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In this paper we provide three nonparametric tests of independence between continuous
random variables based on the Bernstein copula distribution function and the Bernstein
copula density function. The first test is constructed based on a Cramér-von Mises divergence-
type functional based on the empirical Bernstein copula process. The two other tests are based
on the Bernstein copula density and use Cramér-von Mises and Kullback-Leibler divergence-
type functionals, respectively. Furthermore, we study the asymptotic null distribution of
each of these test statistics. Finally, we consider a Monte Carlo experiment to investigate the
performance of our tests. In particular we examine their size and power which we compare
with those of the classical nonparametric tests that are based on the empirical distribution
function.
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1. Introduction

Testing for independence between random variables is important in statistics, economics,
finance and other disciplines. In economics, tests of independence are useful to detect
possible economic causal effects that can be of great importance for policy-makers. In
finance, identifying the dependence between different asset prices (returns) is essential for
risk management and portfolio selection. Standard tests of independence are given by the
usual T-test and F-test that are defined in the context of linear regression models. However,
these tests are only appropriate for testing independence in Gaussian models, thus they
might fail to capture nonlinear dependence. With the recent growing interest in nonlinear
dependence, it is not surprising that there has been a search for alternative dependence
measures and tests of independence. In this paper we propose three nonparametric tests
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of independence. These tests are model-free, hence they can be used to detect both linear
and nonlinear dependence.

Nonparametric tests of independence have recently gained momentum. In particular,
several statistical procedures have been proposed to test for the independence between
two continuous random variables X and Y. Most classical tests of independence were
initially based on some measures of dependence such as the Pearson linear correlation
coefficient ρ, which takes the value 0 under the null hypothesis of no correlation. Other
tests of independence have been constructed using other popular measures of dependence
that are based on ranks. The rank-based measures of dependence do not depend on the
marginal distributions. The most used rank-based measures are Kendall’s tau and Spear-
man’s rho. The independence tests that are based on Kendall’s tau (resp. Spearman’s rho)
were investigated by Prokhorov (2001) (resp. Borkowf (2002)). These tests are usually
inconsistent, which means that under some alternatives their power functions do not tend
to one as the sample size tend to infinity.

To overcome the inconsistency problem of the above tests, Blum, Kiefer, and Rosenblatt
(1961) were among the first to use nonparametric test statistics based on comparison of em-
pirical distribution functions. For bivariate random variables X and Y , Blum et al. (1961)
use a Cramér–von Mises distance to compare the joint empirical distribution function of
(X, Y ); say Hn(x, y) = 1

n

∑n
i=1 I(Xi ≤ x, Yi ≤ y), with the product of its corresponding

marginal empirical distributions, i.e., Fn(x) = Hn(x,∞) and Gn(y) = Hn(∞, y). There-
after, other researchers have considered using empirical characteristic functions; for review
see Feuerverger (1993) and Bilodeau and Lafaye de Micheaux (2005), among others.

When the marginal distributions of a random vector X = (X1, ...., Xd) are continuous,
Sklar (1959) has shown that there exists a unique distribution function C [hereafter copula
function] with uniform marginal distributions, such as

H(x1, ...., xd) = C (F1(x1), ..., Fd(xd)) ,

for x1, ..., xd ∈ Rd.1 Under the null hypothesis of independence between the components
of X, the copula function is equal to the independent copula Cπ, which is defined as
Cπ(u) = Cπ(u1, ..., ud) =

∏d
j=1 uj , for u ∈ [0, 1]d, i.e.,

H0 : C(u) = Cπ(u) ≡
d∏
j=1

uj , for u ∈ [0, 1]d. (1)

The tests based on the distribution and characteristic functions discussed above have
inspired Dugué (1975), Deheuvels (1981a,b,c), Ghoudi, Kulperger, and Rémillard (2001),
and Genest and Rémillard (2004) to construct tests of mutual independence between the

1For more details on copula theory, the readers are referred to an excellent book by Nelsen (2006)
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components of X based on the observations Xi = (Xi,1, ...., Xi,d), for i = 1, .., n, and using
the test statistic

Sn =
∫

[0,1]d

n

Cn(u)−
d∏
j=1

uj


2

du, (2)

where Cn(u) is the empirical copula originally proposed by Deheuvels (1979) and defined
as

Cn(u) = 1
n

n∑
i=1

d∏
j=1

I {Vi;j ≤ uj} , for u = (u1, ..., ud) ∈ [0, 1]d, (3)

where I {.} is an indicator function and Vi;j = Fj;n(Xi,j), for j = 1, ..., d, with Fj;n(.) is
the empirical cumulative distribution function of the component Xi,j , for i = 1, . . . , n. An
interesting aspect of the above test statistic is that, under the null of mutual independence,
the empirical process Cn(u) =

√
n (Cn(u)− Cπ(u)) can be decomposed, using the Möbius

transform, into 2d − d − 1 sub-processes
√
nMA (Cn) , for A ⊆ {1, ..., d} and |A| > 1,

that converge jointly to tight centred mutually independent Gaussian processes; see Blum
et al. (1961), Rota (1964) and Genest and Rémillard (2004). However, this test fails when
the dependence happens only at the tails. For example, as we will see in Section 5, when
the data are generated from Student copula with Kendall’s tau equal to 0 and degree of
freedom equal to 2, the power of the test which is based on the empirical copula is low.
This indicates that the empirical copula-based test is not able to detect tail dependence.
In general, this test does not perform well in term of power in the presence of weak
dependencies.

In this paper, we propose several nonparametric copula-based tests for independence
that are easy to implement and provide a better power compared to the empirical copula-
based test. The first test is a Cramér-von Mises-type test that we construct using Bernstein
empirical copula. Bernstein empirical copula was first studied by Sancetta and Satchell
(2004) for i.i.d. data, who showed that, under some regularity conditions, any copula
function can be approximated by a Bernstein copula. Recently, Janssen, Swanepoel, and
Veraverbeke (2012) have shown that the Bernstein empirical copula outperforms the clas-
sical empirical copula estimator. This latter result has motivated us to use the Bernstein
copula function, instead of the standard empirical copula, for testing the null hypothesis
in (1). For weak dependencies, our results show that the test based on Bernstein empirical
copula outperforms the empirical copula-based test. However, the two tests fail in term of
power when the null hypothesis is for example a Student copula with zero Kendall’s tau
and small degree of freedom. The difficulty of distinguishing between the independent cop-
ula and Student copula with zero Kendall’s tau and small degree of freedom, illustrated in
Figure 1 and discussed in Section 3.2, may explain the low power of nonparametric copula
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distribution-based tests.
To overcome the above problem, we introduce two other nonparametric tests based

on Bernstein empirical copula density. Bouezmarni, Rombouts, and Taamouti (2010) have
studied the Bernstein copula density estimator and derived its asymptotic properties under
dependent data. These properties have recently been reinvestigated in Janssen, Swanepoel,
and Veraverbeke (2014). The motivation for using Bernstein copula density in the construc-
tion of our tests is illustrated in Figure 1, which shows that the copula density is flexible
in terms of detecting the independence between the variables of interest. In particular,
the shape of the copula density changes according to the type and degree of dependen-
cies. Thus, our second test is a Cramér-von Mises-type test which is defined in terms of
Bernstein copula density estimator. The third test that we propose is based on Kullback-
Leibler divergence which is originally defined in terms of probability density functions.
This divergence can be rewritten in terms of copula density, see Blumentritt and Schmid
(2012). Consequently, the third test is a Kullback-Leibler divergence-type test that we
construct based on Bernstein copula density estimator. Our results show that these two
tests outperform both the Bernstein copula and empirical copula-based tests, and are able
to detect the weak dependencies and the dependence that happens at the extreme regions
of the Student copula.

Furthermore, we establish the asymptotic distribution of each of these tests under the
null hypothesis of independence, and we show their consistency under a fixed alternative.
Finally, we run a Monte Carlo experiment to investigate the performance of these tests.
In particular, we examine and compare their empirical size and power to those of non-
parametric test which is based on the empirical copula process considered in Deheuvels
(1981c), Genest, Quessy, and Rémillard (2006), and Kojadinovic and Holmes (2009).

The remainder of the paper is organized as follows. In Section 2, we provide the defini-
tion of Bernstein copula distribution and its properties. Thereafter, we define the process
of Bernstein copula {Bk,n(u) : u ∈ [0, 1]d} that we use to construct our first test of inde-
pendence. In Section 3, we define the Bernstein copula density that we use to build our
second test of independence based on Cramér-von Mises divergence. Section 4 is devoted
to our third nonparametric test of independence that we construct based on Kullback-
Liebler divergence which we define in terms of Bernstein copula density. We establish the
asymptotic distribution of each of these test statistics under the null, and we show their
consistency under a fixed alternative. Section 5 reports the results of a Monte Carlo sim-
ulation study to illustrate the performance (empirical size and power) of the proposed
test statistics. We conclude in Section 6. The proofs of main theoretical results and some
technical computations are presented in Appendix A and B, respectively.

4



2. Test of independence using Bernstein copula

2.1. Bernstein copula distribution

In this section, we define the estimator of Bernstein copula distribution and we discuss
its asymptotic properties. This estimator will be used to build the first test of indepen-
dence. Sancetta and Satchell (2004) were the first to apply a Bernstein polynomial for the
estimation of copulas. The Bernstein copula estimator is given by

Ck,n(u) =
k∑

v1=0
...

k∑
vd=0

Cn

(
v1

k
, ...,

vd
k

) d∏
j=1

Pvj ,k(uj), for u = (u1, ..., ud) ∈ [0, 1]d , (4)

where Cn (.) is the empirical copula defined in Equation (3), Pvj ,k(.) is the binomial prob-
ability mass function with parameters vj and k, and k is an integer that represents a
bandwidth parameter and depends on the sample size n. Janssen et al. (2012) have stud-
ied the asymptotic properties (almost sure consistency and asymptotic normality) of the
estimator in (4). In particular, they provided its asymptotic bias and variance and showed
that this estimator outperforms the empirical copula in terms of mean squared error.

We now define the following empirical Bernstein copula process under the null hypothesis
of independence:

Bk,n(u) = n1/2 {Ck,n(u)− Cπ(u)} , for u ∈ [0, 1]d, (5)

where Cπ(u) is the independent copula function defined in Equation (1). The following
Lemma from Janssen et al. (2012) states the weak convergence of the process Bk,n under
H0 in (1). It will be used to establish the asymptotic distribution of our first test of
independence presented in Section 2.2.

Lemma 1 (Janssen et al. (2012)) Suppose that k →∞ as n→∞. Then, under H0, the
process Bk,n converges weakly to Gaussian process, Cπ(u), with mean zero and covariance
function given by:

E

I (U1 ≤ u1, ..., Ud ≤ ud)− Cπ(u)−
d∑
j=1

Cπj(u){I (Uj ≤ uj)− uj}


×

I (U1 ≤ v1, ..., Ud ≤ vd)− Cπ(v)−
d∑
j=1

Cπj(v){I (Uj ≤ vj)− vj}


 ,

where Uj , for j = 1, . . . , d, are i.i.d. U [0, 1], Cπj(u) =
∏
i6=j ui, and I (.) is an indicator

function.
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2.2. Test of independence

The empirical Bernstein copula process in (5) will be used to construct the test statis-
tic of our first nonparametric test of independence. For a given sample {X1, . . . ,Xn}, a
convenient way for testing H0 in (1) is by measuring the distance between the Bernstein
empirical copula Ck,n(u) and the independent copula function Cπ in (1). This distance
can be measured using a Cramér–von Mises divergence that leads to the following test
statistic:

Tn = n

∫
[0,1]d

Ck,n(u)−
d∏
j=1

uj

2

du = n

∫
[0,1]d

B2
k,n(u)du. (6)

Other test statistics can be obtained using different criteria such as the one used in
Kolmogorov-Smirnov test statistic. We can also consider integrating with respect to the
Lebesgue-Steiltjes measure dCn(u), but under the null hypothesis H0 this should lead
to similar result as the test statistic in Equation (6). The following proposition provides
an explicit expression for the test statistic Tn in (6) [see the proof of Proposition 1 in
Appendix A].

Proposition 1 If we note
k∑

v1=0
. . .

k∑
vd=0

k∑
s1=0

. . .
k∑

sd=0
=
∑
(v,s)

, then

Tn = n
∑
(v,s)

Cn

(
v1

k
, ...,

vd
k

)
Cn

(
s1

k
, ...,

sd
k

) d∏
j=1

(
k
vj

) (
k
sj

)
β(vj + sj + 1, 2k − vj − sj + 1)

− 2n
k∑

v1=0
...

k∑
vd=0

Cn

(
v1

k
, ...,

vd
k

) d∏
j=1

(
k
vj

)
β(vj + 2, k − vj + 1) + n

3d ,

where β(., .) is the beta function which is defined as β(w1, w2) =
1∫
0
tw1−1 (1− t)w2−1 dt, for

w1 and w2 two positive integers.

