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ABSTRACT

We present Spitzer Infrared Array Camera photometric observations of the ultraluminous X-ray source (ULX, X-1)
in Holmberg IX. We construct a spectral energy distribution (SED) for Holmberg IX X-1 based on published
optical, UV, and X-ray data combined with the IR data from this analysis. We modeled the X-ray and optical data
with disk and stellar models; however, we find a clear IR excess in the ULX SED that cannot be explained by fits
or extrapolations of any of these models. Instead, further analysis suggests that the IR excess results from dust
emission, possibly a circumbinary disk, or a variable jet.
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1. INTRODUCTION

Ultraluminous X-ray sources (ULXs) are unusually bright
X-ray sources, with LX>1039 erg s−1, which is approximately
the Eddington limit for a 10Me object (e.g., Feng &
Soria 2011). Even though ULXs were discovered roughly 3
decades ago, the underlying mechanism that produces the
powerful X-ray emission in many of these objects remains
uncertain. However, after years of multiwavelength observa-
tions, only a few ULXs remain strong candidates for the
intermediate-mass black hole (IMBH) scenario, such as HLX-1
in the galaxy ESO 243-49 (Farrell et al. 2009; Webb
et al. 2012) and M82X-1 (Strohmayer & Mushotzky 2003),
while many others show indications of super-Eddington
accretion and/or beaming from a stellar-mass black hole
(e.g., Stobbart et al. 2006; Poutanen et al. 2007; Berghea et al.
2008; King 2008; Soria & Kuncic 2008; Gladstone et al. 2009;
Liu et al. 2013; Sutton et al. 2013; Motch et al. 2014; Weng
et al. 2014; Middleton et al. 2015) or a neutron star (Bachetti
et al. 2014). Some galactic binaries are known to show super-
Eddington luminosities, such as GRS1915+105 (Fender &
Belloni 2004) and V4641Sgr (Revnivtsev et al. 2002), but not
persistently as ULXs do. However, with the exception of a few
distinct cases (see Liu et al. 2013; Middleton et al. 2013; Motch
et al. 2014), conclusive evidence on the true nature of many
ULXs remains unclear.

The ULX in Holmberg IX (Ho IX X-1 from now on) is one
such enigmatic source. The ULX, also known as Holmber-
gIXX-1 or M81X-9, has been well studied in the X-rays and
optical since its discovery by the Einstein Observatory
(Fabbiano 1988). In this paper we assume that the ULX is
located at a distance of 3.6 Mpc (Gerke et al. 2011). Perhaps
one of the most notable features of this ULX is the massive
nebula in which it resides. Stretching 300 pc×400 pc in size,
the nebula was first discovered and associated with the ULX by
Miller & Hodge (1994) and La Parola et al. (2001),
respectively. The ultimate power source for the bubble nebula
has been a matter of some debate. Some explanations for its
origin include (1) the combined strength of multiple O stars and

supernovae from the OB association in close proximity to the
ULX, (2) a large hypernova event, or (3) winds and/or jets
emanating from the ULX (e.g., Pakull & Mirioni 2002, 2003;
Ramsey et al. 2006; Abolmasov et al. 2007; Abolmasov &
Moiseev 2008; Pakull & Grisé 2008, p. 303).
The suggestion that winds or jets might power the massive

nebular bubble around HoIX X-1 is in line with the theory that
many ULXs are similar to the famous supercritically accreting
X-ray binary in our own Galaxy, SS433, rather than an IMBH.
Indeed, in the case of HoIX X-1, the other two scenarios have
ostensibly been ruled out as plausible explanations for the
nebula distribution. For instance, Ramsey et al. (2006) showed
that the energy released by six supernovae in the vicinity of the
ULX is not sufficient to reproduce the energy of the expanding
nebular shell, ruling out explanation 1 above. Pakull & Grisé
(2008, p. 303) similarly find that the mechanical energy
required to produce the nebula must result from a cluster that is
more than two orders of magnitude larger than the observed
stellar association. They also suggest that the period of time
needed for mass transfer to begin in HoIX X-1 is far shorter
than required for a hypernova event to explain the birth of the
ULX, ruling out explanation 2. Pakull & Grisé (2008, p. 303)
suggest that winds and/or jets instead are more likely to power
the bubble. Berghea et al. (2010a, Figure 10) support this
finding, when they use shock models to describe the high-
excitation optical lines seen in HoIX X-1. Finally, Abolmasov
et al. (2007) find radial velocity gradients that support the wind
and/or jet explanation.
Many authors have noted the striking resemblance of HoIX

