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In this paper we provide three nonparametric tests of independence between continuous
random variables based on the Bernstein copula distribution function and the Bernstein
copula density function. The first test is constructed based on a Cramér-von Mises divergence-
type functional based on the empirical Bernstein copula process. The two other tests are based
on the Bernstein copula density and use Cramér-von Mises and Kullback-Leibler divergence-
type functionals, respectively. Furthermore, we study the asymptotic null distribution of
each of these test statistics. Finally, we consider a Monte Carlo experiment to investigate the
performance of our tests. In particular we examine their size and power which we compare
with those of the classical nonparametric tests that are based on the empirical distribution

function.
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1. Introduction

Testing for independence between random variables is important in statistics, economics,
finance and other disciplines. In economics, tests of independence are useful to detect
possible economic causal effects that can be of great importance for policy-makers. In
finance, identifying the dependence between different asset prices (returns) is essential for
risk management and portfolio selection. Standard tests of independence are given by the
usual T-test and F-test that are defined in the context of linear regression models. However,
these tests are only appropriate for testing independence in Gaussian models, thus they
might fail to capture nonlinear dependence. With the recent growing interest in nonlinear
dependence, it is not surprising that there has been a search for alternative dependence

measures and tests of independence. In this paper we propose three nonparametric tests
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of independence. These tests are model-free, hence they can be used to detect both linear
and nonlinear dependence.

Nonparametric tests of independence have recently gained momentum. In particular,
several statistical procedures have been proposed to test for the independence between
two continuous random variables X and Y. Most classical tests of independence were
initially based on some measures of dependence such as the Pearson linear correlation
coefficient p, which takes the value 0 under the null hypothesis of no correlation. Other
tests of independence have been constructed using other popular measures of dependence
that are based on ranks. The rank-based measures of dependence do not depend on the
marginal distributions. The most used rank-based measures are Kendall’s tau and Spear-
man’s rho. The independence tests that are based on Kendall’s tau (resp. Spearman’s rho)
were investigated by Prokhorov (2001) (resp. Borkowf (2002)). These tests are usually
inconsistent, which means that under some alternatives their power functions do not tend
to one as the sample size tend to infinity.

To overcome the inconsistency problem of the above tests, Blum, Kiefer, and Rosenblatt
(1961) were among the first to use nonparametric test statistics based on comparison of em-
pirical distribution functions. For bivariate random variables X and Y, Blum et al. (1961)
use a Cramér—von Mises distance to compare the joint empirical distribution function of
(X,Y); say Hy(z,y) = % P I(X; < 2,Y; < y), with the product of its corresponding
marginal empirical distributions, i.e., F,(z) = H,(x,o0) and G, (y) = Hy(c0,y). There-
after, other researchers have considered using empirical characteristic functions; for review
see Feuerverger (1993) and Bilodeau and Lafaye de Micheaux (2005), among others.

When the marginal distributions of a random vector X = (X7, ...., X;4) are continuous,
Sklar (1959) has shown that there exists a unique distribution function C' [hereafter copula

function| with uniform marginal distributions, such as
H(:El, ceney :Ed) =C (Fl(xl), ceey Fd(l‘d)) 5

for z1,...,zg € R%." Under the null hypothesis of independence between the components
of X, the copula function is equal to the independent copula C), which is defined as
Cr(u) = Cr(uy, ..., uq) = H;-lzl uj, for u € [0,1]%, i.e.,
d
Ho : C(u) = Cr(u) = H uj, for u € 0,1 (1)
j=1
The tests based on the distribution and characteristic functions discussed above have
inspired Dugué (1975), Deheuvels (1981a,b,c), Ghoudi, Kulperger, and Rémillard (2001),

and Genest and Rémillard (2004) to construct tests of mutual independence between the

1For more details on copula theory, the readers are referred to an excellent book by Nelsen (2006)



components of X based on the observations X; = (Xj1,...., Xj 4), for i = 1, .., n, and using
the test statistic

2

d
Sy = / n Cn(u)—Huj du, (2)

[0,1]¢

where C),(u) is the empirical copula originally proposed by Deheuvels (1979) and defined
as

n d
i) = %Z TT1{Viy <}, for u=(ur,...us) € [0,1)% 3)

i=1j=1
where I{.} is an indicator function and V;;; = Fj.,(X; ), for j = 1,...,d, with F}j.,(.) is
the empirical cumulative distribution function of the component X; ;,for i =1,...,n. An
interesting aspect of the above test statistic is that, under the null of mutual independence,
the empirical process C,,(u) = /n (Cp(u) — Cr(u)) can be decomposed, using the Mébius
transform, into 2¢ — d — 1 sub-processes /nM 4 (C,,), for A C {1,....,d} and |A| > 1,
that converge jointly to tight centred mutually independent Gaussian processes; see Blum
et al. (1961), Rota (1964) and Genest and Rémillard (2004). However, this test fails when
the dependence happens only at the tails. For example, as we will see in Section 5, when
the data are generated from Student copula with Kendall’s tau equal to 0 and degree of
freedom equal to 2, the power of the test which is based on the empirical copula is low.
This indicates that the empirical copula-based test is not able to detect tail dependence.
In general, this test does not perform well in term of power in the presence of weak
dependencies.

In this paper, we propose several nonparametric copula-based tests for independence
that are easy to implement and provide a better power compared to the empirical copula-
based test. The first test is a Cramér-von Mises-type test that we construct using Bernstein
empirical copula. Bernstein empirical copula was first studied by Sancetta and Satchell
(2004) for ii.d. data, who showed that, under some regularity conditions, any copula
function can be approximated by a Bernstein copula. Recently, Janssen, Swanepoel, and
Veraverbeke (2012) have shown that the Bernstein empirical copula outperforms the clas-
sical empirical copula estimator. This latter result has motivated us to use the Bernstein
copula function, instead of the standard empirical copula, for testing the null hypothesis
in (1). For weak dependencies, our results show that the test based on Bernstein empirical
copula outperforms the empirical copula-based test. However, the two tests fail in term of
power when the null hypothesis is for example a Student copula with zero Kendall’s tau
and small degree of freedom. The difficulty of distinguishing between the independent cop-
ula and Student copula with zero Kendall’s tau and small degree of freedom, illustrated in

Figure 1 and discussed in Section 3.2, may explain the low power of nonparametric copula



distribution-based tests.

To overcome the above problem, we introduce two other nonparametric tests based
on Bernstein empirical copula density. Bouezmarni, Rombouts, and Taamouti (2010) have
studied the Bernstein copula density estimator and derived its asymptotic properties under
dependent data. These properties have recently been reinvestigated in Janssen, Swanepoel,
and Veraverbeke (2014). The motivation for using Bernstein copula density in the construc-
tion of our tests is illustrated in Figure 1, which shows that the copula density is flexible
in terms of detecting the independence between the variables of interest. In particular,
the shape of the copula density changes according to the type and degree of dependen-
cies. Thus, our second test is a Cramér-von Mises-type test which is defined in terms of
Bernstein copula density estimator. The third test that we propose is based on Kullback-
Leibler divergence which is originally defined in terms of probability density functions.
This divergence can be rewritten in terms of copula density, see Blumentritt and Schmid
(2012). Consequently, the third test is a Kullback-Leibler divergence-type test that we
construct based on Bernstein copula density estimator. Our results show that these two
tests outperform both the Bernstein copula and empirical copula-based tests, and are able
to detect the weak dependencies and the dependence that happens at the extreme regions
of the Student copula.

Furthermore, we establish the asymptotic distribution of each of these tests under the
null hypothesis of independence, and we show their consistency under a fixed alternative.
Finally, we run a Monte Carlo experiment to investigate the performance of these tests.
In particular, we examine and compare their empirical size and power to those of non-
parametric test which is based on the empirical copula process considered in Deheuvels
(1981c), Genest, Quessy, and Rémillard (2006), and Kojadinovic and Holmes (2009).

The remainder of the paper is organized as follows. In Section 2, we provide the defini-
tion of Bernstein copula distribution and its properties. Thereafter, we define the process
of Bernstein copula {By.,(u) : u € [0,1]?} that we use to construct our first test of inde-
pendence. In Section 3, we define the Bernstein copula density that we use to build our
second test of independence based on Cramér-von Mises divergence. Section 4 is devoted
to our third nonparametric test of independence that we construct based on Kullback-
Liebler divergence which we define in terms of Bernstein copula density. We establish the
asymptotic distribution of each of these test statistics under the null, and we show their
consistency under a fixed alternative. Section 5 reports the results of a Monte Carlo sim-
ulation study to illustrate the performance (empirical size and power) of the proposed
test statistics. We conclude in Section 6. The proofs of main theoretical results and some

technical computations are presented in Appendix A and B, respectively.



2. Test of independence using Bernstein copula

2.1. Bernstein copula distribution

In this section, we define the estimator of Bernstein copula distribution and we discuss
its asymptotic properties. This estimator will be used to build the first test of indepen-
dence. Sancetta and Satchell (2004) were the first to apply a Bernstein polynomial for the

estimation of copulas. The Bernstein copula estimator is given by

k k d
v Vd
Chalw) = 3 3 € (kj, k) T1 Py iwy), for u= (ur,.ug) € 0,17,  (4)
=0 wvg— j=1

where C,, (.) is the empirical copula defined in Equation (3), P, x(.) is the binomial prob-
ability mass function with parameters v; and k, and £ is an integer that represents a
bandwidth parameter and depends on the sample size n. Janssen et al. (2012) have stud-
ied the asymptotic properties (almost sure consistency and asymptotic normality) of the
estimator in (4). In particular, they provided its asymptotic bias and variance and showed
that this estimator outperforms the empirical copula in terms of mean squared error.

We now define the following empirical Bernstein copula process under the null hypothesis

of independence:
By (1) = n'/2 {Cr n(u) — Cr(u)}, for u e [0,1]%, (5)

where Cr(u) is the independent copula function defined in Equation (1). The following
Lemma from Janssen et al. (2012) states the weak convergence of the process By, , under
Ho in (1). It will be used to establish the asymptotic distribution of our first test of

independence presented in Section 2.2.

LEMMA 1 (Janssen et al. (2012)) Suppose that k — oo as n — oo. Then, under Hy, the
process By, , converges weakly to Gaussian process, Cr(u), with mean zero and covariance

function given by:

E

d
{]I(Ulgul,.. Ug <ug) — ZC’ u){I(U; <uj)—u]}}

j=1

X {H(Ul <wvy,....,Us <vg) — Zd:C v{I(U; <UJ)_UJ}}]

J=1

where Uy, for j = 1,...,d, are i.i.d. U[0,1], Crj(u) = [, ; wi, and 1(.) is an indicator

function.



2.2. Test of independence

The empirical Bernstein copula process in (5) will be used to construct the test statis-
tic of our first nonparametric test of independence. For a given sample {X;,...,X,}, a
convenient way for testing Ho in (1) is by measuring the distance between the Bernstein
empirical copula Cj ,(u) and the independent copula function C in (1). This distance
can be measured using a Cramér-von Mises divergence that leads to the following test

statistic:

)

2
Crn(u) — H uj] du=n B3, (u)du. (6)

T, = n/
[0,1)¢

Other test statistics can be obtained using different criteria such as the one used in

Kolmogorov-Smirnov test statistic. We can also consider integrating with respect to the
Lebesgue-Steiltjes measure dCy,(u), but under the null hypothesis Hy this should lead
to similar result as the test statistic in Equation (6). The following proposition provides
an explicit expression for the test statistic 7;, in (6) [see the proof of Proposition 1 in
Appendix A].

k Kook
PROPOSITION 1 If we note » ... > > ... =, then
v1=0

d
51 d
nnZCn( ) k:) (ka k:)H UJ sj 5(UJ+SJ+12k —s;+1)
(v,5)

k d n
_an ZC( >H()/B’l}]+2k Uj'i‘l)"i‘@,

v1=0 vg=0 j=1
1
where ((.,.) is the beta function which is defined as B(wy,wy) = [t~ (1 —t)“> " dt, for
0
w1 and we two positive integers.

