- 1 Distyly supergenes as a model to understand the evolution of genetic architecture.
- 2 Genetic architecture, the relative positions of genes across the genome, can appear random with
- 3 genes scattered without regard to function, but evidence suggests that it is shaped by evolution. In
- 4 particular, the evolutionary trajectories of functional traits can both be influenced by and influence
- 5 their underlying genetic architecture. Where multiple loci contribute to local adaptation, coadapted
- 6 gene complexes can form that consist of combinations of alleles whose interactions have been
- 7 shaped by selection to optimize trait expression (Prakash and Lewontin, 1968; Allard et al., 1972).
- 8 Coadapted gene complexes, however, are vulnerable to disruption by recombination following gene
- 9 flow from outside the zone of local adaptation if different zones have distinct sets of alleles. The
- 10 power of recombination to disrupt allelic combinations is reduced if loci are situated in close physical
- 11 proximity to each other in the genome. Models of the evolution of genetic architecture show that
- 12 divergent gene clusters can emerge under selection with gene movement and turnover across the
- 13 genome (Yeaman, 2013; Lindke and Buerkle, 2015). A growing body of empirical evidence of
- 14 clustered genomic architectures underlying adaptive traits supports these ideas (Table 1). The extent
- 15 to which adaptation avails of pre-existing genetic architecture or whether genetic architecture
- 16 evolves in response to selective pressure is an open question, however. Answers will come from
- 17 systems where the genetic architecture underlying an adaptive trait has important consequences for
- 18 expression and function.
- 19 The supergenes that control expression of distyly are a compelling example of the importance of
- 20 genetic architecture for the expression and evolution of an adaptive trait. Distyly is a floral
- 21 polymorphism with two floral morphs. Tristylous species with three floral morphs are also known
- but the extra complexity of tristylous systems is not considered further in this essay. In distyly, the
- 23 stigma and anthers are separated by length differences within flowers but the length differences are
- switched in the other floral morph. These floral organ length differences favour reciprocal pollen
- 25 transfer between morphs, thereby promoting disassortative pollen transfer and reducing pollen
- 26 wastage (Lloyd and Webb, 1992). In addition to the minimum requirement of different style and
- 27 filament lengths, or reciprocal herkogamy, in each floral morph, the distylous flowers often also
- 28 show intra-morph-incompatibility and differing ancillary pollen and stigma characteristics (Lloyd and
- 29 Webb, 1992).
- 30 Classical genetic studies across several species show distyly to be under the simple genetic control of 31 a single diallelic locus (Charlesworth and Charlesworth, 1979; Barrett and Shore, 2008). The two 32 alleles interact in a dominant-recessive manner so that heterozygous individuals express one flower 33 morph and recessive allele homozygotes express the other morph. This mode of inheritance insures 34 that inter-morph crosses will generate equal morph proportions of progeny as favoured by negative 35 frequency-dependent selection to maximise mate availability. This simple genetic basis disguises an 36 interesting genetic conundrum: how can a single locus be responsible for the multiple distinct floral 37 traits that typically distinguish the different floral morphs? This is solved by the presence of a 38 supergene consisting of multiple highly-linked genes with morph specific alleles enabling the 39 multiple traits comprising each floral morph to be inherited as a single unit (Charlesworth 2016). 40 Large non-recombining regions at supergenes have been identified in some distylous species (> 610
- 41 kb in *F. esculentum*; Yasui et al., 2012, 278 kb in *P. vulgaris*; Li et al., 2016).

