-Pb ages but 533 

with heterogeneous Hf isotopic compositions, which is interpreted by some as resulting from 534 

replenishment of magmas with distinctively different sources (e.g., Griffin et al., 2002; 535 

Belousova et al., 2006; Yang et al., 2008; Zeh et al., 2009). This interpretation advocates open-536 

system magma evolution and most likely reflects the involvement of Neoarchean juvenile 537 

mantle-derived melts rather than the contribution of heterogeneous sources as their bulk rock 538 

Nd isotopic compositions are considerably homogeneous. In the magmatic process, the bulk 539 

rock Nd isotopic compositions of the magmas did not significantly change if the addition of 540 

juvenile mantle-derived mafic melts was not obvious, thus the contaminated magmas had bulk 541 

rock Nd isotopic compositions similar to the original magmas and the bulk rock Nd isotopic 542 

compositions may record more reliable information about the crustal residence time of the 543 

source materials (Wan et al., 2015). Juvenile mantle-derived mafic magmatism has been 544 

reported to take place in the eastern NCC during the Neoarchean (e.g., Wan et al., 2010; Bai et 545 

al., 2016 and references therein), which may provide heat to trigger partial melting of the 546 

Mesoarchean mafic crustal source for the granitoid magmatism we discuss here, and also 547 

contribute to the compositional complexities of our samples (Figs 9-11). 548 

In summary, the Neoarchean TTGs in the Xingcheng region were sourced from partial 549 



melting of the Mesoarchean lower crustal source at varying depths/pressures heated and 550 

contaminated by Neoarchean juvenile mantle-derived mafic magmas. 551 

MMEs: Cumulates resulting from fractional crystallization of the TTG granitoids 552 

The TTG granitoids in the Xingcheng region show large compositional variation (Fig 6), which 553 

is likely the combined effect of modal mineralogy variation and fractional crystallization. The 554 

slightly concave HREE patterns of some samples indicate that amphibole might be a 555 

fractionation phase as well as being a residual phase in the sources (Fig 7). Furthermore, the Sr 556 

concentrations show negative correlation with SiO2, implying the role of plagioclase as a 557 

crystallization phase. The ‘fan-like’ HREE patterns of TTG/adakitic granitoids (Fig 8) were 558 

commonly explained as the results of fractional crystallization of garnet-bearing assemblages 559 

at high pressures (e.g., Macpherson et al., 2006). However, it is not the case for the TTG 560 

granitoids in the Xingcheng region mainly because: (1) there is no increase of Dy/Yb with 561 

differentiation (Fig 12d), which should be expected if garnet (DYb/DDy > 1) was a liquidus phase; 562 

(2) crystallization of garnet from TTG magmas needs a high-pressure condition over 14 kbar 563 

(e.g., Adam et al., 2012; Hoffmann et al., 2014; Song et al., 2014); and (3) in partial melts 564 

(usually tonalitic) of mafic rocks, as calculated by Hoffmann et al. (2014), the potential of 565 

garnet as a fractional phase is limited. Therefore, low-pressure (< 10 kbar) fractional 566 

crystallization of amphibole and plagioclase should contribute to the evolution of the TTG 567 

granitoids in the Xingcheng region as evident by the existence of MMEs within them. We 568 

performed trace element geochemical modelling of fractional crystallization of amphibole and 569 

plagioclase from the TTG granitoid sample with the lowest SiO2 contents, but as pointed out 570 



by Moyen et al. (2007, 2010), fractional crystallization of this assemblage has limited effects 571 

on the compositions of the TTG granitoids (results not shown). 572 

MMEs are common in intermediate to felsic granitoids within continental arcs and 573 

collisional belts. Different models have been proposed to explain the origin of MMEs, including 574 

recrystallized and refractory restite (Chappel et al., 1987, 1999; Chen et al., 2014), inclusion of 575 

mafic magma derived from the mantle (Vernon, 1984; Holden et al., 1987; Chen et al., 2002; 576 

Yang et al., 2007) or early crystalized cumulates (Wall et al., 1987; Niu et al., 2013; Huang et 577 

al., 2014; Chen et al., 2015). The MMEs hosted in the TTG granitoids in the Xingcheng region 578 

are coeval with their host and have almost overlapping bulk rock Nd isotopic compositions (Fig 579 

9), implying a genetic connection. The relatively low contents of MgO, Cr and Ni imply that 580 

they were not mantle derived melts. Several observations are supportive of cumulate origin for 581 

the MMEs: (1) the MMEs have essentially the same mineral assemblages as their host except 582 

for lacking K-feldspar, which is a later liquidus phase and match the predicted low-pressure 583 

fractional crystallization assemblage of the TTG granitoids; (2) the MMEs have higher HREE 584 

abundances than their hosts and their hosts exhibit fan-shaped REE patterns with the negative 585 