X-1 to SS 433. For instance, Fabrika et al. (2015) note that the
optical spectrum of HoIX X-1 is similar to wind-dominated
objects like SS 433. In an X-ray study, Luangtip et al. (2016)
see spectral variability patterns that are consistent with
precession of the angle to the line of sight of the rotation axis
of the ULX. This is very similar to what is seen in SS 433 as
well. These scenarios hint that the processes powering emission
in HoIX X-1 and SS 433 may be similar, so much so that the
two appear to be of the same family.
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If the HoIX X-1 nebula is indeed powered by jets, as is the
case with its SS 433 “cousin,” direct evidence of these jets has
yet to surface. However, infrared photometry—an underused
tool in the field of ULX astronomy—has the potential to
produce a wealth of continuum information about the ULX that
can be used to directly characterize the ULX SED. This has
been done only once before for ULXs: in a study of
HolmbergII X-1. In this study Berghea et al. (2010a, 2010b)
used Spitzer mid-infrared data to constrain the ULX SED and
found the data to be consistent with a broken power law typical
of jet emission. The model was substantiated when Cseh et al.
(2014) used the Karl G. Jansky Very Large Array (VLA) to
image the ULX and found signatures of jets emanating from
the ULX. On the other hand, infrared photometry has been
widely used in the X-ray binary community to uncover excess
from irradiated disks, circumbinary disks, and dusty shells from
companions stars (Muno & Mauerhan 2006; Rahoui et al.
2010). Thus, Spitzer infrared photometry can be a powerful
tool for uncovering structures and environments of ULXs that
optical and X-ray data cannot.

In this paper we present Spitzer IRAC images of the ULX in
Holmberg IX. Combining these images with multiwavelength
optical, UV, and X-ray data from the literature, we model the
HoIX X-1 SED to determine the source of the infrared
emission in this ULX. In Section 2 we provide the details of the
Spitzer IRAC data analysis. In Section 3 we provide the fits to
the full SED. In Section 4 we discuss the origin of the infrared
emission. Finally, we summarize our results in Section 5.

2. INFRARED ARRAY CAMERA (IRAC)
OBSERVATIONS AND DATA ANALYSIS

For this analysis, we used two sets of archival Spitzer IRAC
data of the dwarf galaxy Holmberg IX taken on 2007
November 15 (Astronomical Observation Request, AORs
22537472 and 22537728). IRAC is a four-channel camera
that provides 5.12×5.12 arcmin images at 3.6, 4.5, 5.8, and
8.0 μm. We processed the data both manually and using the
post-processed basic calibrated data (PBCD) available for
download from the archive, but found no difference between
the two methods.

We used the Spitzer MOsaicker and Point Source Extractor
(MOPEX) APEX package7 to extract the photometric fluxes
from the four channels. We followed the standard extraction
procedure and conversion factors provided in the IRAC
Instrument Handbook.8 The pipeline mosaics for IRAC are
accurate to within 20%9 of the flux. All data calibration
information, including background subtraction, are available in
the footnoted links, as well as in Makovoz & Marleau (2005),
which contains the exact point-source extraction procedure
from MOPEX. To ensure that our IR data were extracted from
the same region as the optical and X-ray data, we aligned the
IRAC images with the Hubble Space Telescope (HST)
Advance Camera for Surveys (ACS) F555W/V image using
11 common sources in both (HST ACS observation ID GO-
9796 in Table 1). We find that the sources in the two images
align to within 0 11 rms.

Table 1 provides fluxes extracted for the two sets of data,
and Figure 1 shows false-color images of the ULX in 3.6, 4.5,
and 8.0 μm compared with a standard HST ACS image of the
ULX. We also used a SUBARU Hα image to overplot the
contours of the bubble nebula. As the fluxes in Table 1 show,
the observations at 5.8 and 8.0 μm show a weak detection in
one case (AOR 22537472) and an upper limit in another (AOR
22537728) for a detection threshold of 4σ. Indeed, both
observations are right on the line between detection and a
nondetection for the 4σ threshold. Because the two sets of
observations are identical in exposure time and because they
are contiguous (i.e., one observation was taken right after the
other), we chose to combine the two sets of observations to
reduce the noise error on the measurements. The resultant
fluxes are also provided in Table 1. The enhanced signal-to-
noise ratio in the combined measurement suggests a statisti-
cally significant detection at 5.8 and 8.0 μm that can be used to
characterize the IR emission.