The next result that follows from Lemma 1 and the continuous mapping theorem estab-
lishes the asymptotic distribution of test statistic Tn.

Proposition 2 Suppose that k → ∞ as n → ∞. Then, under the null hypothesis of
independence H0 in (1), the test statistic Tn in (6) converges in distribution to the following
integral of a Gaussian process: ∫

[0,1]d
C2
π(u)du,

where the process Cπ(u) is defined in Lemma 1.

The asymptotic distribution of Tn in Proposition 2 can be used to make a decision about
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rejecting or failing to rejectH0. A Monte Carlo simulation-based approach can also be used
to simulate the distribution of the test statistic Tn under the null hypothesis H0. The latter
approach consists in generating several samples under H0, i.e., we generate random vectors
[0, 1]d under the null hypothesis of independence and for each of these samples we calculate
the test statistic Tn. Thereafter and for a given significance level α ∈ (0, 1), we compute the
(1-α)-th empirical quantile of the simulated distribution of the test statistic Tn. We then
reject the null hypothesis of independence if the observed test statistic, computed using the
observed data, is greater than the calculated (1-α)-th quantile. In finite sample settings,
our simulation results suggest that a Monte Carlo-simulation based approach provides a
better approximation for the distribution of Tn compared to the asymptotic distribution.
This means that it is better to use critical values (p-values) that are calculated using
Monte Carlo simulation instead of the ones that come from the asymptotic distribution.

We next establish the consistency of our first test for a fixed alternative [see the proof
of Proposition 3 in Appendix A].

Proposition 3 Suppose that k →∞ as n→∞. Then, the test based on the test statistic
Tn in (6) is consistent for any bounded copula density c such that

∫ C(u)−
d∏
j=1

uj

2

du > 0.

3. Test of independence using Bernstein copula density

3.1. Bernstein copula density

In this section, we define the estimator of Bernstein copula density that we will use to
build our second nonparametric test of independence. Before doing so, let us first recall
the definition of copula density using copula distribution. If it exists, the copula density,
denoted by c, is defined as follows:

c(u) = ∂dC(u)/∂u1...∂ud, (7)

where C is the copula distribution.
Now, from Equation (7) and since the Bernstein copula distribution introduced in Sec-

tion 2 is absolutely continuous, the Bernstein copula density is defined as follows:

ck(u) =
k∑

v1=0
...

k∑
vd=0

C

(
v1

k
, ...,

vd
k

) d∏
j=1

P ′vj ,k(uj),

where P ′vj ,k(u) is the derivative of the binomial probability function Pvj ,k(u) with respect
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to u. Thus, the estimator of Bernstein copula density is given by

ck,n(u) =
k∑

v1=0
...

k∑
vd=0

Cn

(
v1

k
, ...,

vd
k

) d∏
j=1

P ′vj ,k(uj), (8)

where Cn(.) is the empirical copula distribution. From Bouezmarni et al. (2010), the Bern-
stein copula density estimator can be rewritten as follows:

ck,n(u) = 1
n

n∑
i=1

Kk (u,Vi) , for u ∈ [0, 1]d, (9)

with

Kk(u,Vi) = kd
k−1∑
ν1=1

...
k−1∑
νd=1

I{Vi ∈ Ak(ν)}
d∏
j=1

Pνj ,k−1(uj),

where Pνj ,k−1(.) is the binomial probability mass function with parameters νj and k − 1,
Vi = (F1;n(Xi,1), ..., Fd;n(Xi,d)), with Fj;n(.), for j = 1, ..., d, the empirical distribution
based on Xi,j , for i = 1, . . . , n, and Ak(ν) =

[
ν1
k ,

ν1+1
k

]
× ...×

[
νd
k ,

νd+1
k

]
, with k an integer

that plays the role of bandwidth parameter.
The Bernstein copula density estimator in (9) is proposed and investigated in Sancetta

and Satchell (2004) for i.i.d. data. Later, Bouezmarni et al. (2010) have used a Bern-
stein polynomial to estimate the copula density for time series data. They provided the
asymptotic bias and variance, uniform a.s. convergence, and asymptotic normality of the
estimator of Bernstein copula density for α-mixing data. Recently, Janssen et al. (2014)
have reinvestigated this estimator by establishing its asymptotic normality under i.i.d.
data.

3.2. Test of independence

We will now use the estimator of Bernstein copula density in Equation (9) to define the
test statistic of our second nonparametric test of independence. Before doing so, observe
that testing the null hypothesis of independence is equivalent to testing

H0 : c(u) = 1, u ∈ [0, 1]d.

To test the above null hypothesis, we consider the following Cramér–von Mises-type test
statistic

In(u) =
∫

[0,1]d
(ck,n(u)− 1)2du, (10)

where ck,n(u) is the Bernstein copula density estimator in Equation (9).
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As mentioned in the introduction, building tests of independence based on Bernstein
copula density instead of Bernstein copula distribution is motivated by the fact that the
copula density is able to capture the dependence even when the Kendall’s tau coefficient
is small or equal to zero. For example, it is straightforward to see that when Kendall’s tau
is equal to zero, one can not distinguish between the Student copula distribution and the
independent copula. However, it is easier to distinguish between their corresponding copula
density functions. For example, if we consider a Student’s probability density function
tν+1with the number of degrees of freedom equal to ν = 2 and Kendall’s tau τ , then
the lower/upper tail-dependence coefficient of the Student copula density is equal to λ =
2tν+1(−

√
1 + ν

√
1− τ/

√
1 + τ). Hence, even if we take Kendall’s tau equal to zero, the

tail-dependence coefficient λ will be equal to 0.1816901, thus different from zero. This
situation is illustrated in Figure 1 where Kendall’s tau is taken to be equal to zero.

Now, to establish the asymptotic distribution of the test statistic In under the null H0,
we need to introduce the following additional term. For any integers v1 and v2 such that
0 ≤ v1, v2 ≤ k − 1, we define

Γk(v1, v2) =
∫ 1

0
Pv1,k−1(u)Pv2,k−1(u)du (11)

=
(
k − 1
v1

)(
k − 1
v2

)
β(v1 + v2 + 1, 2k − 1− v1 − v2).

The following proposition provides a practical expression for the test statistic In in the
bivariate case [see the proof of Proposition 4 in Appendix A].

Proposition 4 Using similar notations to those in Proposition 1, the test statistic in
(10) can be rewritten as follows:

In(u) = k4
k−1∑

v1,v′1=0
v2,v′2=0

Υk(v1, v2)Υk(v′1, v′2)Γk(v1, v
′
1)Γk(v2, v

′
2)− 1,

where Γk(., .) is defined in Equation (11) and Υk(v1, v2) = Cn
(
v1+1
k , v2+1

k

)
−Cn

(
v1
k ,

v2+1
k

)
−

Cn
(
v1+1
k , v2

k

)
+ Cn

(
v1
k ,

v2
k

)
, with Cn(., .) denotes the empirical copula.

The following theorem provides the asymptotic distribution of the test statistic In under
H0 [see the proof of Theorem 1 in Appendix A].

Theorem 1 Suppose that k →∞ together with n−1/2k3d/4 log log2(n)→ 0 when n→∞.
Then, under H0, we have

9



In,k := nk−d


In − 2−dπd/2n−1kd/2

21/2
√{∑k−1

v1,v2=0 Γk(v1, v2)2
}d
− k−2d

 d−→ N (0, 1),

where In and Γk(., .) are defined in Equations (10) and (11), respectively.

The proof of the following Corollary can be found in Appendix A.

Corollary 1 Suppose that the assumptions of Theorem 1 are satisfied. Then, there
exists a constant R > 0 such that

nk−d/4
{
In − 2−dπd/2n−1kd/2

Rd
√

2

}
d−→ N (0, 1),

where In is defined in Equation (10).

As for our first test, our simulation results suggest that it is better to use a Monte Carlo
simulation-based approach, instead of the asymptotic distribution, for the calculation of
critical values (p-values) of the test statistic In. A brief description of Monte Carlo simula-
tion approach can be found at the end of Section 2.2. We next establish the consistency of
our second test based on the test statistic In [see the proof of Proposition 5 in Appendix
A].

Proposition 5 Assume that k → ∞ together with n−1/2k3d/4 log log2(n) → 0 when
n→∞. Then, the test based on the test statistic In in (10) is consistent for any bounded
copula density c such that ∫

(c(u)− 1)2 du > 0.

4. Test of independence based on Kullback-Leibler divergence

4.1. Measure of dependence

Relative entropy, also known as the Kullback-Leibler divergence, is a measure of multivari-
ate association which is originally defined in terms of probability density functions. Fol-
lowing Blumentritt and Schmid (2012), we rewrite the Kullback-Leibler measure in terms
of copula density to disentangle the dependence structure from the marginal distributions.
Blumentritt and Schmid (2012) propose an estimator for Kullback-Leibler measure of de-
pendence using the Bernstein copula density estimator. Since the latter is guaranteed to
be non-negative, this helps avoid having negative values inside the logarithmic function of
the Kullback-Leibler distance. Furthermore, there is no boundary bias problem when we

10



use the Bernstein copula density estimator because by smoothing with beta densities this
estimator does not assign weights outside its support.

We now review the theoretical aspects of the above measure. Joe et al. (1987), Joe
(1989a), and Joe (1989b) have introduced relative entropy as a measure of multivariate
association for the random vector X. The relative entropy is defined as

δ(c) =
∫
Rd

log
[

f(x)∏d
i=1 fi(xi)

]
f(x) dx, (12)

where f is the joint probability density of X and fi is the marginal probability density
of its component Xi, for i = 1, ..., d. According to Sklar (1959), the density function of X
can be expressed as

f(x1, ..., xd) = c (F1(x1), ..., Fd(xd))
d∏
i=1

fi(xi), (13)

where c is the density copula function. Using Equation (13), we can show that the relative
entropy in (12) can be rewritten in terms of copula density as

δ(c) ≡ δ(c) =
∫

[0,1]d
log [c(u)]c(u) du. (14)

The measure δ(c) does not depend on the marginal distributions of X, but only on the
copula density c. We will next define a nonparametric estimator of δ(c) that we will use
to construct the test statistic of our third test of independence, and we will establish its
asymptotic normality.

4.2. Test of independence

We have shown that the Kullback-Leibler measure of dependence δ(c) can be expressed in
terms of copula density function c. Thus, an estimator of that measure can be obtained
by replacing the unknown copula density c by its Bernstein copula density estimator in
Equation (9):

δn(c) =
∫

[0,1]d
log [ck,n(u)] ck,n(u)du. (15)

where ck,n(u) is the Bernstein copula density estimator defined in Equation (9). In practice,
we suggest to replace ck,n(u)du in δn(c) by dCn(u), i.e., to use the following test statistic:

δ̃n(c) =
∫

[0,1]d
log [ck,n(u)] dCn(u) (16)

= 1
n

n∑
i=1

log [ck,n(Vi)] .
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Now, observe that the null hypothesis of independence is equivalent to the nullity of the
measure δ(c). Thus, our third nonparametric test of independence is based on δn(c). In
other words, we use δn(c) in Equation (15) as a test statistic to test the null hypothesis
H0. The following theorem provides the asymptotic normality of the test statistic δn(c)
[see the proof of Theorem 2 in Appendix A].

Theorem 2 Suppose that the assumptions of Theorem 1 are satisfied. Then, under H0,
we have

nk−d


2δn(c)− 2−dπd/2n−1kd/2

21/2
√{∑k−1

v1,v2=0 Γk(v1, v2)2
}d
− k−2d

 d−→ N (0, 1),

where Γk(., .) and δn(c) are defined in (11) and (15), respectively.

The result in Theorem 2 remains unchanged when we replace δn(c) by δ̃n(c) in (16).
As for the test statistics Tn and In, our simulation results suggest that it is better to

use a Monte Carlo simulation-based approach, instead of the asymptotic distribution, for
the calculation of critical values (p-values) of the test statistic δn(c). A brief description
of Monte Carlo simulation approach can be found at the end of Section 2.2. Furthermore,
the consistency of the test based on δn(c) can be established under the same conditions
as the ones we needed for the consistency of In, using similar arguments as in the proof
of Proposition 5.