The next result that follows from Lemma 1 and the continuous mapping theorem estab-

lishes the asymptotic distribution of test statistic T;,.

PROPOSITION 2 Suppose that k — oo as n — oo. Then, under the null hypothesis of
independence Ho in (1), the test statistic T,, in (6) converges in distribution to the following

integral of a Gaussian process:

/., Chwian

where the process Cr(u) is defined in Lemma 1.

The asymptotic distribution of T}, in Proposition 2 can be used to make a decision about



rejecting or failing to reject Hy. A Monte Carlo simulation-based approach can also be used
to simulate the distribution of the test statistic T}, under the null hypothesis Hgy. The latter
approach consists in generating several samples under Hy, i.e., we generate random vectors
[0, 1] under the null hypothesis of independence and for each of these samples we calculate
the test statistic 7,,. Thereafter and for a given significance level a € (0, 1), we compute the
(1-a)-th empirical quantile of the simulated distribution of the test statistic 7;,. We then
reject the null hypothesis of independence if the observed test statistic, computed using the
observed data, is greater than the calculated (1-a)-th quantile. In finite sample settings,
our simulation results suggest that a Monte Carlo-simulation based approach provides a
better approximation for the distribution of 7, compared to the asymptotic distribution.
This means that it is better to use critical values (p-values) that are calculated using
Monte Carlo simulation instead of the ones that come from the asymptotic distribution.
We next establish the consistency of our first test for a fixed alternative [see the proof

of Proposition 3 in Appendix A].

PROPOSITION 3  Suppose that k — 0o asn — oo. Then, the test based on the test statistic

T, in (6) is consistent for any bounded copula density ¢ such that

2

/ C(u)—ﬁuj du > 0.

3. Test of independence using Bernstein copula density

3.1. Bernstein copula density

In this section, we define the estimator of Bernstein copula density that we will use to
build our second nonparametric test of independence. Before doing so, let us first recall
the definition of copula density using copula distribution. If it exists, the copula density,

denoted by c, is defined as follows:
c(u) = 9°C(u)/ou;...0uy, (7)

where C' is the copula distribution.
Now, from Equation (7) and since the Bernstein copula distribution introduced in Sec-

tion 2 is absolutely continuous, the Bernstein copula density is defined as follows:

ck(u) = i i C (2,...,?) ﬁpéj,k(uj%

j=1

where P, (u) is the derivative of the binomial probability function P, x(u) with respect



to u. Thus, the estimator of Bernstein copula density is given by

k k d
[ Va
con(t) = ZO... ZOC” (kl k) T1 2, (), (8)
V1= Vd=— j:1

where C),(.) is the empirical copula distribution. From Bouezmarni et al. (2010), the Bern-

stein copula density estimator can be rewritten as follows:

n

> Ki(u,V;), forue0,1)7, (9)

i=1

1
nla) = —
Chn(u) = —
with

k=1 k-1 d
Ke(w, Vi) = k2> Y I{Vi € 4iw)} [ Py e-1(uy),
n=1 vg=1 j=1
where P, —1(.) is the binomial probability mass function with parameters v; and & — 1,
Vi=(Fi1n(Xi1), ., Fan(Xia)), with Fj.,(.), for 7 = 1,....d, the empirical distribution
based on X, for i =1,...,n, and A(v) = [4, 2] x .. x [”—k‘j, ”C‘Tﬂ} , with &k an integer
that plays the role of bandwidth parameter.

The Bernstein copula density estimator in (9) is proposed and investigated in Sancetta
and Satchell (2004) for i.i.d. data. Later, Bouezmarni et al. (2010) have used a Bern-
stein polynomial to estimate the copula density for time series data. They provided the
asymptotic bias and variance, uniform a.s. convergence, and asymptotic normality of the
estimator of Bernstein copula density for a-mixing data. Recently, Janssen et al. (2014)
have reinvestigated this estimator by establishing its asymptotic normality under i.i.d.
data.

3.2. Test of independence

We will now use the estimator of Bernstein copula density in Equation (9) to define the
test statistic of our second nonparametric test of independence. Before doing so, observe

that testing the null hypothesis of independence is equivalent to testing
Ho : c(u) =1, u e 0,14

To test the above null hypothesis, we consider the following Cramér—von Mises-type test

statistic

I,(u) = (ckp(u) — 1)2du, (10)
[0,1]¢

where ¢ ,(u) is the Bernstein copula density estimator in Equation (9).



As mentioned in the introduction, building tests of independence based on Bernstein
copula density instead of Bernstein copula distribution is motivated by the fact that the
copula density is able to capture the dependence even when the Kendall’s tau coefficient
is small or equal to zero. For example, it is straightforward to see that when Kendall’s tau
is equal to zero, one can not distinguish between the Student copula distribution and the
independent copula. However, it is easier to distinguish between their corresponding copula
density functions. For example, if we consider a Student’s probability density function
ty+1with the number of degrees of freedom equal to v = 2 and Kendall’s tau 7, then
the lower /upper tail-dependence coefficient of the Student copula density is equal to A =
2t,+1(—V1+vy/1—7/y/1+4 7). Hence, even if we take Kendall’s tau equal to zero, the
tail-dependence coefficient A will be equal to 0.1816901, thus different from zero. This

situation is illustrated in Figure 1 where Kendall’s tau is taken to be equal to zero.

Now, to establish the asymptotic distribution of the test statistic I,, under the null H,,
we need to introduce the following additional term. For any integers v; and vy such that
0 <wi,v9 <k —1, we define

1
Typ(vr,00) — /0 Py (1) Py 1 () d (11)
= (k_1>(k_1>ﬂ(vl+1}2+1,2k—1—1}1—vg).

U1 (%)

The following proposition provides a practical expression for the test statistic I, in the

bivariate case [see the proof of Proposition 4 in Appendix A].

ProroSITION 4 Using similar notations to those in Proposition 1, the test statistic in

(10) can be rewritten as follows:

k-1
I,(u) = k* Z Y (v1, v2) Ye(vy, vg) g (v, v])Tr(ve, vg) — 1,
v1,v,=0
vg,vizo

where Ty (., .) is defined in Equation (11) and Ty(vy,v2) = Cp (W, ) —C, (%, 25 ) -

Cp (”1,:1, 82) 4+ Cy (%, %), with Cy(.,.) denotes the empirical copula.

The following theorem provides the asymptotic distribution of the test statistic I,, under

H [see the proof of Theorem 1 in Appendix A].

THEOREM 1 Suppose that k — oo together with n='/2k3¥*loglog?(n) — 0 when n — co.

Then, under Hg, we have



I, — 2_d7rd/2n_1kd/2

d
21/2\/{251752:0 Ty (v1, 1}2)2} 2

In k= nkid i> N(07 1)7

)

where I, and T'x(.,.) are defined in Equations (10) and (11), respectively.
The proof of the following Corollary can be found in Appendix A.

COROLLARY 1 Suppose that the assumptions of Theorem 1 are satisfied. Then, there

exists a constant R > 0 such that

nk*d/él {In — 9—dpd/2,~11d/2

d
RT3 }—>N(0,1),

where I, is defined in Equation (10).

As for our first test, our simulation results suggest that it is better to use a Monte Carlo
simulation-based approach, instead of the asymptotic distribution, for the calculation of
critical values (p-values) of the test statistic I,,. A brief description of Monte Carlo simula-
tion approach can be found at the end of Section 2.2. We next establish the consistency of

our second test based on the test statistic I,, [see the proof of Proposition 5 in Appendix

Al

PROPOSITION 5  Assume that k — oo together with n~'/2k3%/*log 10g2(n) — 0 when
n — oo. Then, the test based on the test statistic I,, in (10) is consistent for any bounded

copula density c such that

/@myqﬁdu>u

4. Test of independence based on Kullback-Leibler divergence

4.1. Measure of dependence

Relative entropy, also known as the Kullback-Leibler divergence, is a measure of multivari-
ate association which is originally defined in terms of probability density functions. Fol-
lowing Blumentritt and Schmid (2012), we rewrite the Kullback-Leibler measure in terms
of copula density to disentangle the dependence structure from the marginal distributions.
Blumentritt and Schmid (2012) propose an estimator for Kullback-Leibler measure of de-
pendence using the Bernstein copula density estimator. Since the latter is guaranteed to
be non-negative, this helps avoid having negative values inside the logarithmic function of

the Kullback-Leibler distance. Furthermore, there is no boundary bias problem when we

10



use the Bernstein copula density estimator because by smoothing with beta densities this
estimator does not assign weights outside its support.

We now review the theoretical aspects of the above measure. Joe et al. (1987), Joe
(1989a), and Joe (1989b) have introduced relative entropy as a measure of multivariate

association for the random vector X. The relative entropy is defined as
f(x)
5(c) = / log [ F(x) dx, (12)
R4 [T fil:)

where f is the joint probability density of X and f; is the marginal probability density
of its component X;, for i = 1, ..., d. According to Sklar (1959), the density function of X

can be expressed as
d
flx,..,zq) = c(Fi(xq), ..., Fy(zq)) H fi(zi), (13)

i=1

where c¢ is the density copula function. Using Equation (13), we can show that the relative

entropy in (12) can be rewritten in terms of copula density as
0(c) =d(c) = / log [¢(u)]c(u) du. (14)
[0,1)¢

The measure d(c) does not depend on the marginal distributions of X, but only on the
copula density c¢. We will next define a nonparametric estimator of §(c) that we will use
to construct the test statistic of our third test of independence, and we will establish its

asymptotic normality.

4.2. Test of independence

We have shown that the Kullback-Leibler measure of dependence d(c) can be expressed in
terms of copula density function c¢. Thus, an estimator of that measure can be obtained
by replacing the unknown copula density ¢ by its Bernstein copula density estimator in
Equation (9):

dn(c) = /[o,m log [ckn(1)] cpn(u)du. (15)

where ¢, ,(u) is the Bernstein copula density estimator defined in Equation (9). In practice,

we suggest to replace ¢, (u)du in §,(c) by dC,(u), i.e., to use the following test statistic:
5ulc) = /[O o8 leen(w] dC(w) (16)

— %Z log [crn(Vi)] .
=1

11



Now, observe that the null hypothesis of independence is equivalent to the nullity of the
measure 0(c). Thus, our third nonparametric test of independence is based on 0,(c). In
other words, we use d,(c) in Equation (15) as a test statistic to test the null hypothesis
Ho. The following theorem provides the asymptotic normality of the test statistic d,,(c)
[see the proof of Theorem 2 in Appendix A].

THEOREM 2 Suppose that the assumptions of Theorem 1 are satisfied. Then, under Hy,

we have

20, (c) — 27421 E4/2

Z 4y N(0,1),
21/2\/{251_752_0 Fk('U1, 02)2} _ -2

nk~®

where Ty (.,.) and 6,(c) are defined in (11) and (15), respectively.

The result in Theorem 2 remains unchanged when we replace 6, (c) by d,(c) in (16).

As for the test statistics T;, and I,,, our simulation results suggest that it is better to
use a Monte Carlo simulation-based approach, instead of the asymptotic distribution, for
the calculation of critical values (p-values) of the test statistic d,(c). A brief description
of Monte Carlo simulation approach can be found at the end of Section 2.2. Furthermore,
the consistency of the test based on d,(c) can be established under the same conditions
as the ones we needed for the consistency of I,,, using similar arguments as in the proof

of Proposition 5.

