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The interaction of an isolated trailing vortex and the ground is investigated. An un-

steady unperturbed flow is firstly calculated through a two-dimensional direct numerical

simulation and then used as base flow for linear transient growth studies. The transient

growth increases with Reynolds number and maximises at streamwise wavenumber 3 ∼ 5

over the parameters considered. The most energetic initial perturbation is found to be

located aside of the main vortex and convected by the base flow to the ground to inter-

act with the separating boundary layer and the secondary vortex. Finally the calculated

perturbation is used to perturb the base flow in three-dimensional direct numerical simula-

tions. It is observed that the secondary vortex and the rebound motion of the main vortex

are both significantly suppressed. This observation indicates that the secondary structures

are sensitive to external noise and the widely reported secondary vortex and its induced

rebound motion of the main vortex in two-dimensional DNS would not appear or become

much weaker in real conditions.

Nomenclature

u velocity

U base velocity

u′ perturbation velocity

û Fourier decomposed velocity

p pressure

P base pressure

p′ perturbation pressure

Re Reynolds number
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Ω computational domain

k spanwise wavenumber

T time interval for transient growth

G transient energy growth

q vortex swirl strength

R vortex radius

P polynomial order in the spectral element method

Subscript

x, y, zcomponents in spanwise, vertical and streamwise directions, respectively

k Fourier modes with wavenumber k

I. Introduction

During takeoff, approach or landing, a pair of vortices are shed from the wing tips of an aircraft in ground

proximity. It is well known that this vortex pair will descend towards the ground due to the downwash

effect.1 Once significantly close to the ground, the two vortices move apart from one another on a hyperbolic

trajectory.2 Whilst moving apart the vortices ascend away from the runway in a rebound motion.3 This

outward-rebound effect is induced by the secondary vortices stemming from the separated boundary layer

on the ground.4 Without sufficiently strong crosswinds this vortical system may not leave the flight corridor

vertically or laterally and will decay slowly above the runway. Due to their strong coherent structures,

these vortices generate rolling moments and impose a potential risk to the queuing aircraft.5 Moreover, the

possibility of the pilot to counteract the imposed rolling moment is restricted due to the low height of the

aircraft above ground.6 In this way, the trailing vortices impose constraints on the airport operation and

aircraft design. Therefore an accurate prediction of the vortex/ground interaction is crucial for a wake-vortex

advisory system so as to enhance the airport capacity.7 This vortex/ground interaction also exists in flow

around the front wing of a racing car, which operates within strong ground effect to generate downforce and

improve the vehicle’s performance.8,9

Previous studies of vortex/ground interactions have been concentrated on the dynamics of the secondary

vortex, which is responsible for the rebound motion of the main vortex. Three-dimensional (3D) wavy

features of the secondary vortex have been observed in experiments4,10 and numerical simulations,3 and

asymmetric secondary vortices shed from the tip of aircraft have been recorded in airport measurements.6

Most recently, it was observed that in two-dimensional (2D) simulations, the vortices are stronger and the

paths are higher than in 3D simulations when the vortex is originally perturbed.11 All these observations
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indicate that the secondary vortex is sensitive to external perturbations and suggest a 3D instability. However

stability and transient growth studies of vortex flow have been focused on an isolated vortex or a vortex pair

while relatively less efforts have been devoted to the ground/vortex interaction. In this work, a simplified

model consisting of an isolated Batchelor vortex and a ground boundary will be adopted to investigate the

role of infinitesimal perturbations in the vortex/ground interaction. In this model, the unperturbed flow is

homogeneous in the streamwise direction and therefore supports a BiGlobal analysis through decomposing

the perturbation as Fourier modes with various streamwise wavenumbers. Such a BiGlobal analysis has been

applied to study hydrodynamic stabilities of a vortex/pipe flow, where the unperturbed base flow exhibits

a slow decay and can be frozen as steady.12 However, in the present case, the vortex system featuring

boundary layer separations and secondary vortex generations is highly unstable. Therefore non-normality

or a transient energy growth analysis, which accommodates an unstable base flow, becomes an ideal tool to

illustrate the linear dynamics of perturbations.