5. Simulation studies

We run a Monte Carlo experiment to investigate the performance of nonparametric tests
of independence proposed in the previous sections. In particular, we study the power of
the test statistics Tn, In and δn using different samples sizes: n = 100, 200, 400, 500. To
calculate the critical values of these test statistics under the null and at 5% significance
level, we simulate independent data using the independent copula. Thereafter, we evaluate
the empirical power of our tests using different copula functions that generate data under
different degrees of dependence following different values of Kendall’s tau coefficient τ = 0,
0.1, 0.25. For Kendall’s τ coefficient greater than 0.5, all the tests provide good and
comparable results. The copulas under consideration are Normal, Student, Clayton and
Gumbel copulas. Moreover, we compare the power functions of our tests to the power
function of the following classical test which is based on the empirical copula process
considered in Deheuvels (1981c), Genest, Quessy, and Rémillard (2006), and Kojadinovic
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and Holmes (2009):

Sn = n

∫
[0,1]2
{Cn(u1, u2)− Cπ(u1, u2)}2du1du2. (17)

The test statistics Tn, In and δn depend on the bandwidth parameter k which is needed
to estimate the copula density (distribution). We take various values of k to investigate the
sensitivity of the power functions of our nonparametric tests to the bandwidth parameter.
A practical bandwidth can be selected using a similar approach to the one proposed by
Omelka, Gijbels, and Veraverbeke (2009) for kernel-based copula estimation, but this is
not investigated in this paper and left for future research. Omelka et al. (2009)’s approach
involves an Edgeworth expansion of the asymptotic distribution of the test statistics.
Finally, we use Monte-Carlo approximations, based on 1000 replications, to compute the
critical values and the empirical power of all the tests, Sn, Tn, In and δn.

In the simulations, we consider two scenarios for the marginal distributions used to
compute the test statistics. In the first one, we assume that the marginal distributions are
known and given by a uniform distribution. In the second scenario, we consider that the
marginal distributions are estimated. In the latter scenario we consider different models
for the marginal distributions: uniform, normal and Student. Simulation results for the
empirical power of the tests that are based on the statistics Tn, In, δn, and Sn are reported
in Tables 1-3 for the first scenario and in Tables 4-6 for the second scenario. We only provide
the results for normal marginals as the results for other distributions are quite similar.

Table 1 compares the power function of our first nonparametric test which is based on
the Bernstein copula distribution Tn to the power function of the classical test which is
based on the empirical copula Sn. The simulation results for different copulas, samples
sizes, and degrees of dependence show that both tests provide good empirical size. The
power of the two tests increases with sample size and degree of dependence measured by
Kendall’s tau. Furthermore, the power functions of both tests are comparable for moderate
degree of dependency, but the test based on the Bernstein copula dominates the one based
on the empirical copula when Kendall’s tau is small. Finally, the two tests fail in terms of
power in the case of Student copula with Kendall’s tau equal to zero. Recall that in the
case of Student copula, Kendall’s tau equal to zero does not imply independence, because
the dependence may happen in the tail regions.

Tables 2 and 3 provide the empirical size and power of nonparametric tests that are
based on the test statistics In and δn, respectively. From these, we see that the two tests
generally control the size. Their powers increase with the sample size and the strength
of dependence. Compared to the empirical copula-based test Sn, we find that these tests
do much better in terms of power, especially in the case of Student copula with zero
Kendall’s tau. For example, when n = 500 and k = 25 the powers of In and δn tests
are equal to 0.823 and 0.434, respectively, whereas the one of Sn test is equal to 0.048.
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The same remark applies when the degree of dependencies is small. For example, under
Clayton copula and when τ = 0.1, k = 25, and n = 400, the powers of In and δn tests
are equal to 0.813 and 0.506, respectively, whereas the power of Sn test is equal to 0.294.
The difference becomes even more important when we increase the sample seize. Finally,
we find that the Cramér-von Mises-type test which is defined in terms of Bernstein copula
density generally outperforms the test based on Kullback-Leibler divergence and defined
as a function of Bernstein copula density estimator.

Table 4 shows the power of the tests Tn and Sn using estimated marginal distributions.
We observe a significant improvement in the power of the test Sn compared to the results
in Table 1. But we still find that the test Tn does better than the test Sn in many cases.
Tables 5-6 show the power of the tests In and δn. We see clearly that the tests In and δn do
better than the test Sn for Student copula and very low dependence, especially for τ = 0.
However, in many cases the test Sn does better than the tests In and δn when τ = 0.1.
Finally, it seems that the test In does better than the other ones (δn and Tn).

6. Conclusion

We provided three different nonparametric tests of independence between continuous ran-
dom variables based on estimators of Bernstein copula distribution and Bernstein copula
density. The first two tests were constructed using Cramér-von Mises divergence that we
define as a function of the empirical Bernstein copula process and the empirical Bern-
stein copula density, respectively. The third test is based on Kullback-Leibler divergence
originally defined in terms of probability density functions. We first rewrote the Kullback-
Leibler divergence in terms of copula density, see also Blumentritt and Schmid (2012).
Thereafter, we constructed the third test using an estimator of Kullback-Leibler divergence
defined as a logarithmic function of the estimator of Bernstein copula density. Further-
more, we provided the asymptotic distribution of each of these tests under the null, and
we established their consistency under a fixed alternative. Finally, we ran a Monte Carlo
experiment to investigate the performance of these tests. In particular, we examined and
compared their empirical size and power to those of classical nonparametric test which is
based on the empirical copula considered in Deheuvels (1981c), Genest et al. (2006), and
Kojadinovic and Holmes (2009).
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Figure 1. This figure compares the student copula distribution (in the top of the left-hand side panel) and the
independent copula distribution (in the bottom of the left-hand side panel) and between the student copula density
(in the top of the right-hand side panel) and the independent copula density (in the bottom of the right-hand side
panel).
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Statistic Tn for Normal copula
n = 100 n = 200 n = 400 n = 500

k τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25
5 0.050 0.258 0.932 0.038 0.420 0.996 0.052 0.778 1.000 0.024 0.824 1.000

10 0.064 0.276 0.948 0.044 0.472 0.998 0.064 0.814 1.000 0.026 0.846 1.000
15 0.064 0.252 0.948 0.036 0.484 0.998 0.056 0.806 1.000 0.028 0.860 1.000
20 0.064 0.270 0.948 0.048 0.488 0.998 0.066 0.806 1.000 0.030 0.864 1.000
25 0.062 0.268 0.950 0.044 0.492 0.998 0.056 0.806 1.000 0.026 0.860 1.000
30 0.070 0.274 0.950 0.044 0.478 0.998 0.060 0.794 1.000 0.028 0.860 1.000
Sn 0.074 0.122 0.314 0.048 0.126 0.490 0.060 0.242 0.840 0.030 0.260 0.916

Statistic Tn for Student copula
5 0.064 0.280 0.912 0.032 0.442 0.994 0.062 0.762 1.000 0.048 0.838 1.000

10 0.062 0.340 0.944 0.044 0.476 0.998 0.100 0.818 1.000 0.042 0.868 1.000
15 0.066 0.332 0.938 0.048 0.502 0.998 0.098 0.814 1.000 0.040 0.890 1.000
20 0.064 0.328 0.938 0.054 0.492 0.998 0.098 0.824 1.000 0.056 0.898 1.000
25 0.064 0.328 0.936 0.064 0.512 0.998 0.094 0.820 1.000 0.048 0.884 1.000
30 0.076 0.360 0.940 0.058 0.504 0.998 0.098 0.816 1.000 0.056 0.896 1.000
Sn 0.054 0.128 0.328 0.044 0.142 0.494 0.054 0.260 0.866 0.048 0.264 0.900

Statistic Tn for Clayton copula
5 0.052 0.242 0.936 0.034 0.388 0.990 0.044 0.750 1.000 0.036 0.830 1.000

10 0.054 0.270 0.962 0.044 0.454 0.996 0.054 0.838 1.000 0.032 0.880 1.000
15 0.048 0.244 0.956 0.044 0.456 0.996 0.048 0.822 1.000 0.040 0.886 1.000
20 0.054 0.262 0.968 0.044 0.452 0.996 0.050 0.838 1.000 0.044 0.902 1.000
25 0.058 0.256 0.966 0.050 0.480 0.996 0.050 0.826 1.000 0.044 0.884 1.000
30 0.060 0.252 0.966 0.044 0.430 0.996 0.050 0.824 1.000 0.042 0.886 1.000
Sn 0.042 0.114 0.348 0.046 0.146 0.536 0.060 0.294 0.902 0.036 0.248 0.936

Statistic Tn for Gumbel copula
5 0.038 0.296 0.928 0.020 0.426 0.998 0.044 0.798 1.000 0.040 0.810 1.000

10 0.046 0.358 0.956 0.026 0.460 1.000 0.068 0.844 1.000 0.036 0.842 1.000
15 0.034 0.342 0.952 0.022 0.490 1.000 0.058 0.836 1.000 0.044 0.864 1.000
20 0.040 0.344 0.952 0.026 0.482 1.000 0.062 0.836 1.000 0.046 0.864 1.000
25 0.036 0.332 0.950 0.026 0.490 1.000 0.056 0.828 1.000 0.040 0.860 1.000
30 0.038 0.372 0.966 0.020 0.488 1.000 0.062 0.830 1.000 0.040 0.870 1.000
Sn 0.060 0.106 0.372 0.028 0.138 0.542 0.080 0.272 0.844 0.052 0.224 0.910

Table 1. This table compares the empirical size and power of the test statistics Tn and Sn for different copulas
(Normal, Student, Clayton and Gumbel copulas) with known marginal distributions, different values of Kendall’s
tau coefficient τ (τ = 0, 0.1, 0.25), different sample sizes n (n = 100, 200, 400, 500), and different values for the
bandwidth k.
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Statistic In for Normal copula
n = 100 n = 200 n = 400 n = 500

k τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25
5 0.068 0.317 0.955 0.056 0.510 0.999 0.037 0.757 1.000 0.053 0.863 1.000

10 0.056 0.330 0.946 0.063 0.494 1.000 0.046 0.756 1.000 0.044 0.842 1.000
15 0.059 0.299 0.896 0.050 0.432 0.997 0.054 0.704 1.000 0.061 0.832 1.000
20 0.056 0.259 0.854 0.040 0.354 0.992 0.041 0.649 1.000 0.059 0.787 1.000
25 0.044 0.219 0.803 0.054 0.339 0.986 0.032 0.553 1.000 0.063 0.749 1.000
30 0.049 0.191 0.762 0.057 0.304 0.981 0.038 0.527 1.000 0.057 0.698 1.000
Sn 0.074 0.122 0.314 0.048 0.126 0.490 0.060 0.242 0.840 0.030 0.260 0.916

Statistic In for Student copula
5 0.096 0.413 0.955 0.149 0.585 1.000 0.146 0.851 1.000 0.178 0.933 1.000

10 0.241 0.507 0.965 0.356 0.725 1.000 0.481 0.935 1.000 0.582 0.975 1.000
15 0.300 0.528 0.957 0.458 0.740 0.999 0.662 0.958 1.000 0.751 0.981 1.000
20 0.322 0.505 0.940 0.491 0.720 0.998 0.695 0.952 1.000 0.817 0.990 1.000
25 0.306 0.485 0.910 0.528 0.720 0.997 0.693 0.942 1.000 0.823 0.989 1.000
30 0.316 0.473 0.898 0.511 0.722 0.998 0.709 0.945 1.000 0.823 0.986 1.000
Sn 0.054 0.128 0.328 0.044 0.142 0.494 0.054 0.260 0.866 0.048 0.264 0.900

Statistic In for Clayton copula
5 0.063 0.351 0.971 0.054 0.614 1.000 0.052 0.817 1.000 0.055 0.917 1.000

10 0.062 0.390 0.976 0.063 0.649 1.000 0.051 0.879 1.000 0.047 0.939 1.000
15 0.059 0.379 0.963 0.057 0.628 1.000 0.054 0.873 1.000 0.052 0.943 1.000
20 0.048 0.347 0.952 0.047 0.579 1.000 0.040 0.856 1.000 0.050 0.930 1.000
25 0.043 0.325 0.927 0.050 0.560 1.000 0.039 0.813 1.000 0.052 0.922 1.000
30 0.045 0.287 0.914 0.055 0.541 0.998 0.039 0.799 1.000 0.043 0.904 1.000
Sn 0.042 0.114 0.348 0.046 0.146 0.536 0.060 0.294 0.902 0.036 0.248 0.936

Statistic In for Gumbel copula
5 0.056 0.380 0.941 0.051 0.595 1.000 0.052 0.802 1.000 0.058 0.901 1.000

10 0.062 0.400 0.952 0.065 0.621 1.000 0.052 0.860 1.000 0.049 0.926 1.000
15 0.065 0.370 0.949 0.065 0.598 1.000 0.050 0.872 1.000 0.057 0.931 1.000
20 0.060 0.348 0.940 0.051 0.571 1.000 0.041 0.841 1.000 0.059 0.929 1.000
25 0.055 0.315 0.909 0.051 0.562 0.999 0.030 0.811 1.000 0.058 0.913 1.000
30 0.065 0.315 0.877 0.050 0.535 0.998 0.035 0.797 1.000 0.044 0.909 1.000
Sn 0.060 0.106 0.372 0.028 0.138 0.542 0.080 0.272 0.844 0.052 0.224 0.910