5. Simulation studies

We run a Monte Carlo experiment to investigate the performance of nonparametric tests
of independence proposed in the previous sections. In particular, we study the power of
the test statistics T}, I,, and ¢,, using different samples sizes: n = 100, 200, 400, 500. To
calculate the critical values of these test statistics under the null and at 5% significance
level, we simulate independent data using the independent copula. Thereafter, we evaluate
the empirical power of our tests using different copula functions that generate data under
different degrees of dependence following different values of Kendall’s tau coefficient 7 = 0,
0.1, 0.25. For Kendall’s 7 coefficient greater than 0.5, all the tests provide good and
comparable results. The copulas under consideration are Normal, Student, Clayton and
Gumbel copulas. Moreover, we compare the power functions of our tests to the power
function of the following classical test which is based on the empirical copula process
considered in Deheuvels (1981c¢), Genest, Quessy, and Rémillard (2006), and Kojadinovic

12



and Holmes (2009):
S, = n/ (Co(ur, us) — Cir(ur, uz) Y2edur dus. (17)
0.2

The test statistics T,,, I,, and J,, depend on the bandwidth parameter k& which is needed
to estimate the copula density (distribution). We take various values of k to investigate the
sensitivity of the power functions of our nonparametric tests to the bandwidth parameter.
A practical bandwidth can be selected using a similar approach to the one proposed by
Omelka, Gijbels, and Veraverbeke (2009) for kernel-based copula estimation, but this is
not investigated in this paper and left for future research. Omelka et al. (2009)’s approach
involves an Edgeworth expansion of the asymptotic distribution of the test statistics.
Finally, we use Monte-Carlo approximations, based on 1000 replications, to compute the
critical values and the empirical power of all the tests, Sy, Ty, I, and 9,,.

In the simulations, we consider two scenarios for the marginal distributions used to
compute the test statistics. In the first one, we assume that the marginal distributions are
known and given by a uniform distribution. In the second scenario, we consider that the
marginal distributions are estimated. In the latter scenario we consider different models
for the marginal distributions: uniform, normal and Student. Simulation results for the
empirical power of the tests that are based on the statistics T},, I,,, d,,, and .S,, are reported
in Tables 1-3 for the first scenario and in Tables 4-6 for the second scenario. We only provide
the results for normal marginals as the results for other distributions are quite similar.

Table 1 compares the power function of our first nonparametric test which is based on
the Bernstein copula distribution 7}, to the power function of the classical test which is
based on the empirical copula S;,. The simulation results for different copulas, samples
sizes, and degrees of dependence show that both tests provide good empirical size. The
power of the two tests increases with sample size and degree of dependence measured by
Kendall’s tau. Furthermore, the power functions of both tests are comparable for moderate
degree of dependency, but the test based on the Bernstein copula dominates the one based
on the empirical copula when Kendall’s tau is small. Finally, the two tests fail in terms of
power in the case of Student copula with Kendall’s tau equal to zero. Recall that in the
case of Student copula, Kendall’s tau equal to zero does not imply independence, because
the dependence may happen in the tail regions.

Tables 2 and 3 provide the empirical size and power of nonparametric tests that are
based on the test statistics I, and 9, respectively. From these, we see that the two tests
generally control the size. Their powers increase with the sample size and the strength
of dependence. Compared to the empirical copula-based test S, we find that these tests
do much better in terms of power, especially in the case of Student copula with zero
Kendall’s tau. For example, when n = 500 and k& = 25 the powers of I, and J, tests
are equal to 0.823 and 0.434, respectively, whereas the one of .S, test is equal to 0.048.

13



The same remark applies when the degree of dependencies is small. For example, under
Clayton copula and when 7 = 0.1, £ = 25, and n = 400, the powers of I, and §,, tests
are equal to 0.813 and 0.506, respectively, whereas the power of S,, test is equal to 0.294.
The difference becomes even more important when we increase the sample seize. Finally,
we find that the Cramér-von Mises-type test which is defined in terms of Bernstein copula
density generally outperforms the test based on Kullback-Leibler divergence and defined
as a function of Bernstein copula density estimator.

Table 4 shows the power of the tests T;, and .S, using estimated marginal distributions.
We observe a significant improvement in the power of the test S,, compared to the results
in Table 1. But we still find that the test 7,, does better than the test S,, in many cases.
Tables 5-6 show the power of the tests I,, and J,,. We see clearly that the tests I,, and d,, do
better than the test S, for Student copula and very low dependence, especially for 7 = 0.
However, in many cases the test S, does better than the tests I,, and J,, when 7 = 0.1.

Finally, it seems that the test I,, does better than the other ones (¢, and T5,).

6. Conclusion

We provided three different nonparametric tests of independence between continuous ran-
dom variables based on estimators of Bernstein copula distribution and Bernstein copula
density. The first two tests were constructed using Cramér-von Mises divergence that we
define as a function of the empirical Bernstein copula process and the empirical Bern-
stein copula density, respectively. The third test is based on Kullback-Leibler divergence
originally defined in terms of probability density functions. We first rewrote the Kullback-
Leibler divergence in terms of copula density, see also Blumentritt and Schmid (2012).
Thereafter, we constructed the third test using an estimator of Kullback-Leibler divergence
defined as a logarithmic function of the estimator of Bernstein copula density. Further-
more, we provided the asymptotic distribution of each of these tests under the null, and
we established their consistency under a fixed alternative. Finally, we ran a Monte Carlo
experiment to investigate the performance of these tests. In particular, we examined and
compared their empirical size and power to those of classical nonparametric test which is
based on the empirical copula considered in Deheuvels (1981c), Genest et al. (2006), and
Kojadinovic and Holmes (2009).
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Figure 1. This figure compares the student copula distribution (in the top of the left-hand side panel) and the
independent copula distribution (in the bottom of the left-hand side panel) and between the student copula density
(in the top of the right-hand side panel) and the independent copula density (in the bottom of the right-hand side
panel).
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Statistic 7, for Normal copula

n = 100 n = 200 n = 400 n = 500
k|7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=0.25
0.050 0.258 0.932 | 0.038 0.420 0.996 | 0.052 0.778 1.000 | 0.024 0.824 1.000
10 | 0.064 0.276 0.948 | 0.044 0.472 0.998 | 0.064 0.814 1.000 | 0.026 0.846 1.000
15 | 0.064 0.252 0.948 | 0.036 0.484 0.998 | 0.056 0.806 1.000 | 0.028 0.860 1.000
20 | 0.064 0.270 0.948 | 0.048 0.488 0.998 | 0.066 0.806 1.000 | 0.030 0.864 1.000
25 | 0.062 0.268 0.950 | 0.044 0.492 0.998 | 0.056 0.806 1.000 | 0.026 0.860 1.000
30 | 0.070 0.274 0.950 | 0.044 0.478 0.998 | 0.060 0.794 1.000 | 0.028 0.860 1.000
Sn | 0.074 0.122 0.314 | 0.048 0.126 0.490 | 0.060 0.242 0.840 | 0.030 0.260 0.916
Statistic T, for Student copula

5| 0.064 0.280 0.912 | 0.032 0.442 0.994 | 0.062 0.762 1.000 | 0.048 0.838 1.000
10 | 0.062 0.340 0.944 | 0.044 0.476 0.998 | 0.100 0.818 1.000 | 0.042 0.868 1.000
15 | 0.066 0.332 0.938 | 0.048 0.502 0.998 | 0.098 0.814 1.000 | 0.040 0.890 1.000
20 | 0.064 0.328 0.938 | 0.054 0.492 0.998 | 0.098 0.824 1.000 | 0.056 0.898 1.000
25 | 0.064 0.328 0.936 | 0.064 0.512 0.998 | 0.094 0.820 1.000 | 0.048 0.884 1.000
30 | 0.076 0.360 0.940 | 0.058 0.504 0.998 | 0.098 0.816 1.000 | 0.056 0.896 1.000
Sn | 0.054 0.128 0.328 | 0.044 0.142 0.494 | 0.054 0.260 0.866 | 0.048 0.264 0.900
Statistic T, for Clayton copula

51 0.052 0.242 0.936 | 0.034 0.388 0.990 | 0.044 0.750 1.000 | 0.036 0.830 1.000
10 | 0.054 0.270 0.962 | 0.044 0.454 0.996 | 0.054 0.838 1.000 | 0.032 0.880 1.000
15 | 0.048 0.244 0.956 | 0.044 0.456 0.996 | 0.048 0.822 1.000 | 0.040 0.886 1.000
20 | 0.054 0.262 0.968 | 0.044 0.452 0.996 | 0.050 0.838 1.000 | 0.044 0.902 1.000
25 | 0.058 0.256 0.966 | 0.050 0.480 0.996 | 0.050 0.826 1.000 | 0.044 0.884 1.000
30 | 0.060 0.252 0.966 | 0.044 0.430 0.996 | 0.050 0.824 1.000 | 0.042 0.886 1.000
Sn | 0.042 0.114 0.348 | 0.046 0.146 0.536 | 0.060 0.294 0.902 | 0.036 0.248 0.936
Statistic T;, for Gumbel copula

5| 0.038 0.296 0.928 | 0.020 0.426 0.998 | 0.044 0.798 1.000 | 0.040 0.810 1.000
10 | 0.046 0.358 0.956 | 0.026 0.460 1.000 | 0.068 0.844 1.000 | 0.036 0.842 1.000
15 | 0.034 0.342 0.952 | 0.022 0.490 1.000 | 0.058 0.836 1.000 | 0.044 0.864 1.000
20 | 0.040 0.344 0.952 | 0.026 0.482 1.000 | 0.062 0.836 1.000 | 0.046 0.864 1.000
25 | 0.036 0.332 0.950 | 0.026 0.490 1.000 | 0.056 0.828 1.000 | 0.040 0.860 1.000
30 | 0.038 0.372 0.966 | 0.020 0.488 1.000 | 0.062 0.830 1.000 | 0.040 0.870 1.000
Sn | 0.060 0.106 0.372 | 0.028 0.138 0.542 | 0.080 0.272 0.844 | 0.052 0.224 0.910

wt

Table 1. This table compares the empirical size and power of the test statistics T, and S;, for different copulas
(Normal, Student, Clayton and Gumbel copulas) with known marginal distributions, different values of Kendall’s
tau coefficient 7 (7 = 0,0.1,0.25), different sample sizes n (n = 100, 200, 400, 500), and different values for the
bandwidth k.
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Statistic I, for Normal copula

n = 100 n = 200 n = 400 n = 500
k|7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=0.25
0.068 0.317 0.955 | 0.056 0.510 0.999 | 0.037 0.757 1.000 | 0.053 0.863 1.000
10 | 0.056 0.330 0.946 | 0.063 0.494 1.000 | 0.046 0.756 1.000 | 0.044 0.842 1.000
15 | 0.059 0.299 0.896 | 0.050 0.432 0.997 | 0.054 0.704 1.000 | 0.061 0.832 1.000
20 | 0.056 0.259 0.854 | 0.040 0.354 0.992 | 0.041 0.649 1.000 | 0.059 0.787 1.000
25 | 0.044 0.219 0.803 | 0.054 0.339 0.986 | 0.032 0.553 1.000 | 0.063 0.749 1.000
30 | 0.049 0.191 0.762 | 0.057 0.304 0.981 | 0.038 0.527 1.000 | 0.057 0.698 1.000
Sn | 0.074 0.122 0.314 | 0.048 0.126 0.490 | 0.060 0.242 0.840 | 0.030 0.260 0.916
Statistic I,, for Student copula