The linearly optimal initial perturbations will be further studied through direct numerical simulations

(DNS). It will be clarified that the reduction of vortex strength and the rebound motion is owing to the

suppression effects of transiently growing perturbations on the secondary vortex; and that the coherent

vortex structures widely predicted in 2D simulations13,14 cannot be persisted in real 3D developments.

II. Methodology

Start from the incompressible Navier-Stokes (NS) equations,

∂tu = −(u · ∇)u−∇p+Re−1∇2u, with ∇ · u = 0,

where u and p are velocity and pressure, respectively. Re denotes the Reynolds number based on the

maximum streamwise velocity of the vortex model and the initial distance between the vortex centre and the

ground. The flow field can be decomposed into the summation of an unperturbed base flow and a perturbed

flow as (u, p) = (U , P ) + (u′, p′). When the magnitude of the perturbation velocity is significantly smaller

than that of the unperturbed flow, the perturbation can be governed by the linearised NS equations,

∂tu
′ = −(U · ∇)u′ − (u′ · ∇)U −∇p′ +Re−1∇2u′, with ∇ · u′ = 0.

In this work, a Cartesian coordinate is adopted, with x, y and z denoting spanwise, vertical and streamwise

directions respectively. The unperturbed base flow will be modelled as the Batchelor vortex, which is
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homogeneous in the streamwise direction. Therefore the perturbation can be further decomposed as

u′(x, y, z, t) =

∞∑
k=0

ûk(x, y, t)eikz

where ûk denotes the Fourier decomposed perturbation with streamwise wavenumber k. Owing to the

linearisation of the governing equations, dynamics of modes with different wavenumbers are decoupled and

can be calculated individually. In the following, the term perturbation will be referred to the Fourier

decomposed mode and the subscript wavenumber will be omitted for clarity. In transient energy growth,

the most energetic (optimal) initial perturbation over a given time horizont T at a prescribed streamwise

wavenumber k is defined as the perturbation that maximises the ratio of the final energy and initial energy,

G = maxû(x,y,0)
E(T )

E(0)
where E(t) =

∫
Ω

û(x, y, t) · û(x, y, t)dV

denotes the kinetic energy of perturbations integrated over the computational domain Ω. This optimal

perturbation and the corresponding value of G can be calculated by applying an Arnoldi method to a Krylov

sequence built by iteratively integrating the linearised NS equations and the adjoint, or by optimising a

Lagrangian functional,15,16 both of which are well established methods and are not elaborated here.

III. Convergence and discretisation

The aircraft wake flow contains a pair of counter-rotating vortices shed from the wing tips. The interaction

of the two vortices has been well studied.4,17,18 In this work, a single vortex, modelled as the Batchelor

vortex, is adopted to isolate the effect of ground/vortex interactions on the wake flow development. The

velocity components of this vortex, normalised by the streamwise velocity at the vortex centre, are

Ux = −qR(y − 1)

r2
[1− exp(−r2/R2)],

Uy =
qRx

r2
[1− exp(−r2/R2)],

Uz = exp(−r2/R2),

where r = [x2 + (y − 1)2]1/2, q denotes the swirl strength and R represents the initial core radius of the

vortex. The vortex is initially centred at (x, y) = (0, 1). A spectral element method is used to discretize the

governing equations, e.g. the NS equations, linearised NS equations and the adjoint. A decomposition of the

domain into 3, 638 spectral elements, with over 2000 elements located in the rectangular box accommodating

the trajectory of the vortex, is shown in figure 1(a). The computational domain spans from -50 to 50 and 0
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to 50 in spanwise and vertical directions, respectively, and the ground is located at y = 0. A zero Dirichlet

velocity boundary condition is applied to all the boundaries. A preliminary study showed that the optimal

perturbations develop around the main vortex and the secondary vortex. Therefore the resolution around

the trajectory of the vortex is refined, as can be seen in figure 1(b). In each element, a spectral method is

(a) (b)

Figure 1. Computational grid for (a) the full domain and (b) subdomain surrounding the trajectory of the
vortex.

used to further decompose the element to a (P + 1)× (P + 1) grid, where P represents a polynomial order

and can be used to refine resolution in convergence tests.19 Dependence of the maximum energy growth G

with respect to P at k = 1, Re = 3000, q = 0.8, R = 0.1 and T = 50 is illustrated in table 1. It is seen

that G has converged to three significant figures at P = 4. Therefore in the following studies P = 4 will be

adopted.