Table 2. This table compares the empirical size and power of the test statistics In and Sn for different copulas
(Normal, Student, Clayton and Gumbel copulas) with known marginal distributions, different values of Kendall’s
tau coefficient τ (τ = 0, 0.1, 0.25) , different sample sizes n (n = 100, 200, 400, 500), and different values for the
bandwidth k.
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Statistic δn for Normal copula
n = 100 n = 200 n = 400 n = 500

k τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25
5 0.044 0.222 0.924 0.066 0.428 0.998 0.050 0.740 1.000 0.046 0.840 1.000

10 0.036 0.172 0.844 0.066 0.330 0.982 0.048 0.606 1.000 0.050 0.670 1.000
15 0.046 0.176 0.754 0.070 0.268 0.964 0.070 0.540 1.000 0.068 0.590 1.000
20 0.050 0.134 0.644 0.058 0.196 0.924 0.070 0.424 1.000 0.062 0.500 1.000
25 0.056 0.144 0.574 0.062 0.172 0.902 0.062 0.370 1.000 0.076 0.440 1.000
30 0.046 0.112 0.490 0.062 0.148 0.848 0.068 0.304 0.998 0.050 0.358 0.998
Sn 0.074 0.122 0.314 0.048 0.126 0.490 0.060 0.242 0.840 0.030 0.260 0.916

Statistic δn for Student copula
5 0.112 0.330 0.934 0.170 0.562 0.996 0.390 0.872 1.000 0.428 0.934 1.000

10 0.154 0.316 0.836 0.226 0.512 0.986 0.526 0.844 1.000 0.536 0.920 1.000
15 0.162 0.302 0.760 0.228 0.466 0.956 0.488 0.788 1.000 0.572 0.892 1.000
20 0.158 0.242 0.674 0.194 0.392 0.928 0.434 0.724 1.000 0.492 0.814 1.000
25 0.154 0.210 0.618 0.194 0.344 0.890 0.406 0.668 1.000 0.434 0.770 1.000
30 0.134 0.180 0.524 0.146 0.304 0.840 0.366 0.586 0.996 0.386 0.672 1.000
Sn 0.054 0.128 0.328 0.044 0.142 0.494 0.054 0.260 0.866 0.048 0.264 0.900

Statistic δn for Clayton copula
5 0.046 0.288 0.952 0.048 0.502 1.000 0.040 0.878 1.000 0.050 0.918 1.000

10 0.056 0.264 0.912 0.050 0.428 1.000 0.040 0.764 1.000 0.042 0.828 1.000
15 0.066 0.240 0.846 0.056 0.342 0.996 0.050 0.668 1.000 0.062 0.752 1.000
20 0.056 0.206 0.788 0.054 0.276 0.982 0.050 0.572 1.000 0.058 0.660 1.000
25 0.058 0.200 0.722 0.050 0.230 0.954 0.050 0.506 1.000 0.056 0.576 1.000
30 0.042 0.150 0.642 0.040 0.188 0.918 0.040 0.434 1.000 0.034 0.478 1.000
Sn 0.042 0.114 0.348 0.046 0.146 0.536 0.060 0.294 0.902 0.036 0.248 0.936

Statistic δn for Gumbel copula
5 0.046 0.296 0.918 0.052 0.494 0.998 0.036 0.794 1.000 0.062 0.854 1.000

10 0.056 0.260 0.852 0.040 0.378 0.992 0.050 0.704 1.000 0.052 0.744 1.000
15 0.078 0.242 0.760 0.036 0.286 0.972 0.062 0.634 1.000 0.060 0.686 1.000
20 0.072 0.188 0.676 0.034 0.248 0.948 0.042 0.548 0.998 0.050 0.600 1.000
25 0.080 0.188 0.622 0.030 0.208 0.924 0.040 0.490 0.998 0.050 0.552 1.000
30 0.072 0.150 0.552 0.024 0.172 0.882 0.046 0.422 0.994 0.042 0.446 0.998
Sn 0.060 0.106 0.372 0.028 0.138 0.542 0.080 0.272 0.844 0.052 0.224 0.910

Table 3. This table compares the empirical size and power of the test statistics δn and Sn for different copulas
(Normal, Student, Clayton and Gumbel copulas) with known marginal distributions, different values of Kendall’s
tau coefficient τ (τ = 0, 0.1, 0.25), different sample sizes n (n = 100, 200, 400, 500), and different values for the
bandwidth k.
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Statistic Tn for Normal copula
n = 100 n = 200 n = 400 n = 500

k τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25
5 0.050 0.284 0.922 0.074 0.566 1.000 0.048 0.786 1.000 0.040 0.862 1.000

10 0.046 0.290 0.940 0.074 0.588 1.000 0.042 0.794 1.000 0.044 0.922 1.000
15 0.046 0.282 0.940 0.072 0.616 1.000 0.040 0.808 1.000 0.042 0.918 1.000
20 0.050 0.306 0.940 0.080 0.608 1.000 0.036 0.794 1.000 0.042 0.924 1.000
25 0.050 0.294 0.942 0.076 0.600 1.000 0.040 0.798 1.000 0.044 0.924 1.000
30 0.044 0.288 0.940 0.076 0.600 1.000 0.038 0.794 1.000 0.034 0.916 1.000
Sn 0.036 0.170 0.890 0.068 0.502 1.000 0.066 0.812 1.000 0.046 0.914 1.000

Statistic Tn for Student copula
5 0.056 0.272 0.928 0.076 0.576 1.000 0.044 0.728 1.000 0.072 0.848 1.000

10 0.064 0.284 0.930 0.080 0.598 1.000 0.038 0.768 1.000 0.096 0.876 1.000
15 0.066 0.286 0.926 0.088 0.630 1.000 0.048 0.778 1.000 0.100 0.900 1.000
20 0.070 0.306 0.936 0.094 0.620 1.000 0.044 0.768 1.000 0.110 0.908 1.000
25 0.070 0.308 0.936 0.096 0.614 1.000 0.048 0.780 1.000 0.106 0.898 1.000
30 0.068 0.294 0.932 0.086 0.616 1.000 0.050 0.784 1.000 0.096 0.896 1.000
Sn 0.040 0.214 0.874 0.054 0.476 0.998 0.092 0.808 1.000 0.092 0.896 1.000

Statistic Tn for Clayton copula
5 0.046 0.286 0.914 0.056 0.550 0.998 0.040 0.768 1.000 0.040 0.860 1.000

10 0.042 0.286 0.936 0.046 0.592 0.998 0.044 0.794 1.000 0.056 0.918 1.000
15 0.040 0.268 0.928 0.052 0.596 1.000 0.050 0.810 1.000 0.058 0.918 1.000
20 0.046 0.302 0.944 0.062 0.610 1.000 0.034 0.806 1.000 0.062 0.924 1.000
25 0.044 0.298 0.946 0.056 0.598 1.000 0.044 0.818 1.000 0.056 0.924 1.000
30 0.044 0.278 0.936 0.060 0.576 1.000 0.042 0.808 1.000 0.052 0.918 1.000
Sn 0.018 0.222 0.912 0.042 0.502 0.998 0.066 0.828 1.000 0.058 0.922 1.000

Statistic Tn for Gumbel copula
5 0.060 0.262 0.916 0.070 0.570 1.000 0.040 0.794 1.000 0.056 0.868 1.000

10 0.050 0.254 0.932 0.064 0.576 0.998 0.048 0.812 1.000 0.074 0.914 1.000
15 0.050 0.254 0.938 0.072 0.634 1.000 0.046 0.836 1.000 0.082 0.924 1.000
20 0.052 0.266 0.934 0.078 0.604 0.998 0.048 0.810 1.000 0.076 0.922 1.000
25 0.054 0.266 0.938 0.076 0.600 0.998 0.048 0.822 1.000 0.076 0.914 1.000
30 0.048 0.272 0.940 0.068 0.618 0.998 0.052 0.828 1.000 0.072 0.918 1.000
Sn 0.026 0.242 0.876 0.060 0.546 1.000 0.060 0.800 1.000 0.068 0.910 1.000

Table 4. This table compares the empirical size and power of the test statistics Tn and Sn for different cop-
ulas (Normal, Student, Clayton and Gumbel copulas) with estimated marginal distributions, different values of
Kendall’s tau coefficient τ (τ = 0, 0.1, 0.25), different sample sizes n (n = 100, 200, 400, 500), and different values
for the bandwidth k.
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Statistic In for Normal copula
n = 100 n = 200 n = 400 n = 500

k τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25
5 0.064 0.274 0.940 0.050 0.510 1.000 0.084 0.794 1.000 0.052 0.886 1.000

10 0.046 0.280 0.922 0.054 0.474 0.998 0.068 0.744 1.000 0.064 0.878 1.000
15 0.038 0.242 0.872 0.050 0.446 0.998 0.066 0.698 1.000 0.054 0.820 1.000
20 0.042 0.242 0.830 0.054 0.384 0.992 0.072 0.662 1.000 0.048 0.782 1.000
25 0.042 0.232 0.798 0.048 0.320 0.986 0.062 0.632 1.000 0.046 0.758 1.000
30 0.036 0.204 0.738 0.038 0.286 0.978 0.054 0.590 1.000 0.040 0.698 1.000
Sn 0.036 0.170 0.890 0.068 0.502 1.000 0.066 0.812 1.000 0.046 0.914 1.000

Statistic In for Student copula
5 0.094 0.312 0.926 0.094 0.628 1.000 0.230 0.892 1.000 0.192 0.930 1.000

10 0.168 0.416 0.952 0.308 0.734 1.000 0.588 0.956 1.000 0.668 0.990 1.000
15 0.254 0.438 0.930 0.442 0.776 1.000 0.702 0.956 1.000 0.746 0.988 1.000
20 0.270 0.450 0.926 0.466 0.772 1.000 0.762 0.958 1.000 0.806 0.986 1.000
25 0.284 0.430 0.918 0.472 0.750 0.998 0.772 0.960 1.000 0.824 0.988 1.000
30 0.294 0.438 0.888 0.458 0.716 0.998 0.780 0.946 1.000 0.824 0.984 1.000
Sn 0.040 0.214 0.874 0.054 0.476 0.998 0.092 0.808 1.000 0.092 0.896 1.000

Statistic In for Clayton copula
5 0.056 0.334 0.958 0.066 0.512 1.000 0.072 0.862 1.000 0.064 0.920 1.000

10 0.048 0.386 0.970 0.060 0.562 1.000 0.046 0.878 1.000 0.054 0.950 1.000
15 0.052 0.356 0.956 0.072 0.540 1.000 0.038 0.854 1.000 0.062 0.962 1.000
20 0.050 0.376 0.954 0.072 0.546 0.998 0.032 0.850 1.000 0.042 0.950 1.000
25 0.042 0.352 0.950 0.058 0.460 0.998 0.036 0.828 1.000 0.046 0.946 1.000
30 0.048 0.332 0.928 0.044 0.448 0.998 0.030 0.814 1.000 0.040 0.922 1.000
Sn 0.018 0.222 0.912 0.042 0.502 0.998 0.066 0.828 1.000 0.058 0.922 1.000

Statistic Tn for Gumbel copula
5 0.038 0.316 0.934 0.038 0.538 1.000 0.068 0.842 1.000 0.062 0.914 1.000

10 0.048 0.350 0.942 0.040 0.578 1.000 0.066 0.882 1.000 0.060 0.944 1.000
15 0.056 0.348 0.938 0.038 0.600 1.000 0.062 0.870 1.000 0.058 0.936 1.000
20 0.058 0.356 0.918 0.044 0.554 1.000 0.068 0.860 1.000 0.060 0.936 1.000
25 0.042 0.348 0.898 0.044 0.512 1.000 0.062 0.846 1.000 0.060 0.934 1.000
30 0.038 0.348 0.894 0.040 0.478 0.998 0.058 0.806 1.000 0.058 0.908 1.000
Sn 0.026 0.242 0.876 0.060 0.546 1.000 0.060 0.800 1.000 0.068 0.910 1.000

Table 5. This table compares the empirical size and power of the test statistics In and Sn for different copulas
(Normal, Student, Clayton and Gumbel copulas ) with estimated marginal distributions , different values of
Kendall’s tau coefficient τ (τ = 0, 0.1, 0.25), different sample sizes n (n = 100, 200, 400, 500), and different values
for the bandwidth k.
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Statistic δn for Normal copula
n = 100 n = 200 n = 400 n = 500

k τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25 τ = 0 τ = 0.1 τ = 0.25
5 0.070 0.244 0.906 0.062 0.480 0.996 0.048 0.724 1.000 0.072 0.822 1.000