Yb-SiO2 correlation (figure not shown); (3) the MMEs and their host have overlapping and 586 

indistinguishable bulk rock Nd and zircon Hf isotopic compositions (Figs 9-11). Therefore, 587 

these MMEs are most consistent with an origin of early crystallized cumulates which were 588 

mixed into the magma by periodical replenishment of magma and subsequent induced magma 589 

convection in the magma chamber (Chen et al., 2015, 2016). 590 



Petrogenesis of potassic granitoids�591 

In most Archean cratons (e.g., the Barberton, Dharwar, Zimbabwe and Slave cratons; Bleeker 592 

et al., 2003; Moyen et al., 2003), potassic granitoids are widespread and voluminous and show 593 

a great compositional diversity such as CA1-type (Archean calc-alkaline granites formed by 594 

partial melting of the mid- to lower continental crust under granulite facies conditions leaving 595 

plagioclase and othopyroxene as residual phases), CA2-type (Archean calc-alkaline granites 596 

formed by partial melting of the lower continental crust under granulite facies but leaving 597 

plagioclase and garnet as residual phases), sanukitoid suite, A-type and S-type (Sylvester, 1994; 598 

Jayananda et al., 2006), which then played an important role in balancing the average 599 

compositions of the upper continental crust. Such a compositional diversity indicates a variety 600 

of processes, such as the involvement of various sources melted at different depths and 601 

fractional crystallization. 602 

Three types of potassic granitoids have been recognized in our studied region: (1) the Taili 603 

gneissic granites, (2) Xingcheng potassic granites and (3) Huludao potassic granites. Their ages 604 

range from 2558 Ma to 2520 Ma. These potassic granitoids could be generated through different 605 

scenarios, such as (1) (low-degree?) re-melting of former TTGs, (2) low-degree melting of 606 

enriched (EMORB or OIB affinity) mafic crustal sources, (3) low-degree partial melting of an 607 

enriched mantle, (4) final products of fractionation crystallization of felsic magmas and (5) 608 

high-degree of fractionation of hydrous medium- to high-K basaltic magmas.  609 

It should be noted that the potassic granitoids in the Xingcheng region form linear trends 610 

with the TTGs in the Harker diagrams (Fig 6) and have almost indistinguishable bulk rock Nd 611 

and zircon Hf isotopic compositions with the TTG granitoids, which points to the possibility 612 



that these potassic granites might be the final products of fractionation of the TTG magmas. 613 

However, as the gap between formation ages of the TTG granitoids (2595-2558 Ma) and the 614 

potassic granites (2545-2520 Ma) is large, it is difficult to envisage that such a long-lived 615 

fractionation process of relatively cool and viscous felsic TTG magmas could generate these 616 

potassic granites. Potassium-rich felsic melts can also be produced through high degrees of 617 

fractionation of hydrous medium- to high-K basaltic magmas especially under high pressures 618 

(e.g., Sisson et al., 2005), but the absence of contemporaneous K-rich basaltic magmas in the 619 

Xingcheng region and the confined range of SiO2 contents of these potassic granites preclude 620 

this scenario as the generation mechanism of the potassic granites in the Xingcheng region. 621 

Taili gneissic granites: melting of Mesoarchean enriched mafic crust at low-622 

pressure hybridized with Neoarchean mantle-derived mafic melts  623 

The Taili gneissic granties are characterized by relatively high K2O contents, and are distinct 624 

from the TTG granitoids (Fig 6a). In Fig 13, the source composition-controlled ΔX parameters 625 

on the horizontal axes of these samples indicate that they should be sourced from a more 626 

enriched source compared with that of the TTG granitoids, which is also reflected by their 627 

enriched LILE concentrations (Fig 8a). Their bulk rock Nd and zircon Hf TDM2 point to a source 628 

that was ultimately extracted from the mantle in the Mesoarchean (Table 3 and 4). The Taili 629 

high-K gneissic granites have low Y and Sr abundances (Figs 6e and f) and show negative Eu 630 

and Sr anomalies (Figs 7a and 8a). Their pressure-controlled ΔX parameters also imply that 631 

they should be formed under lower pressures (Fig 13). 632 

Some Taili high-K gneiss samples are characterized by low SiO2 (five samples < 65 wt%), 633 



elevated TiO2, P2O5 and MgO contents (Fig 6b, c and d), as well as higher compatible elements 634 

like Cr and Ni (Table 2), which can exclude the possibilities of re-melting of former TTGs and 635 

final products of fractionation crystallization of felsic magmas. The coupled enrichment in 636 

LILEs and compatible elements strongly indicates the contribution of a component with mantle 637 

signatures (Miller et al., 2008), which is also supported by the zircon Hf isotopic composition 638 

(Hf(t) > +2) of the Taili gneissic granites (Figs 10 and 11). One zircon gives Hf(t) of 7.3 and 639 

TDM2 of 2588 Ma, implying hybridization of a Neoarchean juvenile mantle-derived magma. 640 