Table 1. Convergence of the energy growth G.

P G relative Difference (%)

2 2.0900× 102 0.50

3 2.0748× 102 0.20

4 2.0797× 102 0.02

5 2.0792× 102 0.00

6 2.0792× 102 –

IV. Base flow

The unperturbed development of the vortex/ground interaction can be obtained by 2D DNS, as illustrated

in figure 2. The contour levels are -0.3 -0.2, -0.1, 0.3, 0.5 and 0.7, with positive and negative levels represented

by solid and dashed lines, respectively; the parameters adopted in this base flow calculation are Re = 1000,

q = 0.8, R = 0.1 and T = 50. These specifications will be used in all the following studies if not otherwise

stated. The defaulted value of the swirl strength q = 0.8 is aligned with previous studies of an isolated

Batchelor vortex.20,21 The defaulted vortex size, measured by the core radius R, ensures that the vortex
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(a) (b)

(c) (d)

Figure 2. Vorticity contours of the base flow at (a) t = 0, (b) t = 10, (c) t = 30, (d) t = 50.

and the ground are not decoupled, and that the vortex is not initially distorted by the ground boundary, as

can be seen in figure 2(a). It is worth noting that a mirror vortex can be added on the other side of the

ground to cancel the initial vertical velocity around the ground. However, a previous investigation suggests

that this mirror vortex has only minor influence on the vortex instability.4

As the vortex develops, it induces a boundary layer flow with opposite vorticity near the ground. The

induced velocity of this boundary vorticity drives the vortex to move in the positive x direction, as observed

in figure 2(b). As the flow continues developing, the boundary layer separates and wraps up to form a

secondary vortex1 owing to the flow induced by the main vortex (see figure 2(c)). Then the boundary layer

above the ground and the secondary vortex beside the main vortex induce outward (positive x) and upward

(positive y) motions, respectively, on the main vortex (see figure 2(d)). This upward motion has been well

documented as the “rebound motion”.14 It is also noticed that during the development, the main vortex

decays owing to viscous diffusion.

V. Linear transient growth of perturbations

Optimal transient energy growth over a range of streamwise wavenumbers is calculated by integrating

the linearised NS equations and the adjoint, and applying an Arnoldi method as discussed in § II. The
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(a) (b)

Figure 3. Transient growth as a function of the final time T and streamwise wavenumber k.

transient growth of the perturbations to the base flow shown in figure 2, measured by the maximum gain

G, is illustrated in figure 3. It is seen that as the final time T increases, the perturbation growth becomes

larger for the k = 2 and k = 3 cases, indicating that the vortex can be unstable at these cases. For the

perturbations with higher wavenumbers, the streamwise distribution becomes more oscillatory and tends to

decay due to viscous diffusion. Over the range of streamwise wavenumbers considered, the energy growth

reaches 103 and maximises at k = 3.8.

(a) (b)

Figure 4. Vorticity contours for (a) the optimal perturbation (t = 0) and (b) the corresponding outcome
(t = T = 50) at k = 3.8.

The distribution of the optimal initial perturbation (t = 0) and its outcome (t = T = 50) at k = 3.8 are

presented in figure 4. The contour levels are chosen to highlight the structures and are the same in the two

plots. It is observed that the initial perturbation is located on one side of the main vortex (downstream of the

aileron), and is convected by the base flow to the other side, with the magnitude significantly amplified. The

structure of the final outcome is clearly associated with the secondary vortex, indicating that the secondary
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vortex is more susceptible to be perturbed by environmental noise. Over small values of T , e.g. T = 20,

the perturbations are convected to the boundary layer on the ground but do not reach the other side of

the main vortex. Therefore the transient growth is associated with the boundary layer flow and maximises

at k = 0, similarly to the Tollmien-Schlichting waves, as illustrated in figure 3(b). Since the outcome flow

consists of a pair of positive/negative vorticity strips and varies sinusoidally in the streamwise direction, it

can be expected that the (streamwise averaged) secondary vortex can be suppressed by perturbations, as

will be verified in the next section.

