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It is shown how the solenoidal component of noise
from the measurements of a wavefront slope sensor
can be utilized to estimate the total noise: specifically,
the ensemble noise variance. It is well known that
solenoidal noise is orthogonal to the reconstruction of
the wavefront under conditions of low scintillation (ab-
sence of wavefront vortices). Therefore it can be re-
trieved even with a non-zero slope signal present. By
explicitly estimating the solenoidal noise from an en-
semble of slopes, it can be retrieved for any wavefront
sensor configuration. Furthermore, the ensemble vari-
ance is demonstrated to be related to the total noise
variance via a straight-forward relationship. This rela-
tionship is revealed via the method of the explicit es-
timation: it consists of a small (4), heuristic set of con-
stants that do not depend on the underlying statistics of
the incoming wavefront. These constants seem to apply
to all situations—data from a laboratory experiment as
well as many configurations of numerical simulation—
so the method is concluded to be generic. © 2016 Optical

Society of America
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The most common type of wavefront sensor (WFS) in cur-
rent use[1] is the wavefront slope sensor, typified by the Shack-
Hartmann (SH). The SH uses positions of focii from lenslets
(defining sub-apertures over a pupil) and from each it estimates
two co-located wavefront slopes in orthogonal directions. The
number of slope measurements exceeds the number of recon-
structed wavefront points[2] and the excess allows for deriving
terms that are unphysical for a continuous wavefront[3]. Non-
continuous wavefronts, such as those containing vortices[4], are
not considered here. This work extends previous developments,
which have demonstrated how these unphysical signals can be
interpreted as noise[5, 6], towards estimation of the ensemble
noise variance when it is inhomogeneous and in the presence of
non-zero and temporally-changing measurements.

In general measurement noise can be divided into two cat-

Fig. 1. (Left) A synthetic interaction matrix is defined using
Fried geometry: a grid of wavefront points coincide with sub-
aperture (dashed lines) corners, whereas the sub-aperture
slopes lie between the grid points. (Right) A loop integration
matrix is formed by rotated sub-aperture slopes that directly
connect groups of four wavefront points into loops; the exam-
ple loop has slopes in bold and the points as hollow.

egories: non-solenoidal[6] and solenoidal[5]. The inversion of
a linear model is used for retrieving solenoidal noise, and the
model’s construction permits both homogeneous and inhomo-
geneous noise to be obtained by appropriate regularization. It is
demonstrated that solenoidal noise variance can be converted
to ensemble noise variance: this is the wavefront sensor slope
noise. The slope noise can be used for estimating propagated
wavefront noise[7] or constraining wavefront reconstruction[2].
Alternative methods to measure slope noise[8] can rely on under-
lying wavefront slope statistics, whereas here no assumptions
beyond wavefront continuity are required. To be useful, noise
variance is required for all slopes individually and the fidelity
of the estimation in this work is demonstrated with slopes from
computer simulations and laboratory data.

The definition of solenoidal noise can be made from the recon-
struction problem: Gw = s, where w represents a wavefront and
s the wavefront slopes. The latter are noise-free slopes measured
by a linear wavefront sensor. Solenoidal and Non-Solenoidal
noise is written as η = ηs + ηns, and from noisy slopes the wave-
front estimate becomes west. The matrix G can be described
as a gradient operator. In Fig. 1,left, the relationship is shown
between the wavefront grid and the sub-aperture slopes for a
synthetic G. Then, using H (where HG = I),
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Table 1. Parameters for the simulation of a SH-WFS. It is scale
(∆sa=sub-aperture size) and wavelength (λ) independent.