5| 0.096 0.413 0.955 | 0.149 0.585 1.000 | 0.146 0.851 1.000 | 0.178 0.933 1.000
10 | 0.241 0.507 0.965 | 0.356 0.725 1.000 | 0.481 0.935 1.000 | 0.582 0.975 1.000
15 | 0.300 0.528 0.957 | 0.458 0.740 0.999 | 0.662 0.958 1.000 | 0.751 0.981 1.000
20 | 0.322 0.505 0.940 | 0.491 0.720 0.998 | 0.695 0.952 1.000 | 0.817 0.990 1.000
25 | 0.306 0.485 0.910 | 0.528 0.720 0.997 | 0.693 0.942 1.000 | 0.823 0.989 1.000
30 | 0.316 0.473 0.898 | 0.511 0.722 0.998 | 0.709 0.945 1.000 | 0.823 0.986 1.000
Sn | 0.054 0.128 0.328 | 0.044 0.142 0.494 | 0.054 0.260 0.866 | 0.048 0.264 0.900
Statistic 7,, for Clayton copula

51 0.063 0.351 0.971 | 0.054 0.614 1.000 | 0.052 0.817 1.000 | 0.055 0.917 1.000
10 | 0.062 0.390 0.976 | 0.063 0.649 1.000 | 0.051 0.879 1.000 | 0.047 0.939 1.000
15 | 0.059 0.379 0.963 | 0.057 0.628 1.000 | 0.054 0.873 1.000 | 0.052 0.943 1.000
20 | 0.048 0.347 0.952 | 0.047 0.579 1.000 | 0.040 0.856 1.000 | 0.050 0.930 1.000
25 | 0.043 0.325 0.927 | 0.050 0.560 1.000 | 0.039 0.813 1.000 | 0.052 0.922 1.000
30 | 0.045 0.287 0.914 | 0.055 0.541 0.998 | 0.039 0.799 1.000 | 0.043 0.904 1.000
Sn | 0.042 0.114 0.348 | 0.046 0.146 0.536 | 0.060 0.294 0.902 | 0.036 0.248 0.936
Statistic I,, for Gumbel copula

5| 0.056 0.380 0.941 | 0.051 0.595 1.000 | 0.052 0.802 1.000 | 0.058 0.901 1.000
10 | 0.062 0.400 0.952 | 0.065 0.621 1.000 | 0.052 0.860 1.000 | 0.049 0.926 1.000
15 | 0.065 0.370 0.949 | 0.065 0.598 1.000 | 0.050 0.872 1.000 | 0.057 0.931 1.000
20 | 0.060 0.348 0.940 | 0.051 0.571 1.000 | 0.041 0.841 1.000 | 0.059 0.929 1.000
25 | 0.055 0.315 0.909 | 0.051 0.562 0.999 | 0.030 0.811 1.000 | 0.058 0.913 1.000
30 | 0.065 0.315 0.877 | 0.050 0.535 0.998 | 0.035 0.797 1.000 | 0.044 0.909 1.000
Sn | 0.060 0.106 0.372 | 0.028 0.138 0.542 | 0.080 0.272 0.844 | 0.052 0.224 0.910

wt

Table 2. This table compares the empirical size and power of the test statistics I, and S, for different copulas
(Normal, Student, Clayton and Gumbel copulas) with known marginal distributions, different values of Kendall’s
tau coefficient 7 (7 = 0,0.1,0.25) , different sample sizes n (n = 100, 200, 400, 500), and different values for the
bandwidth k.
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Statistic d,, for Normal copula

n = 100 n = 200 n =400 n = 500
k|l7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=025
51 0.044 0.222 0.924 | 0.066 0.428 0.998 | 0.050 0.740 1.000 | 0.046 0.840 1.000

10 | 0.036 0.172 0.844 | 0.066 0.330 0.982 | 0.048 0.606 1.000 | 0.050 0.670 1.000
15 | 0.046 0.176 0.754 | 0.070 0.268 0.964 | 0.070 0.540 1.000 | 0.068 0.590 1.000
20 | 0.050 0.134 0.644 | 0.058 0.196 0.924 | 0.070 0.424 1.000 | 0.062 0.500 1.000
25 | 0.056 0.144 0.574 | 0.062 0.172 0.902 | 0.062 0.370 1.000 | 0.076 0.440 1.000
30 | 0.046 0.112 0.490 | 0.062 0.148 0.848 | 0.068 0.304 0.998 | 0.050 0.358 0.998
Sn | 0.074 0.122 0.314 | 0.048 0.126 0.490 | 0.060 0.242 0.840 | 0.030 0.260 0.916
Statistic 0, for Student copula

51 0.112 0.330 0.934 | 0.170 0.562 0.996 | 0.390 0.872 1.000 | 0.428 0.934 1.000
10 | 0.154 0.316 0.836 | 0.226 0.512 0.986 | 0.526 0.844 1.000 | 0.536 0.920 1.000
15 | 0.162 0.302 0.760 | 0.228 0.466 0.956 | 0.488 0.788 1.000 | 0.572 0.892 1.000
20 | 0.158 0.242 0.674 | 0.194 0.392 0.928 | 0.434 0.724 1.000 | 0.492 0.814 1.000
25| 0.154 0.210 0.618 | 0.194 0.344 0.890 | 0.406 0.668 1.000 | 0.434 0.770 1.000
30 | 0.134 0.180 0.524 | 0.146 0.304 0.840 | 0.366 0.586 0.996 | 0.386 0.672 1.000
Sn | 0.054 0.128 0.328 | 0.044 0.142 0.494 | 0.054 0.260 0.866 | 0.048 0.264 0.900
Statistic d,, for Clayton copula

51 0.046 0.288 0.952 | 0.048 0.502 1.000 | 0.040 0.878 1.000 | 0.050 0.918 1.000
10 | 0.056 0.264 0.912 | 0.050 0.428 1.000 | 0.040 0.764 1.000 | 0.042 0.828 1.000
15 | 0.066 0.240 0.846 | 0.056 0.342 0.996 | 0.050 0.668 1.000 | 0.062 0.752 1.000
20 | 0.056 0.206 0.788 | 0.054 0.276 0.982 | 0.050 0.572 1.000 | 0.058 0.660 1.000
25 | 0.058 0.200 0.722 | 0.050 0.230 0.954 | 0.050 0.506 1.000 | 0.056 0.576 1.000
30 | 0.042 0.150 0.642 | 0.040 0.188 0.918 | 0.040 0.434 1.000 | 0.034 0.478 1.000
Sn | 0.042 0.114 0.348 | 0.046 0.146 0.536 | 0.060 0.294 0.902 | 0.036 0.248 0.936
Statistic d,, for Gumbel copula

5| 0.046 0.296 0.918 | 0.052 0.494 0.998 | 0.036 0.794 1.000 | 0.062 0.854 1.000
10 | 0.056 0.260 0.852 | 0.040 0.378 0.992 | 0.050 0.704 1.000 | 0.052 0.744 1.000
15 | 0.078 0.242 0.760 | 0.036 0.286 0.972 | 0.062 0.634 1.000 | 0.060 0.686 1.000
20 | 0.072 0.188 0.676 | 0.034 0.248 0.948 | 0.042 0.548 0.998 | 0.050 0.600 1.000
25 | 0.080 0.188 0.622 | 0.030 0.208 0.924 | 0.040 0.490 0.998 | 0.050 0.552 1.000
30 | 0.072 0.150 0.552 | 0.024 0.172 0.882 | 0.046 0.422 0.994 | 0.042 0.446 0.998
Sn | 0.060 0.106 0.372 | 0.028 0.138 0.542 | 0.080 0.272 0.844 | 0.052 0.224 0.910

Table 3. This table compares the empirical size and power of the test statistics §,, and S,, for different copulas
(Normal, Student, Clayton and Gumbel copulas) with known marginal distributions, different values of Kendall’s
tau coefficient 7 (7 = 0,0.1,0.25), different sample sizes n (n = 100, 200,400, 500), and different values for the
bandwidth k.
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Statistic 7, for Normal copula

n = 100 n = 200 n = 400 n = 500
k|7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=0.25
0.050 0.284 0.922 | 0.074 0.566 1.000 | 0.048 0.786 1.000 | 0.040 0.862 1.000
10 | 0.046 0.290 0.940 | 0.074 0.588 1.000 | 0.042 0.794 1.000 | 0.044 0.922 1.000
15 | 0.046 0.282 0.940 | 0.072 0.616 1.000 | 0.040 0.808 1.000 | 0.042 0.918 1.000
20 | 0.050 0.306 0.940 | 0.080 0.608 1.000 | 0.036 0.794 1.000 | 0.042 0.924 1.000
25 | 0.050 0.294 0.942 | 0.076 0.600 1.000 | 0.040 0.798 1.000 | 0.044 0.924 1.000
30 | 0.044 0.288 0.940 | 0.076 0.600 1.000 | 0.038 0.794 1.000 | 0.034 0.916 1.000
Sn | 0.036 0.170 0.890 | 0.068 0.502 1.000 | 0.066 0.812 1.000 | 0.046 0.914 1.000
Statistic T, for Student copula

51 0.056 0.272 0.928 | 0.076 0.576 1.000 | 0.044 0.728 1.000 | 0.072 0.848 1.000
10 | 0.064 0.284 0.930 | 0.080 0.598 1.000 | 0.038 0.768 1.000 | 0.096 0.876 1.000
15 | 0.066 0.286 0.926 | 0.088 0.630 1.000 | 0.048 0.778 1.000 | 0.100 0.900 1.000
20 | 0.070 0.306 0.936 | 0.094 0.620 1.000 | 0.044 0.768 1.000 | 0.110 0.908 1.000
25 | 0.070 0.308 0.936 | 0.096 0.614 1.000 | 0.048 0.780 1.000 | 0.106 0.898 1.000
30 | 0.068 0.294 0.932 | 0.086 0.616 1.000 | 0.050 0.784 1.000 | 0.096 0.896 1.000
Sn | 0.040 0.214 0.874 | 0.054 0.476 0.998 | 0.092 0.808 1.000 | 0.092 0.896 1.000
Statistic T, for Clayton copula

51 0.046 0.286 0.914 | 0.056 0.550 0.998 | 0.040 0.768 1.000 | 0.040 0.860 1.000
10 | 0.042 0.286 0.936 | 0.046 0.592 0.998 | 0.044 0.794 1.000 | 0.056 0.918 1.000
15 | 0.040 0.268 0.928 | 0.052 0.596 1.000 | 0.050 0.810 1.000 | 0.058 0.918 1.000
20 | 0.046 0.302 0.944 | 0.062 0.610 1.000 | 0.034 0.806 1.000 | 0.062 0.924 1.000
25 | 0.044 0.298 0.946 | 0.056 0.598 1.000 | 0.044 0.818 1.000 | 0.056 0.924 1.000
30 | 0.044 0.278 0.936 | 0.060 0.576 1.000 | 0.042 0.808 1.000 | 0.052 0.918 1.000
Sn | 0.018 0.222 0.912 | 0.042 0.502 0.998 | 0.066 0.828 1.000 | 0.058 0.922 1.000
Statistic T;, for Gumbel copula