The negative but near chondritic εNd(t) values (-0.2) suggest little crustal contamination, if any, 641 

not significant. In the Mg#-SiO2 diagram (Fig 12c), these rocks follow an AFC or magma 642 

mixing trend of mantle-derived mafic melts. Therefore, it is reasonable to conclude that the 643 

Taili high-K gneissic granites were produced by low-pressure melts of Mesoarchean EMORB/ 644 

OIB-like enriched mafic crust with hybridization of Neoarchean juvenile mantle-derived mafic 645 

melts. It should be noted that fractional crystallization should also contribute to the 646 

compositional variation, but it should be a second-order effect.  647 

Huludao potassic granites: re-melting of Mesoarchean TTGs at low-pressure  648 

The 2520 Ma Huludao potassic granites are characterized by sub-vertical trends in the K2O-649 

SiO2 diagram (Fig 6a), and they have relatively high K2O/Na2O ratios (Fig 5d) and LILE 650 

concentrations (Fig 8d). These potassic granites also define a trend towards a richer source 651 

compared with that of the TTG granitoids in Fig 13. Besides, they are all peraluminous with 652 

A/CNK ratios of 1.14-1.20 (Fig. 5c). These geochemical features are usually attributed to partial 653 

melting of comparatively enriched and relatively potassic sources (Moyen et al., 2007). Like 654 



the TTG granitoids, their bulk rock Nd and zircon Hf isotopic compositions point to a source 655 

that were extracted from the mantle during Mesoarchean (Table 4). Thus the likely source of 656 

these potassic granites might be the Mesoarchean TTGs sourced from juvenile mantle-derived 657 

rocks (Fig 11). Based on field and experimental investigations, some researchers proposed that 658 

Archean potassic granites result from partial melting of former TTGs and represent within-crust 659 

differentiation (Moyen et al., 2001, 2003; Castro, 2003; Whalen et al., 2004; Patiño Douce, 660 

2005; Watkins et al., 2007; Xiao & Clemens, 2007). Partial melting of TTGs is usually related 661 

to the breakdown of amphibole and biotite, which releases potassium into melts (Watkins et al., 662 

2007). However, partial melting of typical sodic TTGs will generate relatively sodic melts and 663 

only if the source is potassic TTGs will the partial melts be enriched in K2O (Patiño Douce & 664 

Beard, 1995; Skjerlie & Johnston, 1996; Castro, 2003; Watkins et al., 2007). As estimated 665 

above, the TTG granitoids in the Xingcheng region should be sourced from a Mesoarchean 666 

enriched mafic crustal sources and it is highly likely that there exist some potassic TTGs derived 667 

from these enriched sources. Re-melting of these relatively potassic TTGs would facilitate the 668 

generation of the Huludao potassic granites. However, it should be noted that these potassic 669 

granites should not be derived from the contemporaneous TTG granitoids as there are no signs 670 

of partial melting observed in these TTG granitoids. These potassic granites have lower 671 

concentrations of Y and Sr (Figs 6e and f), and are characterized by negative Sr and Eu 672 

anomalies (Figs 7d and 8d), implying the presence of plagioclase and the absence of garnet in 673 

the sources. Also they show a trend towards lower pressures of melting on Fig 13. Therefore 674 

these potassic granites are best explained as their parental melts resulting from relatively low 675 

pressure melting. It should be noted that some of the potassic granites have higher (La/Yb)N 676 



and Sr/Y ratios and accordingly plot in the TTG and adakite field in Fig 12a and b. A possible 677 

explanation for this feature could be inheritation from their TTG source rocks.  678 

Xingcheng potassic granites: low-degree partial melting of enriched mafic crust 679 

Experimental investigations suggested that low degrees of partial of partial melting (< 20%) of 680 

alkali metabasalt could lead to potassic felsic melts (e.g., Sen & Dunn, 1994) as potassium is 681 

highly incompatible during partial melting (Qian & Hermann, 2013). The 2545 Ma Xingcheng 682 

potassic granites are metaluminous with A/CNK ratios of 0.87-1.06 (Fig. 5c) and have obvious 683 

negative Eu anomalies (Fig. 7d). They exhibit distinct geochemical features from the potassic 684 

granites in many Archean cratons, i.e., relatively high Sr/Y and (La/Yb)N ratios and falling in 685 

or near the TTG/adakite field in Figs. 12a and b, which are similar to the potassic C-type 686 

adakites of mafic crust origin (Rapp et al., 2002). Their MREE-depleted patterns (Fig 7d) are 687 

also similar to some post-collisional, potassic granites in the Paleozoic North Qaidam ultrahigh 688 

pressure metamorphic belt (Wang et al., 2014a). Besides, they plot in the fields of experimental 689 

metabasalt melts, implying that they might be sourced from partial melting of mafic rocks. 690 