10 0.048 0.166 0.820 0.064 0.364 0.988 0.048 0.592 1.000 0.044 0.662 1.000
15 0.068 0.170 0.742 0.060 0.278 0.966 0.046 0.494 1.000 0.060 0.578 1.000
20 0.060 0.140 0.612 0.052 0.238 0.930 0.044 0.394 1.000 0.050 0.502 1.000
25 0.042 0.108 0.512 0.044 0.188 0.906 0.038 0.336 1.000 0.050 0.438 0.998
30 0.046 0.098 0.472 0.042 0.166 0.842 0.040 0.300 1.000 0.052 0.368 0.998
Sn 0.036 0.170 0.890 0.068 0.502 1.000 0.066 0.812 1.000 0.046 0.914 1.000

Statistic δn for Student copula
5 0.114 0.282 0.906 0.176 0.524 0.996 0.366 0.864 1.000 0.398 0.938 1.000

10 0.130 0.260 0.842 0.222 0.506 0.992 0.492 0.836 1.000 0.542 0.916 1.000
15 0.166 0.256 0.780 0.226 0.398 0.960 0.472 0.782 1.000 0.552 0.898 1.000
20 0.132 0.188 0.692 0.210 0.344 0.930 0.432 0.702 1.000 0.506 0.852 1.000
25 0.102 0.148 0.592 0.176 0.284 0.880 0.382 0.626 0.998 0.476 0.804 1.000
30 0.114 0.136 0.548 0.148 0.262 0.846 0.354 0.590 0.996 0.458 0.740 1.000
Sn 0.040 0.214 0.874 0.054 0.476 0.998 0.092 0.808 1.000 0.092 0.896 1.000

Statistic δn for Clayton copula
5 0.040 0.292 0.948 0.048 0.566 1.000 0.054 0.830 1.000 0.060 0.922 1.000

10 0.040 0.208 0.900 0.056 0.448 0.996 0.056 0.720 1.000 0.042 0.808 1.000
15 0.072 0.196 0.844 0.030 0.366 0.984 0.062 0.632 1.000 0.052 0.746 1.000
20 0.050 0.132 0.750 0.036 0.334 0.974 0.058 0.540 1.000 0.046 0.638 1.000
25 0.046 0.114 0.666 0.030 0.288 0.948 0.048 0.450 1.000 0.064 0.600 1.000
30 0.052 0.110 0.608 0.030 0.250 0.930 0.052 0.414 1.000 0.062 0.514 1.000
Sn 0.018 0.222 0.912 0.042 0.502 0.998 0.066 0.828 1.000 0.058 0.922 1.000

Statistic δn for Gumbel copula
5 0.038 0.240 0.924 0.038 0.490 0.994 0.054 0.758 1.000 0.050 0.896 1.000

10 0.036 0.188 0.850 0.060 0.398 0.988 0.064 0.638 1.000 0.038 0.786 1.000
15 0.050 0.192 0.782 0.054 0.318 0.966 0.044 0.556 1.000 0.060 0.714 1.000
20 0.038 0.138 0.686 0.048 0.272 0.948 0.048 0.480 0.998 0.054 0.648 1.000
25 0.036 0.118 0.600 0.042 0.218 0.898 0.050 0.426 0.998 0.062 0.580 1.000
30 0.044 0.110 0.514 0.050 0.212 0.860 0.052 0.388 0.994 0.048 0.510 1.000
Sn 0.026 0.242 0.876 0.060 0.546 1.000 0.060 0.800 1.000 0.068 0.910 1.000

Table 6. This table compares the empirical size and power of the test statistics δn and Sn for different copu-
las (Normal, Student, Clayton and Gumbel copulas) with estimated marginal distributions, different values of
Kendall’s tau coefficient τ (τ = 0, 0.1, 0.25), different sample sizes n (n = 100, 200, 400, 500), and different values
for the bandwidth k.
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Appendix A. Proofs of Propositions 1, 3, 4, 5, and of Theorem 2

Proof of Proposition 1. First of all, we decompose the test statistic Tn in the following
way:

Tn = n

∫
[0,1]d

Ck,n(u)−
d∏
j=1

uj

2

du1...dud

= n

∫
[0,1]d

(Ck,n(u))2du1...dud − 2n
∫

[0,1]d
Ck,n(u)

d∏
j=1

uj du1...dud

+ n

∫
[0,1]d

 d∏
j=1

uj

2

du1...dud

= T1n − T2n + T3n.

Furthermore, we have

T1n = n

∫
[0,1]d

(Ck,n(u))2 du1...dud

= n

∫
[0,1]d

∑
(v,s)

Cn

(
v1

k
, ...,

vd
k

)
Cn

(
s1

k
, ...,

sd
k

)

×
d∏
j=1

Pvj ,k(uj)Psj ,k(uj)du1...dud.

Using the definition of binomial distribution, we obtain

T1n = n
∑
(v,s)

(
k
v1

)
...
(
k
vd

) (
k
s1

)
...
(
k
sd

)
Cn

(
v1

k
, ...,

vd
k

)
Cn

(
s1

k
, ...,

sd
k

)

×
∫

[0,1]d

d∏
j=1

uvj+sj (1− u)2k−vj−sjdu1...dud

= n
∑
(v,s)

Cn

(
v1

k
, ...,

vd
k

)
Cn

(
s1

k
, ...,

sd
k

)

×
d∏
j=1

(
k
vj

) (
k
sj

)
β(vj + sj + 1, 2k − vj − sj + 1).

In a similar way, we can show that

T2n = 2n
k∑

v1=0
...

k∑
vd=1

Cn

(
v1

k
, ...,

vd
k

) d∏
j=1

(
k
vj

)
β(vj + 2, k − vj + 1).

This concludes the proof of Proposition 1.
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Proof of Proposition 3. We provide the proof for d = 2. The generalization to d > 2
is straightforward. For a two-dimensional vector u = (u1, u2), we start by the following
decomposition:∫ (

Ĉn,k(u)− u1u2
)2

du =
∫ (

Ĉn,k(u)− C(u)
)2

du +
∫

(C(u)− u1u2)2 du

+ 2
∫ (

Ĉn,k(u)− C(u)
)

(C(u)− u1u2) du

= T1,n + T2,n + T3,n.

From Janssen et al. (2012) and the continuous mapping theorem we have

n

∫ (
Ĉn,k(u)− C(u)

)2
du = Op(1). (A1)

Furthermore, from Janssen et al. (2012) , we can show that

n

∫ (
Ĉn,k(u)− C(u)

)
(C(u)− u1u2) du = op(n). (A2)

Therefore, using the fact that
∫

(C(u, v) − u1u2)2du > 0 and from (A1) and (A2), we
deduce the consistency of Tn.

Proof of Proposition 4. Expanding the squared term in the test statistic (10) leads to
the following decomposition:

In = I(1)
n + I(2)

n + 1,

with

I(1)
n =

∫
[0,1]2

c2
k,n(u)du and I(2)

n = −2
∫

[0,1]2
ck,n(u)du.

First, by writing

c2
k,n(u) = k4

k−1∑
v1,v′1=0
v2,v′2=0

Υk(v1, v2)Υk(v′1, v′2)Pv1,k−1(u1)Pv′1,k−1(u1)Pv2,k−1(u2)Pv′2,k−1(u2),
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we deduce that

I(1)
n (u) = k4

k−1∑
v1,v′1=0
v2,v′2=0

Υk(v1, v2)Υk(v′1, v′2)

×
∫ 1

0

∫ 1

0
Pv1,k−1(u1)Pv′1,k−1(u1)Pv2,k−1(u2)Pv′2,k−1(u2)du1du1

= k4
k−1∑

v1,v′1=0
v2,v′2=0

Υk(v1, v2)Υk(v′1, v′2)Γk(v1, v
′
1)Γk(v2, v

′
2).

Second, from the definition of cn,k (.) in Equation (8), we have

∫
[0,1]2

ck,n(u)du =
k∑

v1,v2=0
Cn

(
v1

k
,
v2

k

)∫ 1

0

∫ 1

0
P ′v1,k(u1)P ′v2,k(u2)du1du2.

As
∫

[0,1] P
′
v1,k

(u) = Pv1,k(u)|10 = I{v1 = 0}+ I{v1 = k}, the last integral is equal to 1.

Proof of Theorem 1 for d = 2. The following proof corresponds to the bivariate case.
For the more general case d > 2, the proof can be obtained in a similar way. For the
bivariate case (d = 2 ), we will show that the random variable

In,k := nk−2


In − 2−2πn−1k

21/2
√{∑k−1

v1,v2=0 Γ2
k(v1, v2)

}2
− k−4

 (A3)

is asymptotically normally distributed. First, observe that dealing with term In in (A3)
is quite tricky since it involves the pseudo-observations V1, . . . ,Vn. Thus, we consider
Ĩn =

∫
[0,1]2{c̃k,n(u)− 1}2du, where for Ṽi = (F1(Xi,1), F2(Xi,2)),

c̃k,n(u) :=
k∑

v1,v2=0
C̃n

(
v1

k
,
v2

k

)
P ′v1,k(u1)P ′v2,k(u2) and C̃n(u) = n−1

n∑
i=1

I{Ṽi ≤ u}.

The new term Ĩn is just a version of In in which the pseudo-observations V1, . . . ,Vn have
been replaced with “uniformized” observations Ṽ1, . . . , Ṽn. Under the null hypothesis,
Ṽi = (Ṽi,1, Ṽi,2) are independent and uniformly distributed random variables.

We now define a new term Ĩn,k which is equal to the term in the right hand side of
Equation (A3) after replacing In by Ĩn. In the following, the proof of Theorem 1 will
be obtained in two steps. In a first step, we show that Ĩn,k is asymptotically normally
distributed and in a second step we show that the difference In,k − Ĩn,k is negligible.
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A.1. Asymptotic normality of Ĩn,k

Using the decomposition in the proof of Proposition 4, we can obtain the following de-
composition:

Ĩn = Ĩ1n + Ĩ2n − 1,

where

Ĩ1n = k4n−2
n∑
i=1

k−1∑
v,v′=0

I{Ṽi ∈ Ak(v1, v2)}Γk(v1, v1)Γk(v2, v2)

Ĩ2n = 2k4n−2
n∑
i<j

Pn(Ṽi, Ṽj),

with Pn(Ṽi, Ṽj) =
∑k−1

v,v′=0 I{Ṽi ∈ Ak(v1, v2)}I{Ṽj ∈ Ak(v′1, v′2)}Γk(v1, v
′
1)Γk(v2, v

′
2).

We start by studying the first term Ĩ1n. As E
(
I{Ṽi ∈ Ak(v1, v2)}

)
= k−2, we get

E
(
Ĩ1n
)

= k2n−1
{
k−1∑
v1=0

Γ2
k(v1, v1)

}
.

Next, using Lemma 2 in Janssen et al. (2014), we have

k−1∑
v1=0

P 2
v1,k−1(u) = k−1/2√

4πu(1− u)
+ o(k−1/2).

Then,

E
(
Ĩ1n
)

= π

4 kn
−1 + o(kn−1).

Thereafter, as Var( I{Ṽi ∈ Ak(v1, v2)}) = k−2 − k−4, we deduce that

Var
(
Ĩ1n
)

= k8n−3(k−2 − k−4)
{
k−1∑
v1=0

Γ2
k(v1, v1)

}2

.

Then, from Lemma 5, we can conclude that

Ĩ1n = E
(
Ĩ1n
)

+
{
Ĩ1n − E

(
Ĩ1n
)}

= π

4 kn
−1 +OP(n−3/2k3/2).
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We now turn our attention to the second term Ĩ2n. Observe that

E (Pn(Ṽi, Ṽj)) =
k−1∑

v,v′=0
E
{
I{Ṽi ∈ Ak(v1, v2)}I{Ṽj ∈ Ak(v′1, v′2)}

}
Γk(v1, v

′
1)Γk(v2, v

′
2)

= k−4


k−1∑

v1,v′1=0
Γk(v1, v

′
1)


2

, (A4)

where the last equality follows from the independence between Ṽi and Ṽj when i 6= j.
Using Lemma 4, we obtain E

(
Ĩ2n
)

= n−1
n .

In the following, denote P̃n(Ṽi, Ṽj) = Pn(Ṽi, Ṽj)− k−4. Hence, we can write Ĩ2n− n−1
n =

2k4n−1Un, where Un = n−1∑n
i<j P̃n(Ṽi, Ṽj).

Let us now show that the random variable Un is a U-statistic. First, by construction,
P̃n(·, ·) is centred and symmetric. Second, P̃n(·, ·) is degenerated, i.e. for any v ∈ (0, 1)2,
E (P̃n(Ṽi, Ṽj) | Ṽi = v) = 0. Indeed, denote by (v?1, v?2) the unique pair of integers (v1, v2)
such that v ∈ Ak(v1, v2). Then, as E (I{Ṽj ∈ Ak(v′1, v′2)} | Ṽi = v) = k−2, we have:

E (Pn(Ṽi, Ṽj) | Ṽi = v) = k−2
k−1∑

v,v′=0
I {v ∈ Ak(v1, v2)}Γk(v1, v

′
1)Γk(v2, v

′
2)

= k−2
k−1∑
v′=0

Γk(v?1, v′1)Γk(v?2, v′2) = k−2


k−1∑
v′1=0

Γk(v?1, v′1)


2

.