5| 0.060 0.262 0.916 | 0.070 0.570 1.000 | 0.040 0.794 1.000 | 0.056 0.868 1.000
10 | 0.050 0.254 0.932 | 0.064 0.576 0.998 | 0.048 0.812 1.000 | 0.074 0.914 1.000
15 | 0.050 0.254 0.938 | 0.072 0.634 1.000 | 0.046 0.836 1.000 | 0.082 0.924 1.000
20 | 0.052 0.266 0.934 | 0.078 0.604 0.998 | 0.048 0.810 1.000 | 0.076 0.922 1.000
25 | 0.054 0.266 0.938 | 0.076 0.600 0.998 | 0.048 0.822 1.000 | 0.076 0.914 1.000
30 | 0.048 0.272 0.940 | 0.068 0.618 0.998 | 0.052 0.828 1.000 | 0.072 0.918 1.000
Sn | 0.026 0.242 0.876 | 0.060 0.546 1.000 | 0.060 0.800 1.000 | 0.068 0.910 1.000

wt

Table 4. This table compares the empirical size and power of the test statistics T, and S, for different cop-
ulas (Normal, Student, Clayton and Gumbel copulas) with estimated marginal distributions, different values of
Kendall’s tau coefficient 7 (7 = 0,0.1,0.25), different sample sizes n (n = 100,200,400, 500), and different values
for the bandwidth k.
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Statistic I, for Normal copula

n = 100 n = 200 n =400 n = 500
k|l7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=025
5| 0.064 0.274 0.940 | 0.050 0.510 1.000 | 0.084 0.794 1.000 | 0.052 0.886 1.000

10 | 0.046 0.280 0.922 | 0.054 0.474 0.998 | 0.068 0.744 1.000 | 0.064 0.878 1.000
15 | 0.038 0.242 0.872 | 0.050 0.446 0.998 | 0.066 0.698 1.000 | 0.054 0.820 1.000
20 | 0.042 0.242 0.830 | 0.054 0.384 0.992 | 0.072 0.662 1.000 | 0.048 0.782 1.000
25 | 0.042 0.232 0.798 | 0.048 0.320 0.986 | 0.062 0.632 1.000 | 0.046 0.758 1.000
30 | 0.036 0.204 0.738 | 0.038 0.286 0.978 | 0.054 0.590 1.000 | 0.040 0.698 1.000
Sn | 0.036 0.170 0.890 | 0.068 0.502 1.000 | 0.066 0.812 1.000 | 0.046 0.914 1.000
Statistic I,, for Student copula

51 0.094 0.312 0.926 | 0.094 0.628 1.000 | 0.230 0.892 1.000 | 0.192 0.930 1.000
10 | 0.168 0.416 0.952 | 0.308 0.734 1.000 | 0.588 0.956 1.000 | 0.668 0.990 1.000
15 | 0.254 0.438 0.930 | 0.442 0.776 1.000 | 0.702 0.956 1.000 | 0.746 0.988 1.000
20 | 0.270 0.450 0.926 | 0.466 0.772 1.000 | 0.762 0.958 1.000 | 0.806 0.986 1.000
25 | 0.284 0.430 0.918 | 0.472 0.750 0.998 | 0.772 0.960 1.000 | 0.824 0.988 1.000
30 | 0.294 0.438 0.888 | 0.458 0.716 0.998 | 0.780 0.946 1.000 | 0.824 0.984 1.000
Sn | 0.040 0.214 0.874 | 0.054 0.476 0.998 | 0.092 0.808 1.000 | 0.092 0.896 1.000
Statistic 7,, for Clayton copula

51 0.056 0.334 0.958 | 0.066 0.512 1.000 | 0.072 0.862 1.000 | 0.064 0.920 1.000
10 | 0.048 0.386 0.970 | 0.060 0.562 1.000 | 0.046 0.878 1.000 | 0.054 0.950 1.000
15 | 0.052 0.356 0.956 | 0.072 0.540 1.000 | 0.038 0.854 1.000 | 0.062 0.962 1.000
20 | 0.050 0.376 0.954 | 0.072 0.546 0.998 | 0.032 0.850 1.000 | 0.042 0.950 1.000
25 | 0.042 0.352 0.950 | 0.058 0.460 0.998 | 0.036 0.828 1.000 | 0.046 0.946 1.000
30 | 0.048 0.332 0.928 | 0.044 0.448 0.998 | 0.030 0.814 1.000 | 0.040 0.922 1.000
Sn | 0.018 0.222 0.912 | 0.042 0.502 0.998 | 0.066 0.828 1.000 | 0.058 0.922 1.000
Statistic T;, for Gumbel copula

5| 0.038 0.316 0.934 | 0.038 0.538 1.000 | 0.068 0.842 1.000 | 0.062 0.914 1.000
10 | 0.048 0.350 0.942 | 0.040 0.578 1.000 | 0.066 0.882 1.000 | 0.060 0.944 1.000
15 | 0.056 0.348 0.938 | 0.038 0.600 1.000 | 0.062 0.870 1.000 | 0.058 0.936 1.000
20 | 0.058 0.356 0.918 | 0.044 0.554 1.000 | 0.068 0.860 1.000 | 0.060 0.936 1.000
25 | 0.042 0.348 0.898 | 0.044 0.512 1.000 | 0.062 0.846 1.000 | 0.060 0.934 1.000
30 | 0.038 0.348 0.894 | 0.040 0.478 0.998 | 0.058 0.806 1.000 | 0.058 0.908 1.000
Sn | 0.026 0.242 0.876 | 0.060 0.546 1.000 | 0.060 0.800 1.000 | 0.068 0.910 1.000

Table 5. This table compares the empirical size and power of the test statistics I, and S, for different copulas
(Normal, Student, Clayton and Gumbel copulas ) with estimated marginal distributions , different values of
Kendall’s tau coefficient 7 (7 = 0,0.1,0.25), different sample sizes n (n = 100,200,400, 500), and different values
for the bandwidth k.
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Statistic d,, for Normal copula

n = 100 n = 200 n = 400 n = 500
k|7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=025|7=0 7=01 7=0.25
0.070 0.244 0.906 | 0.062 0.480 0.996 | 0.048 0.724 1.000 | 0.072 0.822 1.000
10 | 0.048 0.166 0.820 | 0.064 0.364 0.988 | 0.048 0.592 1.000 | 0.044 0.662 1.000
15 | 0.068 0.170 0.742 | 0.060 0.278 0.966 | 0.046 0.494 1.000 | 0.060 0.578 1.000
20 | 0.060 0.140 0.612 | 0.052 0.238 0.930 | 0.044 0.394 1.000 | 0.050 0.502 1.000
25 | 0.042 0.108 0.512 | 0.044 0.188 0.906 | 0.038 0.336 1.000 | 0.050 0.438 0.998
30 | 0.046 0.098 0.472 | 0.042 0.166 0.842 | 0.040 0.300 1.000 | 0.052 0.368 0.998
Sn | 0.036 0.170 0.890 | 0.068 0.502 1.000 | 0.066 0.812 1.000 | 0.046 0.914 1.000
Statistic 0, for Student copula

51 0.114 0.282 0.906 | 0.176 0.524 0.996 | 0.366 0.864 1.000 | 0.398 0.938 1.000
10 | 0.130 0.260 0.842 | 0.222 0.506 0.992 | 0.492 0.836 1.000 | 0.542 0.916 1.000
15 | 0.166 0.256 0.780 | 0.226 0.398 0.960 | 0.472 0.782 1.000 | 0.552 0.898 1.000
20 | 0.132 0.188 0.692 | 0.210 0.344 0.930 | 0.432 0.702 1.000 | 0.506 0.852 1.000
25 | 0.102 0.148 0.592 | 0.176 0.284 0.880 | 0.382 0.626 0.998 | 0.476 0.804 1.000
30 | 0.114 0.136 0.548 | 0.148 0.262 0.846 | 0.354 0.590 0.996 | 0.458 0.740 1.000
Sn | 0.040 0.214 0.874 | 0.054 0.476 0.998 | 0.092 0.808 1.000 | 0.092 0.896 1.000
Statistic d,, for Clayton copula

51 0.040 0.292 0.948 | 0.048 0.566 1.000 | 0.054 0.830 1.000 | 0.060 0.922 1.000
10 | 0.040 0.208 0.900 | 0.056 0.448 0.996 | 0.056 0.720 1.000 | 0.042 0.808 1.000
15 | 0.072 0.196 0.844 | 0.030 0.366 0.984 | 0.062 0.632 1.000 | 0.052 0.746 1.000
20 | 0.050 0.132 0.750 | 0.036 0.334 0.974 | 0.058 0.540 1.000 | 0.046 0.638 1.000
25 | 0.046 0.114 0.666 | 0.030 0.288 0.948 | 0.048 0.450 1.000 | 0.064 0.600 1.000
30 | 0.052 0.110 0.608 | 0.030 0.250 0.930 | 0.052 0.414 1.000 | 0.062 0.514 1.000
Sn | 0.018 0.222 0.912 | 0.042 0.502 0.998 | 0.066 0.828 1.000 | 0.058 0.922 1.000
Statistic d,, for Gumbel copula

5| 0.038 0.240 0.924 | 0.038 0.490 0.994 | 0.054 0.758 1.000 | 0.050 0.896 1.000
10 | 0.036 0.188 0.850 | 0.060 0.398 0.988 | 0.064 0.638 1.000 | 0.038 0.786 1.000
15 | 0.050 0.192 0.782 | 0.054 0.318 0.966 | 0.044 0.556 1.000 | 0.060 0.714 1.000
20 | 0.038 0.138 0.686 | 0.048 0.272 0.948 | 0.048 0.480 0.998 | 0.054 0.648 1.000
25 | 0.036 0.118 0.600 | 0.042 0.218 0.898 | 0.050 0.426 0.998 | 0.062 0.580 1.000
30 | 0.044 0.110 0.514 | 0.050 0.212 0.860 | 0.052 0.388 0.994 | 0.048 0.510 1.000
Sn | 0.026 0.242 0.876 | 0.060 0.546 1.000 | 0.060 0.800 1.000 | 0.068 0.910 1.000

wt

Table 6. This table compares the empirical size and power of the test statistics d, and S, for different copu-
las (Normal, Student, Clayton and Gumbel copulas) with estimated marginal distributions, different values of
Kendall’s tau coefficient 7 (7 = 0,0.1,0.25), different sample sizes n (n = 100,200,400, 500), and different values
for the bandwidth k.
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Appendix A. Proofs of Propositions 1, 3, 4, 5, and of Theorem 2

Proof of Proposition 1. First of all, we decompose the test statistic T}, in the following

way:

J 2
= /[01]d< kn u)—l:[uj) duy...dug

_ /Ol]dc,m V2duy . dud—Qn/ Chon(t) [y s

j=1
/[01 (Huj) duy...dug

= Tln - TQn + T3n~

Furthermore, we have
Tin=n / (Chn(W))? duy...duug
[0,1]¢
(%1 Vd S1 Sd
= Col =y — | Cn | —, 0y —
n/[o,l]dvz: (k k) (k k:)
d
H ik Py, r(uj)duy...dug.
Using the definition of binomial distribution, we obtain
— k kY (k k 1 Y 51 84
T =3 () - () B) o () e (G ) ()
X wbitsi (1 — u) k%% duy . du
oo
U1 Vd S1 Sd
= Col— 0, — | Cp | —, ..., —
d
X H (5]) (l;) ﬂ(Uj + Sj + 1, 2k — V; — S5 + 1)
In a similar way, we can show that

_an ZC ( f)ﬁ(ﬁj)ﬁ(vj—i-zk—vj—&-l).

v1=0 vg=1 j=1

This concludes the proof of Proposition 1.
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Proof of Proposition 3. We provide the proof for d = 2. The generalization to d > 2
is straightforward. For a two-dimensional vector u = (uy,uz), we start by the following

decomposition:

/ (C’nk(u) - u1u2)2 du = / (C’nk(u) - C(u))2 du + / (C(u) — uyug)? du
+2 / (Crui(0) — C(w)) (C(0) — wruz) du

= Tl,n + TQ,n + T3,n~

From Janssen et al. (2012) and the continuous mapping theorem we have

n/ (Cr(w) = C(w)” du = 0,(1). (A1)

Furthermore, from Janssen et al. (2012) , we can show that
n / (Cri(0) = C(w)) (C(0) — wruz) du = o,(n). (A2)

Therefore, using the fact that [(C(u,v) — ujuz)?du > 0 and from (A1) and (A2), we
deduce the consistency of T,,.
|

Proof of Proposition 4. Expanding the squared term in the test statistic (10) leads to
the following decomposition:
L, =10 + 12 +1,

with

I = / A,(wdu  and 1P = -2 Crn (W)U,
0,12 [0,1]?