3. SPECTRAL ENERGY DISTRIBUTION
OF HOLMBERG IX X-1

To generate a full SED of HoIX X-1, we used optical, UV,
and X-ray data from the literature (Grisé et al. 2011; Berghea &
Dudik 2012; Luangtip et al. 2016). A summary of all archival
data used for this analysis is presented in Table 1. The optical
data come primarily from HST, and the reduction strategy for
these data can be found in Grisé et al. (2011). The UV data
primarily come from the Optical Monitor on board XMM-
Newton, and the data analysis strategy for these data can be
found in Berghea & Dudik (2012). Finally, the X-ray data
come from XMM-Newton, and the reduction strategy for these
data can be found in Luangtip et al. (2016). We used the
extinction E(B−V) = 0.26 adopted by Grisé et al. (2011) to
correct for absorption in the UV, optical, and IR. The extinction
curves used for this correction are taken from Cardelli
et al. (1989).
This multiwavelength data sample spans 5 yr. We note that

HoIX X-1 is known to show X-ray variations of factors of 4–5
over days to years (Vierdayanti et al. 2010; Luangtip et al.
2016). Unfortunately, the only available multiwavelength data
set that was taken of this object includes X-ray data from
Chandra that suffer from severe pileup and are therefore
unusable for the X-ray-fitting portion of this analysis (Grisé
et al. 2011). However, we were able to use this Chandra data
set to establish an estimate for the approximate X-ray flux
during the same epoch as the HST data used here. Indeed, we
find that the Chandra flux is very close to the mean between
the two sets of XMM X-ray observations. Therefore, in the
following, note that the actual HST-epoch X-ray flux is likely
somewhere between the two XMM X-ray data sets and that the
plotted data set provided here is not simultaneous. As the
following sections will demonstrate, the multi-epoch nature of
these data makes generating a good fit difficult.
X-ray spectra exist in the archives from XMM-Newton, Swift,

and NuSTAR. Luangtip et al. (2016) found two main types of
spectra: one hard ultraluminous (HUL)-like and one more disk-
like (see also Sutton et al. 2013). We selected the XMM-Newton
data sets 0112521101 and 0693851701 (referred to as obs 1
and obs 2, respectively, from here forward), which represent
each of the two, typical ULX spectra regimes seen in this
object.

7 http://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/
mopex/mopexusersguide
8 http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/IRAC_Instrument_Handbook.pdf
9 http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/74/
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3.1. Spectral Fitting

We used XSPEC version 12.7.1 to model the two X-ray
spectra of HoIX X-1 between 0.3 and 10 keV. The X-ray data
were provided by and processed per the prescription of
Luangtip et al. (2016). The X-ray data were fit with three
models: multicolor disk (MCD) + comptonization model
(compTT), self-irradiated funnel model (SIRF), and an
irradiated disk model (DISKIR). Note that the former two
were fit to the X-ray data only, while the latter (DISKIR) was
fit to both the X-ray and optical data since that made the most
physical sense for this model as described in the following.

We start with a model typically used to fit ULXs, with an
accretion disk component (MCD in XSPEC) and the CompTT
model to account for the Comptonization in a disk-corona
geometry (e.g., Gladstone et al. 2009; Walton et al. 2014). We
obtain good fits for both spectra. The parameter fit results are
shown in Table 2.

The SIRF model (in XSPEC) describes the emission from a
“supercritical funnel,” similar to SS433 (Abolmasov et al.
2009). The SIRF model provides acceptable fits for both sets of
X-ray spectra. The accretion rate was fixed at 350× Eddington,
the funnel opening angle was set to 30°, and the inclination
angle was set to zero. The inner radius for this model is
calculated in units of the “spherization radius” (Abolmasov
et al. 2009). In order to better compare them with the other
models, we convert them into units of km using the luminosity.
We obtained estimates for the bolometric luminosities from the
fitted X-ray models plus the jet model fit to the IRAC data (see
Section 4). Then we used the accretion rate to estimate black
hole masses of 41 and 107Me for the first and second
observations, respectively. The spherization radius can then be
calculated (Abolmasov et al. 2009) for each black hole mass.