The latter is equal to k−4 using Lemma 4. Hence, E (P̃n(Ṽi, Ṽj) | Ṽi = v) = 0.
To show the asymptotic normality of Un, we use the following lemma that establishes

the central limit theorem for the U-statistics.

Lemma 2 (Hall (1984)) Let {Ṽi : i = 1, ..., n} be an i.i.d. sequence. Consider the U-
statistic Un ≡ 1

n

∑
1≤i<j≤n P̃n(Ṽi, Ṽj), where the symmetric variable function P̃n is cen-

tered (i.e., E[P̃n(Ṽ1, Ṽ2)] = 0) and degenerated. Let

σ2
n ≡ E[P̃ 2

n(Ṽ1, Ṽ2)], Π̃n(v1,v2) ≡ E[P̃n(Ṽ1,v1)P̃n(Ṽ1,v2)].

Then, if

lim
n→∞

E[Π̃2
n(Ṽ1, Ṽ2)] + n−1E[P̃ 4

n(Ṽ1, Ṽ2)]
σ4
n

= 0, (A5)

the random variable
√

2σ−1
n Un converges in distribution to a standard normal.

Now, in order to apply Lemma 2 we need to check if Equation (A5) is satisfied. Hence,
we need to calculate the three quantities involved in that equation. We start with σ2

n.
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First, recall the definition of Pn and observe that

P 2
n(Ṽ1, Ṽ2) =

k−1∑
v,v′=0
w,w′=0

I
{
Ṽ1 ∈ Ak(v1, v2)

}
I
{
Ṽ2 ∈ Ak(v′1, v′2)

}
I
{
Ṽ1 ∈ Ak(w1, w2)

}

× I
{
Ṽ2 ∈ Ak(w′1, w′2)

}
Γk(v1, v

′
1)Γk(v2, v

′
2)Γk(w1, w

′
1)Γk(w2, w

′
2).

As I{Ṽ1 ∈ Ak(v1, v2)}I{Ṽ1 ∈ Ak(w1, w2)} = 0 unless (v1, v2) = (w1, w2), we obtain

P 2
n(Ṽ1, Ṽ2) =

k−1∑
v,v′=0

I
{
Ṽ1 ∈ Ak(v1, v2)

}
I
{
Ṽ2 ∈ Ak(v′1, v′2)

}
Γ2
k(v1, v

′
1)Γ2

k(v2, v
′
2).

Since Ṽ1 and Ṽ2 are independent and uniformly distributed random variables, it follows
that

E{P 2
n(Ṽ1, Ṽ2)} =

k−1∑
v,v′=0

E
(
I
{
Ṽ1 ∈ Ak(v1, v2)

}
I{Ṽ2 ∈ Ak(v′1, v′2)}

)
Γ2
k(v1, v

′
1)Γ2

k(v2, v
′
2)

= k−4
{
k−1∑
v=0

Γ2
k(v1, v2)

}2

. (A6)

Then, from Lemma 5

σ2
n = E[P 2

n(Ṽ1, Ṽ2)]− [E(P 2
n(Ṽ1, Ṽ2))]2

= k−4
{
k−1∑
v=0

Γ2
k(v1, v2)

}2

− k−8

= O(k−7). (A7)

Now, focusing on the second term of the numerator in Equation (A5), we show that

E[P̃ 4
n(Ṽ1, Ṽ2)] =

4∑
`=0

(
4
`

)
E[P `

n(Ṽ1, Ṽ2)](−E[Pn(Ṽ1, Ṽ2)])4−`

= k−16
4∑
`=0

(
4
`

)
E[P `

n(Ṽ1, Ṽ2)](k)4`(−1)4−`. (A8)

Similar calculations for computing the term σ2
n leads to the following:

E{P 3
n(Ṽ1, Ṽ2)} = k−4

{∑k−1
v=0 Γ3

k(v1, v2)
}2

,
E{P 4

n(Ṽ1, Ṽ2)} = k−4{
∑k−1

v=0 Γ4
k(v1, v2)}2.

Plug-in the above results into the Equation (A8) and using Equations (A4) and (A6) and
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Lemma 5 allows us to conclude that

E[P̃ 4
n(Ṽ1, Ṽ2)] = −3k−16 + 6k−12{

k−1∑
v=0

Γ2
k(v1, v2)}2

− 4k−8{
k−1∑
v=0

Γ3
k(v1, v2)}2 + k−4{

k−1∑
v=0

Γ4
k(v1, v2)}2

= O(k−13). (A9)

The first term of the denominator in Equation (A5) requires more attention. For any
z, z′ ∈ (0, 1), we expand the product and show that:

Π̃n(z, z′) = E {P̃n(Ṽ1, z)P̃n(Ṽ1, z′)} = E {Pn(Ṽ1, z)Pn(Ṽ1, z′)} − k−8.

If we denote Sk(a, b) =
∑k−1
v=0 Γk(v, a)Γk(v, b), we have

E {Pn(Ṽ1, z)Pn(Ṽ1, z′)}

= k−2
k−1∑

v,v′,v′′=0
I{z ∈ Ak(v′1, v′2)}I{z′ ∈ Ak(v′′1 , v′′2)}Γk(v1, v

′
1)Γk(v2, v

′
2)Γk(v1, v

′′
1)Γk(v2, v

′′
2)

= k−2
k−1∑

v′,v′′=0
I{z ∈ Ak(v′1, v′2)}I{z′ ∈ Ak(v′′1 , v′′2)}Sk(v′1, v′′1)Sk(v′2, v′′2),

Then,

E2 {Pn(Ṽ1, z)Pn(Ṽ1, z′)} = k−4
k−1∑

v′,v′′=0
I{z ∈ Ak(v′1, v′2)}I{z′ ∈ Ak(v′′1 , v′′2)}S2

k(v′1, v′′1)S2
k(v′2, v′′2).

Finally, as E{I{Ṽ1 ∈ Ak(v′1, v′2)}I{Ṽ2 ∈ Ak(v′1, v′2)}} = k−4, we deduce that

E (Π̃2
n(Ṽ1, Ṽ2)) = k−8


k−1∑

v1,v2=0
S2
k(v1, v2)


2

− k−12

= O(k−12) from Lemma 5. (A10)

Now, from Equations (A7), (A9) and (A10), we have

E
[
Π̃2
n(Ṽ1, Ṽ2)

]
+ n−1E

[
P̃ 4
n(Ṽ1, Ṽ2)

]
σ4
n

−→ 0, as n −→∞.

Thus, Lemma 2 applies and we conclude that the term
√

2σ−1
n Un converges in distribu-

tion to a standard normal. Hence, we conclude the asymptotic normality of Ĩn,k.
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A.2. Asymptotic negligibility of In,k − Ĩn,k

From Stute (1984) and under H0, we have

Cn(u, v)− uv = C̃n(u, v)− uv − v{C̃n(u, 1)− u}

−u{C̃n(1, v)− v}+ ξn(u, v), (A11)

where supu,v |ξn(u, v)| = OP(n−3/4 log log(n)).
Write

ξ̄n = sup
u,v

∣∣∣∣∣
k∑

v=0
ξn(u, v)P ′v1,k(u)P ′v2,k(v)

∣∣∣∣∣
and denote În =

∫
[0,1]2 J

2
n,k(u, v)dudv, where

Jn,k(u, v) := n−1k2
n∑
i=1

k−1∑
v=0

λ̃i(v1, v2)Pv1,k−1(u)Pv2,k−1(v) + 1,

with λ̃i(v1, v2) = I{Ṽi ∈ Ak(v1, v2)} − k−1I{Ṽ1i ∈ Ak(v1)} − k−1I{Ṽ2i ∈ Ak(v2)}. Hence,
from Equation (A11), we obtain

−ξ̄2
n + În ≤

∫
[0,1]2
{ck,n(u, v)− 1}2 ≤ ξ̄2

n + În.

If we denote Ak =
∫

[0,1]2
∑k

v=0 |P ′v1,k
(u1)P ′v2,k

(u2)|du1du2, which is at most O(k), then
In − În = OP(n−3/2 log log2(n)k2) and therefore nk−1/2(In − În) = op(1).

Now, we need to show that nk−1/2(În − Ĩn) is negligible. Since
∫

[0,1]2 Jn,k(u, v)dudv = 0
and using similar arguments as in the proof of Proposition 4, we obtain

În = n−2k4
n∑

i,j=1

k−1∑
v,v′=0

λ̃i(v1, v2)λ̃j(v′1, v′2)Γk(v1, v
′
1)Γk(v2, v

′
2)− 1.

Hence, expanding the product λ̃i(v1, v2)λ̃j(v′1, v′2) leads to the following decomposition:
În = Ĩn +

∑5
k=1 Î

(j)
n , where the five terms Î(j)

n (j = 1, ..., 5) are computed below. From
Lemma 4, we have

Î(1)
n = n−2k2

n∑
i,j=1

k−1∑
v,v′=0

I{Ṽ1i ∈ Ak(v1)}I{Ṽ1j ∈ Ak(v′1)}Γk(v1, v
′
1)Γk(v2, v

′
2)

= n−2
n∑

i,j=1

k−1∑
v1,v′1=0

I{Ṽ1i ∈ Ak(v1)}I{Ṽ1j ∈ Ak(v′1)},

= 1
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Similarly,

Î(2)
n = n−2k2

n∑
i,j=1

k−1∑
v,v′=0

I{Ṽ2i ∈ Ak(v2)}I{Ṽ2j ∈ Ak(v′2)}Γk(v1, v
′
1)Γk(v2, v

′
2)

= 1.

Furthermore,

Î(3)
n = 2n−2k2

n∑
i,j=1

k−1∑
v,v′=0

I{Ṽ1i ∈ Ak(v1)}I{Ṽ2j ∈ Ak(v′2)}Γk(v1, v
′
1)Γk(v2, v

′
2)

= 2,

and

Î(4)
n = −2n−2k3

n∑
i,j=1

k−1∑
v,v′=0

I{Ṽi ∈ Ak(v1, v2)}I{Ṽ1j ∈ Ak(v′1)}Γk(v1, v
′
1)Γk(v2, v

′
2)

= −2n−2k2
n∑

i,j=1

k−1∑
v,v′1=0

I{Ṽi ∈ Ak(v1, v2)}I{Ṽ1j ∈ Ak(v′1)}Γk(v1, v
′
1)

= −2n−2k2
n∑

i,j=1

k−1∑
v1,v′1=0

I{Ṽ1i ∈ Ak(v1)}I{Ṽ1j ∈ Ak(v′1)}Γk(v1, v
′
1).

Write Î(4)
n = Î

(4)
1n + Î

(4)
2n , where

Î
(4)
1n = −2n−2k2

n∑
i=0

k−1∑
v1,v′1=0

I{Ṽ1i ∈ Ak(v1)}Γk(v1, v
′
1) = −2n−2k2

Î
(4)
2n = −4n−2k2

n∑
i<j

k−1∑
v1,v′1=0

I{Ṽ1i ∈ Ak(v1)}I{Ṽ1j ∈ Ak(v′1)}Γk(v1, v
′
1).

Using similar arguments as in Section A.1, we can show that Î(4)
n + 2 = OP(n−1k−3/4 +

n−2k2) and

Î(5)
n = −2n−2k3

n∑
i,j=1

k−1∑
v,v′=0

I{Ṽi ∈ Ak(v1, v2)}I{Ṽ2j ∈ Ak(v′2)}Γk(v1, v
′
1)Γk(v2, v

′
2)

= −2n−2k2
n∑

i,j=1

k−1∑
v2,v′2=0

I{Ṽ2i ∈ Ak(v2)}I{Ṽ2j ∈ Ak(v′2)}Γk(v2, v
′
2)

= −2 +OP(n−1k−3/4 + n−2k2).

We conclude that nk−1/2∑5
j=1 Î

(j)
n = op(1). Hence, nk−1/2(În − Ĩn) is negligible.
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Proof of Corollary 1. In Lemma 5 of Appendix B, it is shown that there exists a constant
R > 0 such that

k3/2
k−1∑

v1,v2=0
Γk(v1, v2)2 −→ R2, as k →∞.

An application of Theorem 1 together with Slutky’s Lemma yields to the result.