First, by writing
k—1

Ci,n(u) =k Z Tk(vlv’U2)Tk(v,1>Ué)PvlJf—l(ul)Pv{Jc—l(ul)Pvz,k:—l(UQ)Pvé,k—l(UQ)a

v1,v)=0
v2,v5=0
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we deduce that

k—1
LD () = k' D Ti(vr, 02) Ti(vy, v))

v1,v)=0
v2,v5=0

1l
X/o /o Py k—1(u1) Py g1 (u1) Py k—1(u2) Py 1 (u2)dusduy
k-1
=k Z T (v1,v2) Ti(v], v5) Tk (v1, v] ) Tr(ve, vh).

v1,v)=0
v2,v5=0

Second, from the definition of ¢, (.) in Equation (8), we have

vy v
/[01]2@“1 Z Cp ( ! 2)// Ulk mk(u2)du1du2.

’U’U_

As fio1 Poy (w) = Py, x(u)]§ = I{vy = 0} + I{v; = k}, the last integral is equal to 1.
|

Proof of Theorem 1 for d = 2. The following proof corresponds to the bivariate case.
For the more general case d > 2, the proof can be obtained in a similar way. For the

bivariate case (d = 2), we will show that the random variable

['n — 2727[-”71]6'
- 2
21/2\/{ 51,1%2:0 F%(Ul,vz)} _ 4

Top =nk? (A3)

is asymptotically normally distributed. First, observe that dealing with term 7,, in (A3)
is quite tricky since it involves the pseudo-observations Vi, ..., V,. Thus, we consider
Tn = f[071}2{5k7n(U) — 1}2(?1117 where for {[z = (Fl(Xi,1)> FQ(XZ',Q)),

Cen(u Z C, (Ul v2> Ulk( 1)P,, (u2) and C 712H{V <u}.

v1,v2=0
The new term fn is just a version of I,, in which the pseudo-observations Vi, ..., V,, have
been replaced with “uniformized” observations \N/'l, . ,\N/'n. Under the null hypothesis,

V, = (XN/M, 1712) are independent and uniformly distributed random variables.

We now define a new term fnk which is equal to the term in the right hand side of
Equation (A3) after replacing I, by I,. In the following, the proof of Theorem 1 will
be obtained in two steps. In a first step, we show that fnk is asymptotically normally

distributed and in a second step we show that the difference Z,, ;, — i’nk is negligible.
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A.l1. Asymptotic normality of fn,k
Using the decomposition in the proof of Proposition 4, we can obtain the following de-
composition:

fn:fln_‘_-gn_lu

where

n k-1

]1n = k:4n_2 Z Z H{Vz € Ak(Ul, vz)}Fk(vhvl)Fk(vQ,vg)
=1 v,v/=0

Ly = 2k*'n72Y Pu(Vi, V),

i<j

with Pn(\N/Z-,{fj) = Ykl ]I{\Nfz € Ak(vl,vz)}]l{f/j € Ai(v], v5)} Tk (v1, v} )Tk (ve, v5).

v,v/'=0

We start by studying the first term Iy,,. As E (]I{\Nfz € Ak(v1, vz)}) = k72, we get
N k—1
E (Iln> = kzn_l { Z Fi(vl,vl)} .
v1:0
Next, using Lemma 2 in Janssen et al. (2014), we have

k—1/2

dru(l — ) (k™).

k—1
Z Pgl,kq(u) =

U1 =0

Then,
E (I~1n> = gk’n_l +o(kn™h).

Thereafter, as Var( I{V; € Ap(vy,v2)}) = k=2 — k4, we deduce that

Var (En) e I i { kz_:l % (vy, vl)} .

v1=0

Then, from Lemma 5, we can conclude that

Ty =B (Tn) + {1t — B (T1n) } = %kn‘l + Op(n=3/213/2).
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We now turn our attention to the second term fzn Observe that

k—1
E(P(Vi, V) = > B{I{Vie Ay(vr,0)}I{V; € Ax(v], vh)} } Ti(vr,vf)T(v2, )
v,v/=0
k—1 2
= K Z Fk(vlvv/1> ) (A4)
v1,v]=0

where the last equality follows from the independence between V; and \N/'j when ¢ # j.
Using Lemma 4, we obtain E (fgn> = ol
In the following, denote P,(V;, V;) = P,(V;, V;) — k=%, Hence, we can write Iy, — o=l —
2kin~'U,, where U, = n~" D ﬁn(\Nf“{/’])

Let us now show that the random variable U, is a U-statistic. First, by construction,
P,(-,-) is centred and symmetric. Second, P,(-,-) is degenerated, i.e. for any v € (0,1)2,
E (P,(Vi, V;) | Vi = v) = 0. Indeed, denote by (v%,v5) the unique pair of integers (vy, vy)
such that v € Ay (v1,v2). Then, as E (I{V; € Ag(v},v4)} | Vi = v) = k=2, we have:

k—1

E(P,(Vi,Vj) | V,=v) = k2 Z I{v € Ag(vi,v2)} Tk (v1, v})Tk(ve, vh)
v,v/=0
k: 1 2
v/'=0

The latter is equal to k= using Lemma 4. Hence, E (P,(V;, V; )| V;=v)=0.
To show the asymptotic normality of U, we use the following lemma that establishes

the central limit theorem for the U-statistics.

LEMMA 2 (Hall (1984)) Let {V; : i = 1,...,n} be an i.i.d. sequence. Consider the U-
statistic U, = L = 2o1<i<j<n ﬁn(%,{ij where the symmetric variable function P, is cen-
tered (i.e., E[P,(V1,Va)] = 0) and degenerated. Let

0721 = E[ﬁs(Vh \72)}; Hn(Vl, V2) = E[ﬁn({fl, Vl)ﬁn(vh VQ)}.
Then, if

i BIIR(Ve Vo)l 4+ 07 'E[PH(V1, Va)]

n—oco o—%

—0, (A5)

the random variable \/ﬁoglUn converges in distribution to a standard normal.

Now, in order to apply Lemma 2 we need to check if Equation (A5) is satisfied. Hence,

we need to calculate the three quantities involved in that equation. We start with o?2.
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First, recall the definition of P, and observe that

PX(Vy, V) = kf 1{V1 € Ax(v1,2) } T{V5 € Ap(v], 1) } T{ V1 € Ag(wr, ws) }

X ]I{\~/2 € Ak(wll,w;)} L (v1, v]) Tk (v2, v9) T (wr, w)) T (we, wh).

As H{\Nfl c Ak(vl,vg)}]l{\?l € Ak(wi,we)} = 0 unless (v1,v2) = (w1, wz), we obtain
PA(V1, Vo) = 3 T{Vi € Ay(v1,00) }T{ Vs € Ap(v], v) } T} (vn, v)TF (v2, v5).

v,v/=0

Since V; and V, are independent and uniformly distributed random variables, it follows

that

k-1
E{P2(V,,Vq)} = Z E (]I {\71 € Ak(vl,vz)}ﬂ{{& € Ak(’ull,vé)}> T2 (vy, v)) T2 (vg, vh)

v,v/=0
2

k—1
= k_4 {Z Fi(l}l,vg)} . (AG)
v=0

Then, from Lemma 5

o2 = E[PX(V1, V)] — [E(PZ(V1, V2))?

k—1
= Lk {Z Fi(vl,vg)} — k8
v=0

= O(k™). (A7)

Now, focusing on the second term of the numerator in Equation (A5), we show that

PVl = 3 (EIPACV Vol (-BIR (Vi V)
=0

4
_ 4 o~ -
= K0 @E[Pﬁ(vl, Vo)l (k) (~ 1), (A8)
=0
Similar calculations for computing the term o2 leads to the following:

E{P}(V1,Va)} = k= {524 T (v, Uz)}2>
E{PA(V1,Va)} = k{3420 T (v1, v2) }2.

Plug-in the above results into the Equation (A8) and using Equations (A4) and (A6) and
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Lemma 5 allows us to conclude that

k—1
B[Py(V1,Va)] = =3k71% + 6k72{Y_ Ti(v1,02)}

v=0
k—1 k—1
— 4k T (o1, 02) P + kD Th(vr,v2) )
v=0 v=0
— Ok 1), (A9)

The first term of the denominator in Equation (A5) requires more attention. For any

z,7z' € (0,1), we expand the product and show that:
I,(z,2') = E{P,(V1,2)P,(V1,2)} = E{P,(V1,2)P,(V1,2')} — k5.

If we denote Si(a,b) = S5 T'(v, a)T'(v,b), we have
E{P,(V1,2)P,(V1,2)}
k—1

= k2 Z {z € Ap(vy,vh) }{z' € Ax(v],vy)}Tk(v1, v]) Tk (ve, vh) Tk (v1, v )Tk (v2, v5)

v,v/,v'=0

k—1
= k7% ), Nz e Ag(vy,v))}{z' € Ag(vf,v5)}Sk(v], v) Sk(vs, v3),
v/, v’=0

Then,

k—1
E? {Pu(V1,2)Po(V1,2)} = k7' Y7 I{z € A(vq,v5) {2 € Ap(v], 05)}SE(v1, 07) SE (v, v3).

v/ v'=0
Finally, as E{I{V, € A(v}, vb)}{Vy € Ap(v},v4)}} = k=%, we deduce that

k—1 2
E(I2(V1,Vy)) =k~ { Z Sl%(“lﬂ&)} — k12

vl,vgio
=0(k™1?) from Lemma 5. (A10)

Now, from Equations (A7), (A9) and (A10), we have

B[[2(V1, Vo)| + 0B [Bi(V1, V)]

4
On

— 0, as n — oo.

Thus, Lemma 2 applies and we conclude that the term /201U, converges in distribu-

tion to a standard normal. Hence, we conclude the asymptotic normality of fnk
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A.2. Asymptotic negligibility of I, 1 — i'n,k

From Stute (1984) and under H,, we have

Co(u,0) —uv = Cplu,v) —uv — v{Cp(u,1) — u}
—u{Cp(1,0) — v} + &u(u, ), (A11)

where sup,,, 6, v)] = Op(n~%/* loglog(n)).
Write

k
gn = sup Z fn(ua U)Pllu,k(u)Pé%k(U)
WY ly=0

and denote I, = Jio.p2 > & (u, v)dudv, where

n k—1
Jne(u,0) =07 DN " Ni(v1, v2) Poy g1 (w) Py -1 (v) + 1,

=1 v=0
with \;(v1,v2) = I{V; € Ag(vr,v9)} — k' {Vi; € Ap(v1)} — k™ {Va; € Ag(vs)}. Hence,
from Equation (A1l), we obtain

~&r I < /[ Aok n) =12 < &6+ I,

)

If we denote Ay = [ Sk | Py, 1 (u1) Py, i (ug)|dusdus, which is at most O(k), then

I, — I, = Op(n=3/?loglog?(n)k?) and therefore nk=1/2(1, — I,,) = op(1).