Finally, we convert the fitted radii in the SIRF model to units of
km. These are listed in column (5) in Table 2.
The DISKIR model is particularly useful when optical and

UV data are available in addition to the X-ray spectrum. This is
because many ULXs detected in the optical/UV show SEDs
well fit by an irradiated disk (Berghea et al. 2010a; Berghea &
Dudik 2012; Grisé et al. 2012). In this case it makes sense to fit
the X-ray data together with the optical data, since the
irradiation portion describes a large fraction of the optical/
UV emission. Indeed, an irradiated disk was found to have an
important contribution in the optical in other ULXs (e.g.,
Berghea & Dudik 2012). Following Gierlinski et al. (2008,
2009) and Berghea & Dudik (2012), we set the fraction of the
flux thermalized in the inner disk at 0.1 and the radius of the
Compton irradiated disk at 1.1 of the inner disk radius. A good
fit requires that we set a large Comptonized luminosity
(� unilluminated disk luminosity) and an outer disk of radius
1000 Rin (where Rin is the inner disk radius), but this parameter
is not well constrained. The fits are not acceptable statistically,
but we obtained estimates for the irradiated flux fraction. It is
large for both X-ray obs 2 (HUL-like, >6.8%) and X-ray obs 1
(disk-like, >5.7%). Typical values of 2%–4% have been found
for previous fits of ULX X-ray/optical data sets with the
DISKIR model (Berghea & Dudik 2012; Grisé et al. 2012; Tao
et al. 2012).
Sutton et al. (2014) used an improved model for irratiated

disks (one that accounts for the color–temperature correction)
to fit a sample of ULXs with disk-like spectra. In this study,
Sutton et al. (2014) compared the new DISKIR model results
with a more traditional DISKIR model fit. They found that for
most objects the reprocessing fraction is 10 times lower than
predicted by traditional DISKIR models that do not include the
color–temperature corrections, and that these new reprocessing

Table 1
Multiwavelength Data

Instrument Obs ID Filter Obs. Date Flux Density Abs. Corrected
(μJy) (Aλ) (μJy)

(1) (2) (3) (4) (5) (6) (7)

Spitzer IRAC 22537472 3.6 2007 Nov 15 4.99±0.23 0.049 5.22±0.24
Spitzer IRAC 22537472 4.5 2007 Nov 15 4.94±0.36 0.046 5.15±0.38
Spitzer IRAC 22537472 5.8 2007 Nov 15 6.98±1.5 0.042 7.25±1.57
Spitzer IRAC 22537472 8 2007 Nov 15 7.56±1.8 0.039 7.65±1.87
Spitzer IRAC 22537728 3.6 2007 Nov 15 4.89±0.23 0.049 5.12±0.24
Spitzer IRAC 22537728 4.5 2007 Nov 15 5.09±0.36 0.046 5.31±0.37
Spitzer IRAC 22537728 5.8 2007 Nov 15 <4.41 0.042 <4.59
Spitzer IRAC 22537728 8 2007 Nov 15 <5.45 0.039 <5.65
Combined IRAC L 3.6 2007 Nov 15 4.94±0.16 0.049 5.17±0.17
Combined IRAC L 4.5 2007 Nov 15 5.02±0.25 0.046 5.23±0.27
Combined IRAC L 5.8 2007 Nov 15 5.70±1.01 0.042 5.92±1.10
Combined IRAC L 8 2007 Nov 15 6.51±1.28 0.039 6.75±1.33
Hubble ACS GO-9796 F814W/I 2004 Feb 7 2.99±0.19 0.47 4.67±0.29
Hubble ACS GO-9796 F555W/V 2004 Feb 7 3.29±0.15 0.81 7.06±0.31
Hubble ACS GO-9796 F435W/B 2004 Feb 7 3.87±0.10 1.08 10.4±0.29
Hubble ACS GO-9796 F330W/U 2004 Feb 7 5.47±0.23 1.33 18.6±0.74
Hubble WFC3/IR GO-12747 F160W/H 2012 Sep 25 1.01±0.09 0.202 1.21±0.12
XMM-Newton OM 0200980101 UVW1 2004 Sep 26 3.79±0.32 1.51 15.2±1.27
XMM-Newton OM 0200980101 UVM2 2004 Sep 26 <4.2 2.28 <34.2
XMM-Newton PN (obs. 1) 0112521001 0.3–10 keV 2002 Apr 10 L L L
XMM-Newton PN (obs. 2) 0693851701 0.3–10 keV 2012 Nov 12 L L L