Proof of Proposition 5. We start with the following decomposition:∫
(ĉn,k(u)− 1)2 du =

∫
(ĉn,k(u)− c(u))2 du +

∫
(c(u)− 1)2 du

+ 2
∫

(ĉn,k(u)− c(u)) (c(u)− 1) du,

= I1,n + I2,n + I3,n. (A12)

First, using similar arguments as in the proof of Theorem 1, we can show that

nk−d/4
(
I1,n − n−1kd/22−dπd/2√

2Rd

)
= Op(1). (A13)

Second, it was shown in Bouezmarni et al. (2010) that ‖ck,n(u)− c(u)‖∞ = op(1). We can
then deduce that

nk−d/4I3,n = op(nk−d/4). (A14)

Finally, from (A12), (A13), (A14) and under a fixed alternative, we obtain

nk−d/4
(
In − n−1kd/2B√

2Rd

)
P−→∞.

Proof of Theorem 2. Using a Taylor expansion of the function g(x) = x log(x) around
x∗ = 1, we obtain

δn(c) = 1
2

∫
[0,1]d

(ck,n(u)− 1)2 du +Op

(∫
[0,1]d

(ck,n(u)− 1)3 du
)

= 1
2In +Op

(∫
[0,1]d

(ck,n(u)− 1)3 du
)
.

Using Proposition 3 in Bouezmarni et al. (2010) and the fact that∣∣∣∣∣
∫

[0,1]d
(ck,n(u)− 1)3 du

∣∣∣∣∣ ≤ In × sup
u∈[0,1]d

|ck,n(u)− 1|
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we conclude that the asymptotic normality of δn(c) is similar to that of 1
2In, which con-

cludes the proof of Theorem 2.
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Appendix B. Technical computations

B.1. Some preliminaries

We begin this section by establishing some properties of the function Γk(·, ·). Before,
observe that:

Γk(v1, v2) =
∫ 1

0
Pv1,k−1(u)Pv2,k−1(u)du

=
(
k − 1
v1

)(
k − 1
v2

)
β(v1 + v2 + 1, 2k − 1− v1 − v2)

= {(k − 1)!}2
(2k − 1)!

{ (v1 + v2)!(2k − 2− v1 − v2)!
(v1)!(v2)!(k − 1− v1)!(k − 1− v2)!

}
. (B1)

Lemma 3 The function Γk(·, ·) satisfies:

(1) max
0≤v2≤k−1

Γk(v1, v2) = Γk(v1, v1), for fixed v1 (0 ≤ v1 ≤ k − 1);

(2) max
0≤v1,v2≤k−1

Γk(v1, v2) = (2k − 1)−1.

Proof. To show Item (1), we calculate the following ratio

Γk(v1, v2)
Γk(v1, v2 + 1) = (v2 + 1)

(v1 + v2 + 1)
(2k − 2− v1 − v2)

(k − 1− v2)

= −v2
2 + v2(2k − 3− v1) + 2k − 2− v1

−v2
2 + v2(k − 2− v1) + (k − 1)(v1 + 1) .

Hence, the ratio is less than one, which means that Γk(v1, v2) ≤ Γk(v1, v2 + 1), if and only
if (k − 1)v2 ≤ kv1 − (k − 1). In other words, if and only if v2 ≤ k

k−1v1 − 1. Item (1) is
therefore proven since v1 and v2 are between 0 and k−1. We now show Item (2). Similarly,

Γk(v1, v1)
Γk(v1 + 1, v1 + 1) = (v1 + 1)2

(2v1 + 2)(2v1 + 1)
(2k − 2− 2v1)(2k − 3− 2v1)

(k − 1− v1)2

= (v1 + 1)
(2v1 + 1)

(2k − 3− 2v1)
(k − 1− v1)

= −2v2
1 + v1(2k − 5) + 2k − 3

−2v2
1 + v1(2k − 3) + k − 1 .

Again, the latter is less than one provided 2v1 ≥ k − 2. It follows that if v1 ≥ k−2
2 , then

the maximum is achieved at Γk(k− 1, k− 1) = (2k− 1)−1. Otherwise, the maximum is at
Γk(0, 0) = (2k − 1)−1. �

B.2. Computation of
∑k−1

v=0 Γk(v1, v2) and
∑k−1

v1=0 Γk(v1, v2)

The results of this section are given in the following lemma.
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Lemma 4 The function Γk(·, ·) satisfies:

(1)
∑k−1
v1=0 Γk(v1, v2) = k−1, for any fixed v2;

(2)
∑k−1

v=0 Γk(v1, v2) = 1.

Proof. Recall that Γk(v1, v2) =
∫

[0,1] Pv1,k−1(u)Pv2,k−1(u)du. Using the fact the sum of the
binomial probabilities is equal to 1 and because

∫
[0,1] Pv1,k−1(u)du = k−1, we deduce that

k−1∑
v1=0

Γk(v1, v2) =
∫

[0,1]

{
k−1∑
v1=0

Pv1,k−1(u)
}
Pv2,k−1(u)du

=
∫

[0,1]
Pv2,k−1(u)du = k−1.

Then Item (1) is proved. Item (2) is a direct result from (1).
�

B.3. Computation of
∑k−1

v=0 Γj
k(v1, v2), j = 2, 3, 4 and

∑k−1
v=0 S2

k(v1, v2)

The following lemma provides the orders of sums that involve either Γk(·, ·) or Sk(·, ·).

Lemma 5 The functions Γk(·, ·) and Sk(·, ·) satisfy:

(1) There exists a constant R > 0 such that k3/2∑k−1
v=0 Γ2

k(v1, v2)→ R2;
(2)

∑k−1
v=0 Γ3

k(v1, v2) = O(k−3 log(k));
(3)

∑k−1
v=0 Γ4

k(v1, v2) = O(k−9/2);
(4)

∑k−1
v=0 S

2
k(v1, v2) = O(k−7/2).

As the proof of lemma is rather long and technical, it is divided into subsections.

B.3.1. Proof of Lemma 5-(1)

The proof is done in two steps. First, in Part I we will show that
∑k−1

v=0 Γ2
k(v1, v2) =

O(k−3/2). In Part II, we will demonstrate that there exists a constant C > 0 such that∑k−1
v=0 Γ2

k(v1, v2) ≥ Ck−3/2. In a final part, the proof of Item (1) will follow from an appli-
cation of the monotone convergence theorem.

Part I: First, from the symmetry of Γk(·, ·), we have

k−1∑
v=0

Γ2
k(v1, v2) ≤ 2

k−1∑
v1≤v2

Γ2
k(v1, v2) ≤ 4

[ k−1
2 ]∑

v1≤v2

Γ2
k(v1, v2),

where [.] denotes the integer part.
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As a starting point, take L as the smallest integer such that 2L >
√
k − 1. Write qj = 2j ,

Aj = {(v1, v2) ∈ [0, 2L] : qj ≤ v2 < qj+1 and v1 ≤ v2}. Hence, from Lemma 3, we have
max(v1,v2)∈Aj Γk(v1, v2) = Γk(qj , qj) = νk( qj

k−1), where νk(·) is defined in Lemma 6. Using
Lemma 6, we have

νk(
qj

k − 1) ≤ e
1

12(k−1)
√
k − 1

(2k − 1)
√
πqj(k − 1− qj)

≤ e
1

12(k−1)
√

2
(2k − 1)

√
π
× 2−j/2,

where the last inequality follows from the fact that k− 1− qj ≥ k−1
2 and the definition of

qj . Since the number of elements in Aj is bounded by (qj+1− qj)× qj+1 = 2 ∗ 22j , we have

2L∑
v1≤v2

Γ2
k(v1, v2) ≤ 4e

1
6(k−1)

(2k − 1)2π

L∑
j=1

22j × 2−j = 4e
1

6(k−1)

(2k − 1)2π
{2L+1 − 1}.

As 2L+1 − 1 ≤ 4× 2L = 4
√
k − 1, we deduce that

2L∑
v1≤v2

Γ2
k(v1, v2) ≤ 16e

1
6(k−1)

√
k − 1

(2k − 1)2π
.

Next, take L2 as the smallest integer such that 2L2 > k−1
2 . Write again qj = 2j , Aj =

{(v1, v2) ∈ [0, 2L2 ] : qj ≤ v1 < qj+1, v1 ≤ v2 and v2−v1
2 ≤ √qj}. In a similar way and from

Lemma 6, we have

L2∑
j=L

∑
(v1,v2)∈Aj

Γ2
k(v1, v2) ≤ 4e

1
6(k−1)

(2k − 1)2π

L2∑
j=1

√
qj(qj+1 − qj)× q−1

j

≤ 8e
1

6(k−1)

(2k − 1)2π

L2/2∑
j=1

2j

= 8e
1

6(k−1)

(2k − 1)2π
{2L2/2+1 − 1}.

Hence,

L2∑
j=L

∑
(v1,v2)∈Aj

Γ2
k(v1, v2) ≤ 16e

1
6(k−1)

√
k − 1

(2k − 1)2π
.

Now, let L̄j be the smallest integer such that 2L̄j > 2q1/2
j , and denotes α(`)

j = 2`q1/2
j . We

consider A
(`)
j =

{
(v1, v2) ∈ [0, 2L2 ] : qj ≤ v1 < qj+1, v1 ≤ v2 and α

(`)
j ≤ v2−v1

2 ≤ α
(`+1)
j

}
.

Then, for any (v1, v2) ∈ A(`)
j , we have

Γk(v1, v2) ≤ Γk(qj − α`j , qj + α`j).
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Hence, from Lemma 10 with a = qj
(k−1) and α = α`j

a(k−1) = 2`√
qj

, we obtain

Γk(v1, v2) ≤ 1
2k − 1

e
1

12(k−1)

2
√
π
q
−1/2
j e−

2`
6 , for v1, v2 in A

(`)
j .

Finally, we have∑L2
j=L

∑L̄j
`=0

∑
(v1,v2)∈A(`)

j

Γ2
k(v1, v2)

≤ 1
(2k − 1)2

e
1

6(k−1)

4π

L2∑
j=L

L̄j∑
`=0

(qj+1 − qj)(α(`+1)
j − α(`)

j )q−1
j e−

2`
3

= 1
(2k − 1)2

e
1

6(k−1)

4π

L2∑
j=L

L̄j∑
`=0

2`q1/2
j e−

2`
3

≤ 1
(2k − 1)2

e
1

6(k−1)

4π ×

2
L2/2∑
j=1

2j
×

∑
`≥0

2`e−
2`
3


= 1

(2k − 1)2
e

1
6(k−1)

4π ×
{

2(2L2/2+1 − 1)
}
×

∑
`≥0

2`e−
2`
3


Since

∑
`≥0 2`e− 2`

3 converges, there exists a constant S such that

L2∑
j=L

L̄j∑
`=0

∑
(v1,v2)∈A(`)

j

Γ2
k(v1, v2) ≤ 1

(2k − 1)2
e

1
6(k−1)

√
k − 1

π
× S.

This concludes Part I.

Part II: Following similar argument as the one used in Part I, take L

as the greatest integer such that 2L ≤ k−1
2 . From Lemma 3, for any

qj ≤ v1 < qj+1, we have Γk(v1, v1) ≥ Γk(qj+1, qj+1). We consider Aj ={
(v1, v2) ∈ [0, 2L] : qj ≤ v1 < qj+1, v1 ≤ v2 and v2−v1

2 ≤ √qj
}
, where qj = 2j . Then, from

Lemma 11 with ρ = 1, for any (v1, v2) ∈ Aj , we obtain

Γk(v1, v2) ≥
(3

4
) 2

3 e−
10
8

2k − 1
e

−1
12(k−1)

2
√
π
q
−1/2
j+1 .

Since Aj contains at least (qj+1 − qj)× q1/2
j = 23j/2 elements, we get

L∑
j=1

∑
(v1,v2)∈Aj

Γ2
k(v1, v2) ≥

(3
4
) 4

3 e−
5
2

(2k − 1)2
e
−1

6(k−1)

4π

L∑
j=1

2
3j
2 2−(j+1)

≥ 1
2

(3
4
) 4

3 e−
5
2

(2k − 1)2
e
−1

6(k−1)

4π {2L/2+1 − 1}.
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This completes the proof because 2L/2+1 ≥
√
k − 1.

B.4. Proof of Lemma 5-(2)-(4)

First, from the symmetry of Γk(·, ·), we have

k−1∑
v1,v2=0

Γ3
k(v1, v2) ≤ 2

k−1∑
v1≤v2

Γ3
k(v1, v2) ≤ 4

[ k−1
2 ]∑

v1≤v2

Γ3
k(v1, v2).

As a starting point, take L as the smallest integer such that 2L > k−1
2 . Write qj = 2j and

consider the set Aj = {(v1, v2) ∈ [0, 2L] : qj ≤ v2 < qj+1, v1 ≤ v2 and v2−v1
2 ≤ √qj}. Hence,

from the proof of Lemma 3, we obtain max(v1,v2)∈Aj Γk(v1, v2) = Γk(qj , qj) = νk( qj
k−1). With

the help of Lemma 6, we have

νk

(
qj

k − 1

)
≤ e

1
12(k−1)

√
k − 1

(2k − 1)
√
πqj(k − 1− qj)

≤ e
1

12(k−1)
√

2
(2k − 1)

√
π
× 2−j/2,

where the last inequality follows from the fact that k− 1− qj ≥ k−1
2 and the definition of

qj . Since the number of elements in Aj is bounded by (qj+1 − qj) ×
√
qj+1 = 2 ∗ 2

3j
2 , we

have

L∑
j=1

∑
(v1,v2)∈Aj

Γ3
k(v1, v2) ≤ 8e

1
4(k−1)

(2k − 1)3π3/2

L∑
j=1

2
3j
2 × 2−

3j
2 = 8e

1
4(k−1)

(2k − 1)3π3/2 × L.