Now, we need to show that nk='/2(I, — I,,) is negligible. Since f[071]2 Ik (w, v)dudv = 0

and using similar arguments as in the proof of Proposition 4, we obtain

n

k-1
I, =n2k* Z Z Ai(v1, v2) N (V] v5) Tk (v1, 1) Tk (va, v5) — 1.

1,7=1v,v/=0

Hence, expanding the product Xi(vl,vg)xj(vi,vé) leads to the following decomposition:
I, = I, + S f?(lj), where the five terms 7. (7 = 1,...,5) are computed below. From

Lemma 4, we have

n k—1
f,(ll) = n2k? Z Z I{Vi; € A(v1)}I{Vi; € Ak(v]) Tk (v1,0]) Tk (va, v3)
i,7=1v,v/=0

n k—1

= n2Y N IV € Ap(u){Vi; € Ap(v))},

t,j=1v1,0/=0

=1

31



Similarly,

n k—1
IP = o262 3" 3T I{Vay € Ap(va) }I{Va; € Ap(vh) T (w1, v)) T (va, vh)
i,7=1v,v/=0
= 1.
Furthermore,
N n k—1 _ ~
I = 20727 Y > Vi € Ap(vn) H{Va; € Ag(vh) T (vr, v])T(v2, v5)
1,7=1v,v/=0
= 27
and
N n k—1 _ _
Ir(f) = —2n2%k3 Z Z I{V; € Ap(v1,v2) YI{V1; € Ag(v])} Tk (v1, v]) i (v2, vh)
4,j=1v,v/=0
n k—1 _ _
= —=2n7%K* ) > Vi € Ag(vr, v2) H{Vi; € Ap(v))}Tk(v1,0))
4,j=1v,0]=0
n k—1

= —2n*2k2 Z Z H{Viz S Ak(vl)}ﬂ{%] (S Ak(v’l)}l“k(vl,vi).

i.j=1 01,04 =0

Write 75 = f{i) + ﬂgi), where
n k-1 _
ffi) = —2n_2k2 Z Z H{Vh S Ak(vl)}Fk(vl,vi) = —271_2]432
1=0 v1,0]=0
n k-1 _ _
I) = =40 >0 Vi € Ap(v)Y{Viy € Ap(vh) k(v ).

1<j v1,v7=0

Using similar arguments as in Section A.1, we can show that IV y2= Op(n~1k=3/* +

n~2k?) and

n k—1
= =207 Y YT I{Vi € Ag(vr,v0){Vay € Ag(vy) T (o1, v))Tk(v2, v5)
i,7=1v,v/'=0
n k—1 _ .
= =207k ) > I{Vas € Apl(v2) {Va; € Ap(vy) (w2, v5)

i.5=1 v2,04=0

= 24+ 0p(n 'kt 4 0722,

I

We conclude that nk=1/2 Z?:l I = 0p(1). Hence, nk=Y/2(I,, — I,,) is negligible.
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Proof of Corollary 1. In Lemma 5 of Appendix B, it is shown that there exists a constant
R > 0 such that

E—1
k32 Z Ti(vy,v2)? — R?, as k — oo.

v1,v2=0

An application of Theorem 1 together with Slutky’s Lemma yields to the result.

|
Proof of Proposition 5. We start with the following decomposition:
/ (Enp() — 1)? du = / (En(w) — c(u))? du+ / (c(u) — 1)2 du
+2 / (En(u) — c(w)) (c(u) — 1) du,
=1+ Iop+ I3,. (A12)

First, using similar arguments as in the proof of Theorem 1, we can show that

o —11.d/29—d_d/2
nk /4 (Ilv" L ):opu). (A13)

VR

Second, it was shown in Bouezmarni et al. (2010) that ||cg (1) — c(u)|l0o = 0p(1). We can
then deduce that

nk= 413, = o,(nk~Y4). (A14)

Finally, from (A12), (A13), (A14) and under a fixed alternative, we obtain

—17.d/2
/4 I, —n"'k"?B P
VaRS

Proof of Theorem 2. Using a Taylor expansion of the function g(z) = xlog(x) around

x* =1, we obtain

dn(c) = 1 (ckn(u) —1)?du+ O, (/ d(c;m(u) —1) du)

2 Jo,1p4 [0,1]
1

= -I,+0, (/ (crn(u) —1)° du) :
2 [0,1]¢4

Using Proposition 3 in Bouezmarni et al. (2010) and the fact that

/ (chn(u) — 1)?du
[0.1]4

<Lox sup loga(u)— 1]
uelo,1]¢
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we conclude that the asymptotic normality of d,(c) is similar to that of %In, which con-
cludes the proof of Theorem 2.
|
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Appendix B. Technical computations

B.1. Some preliminaries

We begin this section by establishing some properties of the function I'(-,-). Before,

observe that:

Fk(vl77}2) = / Pvlk 1 vzk 1( )du

k—1\[k—-1
= ( )( >ﬁ(vl+02+1,2]€—1—v1—02)
(%1 (%)

{(1{7—1)'}2 (Ul—|—’02) (2]@‘—2—’01 —Uz)'
(2% — 1) {(Ul)!(w)!(k—1—v1) (k—1—v2)'}' (BL)

LEMMA 3 The function Tx(-,-) satisfies:

(1) max Fk(vhvg) Ci(v1,v1), for fized vy (0 < vy <k —1);
(2) max Fk(vhvz) (2k — 1)t

0<v1,v2<k~1

Proof. To show Item (1), we calculate the following ratio

Tk (v1,v2) B (va+1) (2k—2—v; —v9)
Tr(vi,v2+1) (v +wve+1)  (k—1—1vy)
—02 +v9(2k —3 —vy) + 2k — 2 — ol
—v%—i—vg(k—Q—vl)—i—(k‘—1)(1}1—&-1)'

Hence, the ratio is less than one, which means that T'y (v, v2) < I'k(v1,v2 + 1), if and only

if (k—1)va < kvy — (k — 1). In other words, if and only if vy < 2oy — 1. Item (1) is

therefore proven since v, and v are between 0 and k— 1. We now show Item (2). Similarly,

[ (v1,v1) - (v1 +1)2 (2k — 2 — 2v1)(2k — 3 — 201)
Fk(v1+l,v1+1) N (2U1+2)(2U1+1) (/{2—1—1}1)2
(v +1) (2k —3 —2vy)
(2v1+1) (k—1—wv)
—2v% + vy (2k — 5) + 2k — 3
202+ (2k —3)+k—1"

Again, the latter is less than one provided 2v; > k — 2. It follows that if v; > %, then
the maximum is achieved at T'y(k — 1,k — 1) = (2k — 1)~!. Otherwise, the maximum is at

['x(0,0) = (2k — 1)~ L. [

B.2. Computation of Z I‘k(vl,vz) and Zvl _o T'k(v1,v2)

The results of this section are given in the following lemma.



LEMMA 4 The function Tk (-,-) satisfies:

(1) Sh 1 Ty(vi,v2) = k71, for any fized va;
(2) Zv:o Fk(U1,Uz) =1.

Proof. Recall that T'y(vy,v9) = f[O,l] Py, k—1(w) Py, p—1(u)du. Using the fact the sum of the

binomial probabilities is equal to 1 and because [jg 1 Poy k-1 (u)du = k=, we deduce that

k—1
S Ti(vn, ) = /01]{21%1“ } Py -1 (w)du

v1=0 v1=0

= / Py g1 (u)du = k1.
[0,1]

Then Item (1) is proved. Item (2) is a direct result from (1).

B.3. Computation of Z"f;; I‘{c('vl, v2), J = 2,3,4 and Zﬁ;é S2(v1,v2)
The following lemma provides the orders of sums that involve either I'y(-,-) or Sk(-, ).
LEMMA 5 The functions I (-,-) and Sk(-,-) satisfy:

(1) There exists a constant R > 0 such that k¥ 82012 (01, v9) — R?;
(2) V4T (v1, v2) = O(k =3 log(k));

(3) Zk o i(v1,v2) = O(K™/?);

(4) S4=0 Si(v1,v2) = O(K™7/?),

As the proof of lemma is rather long and technical, it is divided into subsections.

B.3.1.  Proof of Lemma 5-(1)

The proof is done in two steps. First, in Part I we will show that Zk L2 p(v1,v9) =
O(k=3/2). In Part II, we will demonstrate that there exists a constant C' > 0 such that
ﬁ;%] 2 (v, v9) > Ck=3/2.In a final part, the proof of Item (1) will follow from an appli-

cation of the monotone convergence theorem.

Part I: First, from the symmetry of I'y(, ), we have

[551]
ZFk Ul,Ug S 2 Z Fk Ul,’l)g < 4 Z Fk U171}2)
v=0 v1 <vo v1<va

where [.] denotes the integer part.



As a starting point, take L as the smallest integer such that 2% > /& — 1. Write ¢; = 27,
Aj = {(v1,v2) € [0,2L] : ¢j < va < gj+1 and v1 < vo}. Hence, from Lemma 3, we have
Max (y, vy)ed, L (v1,v2) = Ti(qj, q5) = vk(32y), where v (-) is defined in Lemma 6. Using

Lemma 6, we have

1 1
qj - e2-1 /k — 1 - e T2(k—1) ﬂ

—i/2
-1 = 2k — 1)y /mq;(k —1—q;) (276—1%/?><2 ’

I/k(

where the last inequality follows from the fact that k —1 —¢; > k— and the definition of

g;. Since the number of elements in A; is bounded by (g;j+1 — qj) X gj+1 = 2% 2% we have

L 1
2 L 4e6(k—1)

4@6(k 1) 9 . L+1
Z Fk(’UhUQ) WZ2J X 2 ]ZW{Q T —1}

v1<v2 Jj=1

As 20+ — 1 <4 x 2F = 4y/k — 1, we deduce that

2L T
k—1) _
Z I2(01,09) < 16e5¢+-1\/k 1'
(2k —1)%m

v1<v2

Next, take Lo as the smallest integer such that 22 > % Write again ¢; = 27, 4; =

v2—vl
2

{(vy,v9) € [0,282] : ¢; < vi < gjq1,01 < vg and < \/@} In a similar way and from

Lemma 6, we have

1
4e6(k—1) Lo

Lo
z Z T3 (vy,v9) < WZ\/‘E(%—H_%)X%—l

J=L (vi,v2)€A; j=1

A

See(k i) L2/2

S @ ZQJ

8T
= @onm 2T

Hence,

L 1
- 1651 v/k — 1
I} < :
Z Z k(v 02) < (2k — 1)27

J=L (v1,02)€A;

Now, let L be the smallest integer such that oLi > 2q1/ and denotes a(z) 4 1/ 2 We
consider A§-) = {(01,’02) € 10,22]: ¢; <y < gji1,v1 < vp and a( ) < 1)2 1;1 < a(fﬂ)}

Then, for any (vy,vs) € A§-£), we have

[ (vi,v2) < Ti(g; — aﬁa%‘ + O‘g)'



Hence, from Lemma 10 with a = and o =

(k 1)

1
1 el2k-1)  _y/9 _2f
[i(vi,v9) < -1/

Sok—1 27 U

Finally, we have

L L; 2
25520 2020 Xy wyea® Lil(vr,v2)

1 eG(k n Lo L ¢

1) (O —1 —2Z
= (2k —1)2 4rm z%ezqf“_% o j))qjle °
j= 0

1 66(k 1) Lo ’ 1/2 72z
T @k-12 4n ZZZ

j=L (=0

1 eﬁ %2 4 Z ) 2!
< X <2 27 5 X 2°e” 3
(2k —1)%2 4rm = >0

1 D o
= @ <2 - {ZQ% }

£>0

4
Since >~ 20e% converges, there exists a constant S such that

Lo L _ 1
A 1 est-D\/k — 1
ZZ Z FZ(01702> (2]{71) x S.