These potassic granites show concave HREE patterns, implying that amphibole should be left 691 

in the residue or as a fractional phase. As illustrated in Fig. 12a, the Xingcheng potassic granites 692 

could be generated by low degrees (< 20%) of partial melting of an enriched mafic source 693 

metamorphosed to garnet amphibolite with varying proportions of garnet. Importantly, these 694 

potassic granites have similar bulk rock Nd and zircon Hf isotopic compositions with those of 695 

the coexisting TTG granitoids (Figs 9-11). Therefore, the potassic granites and the TTG 696 

granitoids likely share the same Mesoarchean enriched mafic crustal sources. Considering the 697 



fact that these potassic granites have fairly high SiO2 contents (up to 76.11 wt.%), low-degree 698 

partial melting of an enriched mafic source might be able to facilitate the generation of the 699 

potassic granites in the Xingcheng region. Compared with the Taili gneissic granites, they have 700 

a narrow range of high SiO2 contents, implying limited interaction with Neoarchean mantle-701 

derived mafic melts. 702 

Neoarchean magmatism and crustal growth in the NCC 703 

Zircon U-Pb dating reveals that the TTG and potassic granitoids in the studied region were 704 

emplaced at 2595-2520 Ma, i.e., ~75 Myrs towards the end of the Neoarchean. The age data 705 

statistics of the Archean basement rocks in the NCC also show that the Late Neoarchean (2.6-706 

2.5 Ga) is an important period of magmatism (Yang et al., 2009; Geng et al., 2010; Nutman et 707 

al., 2011; Sun et al., 2012), with widespread TTG suites, ultramafic to mafic igneous rocks and 708 

charnockites and granites (Zhao et al., 2001, 2005). 709 

The TTG granitoids and potassic granites in the Xingcheng region have bulk rock Nd and 710 

zircon Hf model ages ranging between 3.0 and 2.6 Ga (Tables 3 and 4; Figs 10-12), suggesting 711 

that no older (> 3.0 Ga) sources were involved in their genesis. All zircons from these rocks 712 

have positive εHf(t) and fall between the evolution line of the depleted mantle and the CHUR in 713 

the εHf(t)-t diagram (Fig 12), distinct from those from the Early Archean rocks in the NCC (Wu 714 

et al., 2005a), again pointing to more juvenile crustal sources compared with the Paleo- to 715 

Eoarchean crustal sources. Many studies have shown that the Archean basement rocks in the 716 

NCC are characterized by Nd and Hf model ages clustering at 3.0-2.6 Ga, indicating the timing 717 

of formation of the protoliths or segregation of the parental magma from the mantle (Wu et al., 718 



2005b; Yang et al., 2008, 2009; Geng et al., 2010; Jiang et al., 2010; Wan et al., 2011; Zhai & 719 

Santosh, 2011; Shi et al., 2012; Wang & Liu, 2012 and references therein). We thus conclude 720 

that significant crustal growth occurred in the NCC during the Neoarchean, corresponding with 721 

the global growth of the Earth’s crust recognized from other cratons (Condie & Aster, 2010; 722 

Condie et al., 2011; Condie & Kröner, 2013; Condie, 2014 and references therein).  723 

It is widely acknowledged that TTGs are the main components of Archean terranes and 724 

represent the primary felsic crust of the Earth (Martin et al., 2005; Moyen, 2011), and the 725 

average Archean upper continental crust is essentially identical to the Archean TTGs (Condie, 726 

1993, 2005b). However, as mentioned above, there are significant compositional discrepancies 727 

between the mature present-day felsic upper continental crust and the Archean TTGs, mainly 728 

in potassium, Y and HREEs (Table 5 and Fig 14). These compositional discrepancies were 729 

gradually balanced by the addition of calc-alkaline granitoids with higher Y, HREEs and 730 

potassium to the Archean upper continental crust throughout the Earth’s history, which is 731 

reflected by the fact that the volume ratio of TTGs relative to calc-alkaline granitoids has 732 

decreased since the end of the Archean (Condie, 2008), 733 

Taking together with the Qinghuangdao granitoids reported by Yang et al. (2008), we 734 

calculated the compositions of the Neoarchean upper continental crust in the Xingcheng-735 

Qinhuangdao region on the basis of average compositions of TTG granitoids and potassic 736 

granites. We have found that the mix of TTG granitoids/potassic granites = 9:1 matches well 737 

the present-day upper continental crust with K2O/Na2O of 0.86, except that Y and HREE 738 

contents are ~ 20-30 % lower than those of the present-day upper continental crust (Table 5 and 739 