Note. Columns: (1) Telescope and instrument name. (2) Observation ID. (3) Filter for the photometric observations and the wavelength range for the spectral
observations; IRAC filters are microns. (4) Date of observation. (5) Flux density of photometric observations in μJy. (6) Total line-of-sight absorption for an extinction
E(B−V) = 0.26. (7) Extinction-corrected photometric flux density in μJy.
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fractions are closer to what is observed in Galactic binaries.
However, for one of the brighter objects in that sample
(NGC1313 X-2) they found a similar reprocessing fraction to
ULXs where the spectrum may be more HUL-like. They
interpreted the higher reprocessing fraction in the brighter ULX
as originating in a higher scattering fraction onto the outer disk
from the extensive wind thought to be driven off the disk; the
high reprocessing fraction in Ho IX X-1 is consistent with this
interpretation.

3.2. Extending the Models to Longer Wavelengths

In the following we construct the SED by extending the
X-ray models we fit in the previous section to the optical/UV
and IR data.

Extrapolated SIRF Model: The extrapolated SIRF models
are plotted in Figure 2. Neither of these X-ray models fits the
optical data well; however, the optical data are located between
the two SIRF models. When the X-ray spectrum is disk-like, it
overpredicts the optical data by a factor of 6.2. When the X-ray
spectrum is HUL-like, it underpredicts the optical data by a
factor of 3.2. Taking into account the variability of HoIX X-1
and the multi-epoch nature of this data set, we conclude that a
funnel model is capable of reproducing the optical and X-ray
data. However, Figure 2 clearly shows that the SIRF model
does not fit any of the IR data. Indeed, if this SIRF model were
the appropriate model for the optical and X-ray data, an
additional component would be needed to explain the IR
excess.

Extrapolated Disk Models: As expected, simple disk models
without irradiation are too faint in the optical. Our MCD
+CompTT models shown in Figure 2 are more than an order of
magnitude lower than the HST data if they are extrapolated into
the optical. Following Grisé et al. (2011), we added a B0Ib star
to fit the optical photometry (black line in Figure 2) in this case,
which resulted in a good fit to the data from X-ray to optical.

The optical data are fit so well by the stellar model that an IR
excess is clearly present at wavelengths longer than the H-band
measurement. Thus, an additional component is needed to
explain the IRAC data for the extrapolated disk model as well.
DISKIR model: Per Section 3.1 we began fitting the DISKIR

data to the optical+X-ray data since it makes physical sense to
do so when optical data are available. This extrapolated
DISKIR model, described in Section 3.1, was a very good fit to
the optical data but unfortunately not statistically acceptable
overall for either X-ray data set. Here too, the DISKIR model is
also not a good fit to the IRAC data.
Based on these fits and the multi-epoch nature of this data

set, we conclude that all three models are plausible models for
the optical/UV/X-ray data in HoIX X-1. To definitively rule
out any one model would require good, simultaneous optical
and X-ray data (F. Grisé et al. 2016, in preparation). However,
most importantly, none of these models fit the IR excess we see
in HoIX X-1, suggesting that another mechanism is respon-
sible for this emission.

4. ORIGIN OF THE IR EMISSION IN HOLMBERG IX X-1

As Figure 2 shows, there is a clear IR excess in HoIX X-1
that cannot be explained by the optical or X-ray models. The IR
excess could be due to contamination from other stars within
the 2″ extraction region; however, based on the B0Ib stellar
model in Figure 2 (which is also the brightest star in the 2″
extraction circle), we expect the contribution from all stars in
that field to be negligible in the IR since their collective SEDs
drop sharply at IR wavelengths.
There are four possible sources for the IR excess: (1) the

irradiated disk/the companion star, (2) a heated dust shell, (3) a
circumbinary disk such as those seen in X-ray binaries, or (4) a
jet. Because none of the models from the previous sections
produce sufficient emission in the IR to replicate our IRAC
data, the latter three options are the only plausible emission

Figure 1. Left: HST ACS image in R (red), V (green), and B (blue) bands; right: IRAC image in 8.0 μm (red), 4.5 μm (green), and 3.6 μm (blue), with Hα contours
from SUBARU FOCAS. The optical and IR counterpart is shown in both images, and the IRAC extraction aperture of 2″ radius is shown in the HST image.
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mechanisms. We note that some fraction of the IR emission
will also result from contamination from the bubble nebula.
Grisé et al. (2011) found some red excess in the I band based
on the stellar model fits to the HST data. However, the HST
images from this study suggest that the I-band emission is not
coming from nebular contamination, especially in the central
location (Grisé et al. 2011). In addition, the H band fits the
stellar continuum very well and does not show a similar excess.
We explore the three remaining options for the excess below.