Pupil shape circular

N (sub-aperture resolution scale) 16

pixels/sub-aperture focus 4

Focal length 4× ∆sa/λ

Sub-ap. fractional illumination ≥ 50 %

Illumination total/sub-aperture 100 counts

RON-equivalent/sub-aperture 5

SVD singular value elimination 10−8× largest value

west = H(s + ηs + ηns) = H(s + ηns). (1)

In other words ηs is in the null space of matrix H which
implies the estimation step,

ηs = (I−G.H) (s + η). (2)

This is the first method for estimating ηs. However, this
method relies on no other terms also lying in the null space of H.
Generally G represents an interaction matrix which is not square,
and H is either a pseudo-inverse of this matrix or requires reg-
ularization in its inversion. Here, in order to avoid unwanted
terms in the null space, H is evaluated from a singular-value
decomposition of a synthetic interaction matrix from which only
machine-noise level singular values are eliminated.

An explicit method to estimate ηs is to construct sums of
slope loops from rotated slopes[5, 9], as illustrated in Fig. 1,right.
The sum of each slope loop is zero unless solenoidal noise is
present. Therefore the following relationship can be written,

L(s + ηs + ηns) = Lηs, (3)

where L is described as a discrete loop (or curl) operator.
Then inverting this matrix leads to an estimate of ηs,

ηs = L†L(s + η). (4)

To form L†, which is non-square, a least-squares method is
used with regularization,

L† = (LTL + R)−1LT . (5)

The regularization term R is diagonal, as each slope’s
solenoidal noise is assumed zero-mean and uncorrelated. Treat-
ing Rii as an a priori constraint of 〈η2

s;i〉 for each slope i suggests,

Rii = α + 0.25× I(i)/〈I〉+

 β.x(i)2 for xslopes and,

β.y(i)2 for yslopes.
(6)

As the problem is under-determined (fewer loops than sub-
aperture slopes), α constrains the solution. The normalised in-
tensities, I(i)/〈I〉, are per sub-aperture associated with the i-th
slope, which allows for photon noise. (If slopes are organised as
XY-pairs, then this is sub-aperture i÷ 2.) The final term with nor-
malised pupil coordinates (x or y equals one at the edge of the
pupil) allows for perspective elongation effects e.g. observing a
laser guide star from off-axis sub-apertures. For the following

50 100 150 200 250 300 350
Sorted slope number

 0

 1

0.2

0.3

0.4
0.5
0.6
0.7
0.8
0.9

No
is

e 
va

ria
nc

e

5 10 15 20 25 300.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 2. The normalised variance of noise (bold line), sorted in
descending amplitude, from simulated slopes. The lines with
plus or point symbols represent the residual variance when
the solenoidal noise estimate from gradient reconstruction or
loop summation, respectively, is removed. The inset displays
the 33 slopes with largest noise.

Table 2. The conversion scaling, m, between 〈ηs〉 and 〈η〉 given
how many times an associated sub-aperture is referred to in L.

No. of references in L 〈η2
s 〉 → 〈η2〉

to sub-aperture scaling

1 14/2

2 14/4

3 14/5

4 14/6

results, α = 10−3 and β = 0 which means that the regulariza-
tion is arbitrary, that intensity effects are modulated by 1/4th

because of the CoG spot position algorithm employed, and that
elongation effects are not relevant.

To compare the estimation of ηs using the gradient recon-
struction method (via H) and loop summation (via L), noisy
slope data from a N × N SH-WFS simulation is utilized. The
simulation parameters are shown in Table 1. The resulting com-
parison is shown in Fig. 2. This plot shows 〈(η − ηs;H)2〉 and
〈(η − ηs;L)

2〉 (the variance of noise minus solenoidal noise via,
respectively, H and L) in descending order of the noise variance.
As required, the variance of the residual is less than that of the
variance of the noise which implies a partial estimation of noise
variance is possible.

Alone, the utility of ηs is limited. First, this term is implicitly
rejected during wavefront reconstruction. Second, for analyses
of slopes it represents only part of η (which remains unknown).
Now we consider 〈η2

s 〉 in more detail. As ηns and ηs are both
random variables originating from the same source, a hypothesis
is that the covariance of these term’s ensemble variance is non-
zero. In other words, noise variance is correlated for the same
sub-aperture between the solenoidal and non-solenoidal terms.