Fig 14). Therefore, these Neoarchean granitoids in the studied region can make at least 70-80 % 740 



of the compositions of the present-day upper continental continent crust, implying that a proto-741 

type upper continental crust of the NCC could be formed at the end of the Archean. It should 742 

be noted that this scenario applies to the maturation of the continental crust of the NCC but 743 

further study is needed if this is of general significance. 744 

Tectonic implications: from micro-continental collision to post-745 

collisional extension 746 

The geodynamic setting of the Neoarchean blocks of the NCC, in which extensive magmatism 747 

and metamorphism occurred, has long been the subject of research focus and debate. The heat 748 

source for widespread regional metamorphism and large-scale partial melting of crustal 749 

materials is usually considered to be related to the intrusion and underplating of large volumes 750 

of mantle-derived magmas. The emplacement of sufficient amounts of mantle-derived magmas 751 

may occur in a variety of environments, including subduction-related settings (e.g., Liu et al., 752 

2010, 2011; Wan et al., 2010, 2011; Nutman et al., 2011; Wang et al., 2011, 2012, 2013), hot 753 

spots driven by mantle plumes (e.g., Zhao et al., 2001, 2005, 2012; Yang et al., 2008; Zhai & 754 

Santosh, 2011), continental rift environments (e.g., Sandiford & Powell, 1986) and continental 755 

collisional belts (e.g., Niu et al., 2013; Laurent et al., 2014; Song et al., 2014, 2015). 756 

As discussed above, the Neoarchean TTG granitoids in the Xingcheng region have no 757 

obvious geochemical signatures of enhanced melt-peridotite interaction, such as elevated MgO 758 

contents and Mg# values, Cr and Ni concentrations, which should be expected if these TTG 759 

granitoids were produced through partial melting of subducting/subducted oceanic crust or 760 

oceanic plateau materials (Bédard, 2006; Moyen & Martin, 2012; Moyen & van Hunen, 2012; 761 



Bédard et al., 2013; Martin et al., 2014; Sizova et al., 2015). However, the Neoarchean TTG 762 

and potassic granitoids are the reworking products of Mesoarchean crustal materials instead of 763 

juvenile addition to the crust from the mantle as implied by their bulk rock Nd and zircon Hf 764 

isotopic compositions. Their Mesoarchean source rocks include enriched mafic rocks and 765 

already emplaced felsic TTGs, thus they cannot be generated in subduction-related settings 766 

(continental or island arcs, thickened arc systems and accretionary orogens) where mainly 767 

juvenile mafic rocks act as source rocks (Bédard, 2006; Nagel et al., 2012; Bédard et al., 2013; 768 

Martin et al., 2014). If these TTGs were formed above hot spots driven by mantle plumes, i.e., 769 

melting at the base of a thick oceanic plateau crust heated by upwelling mantle plume (Smithies 770 

et al., 2009), the resulting TTG rocks would be emplaced in a sequence of mantle-plume related 771 

ultramafic to mafic rocks including komatiites, continental flood basalts, and deep plumbing 772 

systems of dyke swarms and layered intrusions (Ernst et al., 2008). But no such 2.6-2.5 Ga 773 

mantle plume-related magmatism has been recognized in the study area, nor global record of 774 

mantle plume activity at the end of Archean (e.g., Ernst & Bleeker, 2010). Therefore, a mantle 775 

plume model may be inappropriate to account for the generation of the Neoarchean TTG and 776 

potassic granitoids in the Xingcheng region.  777 

Bédard et al. (2013) proposed a model of cratonic drift in response to mantle convection 778 

currents and the resulting aggregation of Archean cratons and oceanic plateaus. The accretion 779 

between terranes led to thickening and delamination of mafic crust accompanied by the 780 

ascending hot mantle, resulting in the coeval basalt and TTG magmas. This scenario is highly 781 

unlikely for the Neoarchean TTG granitoids in the Xingcheng region as there is no coeval 782 

Neoarchean basaltic magmas. Furthermore, most of the TTG granitoids in the Xingcheng region 783 



formed at the medium pressure along a geotherm (15-20 °C/km; Moyen & Martin, 2012), which 784 

is too low for a plateau setting but also too hot for a subduction situation even considering the 785 

possibility that Archean subduction zones may be hotter. A continental rift environment is also 786 

inappropriate because of lacking alkali intrusive rocks expected to be associated with rifting 787 

(Zhao et al., 2001). Therefore, a setting of continental collision is more likely to produce the 788 

Neoarchean TTG and potassic granitoids in the Xingcheng region. 789 

As shown in Fig 1b, the Precambrian basement of the Eastern Block of the NCC is 790 

composed of two major kinds of terranes: the high-grade metamorphic terrane and the granitic 791 

terrane with no or low-grade metamorphism. The high-grade metamorphic terrane contains 792 

tonalite, trandjhemite, charnockite and supracrustal rocks (ultramafic to mafic igneous rocks 793 

and sedimentary rocks with BIF), with diverse protoliths and varying ages of 3.8 to 2.6 Ga (e.g., 794 

Nutman et al., 2011; Zhai & Santosh, 2011), but all experienced granulite-facies metamorphism 795 

at ~ 2.6-2.5 Ga (Zhao et al. 2001, 2005). The contemporaneous high-grade metamorphism and 796 

plutonic magmatism indicate an intensive tectono-thermal event in the Late Neoarchean (2.6-797 