Heated Dust Shell: Emission from a heated dust shell is one
explanation for the IR excess seen in HoIX X-1. Rahoui et al.
(2010) found evidence for a dust component with temperature

∼400 K from the Galactic X-ray binary GRS 1915+105. GRS
1915+105 is a microquasar that has a red giant as a donor
(Greiner et al. 2001). Rahoui et al. (2010) suggest that the dust
component could be related to the dusty shell often found
surrounding red giants. We fit a spherical blackbody model to
the HoIX X-1 IRAC data. This blackbody, shown in Figure 2,
gives a dust temperature of ∼1100 K and a radius of ∼1400Re.
However, the fit is quite poor, the cn

2 being much greater than
2, thereby precluding error estimates for the parameters. The
dust temperature is normal for dusty shells around red giants;
however, if the companion star is a blue supergiant, as the
optical HST data suggest, it is unlikely to be surrounded by

Table 2
Spectral Fits

Model NH kTin Γ/τe Rin kTe cn
2 log L

(1021 cm−2) (keV) (103 km) (keV) (erg s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

X-ray + Optical

DISKIR obs 1 2.3±0.3 0.11±0.02 1.82±0.03 -
+90.2 0.3

13.7
-
+3.5 0.8

0.9 1.41/132 40.3

DISKIR obs 2 -
+2.45 0.22

0.06 0.13±0.01 1.61±0.02 -
+80.3 0.2

18.9
-
+1.59 0.07

0.08 1.45/144 40.6

X-ray Only

SIRF obs 1 2.35±0.07 -
+2.1 0.2

0.3 L 0.49±0.07 L 1.27/131 40.3

SIRF obs 2 -
+2.8 0.1

0.2
-
+1.25 0.06

0.07 L 0.66±0.03 L 1.19/143 40.6

MCD+COMPTT obs 1 -
+1.4 0.4

0.8
-
+0.22 0.05

0.07
-
+7 5

1 <26.4 -
+2.9 0.6

0.9 1.23/129 40.2

MCD+COMPTT obs 2 -
+1.6 0.3

0.2 0.7±0.2 -
+12 5

6
-
+4.6 3.5

10 1.7±0.2 1.21/141 40.4

Note. Errors are limits indicating the 1σ confidence regions. Columns: (1) X-ray model, as described in Section 3.1. (2) Intrinsic hydrogen column density. (3) Inner
disk temperature. (4) Photon index for the DISKIR model and the optical depth of the Comptonizing component for the MCD+CompTT model. (5) Inner disk radius
for the accretion disk. For the DISKIR and MCD+COMPTT models these were calculated using the normalization. For the SIRF model they were estimated using the
“spherization radius” (see Abolmasov et al. 2009) and the luminosity. See Section 3.1 for more details. (6) Electron temperature. (7) Reduced χ2 values for the fit and
the number of degrees of freedom. (8) Unabsorbed (intrinsic) luminosities between 0.3 and 10 keV.

Figure 2. SED constructed in Section 3. The HST data are taken from Grisé et al. (2011), the XMM OM UV data from Berghea & Dudik (2012). The two
representative X-ray data sets (XMM-Newton data sets 0112521101 and 0693851701 shown as obs 1 in blue and obs 2 in green, respectively) are taken from Luangtip
et al. (2016). Error bars are 1σ.
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dust. In addition, this blackbody emission does not fit the 5.8
and 8.0 μm data well. We therefore rule out this option as a
viable model for the infrared emission in the ULX.