A normalised covariance of 0.40 is found from the simulation
data. This suggests the following relationship 〈η2〉 = 〈η2

s 〉 +
2〈ηsηns〉+ 〈η2

ns〉=(1+γ)〈η2
s 〉 and, using the simulation data, γ is

found to take one of four values. Our conclusion is that ensemble
noise variance can be estimated as 〈η2

i 〉 = M(i, m)× 〈η2
s;i〉.
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Fig. 3. The estimated vs. determined 〈η2〉 for WFS slopes that
are (LEFT) simulated or (RIGHT) data from DRAGON, and
when there is (TOP) no slope signal, s = 0, or (BOTTOM) a
non-zero signal, s 6= 0. The estimate of 〈η2〉 with open dia-
monds (red) uses H while the points (black) uses L and regu-
larization. For the data, the estimated variance uncertainty is
shown in the bottom right.

The function M selects the value from m, whose values are
shown in Table 2, given slope number i by counting how many
times the associated sub-aperture is referred to in L. This is
between zero to four, inclusive. (If zero, then no retrieval of 〈η2〉
is possible for either slope in the associated sub-aperture.) The
scaling introduced here differs from previous work[5] where al-
ternative wavefront sensor geometries were considered without
scaling.

The complete ensemble noise estimation method can there-
fore be written as,

〈η2〉 = (Mm)× 〈η2
s 〉 = (Mm)×

〈(
L†L(s + η)

)2
〉

, (7)

where Mm is a vector of length the number of slopes and
s + η is noisy slope data. In Fig. 3 a comparison of the ensemble
noise estimation methods–using H or L, and then the scaling–is
made with pre-determined noise. A corresponding summary of
the accuracy is shown in Table 3.

The benefit of using regularization for L† is evident: for the
simulation results, the dispersion for low noise data (the bulk
of the estimate) is much reduced and even the high noise data
benefits, and when underlying slope signal is either zero or non-
zero (s = 0 or s 6= 0). For the experimental data, from the 30× 30
on-axis WFS of the DRAGON test-bench[10], first the signal-free
results are discussed. The dispersion (uncertainty) is reduced
and becomes consistent with the expected uncertainty. There
is a (small) positive bias in the estimate for low noise which is
understood as a lack of homogeneity in the underlying WFS
implementation.

When the measurements with time-varying slopes (s 6= 0)
are analysed, it is clear that there appears to be a significant
bias in estimating 〈η2〉. With regularization this bias remains a
constant multiple of the pre-determined noise. It is necessary

Table 3. Comparison of the noise variance using four different
data sets and the two estimation methods, summarising the
plots in Fig. 3.

Input Estimated:measured 〈η2〉

Explicit Loop sums

a) simulation, s = 0 1.1± 0.2 1.02± 0.03

b) data, s = 0 1.1± 0.3 1.1± 0.2

c) simulation, s 6= 0 1.1± 0.2 1.02± 0.07

d) data, s 6= 0 1.8± 0.4 1.7± 0.3

to assume that the pre-determined noise is identical for both
sets of measurements i.e. 〈η2〉(s 6= 0) ≡ 〈η2〉(s = 0). An in-
terpretation is that when there are time- & space-varying slope
signals, the SH spots intensities are negatively affected and this
introduces further noise. As partial corroboration, an increase
in sub-aperture intensity standard deviation by up to ×10 was
found in this case. Then the first order estimate of increase in
noise becomes ∼ ×1.6, which is consistent with the observed
bias.

For a precision of 1,5, or 20% in 〈η2〉 if treated as a sample of
a stationary population, there are required to be 20000, 800, or 51
samples of ηs. The measurements consist of 2500 sequential data
and from this we can predict the uncertainty of the measured
〈η2〉 as being 3%, which is consistent with the uncertainty bars
in the figure.

We note here that the values of m are derived from Eqn. 7
by utilising using random, uncorrelated values as a substitute
for s + η. Then m was used with both simulated and measured
data, and no significant discrepancy was found in the estimation
process. Therefore m is assumed a set of universal constants,
although it is not known why they take their established values.