, T
T=E =0 (vy 05)eAl)
This concludes Part 1.

Part II: Following similar argument as the one used in Part I, take L

as the greatest integer such that 2F < % From Lemma 3, for any

¢ < wvi < @j1, we have T'y(vi,v1) > Tr(gj+1,¢41). We consider A; =
{(Ul,’UQ) [0,2F] : ¢; < w1 < gjy1,v1 < 02 and v2—vl ”1 < \/@} , where ¢; = 27. Then, from

Lemma 11 with p = 1, for any (vi,vs) € Aj, we obtaln

2 -1
3\3 ,—2  ma
(1)°e 3 emFT g

r > /2
Ko ve) 2 S g

1/2

Since A; contains at least (gj+1 —¢;) X ¢;'~ = 231/2 elements, we get

4

L PPN
2 ()% €2 e®D 8o (j+1
Z Z Fk(vlva) > (2]{3—1)2 A7 2222 A

Jj=1

ER-
() 6266(k1)

1
> -
= 20k—12 4r

{2L/2+1 o 1}

4



This completes the proof because 24/2t1 > \/k — 1.

B.4. Proof of Lemma 5-(2)-(4)

First, from the symmetry of I'x(,-), we have

[%53]

k-1 k-1
Z Fi(vl,vg 2 Z Fk 1)1,1}2 < 4 Z Fk 1}1,1)2)
v1,v2=0 v1<vg v1<vg

As a starting point, take L as the smallest integer such that 2° > % Write ¢; = 2/ and
consider the set A; = {(v1,v2) € [0, 217 : qj <o < gjg1,v1 < v and 25 < \/qj} Hence,
). With

from the proof of Lemma 3, we obtain max(y, v,)ea, ['x(v1,v2) = Tk(qj, ¢5) = va(

the help of Lemma 6, we have

Vk( 4 )S ek — 1 < €201 /2 X 29,
E=1)7 @k =1)yfrg(k—1—g;) ~ Gk =DV

where the last inequality follows from the fact that k —1 —¢; > % and the definition of
g;. Since the number of elements in A; is bounded by (gj41 — ¢;) X /Gj+1 = 2 * 2%, we
have

L 3 4(k 4(k—1) Seﬁ
Z VFk(UhUQ) < ( 2 — )57 < ZQ = @k 1pn x L.

As L <log(k — 1) + 1, we deduce that
L 864(k )
Z Z I} vy, v2) < W{log( 1)+ 1}

We are now ready to use the result developed in Lemma 10. Let ij be the smallest
integer such that oLi > 2q1/ , and write a() = 2f 1/2, y) = {(v1,v2) € [0,212] : ¢; <

v1 < @j41,v1 < v and Oz;é) < % < 045“1)}. Hence, for any (v, vs) € Ay), we have

[y (v1,v2) < Tilgs — O‘ﬁ’qf + O‘g)'

£
Hence, we can use Lemma 10 with a = ﬁ and a = a(,?il) = % to obtain

1 el2(k 0 1/2 ot

=2k -1 271 -

Tk(vg,v9) < e’ T.

Finally, we have



L L; 3
Ej:l 2o 2(01702)64;@) I3 (v1, v2)

1 emn L L (4+1) MO
< (2k — 1)3 2373/2 Z;z (gj+1 — 4)( a;)g; e
J=1/¢=0
L,
1 4(k 1)
= x L % 225
3.3/2
(2k — 1)3 2373/ P

14
Since 3~ 2%e % converges, there exists a constant S such that

Lj 1 e4(k 1)

L
Z Z Fk(vl,y2)3 < (Qk- — )3 23.3/2 {log( ) + 1} x S.

j=14=0 (Ul,vg)EA;e)

This concludes the proof of Item (2). In order to show Items (3) and (4), we use very

similar techniques as in the proof of Item (2).

B.5. Technical Lemmas used in the proof of Lemma 5

In the following, we use the well-know inequality for k factorial:
k\" \"
ok (e) < K < Vork <e> o1, (B2)

LEMMA 6 Let 0 < a <1 such that a(k — 1) € N. Write vp(a) = I'r(a(k — 1), a(k — 1)).

Then, we have

—1 1
e 12(k—1) 612(k—1)

N (e [ S I R C TS YW errg ey g

Proof. First, using Equation (B2), we deduce that:

92k ¢ 7ir ok\  2%kemm
Z < <Z (B3)
vk k vk

(Qa(kfl)) (2(17@(1@71))

Next, notice that vg(a) = “UE;’? 1)Elgfk73(1]§51) . Hence, from Equation (B3), we have
- k—1
22a(k71)eﬁkl,]) 2@(]{} _ 1) 22“(k*1)em
ma(k—1) — \a(k—-1) ra(k—1) '

22(1_a)(k_1)6m _ 21 —a)(k—1) - 22(1—a)(k—1)6m
vrl—a)(k—1) — (A —-a)k-1) Vril=a)(k=1)



and

-1
7k — 1)2 20 Demms < (2%_11)) < \/r(k — 1272k 7w (B4)

From the three last equations we obtain

e (o) (i) ¢TI
Va-aG-0" () T Vmi-aG-1
Hence,
B 1
et ¢ T20=T)
< yla) <

(2k — 1)y/ma(l —a)(k — 1) (2k —1)/ma(l —a)(k — 1)

This concludes the proof.

The next Lemmas, 7, 8 and 9 will be useful to prove Lemmas 10 and 11.

LEMMA 7 Let 0 < a,b < 1 such that a(k — 1) € N together with b(k — 1) € N. Write
vi(a,b) = Tx(a(k —1),b(k — 1)). Then, we have

1 e [(a+b)(2—a—b)

2% —12/7(k — 1)\ a(l —a)b(1—0)

Uk(a7 b) < Vk(aa b)7

and

1 e [(a+b)(2—a—0)

S 2%k —12y/n(k— 1)\ a(l—a)b(1—0b)

222 a1 L Jath _ja+b k-1
z%mw>—{(1_ax1_b>} {<><13>} '

Proof. Recall that

vi(a,b) <

Uk(aa b)7

where

(I (G )
Tp(alk — 1),b(k — 1)) = —2= )
(Zk - 1) (2(1i11))

Using Equation (B2), we deduce that

il {«wa“}“l<(w+ww—n)< T {m+m“*F*
1) B ) /T 1)

aphb _ @ aphb
e (k1) L 0% alk -1 ok 1) L@




Similarly, we have

(2—a—b)(k 1) em (2 —a—b)>ab k—1

<(2—a—b)(kz— 1)) B e TTE BT { (2 —a—b)2ab }’“‘1
1—a)k—1) )= —o( 1—a)d-a) (1 — p)L-b '
(I—a)(k-1) \/QW%@,D (I—a)t=2(1-b)

Putting the two last equations together with Equation (B4) leads to

; 1 e [(a+b)(2 —a—b>{2—2<2—a—b)2}’“ L
vi(a, )—Qk—uﬁ a(l—ab(l—b) | (1—a)1—b) ( b ’

and

and

1 T=D (a+b)(2—a—b) (2722 —a—-b2 """ [ (55" e
vi(a,b) < < a4 a a _\2—a=b/
2k —12./n(k—1)\ a(l —a)b(1-0b) {(1a)(1b)} {( b} ’

which is the desired result.

LEMMA 8 Let ag = a(l — a)a, with o € (0,1). Then, we have

(at ) { 1 }1—0{ 1 }“{1&@ 1o a)a}““““)
vpla+ag,a—a,) = —— .
g 1 — a?a? 1—a?(1 —a)? l+aa 14 (1—-a)a

Proof. The lemma can be proved by some algebra calculations. [ |

For the next lemma, we need the following notations:

a?a?(1 — a){l — 2aa + o?a?}
(1+2aa)(1 — a?a?)

p(a, a) =

and T'(a,a) = Ty(a, )T (1 — a, )T (a, a)T5(1 — a, o) where

a2a?

T_A2.2 1 — - a2a2( —a)
Tl(a7 OZ) = (1 - 062a2) 1—a2v2 and TQ(CL,O&) — ( aQ, —207a"(1-a)

1+2aa
1+ aa

LEMMA 9 Let ay = a(l — a)a, with a € (0,1). Then, we have
T(a, a)e=PEr 2100} < (4 4+ an 0 — ag) < e~ (Plac)tp(-a.c)

Proof. In the following we use the well-know identity

e
1+

1\"



Similarly, we deduce

e 11— l) < (1 - 1>n <e !

n n

Indeed, taking any real number ¢ € (1 — %, 1), we have

Hence,

1 1 1 n
/ 1dt§/ t—ldtgf dt,
1-1 1-1 1-in—1

which leads to

n—1

1 1 1 1 1 =
—<—=logll—-—)< and em > [(1——] >en1.
n n

On one hand,

On the other hand,

(en;}l)n—l < (1 B i)ﬂl

Multiplying the latter equation by (1 — %) entails Equation (B4). Next, write

a2a2

) ) 1\ Tata?
I QU (b TR - .
(o (fe™)

Using Equation (B5), we have

012(12(17(1) 1 (1—0,) a2a2(17a)
Ti(a,a) x e 1702 < & ————— < e 1-a%a? |

1 — a2a? -

Similarly, we obtain

M 1 a o2a(1-a)?
Ti(l —a,a) xet—?0-02 <& —— < el-a2(1-a)?
( ) 1—a2(1—a)?



Finally using Equation (B6), we get

72a2a2(17a) 1 — Qaa aa’(lia) 72a2a2(17a)
TQ(a, Oé) X e 14+2aa < S e 142aa
I+aa
720¢2a(17a)2 1 — a(l — a) aa(l_a) 720(2(1(17(1)2
T2(1 — a7 a) X e 1+2a(l—a) S P < e 1+2a(l—a) .
1+ a(l—a)

Hence, multiplying the previous equations and using Lemma 8 yields to

T(a,0)e” P@)+TPU=0} < 4 (4 4 a,, a0 — o) < e~ Ple)FP(I—aa)}

where p(a,a) = a2a2((11;22;1{)1(_130;%2%2a2} and T'(a,a) = Ti(a,)T1(1 — a,a)Te(a, a)Ta(1 —

a,«). This completes the proof.
|

The next two lemmas are useful to prove Lemma 5

LEMMA 10 For any a € (0,%) and o € (0,1), write v¥(a) = [a £ aa(l — a))(k — 1)].

Then, we have

1 e TIOD
< a
2% —127(k - 1)

Proof. Lemma 10 is a consequence of Lemmas 7 and 9 together with the fact that p(1 —

a,a) > %oﬁa and p(a,a) > 0. [ ]

(l(!2
Lr(v(a), v (a) ST,

LEMMA 11 For any a € (0,%) and o € (0,1), write v¥(a) = [a £ aa(l — a))(k — 1)]. If
there exists a constant p > 0 independent of k such that (k — 1)a?a < p, then

2%  10p o1
{%} Sems Tt ~1/2.
2%k—1 2 /a(k 1)

Proof. When (k — 1)a*a < p and a € (0,1/2), one has p(a, ) < 2p together with p(1 —
a,a) < 2p. Moreover, we obtain T (a, o) > {3}/3 Ty((1 — a),a) > {3}*/3, Th(a,0) > 1

and T5(1 — a, ) > 1. The result follows from an application of Lemmas 7 and 9. [ |
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