(a) (b)

Figure 5. Dependence of the transient growth G on (a) the Reynolds number Re and (b) the vortex core R at
T = 50.

At higher Re, the boundary layer becomes thinner, so does the secondary vortex. Such a thinner vortex

sheet can be more susceptible to perturbations and would undergo stronger transient growth. In figure 5(a),

it is seen that as Re increases, the optimal value of k increases and a higher maximum growth is reached.

These observations suggest that the transient growth mechanism could be inviscid, in contrast to the viscous

rebound effect seen in the base flow development. Transient growth at Re > 3000 is conducted (not shown

here), and the optimal perturbation is found to be concentrated inside the vortex core and associated with

the helical instability of the Batchelor vortex, indicating that the vortex and the ground are decoupled. In

this condition, to activate the vortex/ground interaction, a shorter vortex/ground distance is required.

Effects of the vortex size on transient growth are illustrated in figure 5(b). At higher R, the vortex

expands and the vortex/ground interaction is strengthened. Subsequently, the optimal value of k increases

and the energy growth becomes larger.
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(a) (b) (c)

Figure 6. Energy of the optimally perturbed base flow at various perturbation levels obtained in 3D DNS: (a)
the base mode; (b) the dominant mode; (c) various modes at perturbation level 1%.

VI. Non-linear evolution of optimal perturbations

The transient energy growth presented above is based on the linear assumption, i.e. the perturbation

magnitude is sufficiently small. In this section, perturbations with a finite magnitude will be adopted to

perturb the base flow in DNS so as to identify effects of transient growth on the base flow and the nonlinear

saturation of the perturbations. In the streamwise direction, a periodic boundary condition is adopted and

the streamwise domain length is set to 2π/3.8, so as to accommodate the linearly most energetic perturbation

presented in figure 4(a). Sixteen Fourier modes, with streamwise wavenumber 0, 2π/3.8, 4π/3.8, ..., 30π/3.8,

are calculated. The first, second, and following modes will be denoted as the base mode, dominant mode

and higher harmonics, respectively. Perturbations with magnitude levels 0.1%, 0.3% and 1% (square root

of the ratio of initial perturbation energy and base flow energy) are tested. From figure 6(a), it is seen

that the development of perturbations induces decay of the energy of the base mode. As will be discussed

later, this energy decay is associated with the suppression of secondary vortices. In figure 6(b), it can be

observed that the energy growth of the dominant mode in nonlinear developments (normalized by the initial

energy) almost overlaps with the linear prediction (denoted by “LNS”) at small enough perturbation levels,

while deviates from the latter as the initial perturbation becomes larger (). The nonlinear saturation of the

dominant mode and the higher harmonics can be clearly observed in figure 6(c).

In the following studies, the perturbation energy level will be fixed at 1%. The perturbed flow is averaged

in the streamwise direction, as shown in figure 7. Comparing against the unperturbed flow in figure 2, the

separation and wrap-up of the boundary layer, the generation of the secondary vortex, and subsequently

the rebound motion, are significantly suppressed by perturbations. Effects of perturbations on both the

secondary and main vortices can be clearer seen in figure 8. It is noticed that at higher levels of perturbations,

the main vortex is less rebounded, and the boundary layer separation and the secondary vortex become

weaker.

After presenting the streamwise averaged flow, the 3D flow patterns are illustrated in figure 9. All
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(a) (b)

(c) (d)

Figure 7. Vorticity contours of the optimally perturbed flow with perturbation level 1% at (a) t = 0, (b) t = 10,
(c) t = 30 and (d) t = 50.