2.5 Ga) throughout the NCC; this event is most likely an orogenic movement because the 798 

Neoarchean is an important period for the amalgamation of micro-continental blocks and 799 

cratonization of the eastern NCC and the Xingcheng region lies between micro continental 800 

blocks with ca. 3.8 Ga old crust nuclei (Fig 1b; Caozhuang and Anshan; Zhai & Santosh, 2011). 801 

Recent reports of Neoarchean high-K calc-alkaline rocks in Western Liaoning (e.g., Wang et 802 

al., 2012, 2013) also favor this possibility. 803 

 As mentioned above, the Neoarchean granitoids in the eastern NCC varies from sodic-to-804 

potassic TTG granitoids, diorite-granodiorites, monzogranites to potassic-rich, peraluminous 805 



granites (Yang et al., 2008; this study). This rock assemblage is comparable to magmatism in 806 

Phanerozoic continental collisional belts, which encompasses a series of adakitic, I-, S- and A-807 

type granites and other igneous rocks and shows large compositional variation (e.g., Himalaya, 808 

North Qaidam and Caledonian orogens; Chung et al., 2003; Niu et al., 2013; Laurent et al., 809 

2014; Song et al., 2014, 2015). The absence of S-type granites in the Neoarchean granitoids on 810 

the eastern NCC may reflect that abundant sediments had not been developed till then. The 811 

Neoarchean TTG granitoids in the Xingcheng region were generated through partial melting of 812 

Mesoarchean enriched mafic crustal sources at different depth levels (up to 12 kbar or 42 km) 813 

coupled with low-pressure crystal fractionation, which requires significant crustal thickening 814 

through micro-continental collision (e.g., Nutman & Friend, 2007). The potassic granites, with 815 

their intrusive contact with the TTG granitoids and younger age, represent the last pulse of the 816 

Archean magmatism in the Xingcheng region and most likely formed by re-melting of 817 

Mesoarchean TTGs or low-degree partial melting of Mesoarchean enriched mafic crustal 818 

materials in an extensional or non-compressional environment, i.e., the post-orogenic or post-819 

collisional stage. These potassic granites can act as a marker for the end of an orogenic cycle 820 

and final stabilization of the Archean proto-crust (Zhou et al., 2011; Zhang et al., 2012). The 821 

melting of the Mesoarchean mafic crust was triggered by melts from the upwelling mantle, 822 

which also modified the compositions of these melts by different degrees. The large variation 823 

of the initial zircon Hf isotopic compositions of the Neoarchean TTG and potassic granitoids in 824 

the Xingcheng region is also observed when a convergent (i.e., subduction) environment turns 825 

into continental collision (Hawkesworth et al., 2010; Laurent et al., 2014), which is consistent 826 

with an increase in reworking processes associated with crustal thickening during collision and 827 



melting of the mantle sources. Numerical modeling suggested that Precambrian continental 828 

collisional belts are characterized by different tectonic styles compared with modern continental 829 

collisional belts as they were formed over a hotter mantle and remained mechanically weak 830 

(Sizova, 2014). Thus shallow slab-break-off often took place, limiting the occurrence of 831 

ultrahigh-pressure metamorphic complexes within the Precambrian continental orogenic belts 832 

and allowing for frequent upwelling and subsequent melting of mantle (Moyen & van Hunen, 833 

2012; Sizova, 2014). In fact, we cannot precisely constrain the details and configuration of the 834 

proposed continental collisional belt for the generation of the Neoarchean TTG and potassic 835 

granitoids in the Xingcheng region based the available data. It should share some similarities 836 

with modern continental collisional belts in certain aspects and could be accommodated by 837 

different orogenic styles, such as retreating or advancing plate boundaries followed by collision, 838 

and evolve through different scenarios (e.g., slab retreat and break-off; Laurent et al., 2014). 839 

Together with the concurrent high-grade metamorphism widespread in the NCC, we 840 

conclude that the Neoarchean granitoids in the Xingcheng region were formed through an 841 

orogenic process from micro-continental collision to post-collisional extension at the late 842 

Neoarchean. The micro-continents formed during Mesoarchean and at the end of Archean 843 

began to accrete and amalgamate, leading to significant crustal thickening while also causing 844 

granulite-facies metamorphism and partial melting of Mesoarchean enriched mafic crustal 845 

materials at varying depths caused by heating from mantle-derived mafic magmas and 846 

fractional crystllization. These micro-continental blocks have been intensively overprinted by 847 

the 2.6-2.5 Ga orogenic event and are difficult to define, as some ~ 3.8 Ga crustal remnants 848 

have been identified in some areas of the NCC. After collision, the amalgamated micro-849 



continental blocks underwent extension. As a result, the mafic proto-crust experienced low-850 

degree partial melting and the Mesoarchen TTGs may have also re-melted, generating the 851 

potassic granites.  852 

CONCLUSIONS 853 

The Neoarchean crust in the Xingcheng region are made up of TTG granitoids and potassic 854 

granites. The TTG granitoids with MMEs formed through partial melting of Mesoarchean 855 

enriched mafic crustal sources at varying depth levels with low-pressure fractional 856 

crystallization in a collisional environment in 2595-2558 Ma. The Taili gneissic were the 857 

products of low-pressure melting of Mesoarchean enriched mafic crust with Neoarchean 858 

juvenile mantle-derived mafic melts. Two kinds of potassic granites were produced by (a) low-859 

degree partial melting of enriched mafic crustal sources at 2540 Ma, and (b) re-melting of 860 