As L ≤ log(k − 1) + 1, we deduce that

L∑
j=1

∑
(v1,v2)∈Aj

Γ3
k(v1, v2) ≤ 8e

1
4(k−1)

(2k − 1)3π3/2 {log(k − 1) + 1}.

We are now ready to use the result developed in Lemma 10. Let L̄j be the smallest
integer such that 2L̄j > 2q1/2

j , and write α(`)
j = 2`q1/2

j , A(`)
j = {(v1, v2) ∈ [0, 2L2 ] : qj ≤

v1 < qj+1, v1 ≤ v2 and α
(`)
j ≤ v2−v1

2 ≤ α
(`+1)
j }. Hence, for any (v1, v2) ∈ A(`)

j , we have

Γk(v1, v2) ≤ Γk(qj − α`j , qj + α`j).

Hence, we can use Lemma 10 with a = qj
(k−1) and α = α`j

a(k−1) = 2`√
qj

to obtain

Γk(v1, v2) ≤ 1
2k − 1

e
1

12(k−1)

2
√
π
q
−1/2
j e−

2`
6 .

Finally, we have
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∑L
j=1

∑L̄j
`=0

∑
(v1,v2)∈A(`)

j

Γ3
k(v1, v2)

≤ 1
(2k − 1)3

e
1

4(k−1)

23π3/2

L∑
j=1

L̄j∑
`=0

(qj+1 − qj)(α(`+1)
j − α(`)

j )q−3/2
j e−

2`
2

= 1
(2k − 1)3

e
1

4(k−1)

23π3/2 × L×
L̄j∑
`=0

2`e−
2`
2 .

Since
∑
`≥0 2`e− 2`

3 converges, there exists a constant S such that

L∑
j=1

L̄j∑
`=0

∑
(v1,v2)∈A(`)

j

Γk(v1, v2)3 ≤ 1
(2k − 1)3

e
1

4(k−1)

23π3/2 {log(k − 1) + 1} × S.

This concludes the proof of Item (2). In order to show Items (3) and (4), we use very
similar techniques as in the proof of Item (2).

B.5. Technical Lemmas used in the proof of Lemma 5

In the following, we use the well-know inequality for k factorial:

√
2πk

(
k

e

)k
≤ k! ≤

√
2πk

(
k

e

)k
e

1
12k . (B2)

Lemma 6 Let 0 < a < 1 such that a(k − 1) ∈ N. Write νk(a) = Γk(a(k − 1), a(k − 1)).
Then, we have

e
−1

12(k−1)

(2k − 1)
√
πa(1− a)(k − 1)

≤ νk(a) ≤ e
1

12(k−1)

(2k − 1)
√
πa(1− a)(k − 1)

.

Proof. First, using Equation (B2), we deduce that:

22ke
−1
24k

√
πk

≤
(

2k
k

)
≤ 22ke

1
24k

√
πk

. (B3)

Next, notice that νk(a) = (2a(k−1)
a(k−1) )(2(1−a)(k−1)

(1−a)(k−1) )
(2k−1)(2(k−1)

k−1 ) . Hence, from Equation (B3), we have

22a(k−1)e
−1

24a(k−1)√
πa(k − 1)

≤
(

2a(k − 1)
a(k − 1)

)
≤ 22a(k−1)e

1
24a(k−1)√

πa(k − 1)
,

22(1−a)(k−1)e
−1

24(1−a)(k−1)√
π(1− a)(k − 1)

≤
(

2(1− a)(k − 1)
(1− a)(k − 1)

)
≤ 22(1−a)(k−1)e

1
24(1−a)(k−1)√

π(1− a)(k − 1)
,
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and

√
π(k − 1)2−2(k−1)e

−1
24(k−1) ≤

(
2(k − 1)
k − 1

)−1

≤
√
π(k − 1)2−2(k−1)e

1
24(k−1) . (B4)

From the three last equations we obtain

e
−1

12(k−1)√
πa(1− a)(k − 1)

≤
(2a(k−1)
a(k−1)

)(2(1−a)(k−1)
(1−a)(k−1)

)
(2(k−1)
k−1

) ≤ e
1

12(k−1)√
πa(1− a)(k − 1)

.

Hence,

e
−1

12(k−1)

(2k − 1)
√
πa(1− a)(k − 1)

≤ νk(a) ≤ e
1

12(k−1)

(2k − 1)
√
πa(1− a)(k − 1)

.

This concludes the proof.
�

The next Lemmas, 7, 8 and 9 will be useful to prove Lemmas 10 and 11.

Lemma 7 Let 0 < a, b < 1 such that a(k − 1) ∈ N together with b(k − 1) ∈ N. Write
νk(a, b) = Γk(a(k − 1), b(k − 1)). Then, we have

1
2k − 1

e
−1

12(k−1)

2
√
π(k − 1)

√
(a+ b)(2− a− b)
a(1− a)b(1− b) υk(a, b) ≤ νk(a, b),

and

νk(a, b) ≤
1

2k − 1
e

1
12(k−1)

2
√
π(k − 1)

√
(a+ b)(2− a− b)
a(1− a)b(1− b) υk(a, b),

where

υk(a, b) =
{

2−2(2− a− b)2

(1− a)(1− b)

}k−1{ ( a+b
2−a−b)

a+b

( a
1−a)a( b

1−b)b

}k−1

.

Proof. Recall that

Γk(a(k − 1), b(k − 1)) =
((a+b)(k−1)

a(k−1)
)((2−a−b)(k−1)

(1−a)(k−1)
)

(2k − 1)
(2(k−1)
k−1

) .

Using Equation (B2), we deduce that

e
−1

12(a+b)(k−1)√
2π ab

a+b (k − 1)

{
(a+ b)a+b

aabb

}k−1

≤
(

(a+ b)(k − 1)
a(k − 1)

)
≤ e

1
12(a+b)(k−1)√

2π ab
a+b (k − 1)

{
(a+ b)a+b

aabb

}k−1

.
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Similarly, we have(
(2− a− b)(k − 1)

(1− a)(k − 1)

)
≥ e

−1
12(2−a−b)(k−1)√

2π (1−a)(1−b)
2−a−b (k − 1)

{
(2− a− b)2−a−b

(1− a)(1−a)(1− b)1−b

}k−1

and (
(2− a− b)(k − 1)

(1− a)(k − 1)

)
≤ e

1
12(2−a−b)(k−1)√

2π (1−a)(1−b)
2−a−b (k − 1)

{
(2− a− b)2−a−b

(1− a)(1−a)(1− b)1−b

}k−1

.

Putting the two last equations together with Equation (B4) leads to

νk(a, b) ≥ 1
2k − 1

e
−1

12(k−1)

2
√
π(k − 1)

√
(a+ b)(2− a− b)
a(1− a)b(1− b)

{
2−2(2− a− b)2

(1− a)(1− b)

}k−1{ ( a+b
2−a−b )a+b

( a
1−a )a( b

1−b )b

}k−1

,

and

νk(a, b) ≤ 1
2k − 1

e
1

12(k−1)

2
√
π(k − 1)

√
(a+ b)(2− a− b)
a(1− a)b(1− b)

{
2−2(2− a− b)2

(1− a)(1− b)

}k−1{ ( a+b
2−a−b )a+b

( a
1−a )a( b

1−b )b

}k−1

,

which is the desired result.
�

Lemma 8 Let αa = a(1− a)α, with α ∈ (0, 1). Then, we have

υk(a+αa, a−αa) =
{ 1

1− α2a2

}1−a { 1
1− α2(1− a)2

}a {1− αa
1 + αa

× 1− (1− a)α
1 + (1− a)α

}αa(1−a)
.

Proof. The lemma can be proved by some algebra calculations. �

For the next lemma, we need the following notations:

p(a, α) = α2a2(1− a){1− 2αa+ α2a2}
(1 + 2αa)(1− α2a2)

and T (a, α) = T1(a, α)T1(1− a, α)T2(a, α)T2(1− a, α) where

T1(a, α) = (1− α2a2)
α2a2

1−α2v2 and T2(a, α) = (1− αa
1 + αa

)
−2α2a2(1−a)

1+2αa .

Lemma 9 Let αa = a(1− a)α, with α ∈ (0, 1). Then, we have

T (a, α)e−{p(a,α)+p(1−a,α)} ≤ υk(a+ αa, a− αa) ≤ e−{p(a,α)+p(1−a,α)}.

Proof. In the following we use the well-know identity

e

1 + 1
n

≤
(

1 + 1
n

)n
≤ e. (B5)
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Similarly, we deduce

e−1(1− 1
n

) ≤
(

1− 1
n

)n
≤ e−1. (B6)

Indeed, taking any real number t ∈ (1− 1
n , 1), we have

1 ≤ t−1 ≤ n

n− 1 .

Hence, ∫ 1

1− 1
n

1dt ≤
∫ 1

1− 1
n

t−1dt ≤
∫ 1

1− 1
n

n

n− 1dt,

which leads to

1
n
≤ − log

(
1− 1

n

)
≤ 1
n− 1 and e

−1
n ≥

(
1− 1

n

)
≥ e

−1
n−1 .

On one hand, (
1− 1

n

)n
≤ e−1.

On the other hand,

(
e
−1
n−1
)n−1

≤
(

1− 1
n

)n−1
.

Multiplying the latter equation by
(
1− 1

n

)
entails Equation (B4). Next, write

{ 1
1− α2a2

}
=

{1 + 1
1

α2a2 − 1

} 1
α2a2−1


α2a2

1−α2a2

.

Using Equation (B5), we have

T1(a, α)× e
α2a2(1−a)

1−α2a2 ≤
{ 1

1− α2a2

}(1−a)
≤ e

α2a2(1−a)
1−α2a2 .

Similarly, we obtain

T1(1− a, α)× e
α2a(1−a)2

1−α2(1−a)2 ≤
{ 1

1− α2(1− a)2

}a
≤ e

α2a(1−a)2

1−α2(1−a)2 .
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Finally using Equation (B6), we get

T2(a, α)× e
−2α2a2(1−a)

1+2αa ≤
{1− αa

1 + αa

}αa(1−a)
≤ e

−2α2a2(1−a)
1+2αa

T2(1− a, α)× e
−2α2a(1−a)2

1+2α(1−a) ≤
{1− α(1− a)

1 + α(1− a)

}αa(1−a)
≤ e

−2α2a(1−a)2
1+2α(1−a) .

Hence, multiplying the previous equations and using Lemma 8 yields to

T (a, α)e−{p(a,α)+p(1−a,α)} ≤ υk(a+ αa, a− αa) ≤ e−{p(a,α)+p(1−a,α)},

where p(a, α) = α2a2(1−a){1−2αa+α2a2}
(1+2αa)(1−α2a2) and T (a, α) = T1(a, α)T1(1 − a, α)T2(a, α)T2(1 −

a, α). This completes the proof.
�

The next two lemmas are useful to prove Lemma 5

Lemma 10 For any a ∈ (0, 1
2) and α ∈ (0, 1), write v±(a) = [a ± αa(1 − a))(k − 1)].

Then, we have

Γk(v+(a), v−(a)) ≤ 1
2k − 1

e
1

12(k−1)

2
√
π(k − 1)

a−1/2e−
aα2

6 (k−1).

Proof. Lemma 10 is a consequence of Lemmas 7 and 9 together with the fact that p(1−
a, α) ≥ 1

6α
2a and p(a, α) ≥ 0. �

Lemma 11 For any a ∈ (0, 1
2) and α ∈ (0, 1), write v±(a) = [a ± αa(1 − a))(k − 1)]. If

there exists a constant ρ > 0 independent of k such that (k − 1)α2a < ρ, then

Γk(v+(a), v−(a)) ≥
{3

4}
2ρ
3 e−

10ρ
8

2k − 1
e

−1
12(k−1)

2
√
π(k − 1)

a−1/2.

Proof. When (k − 1)α2a < ρ and a ∈ (0, 1/2), one has p(a, α) < 5
8ρ together with p(1 −

a, α) < 5
8ρ. Moreover, we obtain T1(a, α) ≥ {3

4}
ρ/3, T1((1 − a), α) ≥ {3

4}
ρ/3, T2(a, α) ≥ 1

and T2(1− a, α) ≥ 1. The result follows from an application of Lemmas 7 and 9. �
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