(a) (b) (c)

Figure 8. Vorticity contours of the optimally perturbed flow at t = 50 with initial perturbation level (a) 0, (b)
0.3%, and (c) 1%.
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(a) (b)

(c) (d)

Figure 9. Iso-surfaces of streamwise vorticity, coloured by streamwise velocity, at (a) t = 0, (b) t = 10, (c)
t = 30 and (d) t = 50. The flow is initially perturbed by the optimal perturbation with level 1%.

the parameters are the same as used in figure 7. It is seen that the secondary vortex is in a sinusoidal

form, indicating that this vortex sheet is dominated by perturbations. Since the streamwise average of the

perturbation is zero, the mean secondary vortex is suppressed, as has been observed in figure 7. The wavy

form of the main flow can also be noticed, owing to the variation of the induced velocity generated by the

secondary vortex.

(a) (b)

Figure 10. Iso-surfaces of streamwise vorticity, coloured by streamwise velocity, at t = 50 and (a) Re = 2000
and (b) Re = 3000. The flow is initially perturbed by the optimal perturbation with level 1%.

It can be expected that at higher Reynolds number, the large coherent structures shown in figure 9 break

down to turbulence. The developments of optimally perturbed flow at Re = 2000 and 3000 are studied in
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DNS using 32 spanwise Fourier modes, as illustrated in figure 10. The thin shear layer associated with the

secondary vortex is broken to small eddies around the periphery of the main vortex. DNS at Re > 3000

are also conducted but not presented here, since the perturbation dynamics are associated with the helical

instability of the Batchelor vortex, instead of the vortex/ground interaction. As discussed above, in these

higher Reynolds number conditions, a vortex closer to the ground or a larger value of R is required to study

the vortex/ground interaction.

VII. Conclusions

A simplified model is established to investigate the effects of perturbations on vortex/ground interactions.

The vortex is modelled as the Batchelor vortex, and a typical swirl strength q = 0.8 well explored in

literature20,21 is used throughout this work. The boundary layer separation, secondary vortex generation

and rebound motion of the main vortex are all observed in 2D DNS of the unperturbed flow.

Using the unperturbed flow as base flow, the optimal initial perturbations at various streamwise wavenum-

bers and final times can be calculated using a well-established Arnoldi method. Over the parameters studied,

the most energetic perturbation appears at streamwise wavenumber 3 ∼ 5. The maximum energy growth

increases at higher Reynolds number or larger vortex sizes, at which the vortex/ground interaction is strength-

ened, suggesting that the transient growth is associated with this interaction, rather than the dynamics of

the isolated main vortex. The most energetic initial perturbation is located on one side of the main vortex

and can be considered as a component of the free-stream turbulence or wake flow downstream of the ailerons.

During the development, this initial perturbation is convected towards the ground and then wrapped up to

interact with the secondary vortex.

In nonlinear evolution of the optimal perturbation, the perturbation suppresses the secondary vortex and

subsequently weakens the rebound motion. The 3D variation of the perturbed flow indicates that the main

vortex core is distorted and the secondary vortex is dominated by perturbations. This study suggests that

the widely reported strong rebound in 2D simulations would be significantly weakened in real 3D studies

owing to transient effects associated with external noise.11,14 The nonlinear transient effects also contribute

to explain the widely observed 3D variation and asymmetry of the secondary vortices.3,4, 6, 10
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3Stephan, A., Holzäpfel, F., and Misaka, T., “Hybrid simulation of wake-vortex evolution during landing on flat terrain

and with plate line,” Int. J. Heat Fluid Flow , Vol. 49, 2014, pp. 18–27.

12 of 13

American Institute of Aeronautics and Astronautics



4Harris, D. M. and Williamson, C. H. K., “Instability of secondary vortices generated by a vortex pair in ground effect,”

J. Fluid Mech., Vol. 700, 2012, pp. 148–186.

5Wetmore, J. W. and Reeder, J. P., “Aircraft Vortex Wakes in relation to Terminal Operations,” Tech. Rep. D-1777,

NASA, 1963.
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