Circumbinary Disk: An alternative explanation for a dust
component is the circumbinary disk proposed by Perez &
Blundell (2010), Rahoui et al. (2010), and Muno & Mauerhan
(2006) to explain the IR emission in X-ray binaries (SS 433,
GRS 1915+105, A0620−00, and XTE J1118+480). Here the
circumbinary disk is distinct from the accretion disk described
in Section 3 and is composed of material that may have been
lost through the L2 point (e.g., SS 433; see Perez &
Blundell 2010). If HoIX X-1 is more like these X-ray binaries,
we might expect to see such a circumbinary disk in the infrared.
In this case the blackbody model that we fit to the infrared data
would represent emission from the inner circumbinary disk,
while the redder 5.8 and 8.0 μm excess is likely emanating
from the outer portion of the circumbinary disk as lower-
temperature blackbody emission. The four IRAC data points
that compose the IR excess in HoIX X-1 are not sufficient to fit
a complicated circumbinary disk model (e.g., Akeson et al.
2007; Hillen et al. 2015); however, in its simplest form, the
circumbinary disk model is very similar to an irradiated disk
model, only the source of illumination in the former case is the
accretion disk and the star. We therefore fit a very simple p-free
disk model to the four IRAC points. As can be seen from
Figure 2, the data are consistent with this simple p-free disk
( = -

+p 0.64 0.06
0.09), but the disk vastly overpredicts the H-band

flux and the temperature for the fit is unconstrained
(T>1680 K). We conclude that if a circumbinary disk is
responsible for the IRAC emission in this object, then the
optical and/or IR emission must be variable.

Jet Emission: In the jet emission scenario we expect a broken
power law with a break in the IR, and we attempted to fit the
combined IRAC and HST data with such a model. Extinction E
(B−V ) was fixed at 0.26 and the break energy at 0.35 eV
(approximately at the 3.6 μm IRAC band; see Figure 2). For
comparison the break is at 0.12 eV for Cygnus X-1 and 0.48 for
GX339-4 (Rahoui et al. 2011). Inspection of the fit clearly
indicates that the HST H-band flux is prohibitively low for a
reasonable power-law model. The emission in H band fits the
stellar model so well that any additional contribution from a jet-
dominated power law would either severely overpredict the
observed emission or suggest a power-law slope that is
unrealistically steep (Blandford & Königl 1979; Falcke &
Biermann 1995). Indeed, the spectral index of the fit in Figure 2
is −4.3 in the optical/IR compared with typical indices of −0.4
to −1.0 (Blandford & Königl 1979; Falcke & Biermann 1995).
We conclude from this that either (a) the IR emission from
HoIX X-1 is not jet dominated or (b) the radio ejecta are
transient as is thought to be the case with HoII X-1 (Cseh
et al. 2014). The multi-epoch nature of the HST and IR data
results in a degeneracy in the models that can only be broken
by a series of radio monitoring activities designed to detect the
jet emission when it is in its most luminous state.

Based on the analysis presented in the previous sections, the
IR emission in HoIX X-1 suggests that the system contains a
circumbinary disk much like those detected in X-ray binaries
(e.g., SS 433, GRS 1915+105, A0620−00, and XTE J1118
+480) or emission from a variable jet such as that seen with
HoII X-1 (e.g., Cseh et al. 2014). In the transient jet scenario,
simultaneous IR and optical data might uncover a more
reasonable power-law slope and H-band emission that is

significantly higher than observed in the data set presented
here. We also find that the IR data are not well fit by a single
blackbody, such as that expected from a dusty shell. However,
in this case the simultaneity of the data will not significantly
improve the fit, since the single blackbody fits neither the
optical data nor the longer-wavelength IR data as well. The
degeneracy between the circumbinary disk and transient jet
theory underscores the need for simultaneous observations
when observing ULX structure and environments. In this case,
very sensitive radio observations of HoIX X-1 may solidify
these findings and help detect or constrain the power-law break
and slope needed to confirm jet activity. Indeed, such radio
observations have recently been obtained using the VLA
B-array and will be published in a follow-up study to this
paper. However, as this study also indicates, deep radio
monitoring observations with VLA are also critical to
providing information about the IR excess in this source in
the event that the jet (if one exists) is variable.

5. CONCLUSIONS

Using Spitzer IRAC observations of HoIX X-1, we have
constructed an SED of the ULX. Two contiguous IRAC
observations of HoIX X-1 were made. The data sets at 5.8 and
8.0 μm are at the sensitivity limit of the IRAC instrument;
however, combining these measurements yields a statistically
significant detection in both bands. The combined measure-
ments coupled with detailed fits to previous optical/UV and
X-ray data of HoIX X-1 suggest that the IR excess in this
object is due to either a circumbinary disk such as those seen in
SS433 and other standard X-ray binaries or a variable jet such
as that seen in HoII X-1 by Cseh et al. (2014). Future high-
sensitivity radio monitoring observations would be needed to
break the degeneracy between the two models and determine
whether the IR excess seen in HoIX X-1 results from either
mechanism.
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