- 42 Far from being an evolutionary curiosity, the phylogenetic distribution of distyly suggests as many as
- 43 28 independent evolutionary origins. Corroborating this, different candidate genes for distyly have
- 44 been identified in different plant families. Five genes: *GLO^T, CYP^T, CCM^T, PUM^T and KFB^T*, have been
- 45 identified at the newly sequenced *Primula vulgaris S* locus (Li et al., 2016; see also Nowak et al.,
- 46 2015; Huu et al. 2016). Of these genes, $GLO^T CYP^T$ have been found to control anther position and
- 47 style length, respectively. Other candidate genes have been identified in distylous species from other
- 48 plant families: TSS1 in Linum grandiflorum (Linaceae; Ushijima et al., 2012), S-ELF3 in Fagopyrum
- 49 esculentum (Polygonaceae; Yasui et al., 2012), and TsSPH1 in Turnera sublata (Turneraceae; Labonne
- 50 and Shore, 2011).
- 51 Genetic architecture therefore plays a central role in the expression and function of distyly, but how
- 52 does it evolve? Two alternative evolutionary scenarios are possible. Scenario 1: A pre-existing
- 53 genetic configuration facilitates the evolution of distyly. The minimum requirements for the
- 54 establishment of a distyly supergene involve the chance co-location of two loci influencing style and
- 55 filament length respectively. Selection against recombination between this pair of loci could lead to
- 56 a supergene zone of low recombination, "trapping" neighbouring loci that could then be recruited to
- 57 further refine floral form. Scenario 2: Genetic architecture evolves subsequent to the establishment
- of distyly. In this scenario, the recruitment of genes by translocation into the supergene zone allows
- 59 the evolution of increasingly complex floral polymorphisms to maximise the efficiency of cross-
- 60 pollination. Empirical evidence supporting scenario 1 comes from the analogous situation of the
- 61 gradual expansion of sex determining regions and sex chromosomes through the suppression of
- 62 recombination (Charlesworth 2016) and co-segregation of functionally unrelated traits such as the
- 63 *hose in hose* and *oakleaf* mutants reported for *P. vulgaris* (Li et al., 2016). However, as floral
- 64 polymorphisms become increasingly elaborate, it seems unlikely that all the functional loci involved
- 65 owe their presence to chance juxtaposition prior to the evolution of distyly.
- 66 The near future of heterostyly research will look beyond identifying individual loci underlying
- 67 different floral morph phenotypes in individual species and their close relatives and will move
- 68 towards characterizing the entire supergene structure of distylous species from multiple
- 69 independent origins. Within-family analyses will be able to track the evolution of supergene
- structure itself by determining the order in which genes are recruited to distyly function (Figure 1).
- 71 Scenario 1 will be supported if the S locus genes contributing to distyly are also physically close in
- 72 outgroup taxa that diverged before the origin of distyly. Scenario 2 will be supported if more derived
- family members show progressively more S locus genes than more basal members and that these
- 74 genes were recruited to distyly function through translocation.
- 75 Plant mating systems frequently transition from outcrossing to selfing, which in this case involves
- 76 reversion of distyly to homostyly (Barrett and Shore, 2005). Several examples of loss of distyly will
- 77 likely be present in large taxonomic samples (Sakai and Wright, 2008; McDill et al., 2009). Study of
- these transitions and the subsequent decay of supergenes will provide insight into the selective
- 79 forces that once maintained supergene architecture. Loss of gene function, resumption of
- 80 recombination, and supergene restructuring are some of the potential outcomes following loss of
- 81 distyly. But which of these processes is the typical initial trigger for loss of distyly?
- 82 The study of distyly across multiple evolutionary scales will be invaluable to our understanding of the 83 evolution of co-adapted genomic islands more generally. Independently evolved distyly systems

- 84 represent independent evolutionary experiments that can be compared and contrasted. Large
- 85 genera with a mix of homostylous and distylous species such as *Psychotria* (Rubiaceae) might be
- useful for such studies (Sakai and Wright, 2008), while herbaceous genera such as *Primula* or
- 87 *Turnera* are more experimentally tractable. Between-family comparisons would provide insights into
- 88 general mechanisms by which recombination is locally suppressed and allelic dominance achieved.
- 89 Intriguingly, recent findings in *Turnera* and *Primula* indicate that distyly genes are hemizygous with
- 90 different morph types resulting from the presence or absence of a single supergene haplotype
- 91 (Labonne and Shore, 2011; Nowak et al., 2015; Li et al., 2016). A single morph-specific supergene
- 92 haplotype solves both the problem of recombination between different morph supergenes and the
- control of dominance interactions; the dominant phenotype being conferred by supergene
 presence. It remains to be seen how general a solution to distyly genetic architecture this might be.
- 95 References
- ALLARD, R. W., G. R. BABBEL, M. T. CLEGG, AND A. L. KAHLER. 1972. Evidence for coadaptation in *Avena* barbata. Proceedings of the National Academy of Sciences, USA, 69: 3043-3048.
- 98 BARRETT, S. C. H., AND J. S. SHORE. 2008. New insights on heterostyly: comparative biology, ecology
- 99 and genetics. In V. E. FRANKLIN-TONG [ed.], Self-incompatibility in flowering plants: evolution,
- 100 diversity, and mechansims, 3-32. Springer, Berlin, Germany.
- BERGERO, R., AND D. CHARLESWORTH. 2011. Preservation of the Y transcriptome in a 10MY old plant sex
 chromosome system. *Current Biology* 21: 1470–1474.
- 103 CHARLESWORTH, D. 2016. The status of supergenes in the 21st century: recombination suppression in
 104 Batesian mimicry and sex chromosomes and other complex adaptations. 9: 74-90.
- HOOD, M. E., AND J. ANTONOVICS. 2004. Mating within the meiotic tetrad and the maintenance ofgenomic heterozygosity. *Genetics* 166: 1751–1759.
- 107 HUU, C. N., C. KAPPEL, B. KELLER, A. SICARD, Y. TAKEBAYASHI, H. BREUNINGER, M. D. NOWAK, I. BÄURLE, A.
- HIMMELBACH, M. BURKART, AND T. EBBING-LOHAUS. 2016. Presence versus absence of CYP734A50
 underlies the style-length dimorphism in primroses. eLife 5:e17956.
- 110 LABONNE, J. D. J., AND J. S. SHORE. 2011. Positional cloning of the S haplotype determining the floral and
- incompatibility phenotype of the long-styled morph in distylous *Turnera subulata*. *Molecular Genetics and Genomics* 285: 101-111.
- 113 LI, J., J. M. COCKER, J. WRIGHT, M. WEBSTER, M. MCMULLAN, S DYER, D. SWARBRECK, M. CACCAMO, C. VAN
- 114 OOSTERHOUT, AND P. M. GILMARTIN. 2016. Genetic architecture and evolution of the S locus supergene
- 115 in *Primula vulgaris*. *Nature Plants* 2: 16188.
- LLOYD, D. G., AND C. J.WEBB. 1992. The evolution of heterostyly. *In* S. C. H. BARRETT [ed.] Evolution and
 function of heterostyly, 151-178. Springer, Berlin Heidelberg, Germany.
- 118 MCDILL, J., M. REPPLINGER, B. B. SIMPSON, AND J. W. KADEREIT. 2009. The phylogeny of Linum and
- 119 Linaceae subfamily Linoideae, with implications for their systematics, biogeography, and evolution of
- 120 heterostyly. *Systematic Botany* 34: 386-405.