Mesoarchean TTGs in response to post-collisional extension at 2520 Ma. Upwelling of 861 

Neoarchean mantle-derived mafic magmas triggered the partial melting of their source rocks 862 

and modified their compositions by different degrees. 863 

The rock assemblages in the Suizhong granitic terrane resemble those of Phanerozoic 864 

orogens and record the evolution from collision of micro-continental blocks to post-collisional 865 

extension. 866 

The major crustal growth in the eastern NCC took place during the Neoarchean. A proto-867 

type upper continental crust of the NCC, which made at least 70-80 % of the compositions of 868 

the present-day upper continental crust, might have been developed at the end of the Archean 869 

by mixing of TTG and potassic granitoids. 870 
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FIGURE CAPTIONS 1295 

Fig 1 (a) Schematic map showing major Precambrian tectonic units of the NCC (modified after 1296 

Zhao et al., 2005), EH: Eastern Hebei, WL: Western Liaoning, NL-SJ: Northern Liaoning-1297 

Southern Jilin, WS: Western Shandong, ES: Eastern Shandong; (b) Simplified geological map 1298 

of the northern part of the Eastern Block of the NCC; (c) Simplified geological map of the 1299 

Xingcheng region; black stars indicate sampling locations. 1300 

 1301 

Fig 2 Field photos of the Neoarchean TTGs and potassic granitoids in the Xingcheng region. 1302 

(a) Neoarchean gneissic tonalite-granites in Taili intruded by Triassic adakitic plutons; (b) 1303 

gneissic tonalites and gneissic granites in Taili, mafic sills are also shown; (c) and (d) Tonalite-1304 

trondhjemites and MMEs in Xingcheng; (e) Tonalite-trondhjemites, MMEs and syn-plutonic 1305 

dykes in Xingcheng intruded by pegmatite dykes; (f) Tonalite-trondhjemites in Xingcheng 1306 

intruded by potassic granites and they were both intruded by pegmatite dykes; (g) Granodiorites 1307 

and MMEs in Juhuadao; (h) Potassic granites in Huludao unconformably overlain by the 1308 



Paleoproterozoic sedimentary rocks of the Changcheng formation (Pt2c). 1309 

 1310 

Fig 3 Cathodoluminescence (CL) images of representative zircons for the Neoarchean TTG and 1311 

potassic granitoids in the Xingcheng regions. The solid and dashed circles on the CL images 1312 

are the spots of in-situ zircon U-Pb dating and Hf isotope analyses, respectively. Also shown 1313 

are the 207Pb/206Pb ages and εHf(t) values of zircons. The scale bar is 100 μm. 1314 

 1315 

Fig 4 U-Pb concordia diagrams for the Neoarchean TTG and potassic granitoids in the 1316 

Xingcheng region.  1317 

 1318 

Fig 5 (a) (Na2O+K2O)-SiO2 diagram; (b) Normative An-Ab-Or triangle diagram (Barker, 1979); 1319 

(c) A/NK-A/CNK diagram; (d) Na2O-K2O diagram for the Neoarchean TTG and potassic 1320 

granitoids in the Xingcheng region. Grey fields are the fields of experimental metabasalt melts 1321 

at 1-4 GPa, which are constructed using data from Sen & Dunn (1994), Rapp & Watson (1995), 1322 

Rapp et al. (1999, 2002, 2003), Skjerlie & Patiño Douce (2002) and references therein.  1323 

 1324 

Fig 6 Harker diagrams for the Neoarchean TTG and potassic granitoids in the Xingcheng region. 1325 

(a) K2O-SiO2; (b) P2O5-SiO2; (c) TiO2-SiO2; (d) MgO-SiO2; (e) Y-SiO2; (f) Sr-SiO2. Grey fields 1326 

are the field of experimental metabasalt melts at 1-4 GPa and data sources are the same in Fig 1327 

5. The fields of slab-derived adakites and lower crust-derived adakitic rocks in Fig 6d are after 1328 

Wang et al. (2006). The dividing line between high-Sr and low-Sr series is from Moyen et al. 1329 

(2007). Legends are the same as those in Fig 5. 1330 



 1331 

Fig 7 Chondrite-normalized REE patterns for the Neoarchean TTG and potassic granitoids in 1332 

the Xingcheng region. The values of chondrite are from Sun & McDonough (1989).  1333 