The previous analysis operated under the assumption that
〈η2〉 was homogeneous and so the noise variance originating
from either slope in each sub-aperture was identical (excepting
total illumination variation). Now, the regularization will ac-
count for inhomogeneous noise, for example when SH spots are
elongated.

An example of elongated SH spots is shown in the top left
of Fig. 4. In the context of Eqn. 6, the term β is now set to 0.1.
To separate the effect of partial illumination of sub-apertures
(which causes further elongation), two categories are used: either
partially or fully illuminated and shown in the top right of Fig. 4
as either dark or pale shading. The comparison of estimated
〈η2〉 with actual variance, in the bottom plots of the figure, also
follows this division; left/right for the noise originating from
fully/partially illuminated sub-apertures.

In Table 4 is shown a summary of the noise comparison, and
it can be seen that the most precise estimate for fully illuminated
sub-apertures arises from using loop integration with elongation
regularization. Using implicit estimation of solenoidal noise re-
sults in large scatter, and poor accuracy for partially illuminated
sub-apertures.

The loop summation methods with intensity regularization
result in much greater accuracy. However, for fully illuminated
sub-apertures when elongation regularization is used, a small
bias in estimation can be seen. Without this regularization there
is instead an error which is correlated with the noise. This
correlated error masks any fixed bias and returns an apparently
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Table 4. Summary as normalised residuals of the data pre-
sented in Fig. 4. The situation describes the two illumination
states considered (see the text for details) and the algorithm
used, and then whether elongation regularization was applied.

Situation Regularization? Normalized residual / %

Full H 17±7

-"- L N 2.4±4.7

-"- L Y 3.3±2.8

Partial H −1±34

-"- L N 3.3±13

-"- L Y −9±15

more accurate estimate. A similar effect can be seen in Fig. 3
when no regularization is used in all sub-plots.

When partially illuminated sub-apertures are considered,
their noise is not well estimated. This is not surprising since
no appropriate consideration of these sub-aperture’s elonga-
tion is made. However, consideration of the per sub-aperture
illumination (intensity) leads to a substantial improvement in
dispersion and reduction in correlated error. Returning to the
bias in noise estimates when using elongation regularization, its
origin is probably due to including data from partially illumi-
nated sub-apertures whose noise is incorrectly constrained in
the construction of L† in Eqn. 5.

The work presented in this paper is an extension for the
method of estimating noise under conditions of non-zero space–
time-variable wavefront sensor signals. The principal points
deriving from our work are:

1. The existence of solenoidal and non-solenoidal noise is
noted and their statistical relationship is derived here in
terms of their covariance, and

2. To obtain the scaling from solenoidal noise variance to total
noise variance requires the construction of L and this scaling
is new, and

3. Estimation of 〈η2〉 is demonstrated with simulated and
measured slopes from SH WFSs, and

4. The method accounts for partially illuminated sub-
apertures via a constraint term, and

5. The constraints are extended to inhomogeneous noise e.g.
variably extended spots.

Due to the nature of the algorithm, it is expected to be usable
with linear slopes from any first derivative-based WFS, such as
the Pyramid or Fourier gradient filter types.
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and ST/L00075X/1, supporting the DRAGON laboratory exper-
iment and this work. NAB and APR thank all those who have
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algorithm, including the simulation code used herein, are avail-
able from NAB.
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Fig. 4. The estimation of 〈η2〉 versus the known variance for
elongated SH spots, for three algorithms. Plot a) shows the
SH spots , and b) whether spot’s associated sub-apertures
are fully or partially illuminated (pale or dark shading). Plot
c)/d) shows the comparison of noise variance for slopes from
fully/partially illuminated sub-apertures. The circle, cross,
and plus symbols represent the explicit, intensity-only reg-
ularised loop summation, or intensity-and-elongation regu-
larised loop summation algorithms respectively.
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