- 121 NOWAK, M. D., G. RUSSO, R. SCHLAPBACH, C. NGUYEN HUU, M. LENHARD, AND E. CONTI. 2015. The draft
- genome of *Primula veris* yields insights into the molecular basis of heterostyly. *Genome Biology* 16:12312.
- 124 PRAKASH, S., AND R. C. LEWONTIN. 1968. A molecular approach to the study of genic heterozygosity in
- 125 natural populations. 3. Direct evidence of coadaptation in gene arrangements of *Drosophila*.
- 126 *Proceedings of the National Academy of Sciences, USA*, 59: 398-405.
- RIESEBERG, L. H., C. VAN FOSSEN, AND A. M. DESROCHERS. 1995. Hybrid speciation accompanied by
 genomic reorganization in wild sunflowers. *Nature* 375: 313-316.
- 129 SAKAI, S., AND S. J. WRIGHT. 2008. Reproductive ecology of 21 coexisting *Psychotria* species
- 130 (Rubiaceae): when is heterostyly lost? *Biological Journal of the Linnean Society* 93: 125-134.
- 131 SWAMINATHAN S., D. MORRONE, Q. WANG, D. B. FULTON, AND R. J. PETERS. 2009 CYP76M7 is an
- entcassadiene C11 α -hydroxylase defining a second multifunctional diterpenoid biosynthetic
- 133 gene cluster in rice. *Plant Cell* 21: 3315e3325.
- TWYFORD A. D., AND J. FRIEDMAN. 2015. Adaptive divergence in the monkey flower *Mimulus guttatus* is
 maintained by a chromosomal inversion. *Evolution* 69: 1476-1486.
- 136 USHIJIMA K., R. NAKANO, M. BANDO, Y. SHIGEZANE, K. IKEDA, Y. NAMBA, S. KUME, T. KITABATA, H. MORI, AND Y.
- 137 KUBO. 2012. Isolation of the floral morph-related genes in heterostylous flax (*Linum grandiflorum*):
- the genetic polymorphism and the transcriptional and post-transcriptional regulations of the S locus.
- 139 Plant Journal 69: 317-331.
- 140 YASUI Y., M. MORI, J. AII, T. ABE, D. MASUMOTO, S. SAT, Y. HAYASHI, O. OHNISHI, AND T. OTA. 2012. S-LOCUS
- 141 *EARLY FLOWERING 3* is exclusively present in the genomes of short-styled buckwheat plants that
- 142 exhibit heteromorphic self-incompatibility. *PLOS ONE* 7: 1-9.

143

144 Table 1. Adaptions influenced by their underlying genetic architecture.

Genetic architecture	Example
Functionally linked gene	Some diterpenoid and triterpenoid biosynthetic pathways in rice
cluster	(Swaminathan et al. 2009)
Chromosomal	Ecologically distinct parent and hybrid species in sunflowers
rearrangement	(Reiseberg et al., 1995)
Chromosomal inversion	Life history and ecological differences in monkeyflowers (Twyford and
	Friedman, 2015)
Sex determining	Dioecy, separate male and female individuals in campion (Bergero and
chromosome/region	Charlesworth, 2011)
Centromeric region	Sexual spores containing both mating types in anther smut fungus
	(Hood and Antonovics, 2004)

- 147 Figure 1. Distyly evolution involves the recruitment of linked genetic loci to a non-recombining
- 148 supergene. Legend. Black lines depict evolutionary diversification within a family resulting in species
- 149 A to G at the tips of the phylogenetic tree. Coloured images represent floral structure in each species
- 150 with blue representing petals, yellows and oranges representing stamens and pollen, and greens
- 151 representing pistils. Letters along the phylogenetic tree branches represent genetic loci involved in
- 152 the distyly phenotype. Species A shows an ancestral homostylous phenotype. Species B shows an
- approach herkogamy polymorphism with differences in female (*F*) organ length. Species C shows
- with additional reciprocal changes in male (*M*) organ length. Additional elaborations to distyly are
- then possible such as self-morph incompatibility (species D; gene I), pollen size (species E; gene P), and floral organ repositioning (species F; gene R). These traits could evolve in any order but their
- 157 controlling loci must be linked to the supergene to be associated with distyly. Species G indicates
- that evolution is not necessarily directional and distyly can also be lost.

159