 1334 

Fig 8 Primitive mantle (PM)-normalized trace element diagrams for the Neoarchean TTG and 1335 

potassic granitoids in the Xingcheng region. The values of PM are from Sun & McDonough 1336 

(1989).  1337 

 1338 

Fig 9 εNd(t)-t diagram for the Neoarchean TTG and potassic granitoids in the Xingcheng region. 1339 

Note that the MMEs and their host TTGs have overlapping εNd(t) values. The εNd(t) values of 1340 

the potassic granitoids are also indistinguishable with those of the TTG granitoids. Legends are 1341 

the same as those in Fig 5. 1342 

 1343 

Fig 10 Histograms of εHf(t) values for the zircons from the Neoarchean TTG and potassic 1344 

granitoids in the Xingcheng region. Note that the εHf(t) values of zircons from the Taili gneissic 1345 

granite and the Xingcheng tonalite-trondhjemite are similar. The same goes for the Juhuadao 1346 

granodiorite and the hosted MME and their εHf(t) values are slightly higher than those of the 1347 

the Taili gneissic granite and the Xingcheng tonalite-trondhjemite. The εHf(t) values of zircons 1348 

from the Xingcheng potassic granites are similar with those of the Huludao potassic granites. 1349 

 1350 

Fig 11 Comparison of Hf isotopes of zircons from the Neoarchean TTG and potassic granitoids 1351 

in the Xingcheng region with those of zircons from the Caozhuang complex and the 1352 



Mesoarchean TTGs in Eastern Shandong and Anshan, whose zircon Hf isotope data are from 1353 

Wu et al. (2005a, 2014), Wan et al. (2007), Liu et al. (2013a, 2013b), Wang et al. (2014b), Xie 1354 

et al. (2014). Note that almost all the data fall between the evolution lines of the depleted mantle 1355 

and the chondrite uniform reservoir. The Paleo- to Eoarchean crustal materials were not 1356 

involved in the generation of the Neoarchean TTG and potassic granitoids as the Paleo- to 1357 

Eoarchean zircons and Mesoarchean granitoids derived from Paleo- to Eoarchean crustal 1358 

materials exhibit a different evolution trend. The Mesoarchean TTGs in Eastern Shandong were 1359 

derived from juvenile mafic sources, and the Neoarchean granitoids in the Xingcheng region 1360 

may be derived from these Mesoarchean TTGs and their juvenile mafic sources. 1361 

 1362 

Fig 12 Co-variation diagrams of (a) Chondrite-normalized (La/Yb)N-(Yb)N; (b) Sr/Y-Y; (c) 1363 

Mg#-SiO2 and (d) Dy/Yb- SiO2 for the Neoarchean TTG and potassic granitoids in the 1364 

Xingcheng region. In Fig 12a, batch melting curves of an EMORB-like source (Sun & 1365 

McDonough, 1989) were constructed using partition coefficients of Bédard (2006). In Fig 12c, 1366 

crustal AFC process of mantle derived mafic melts is from Yang et al. (2008). Data sources of 1367 

Fig 12c are the same as those in Figs 5 and 6d. Legends are the same as those in Fig 5. 1368 

 1369 

Fig 13 (a) ΔSr-ΔRb; (b) ΔSr-ΔTh; (c) ΔY-ΔRb and (d) ΔNb-K2O/Na2O diagrams for the 1370 

Neoarchean granitoids in the Xingcheng region. For X as any give element, the ΔX parameter 1371 

(ΔX = X – (a SiO2 + b); constants a and b are empirically estimated by Moyen et al., 2010) 1372 

expresses the distance between the analyzed value and a reference line in an X-SiO2 (Harker) 1373 

diagram, which removes the contribution of SiO2-related evolution. The vertical axes of these 1374 



diagrams were built using pressure/depth-controlled elements and the horizontal axes were built 1375 

using source enrichment-controlled elements/ratios. These diagrams can simultaneously reveal 1376 

information about both the source composition/enrichment and the depth/pressure of melting. 1377 

In these diagrams, the vectors showing the trends of these parameters towards higher pressures 1378 

and richer sources are from Moyen et al. (2010). Note that two Huludao potassic granites with 1379 

extremely high K2O/Na2O ratios were omitted in (d). Legends are the same as those in Fig 5. 1380 

 1381 

Fig 14 Primitive mantle (PM)-normalized trace element diagram for the average compositions 1382 

of TTG granitoids and potassic granites and calculated compositions of Archean upper 1383 

continental crust in the Xingcheng (This study) and Qinhuangdao (Yang et al., 2008) regions 1384 

assuming TTG granitoids/potassic granites = 9:1. The composition of present-day upper 1385 

continental crust (Rudnick & Gao, 2003) is also plotted for comparison. The values of PM are 1386 

from Sun & McDonough (1989). 1387 
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