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Abstract

We calculate the electromagnetic form factors of the nucleon within the light-cone sum rule approach. In comparison to
previous work [Phys. Rev. D 65 (2002) 074011] we suggest to use a pure isopintdrpolating field for the nucleon, since
the Chernyak—Zhitnitsky current leads to numerically large, unphysical, isospin violating contributions. The leading-order sum
rules are derived for the form factors and the results are confronted with the experimental data. Our approach tends to favor the
nucleon distribution amplitudes that are not far from the asymptotic shape.
0 2004 Elsevier B.MOpen access under CC BY license.

PACS: 12.38.-t; 14.20.Dh; 13.40.Gp

Keywords: QCD; Nucleon; Power corrections; Distribution amplitudes; Electromagnetic form factors

1. The elastic scattering of electrons off nucleons at momentum trarsfer is described by the famous
Rosenbluth formula [2]

do\ (do G2(0%) +1G3,(0? 5 5 0
(78) = (78l = me 5 +2eCR0O a5, .

whereG £ (Q%) and G (Q?) are the electric and magnetic Sachs form factoes, 02/(4m?), m is the nucleon
mass and is the scattering angle in the laboratory frarr /d $2)mott is the Mott cross section, which describes
the scattering of a pointlike particle. The normalization of the form factor®@%t 0 is given by the nucleon
charges and magnetic moments (in units of the nuclear magnetos,e/2m):

Proton: Gg(0)=1, Gm(0) =p, =2.792847337(29) [3],

Neutron Gg(0) =0, Gy (0) =pu, =-191304272(45) [3]. (2)
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In the Breit frameG £ (Q?) andG;(Q?) can be interpreted as the Fourier transforms of the charge distribution and
magnetization density in the nucleon, respectively. The matrix element of the electromagnetic qgf‘i‘entiz

eyt (x)y,u(x) + edc?(x)yﬂd(x)) taken between two nucleon states is conventionally written in terms of the Dirac
and Pauli form factor# (Q2) and F»(Q2), respectively.

(P —qljS™(O0)|P) = N(P — q)[mFl(QZ) - i%&(gz)}mm, 3)

whereP,, is the four-momentum in the initial nucleon staieis the nucleon mas®? = (P — ¢)?> = m?, q,, is the
(outgoing) photon momentun@? = —q2, 0w = 5[yu. Y] @nd N(P) is the spinor of the nucleon. The electric
and magnetic Sachs form factors are related to the Dirac and Pauli form factors in the following way

2
— = F(07). 4

. 2(07) 4)

It is known that the experimental data 6, (Q?) at values ofQ? up to 5 GeVf are very well described by the
famous dipole formula both for the proton [4-9] and for the neutron [10-12] (following [13] we compare our
theoretical predictions only with data sets where both forward and backward angle data were taken in the same
apparatus).

1 p 2\ 1 n 2\ ; _
Ip Ou(2) Ihn G (07 (1+ 0?/u3)?
For the electric form factor of the proton the experimental situation currently is unclear. Older measurements
based on the Rosenbluth separation showed a dipole behavior [5-9] of the electric Sachs form factor, but in
recent measurements at the Jefferson Lab Hall A Collaboration using the recoil polarization technigue a significant
deviation from the dipole was observed [14—16]. This experimental discrepancy has been attracting lots of attention
and has not been settled yet (for a review see [13]). The values of the electric form factor of the neutron are very
small [10,17,18].

The ultimate goal of the theoretical and experimental analysis of the form factors of the nucleon is the
determination of the nucleon wave functions. In recent years it has been becoming increasingly clear that the
strict perturbative approach based on QCD factorization and involving at least two hard gluon exchanges is not
applicable in the several GeV region and it has to be complemented by some non-perturbative techniques. The
method of light-cone sum rules (LCSR) [19] suggests itself since it incorporates both the perturbative and non-
perturbative end-point contributions and allows to calculate the form factors as a systematic expansion in terms
of nucleon distribution functions of increasing twist [20—22]. Alternative models to determine the form factors of
the nucleon can be found, e.g., in [23]. The general concept of the LCSR calculation is familiar from numerous
applications of this technique to meson decays [24] and the particular realization for baryons was worked out in
Ref. [1]. The starting point of the LCSR approach is that one of the participating nucleons is substituted by a suitable
local current. The choice of the currentis a subtle issue and is motivated by the necessity to have a strong “nucleon
signal” and small sensitivity to the contributions of higher resonances and the continuum. In addition, the choice
is influenced by the particular tasks of the calculation. In particular, in [1] the so-called Chernyak—Zhitnitsky (CZ)
nucleon current was used since it allows to enhance contributions to the sum rule that are due to the leading-twist
distribution amplitude of interest and suppress higher-twist contributions. The essential of this Letter is to point out
that the use of the CZ currentinduces large implicit isospin violations in the sum rules of order 20% (and more) but
this deficiency can be overcome by using a modified current which is a pure isg&pstate. In addition to exact
isospin symmetry, using the improved current one gets a better stability of the sum rules and a surprisingly good
agreement with the experimental data using the set of asymptotic distribution amplitudes. We, therefore, argue that
using the pure isospin current is advantageous and allows to increase the accuracy and reliability of the sum rules.
Further applications, e.g., to axial form factors will be considered in a subsequent publication [25].

Gu(0%) = F1(Q%) + F2(0?),  Gg(0?) =F(0?)

Gp(0%).,  u5~0.71Ge\’. (5)
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2. We start with the electromagnetic coupling of protons and consider the following correlation function

TeM(P,q) =i / dx 4 (01T [P (0)j8™(x) ) P). ©)

which includes an interpolating proton fietd. The basic principle of sum rules is to calculate this correlation
function in two ways and finally compare the two results. First one can insert a complete set of states h&tween
andj™in Eq. (6)

TS™(P, q) = ;(OIUP(O)IX; P—gq, S>m<?»; P —gq,s1j;"O)|P), )
whereA characterizes the state andtands for the polarization. In [1] the CZ current [21]

néz(0) = " [u' O Cu’ (O Jystd*(0) ®
was used fop?. In this case

(OIn?|P) = fn(P2){N(P) (9)

(herez is a light-cone vector,? = 0), and the couplingy determines the normalization of the leading-twist proton
distribution amplitude [20]. Using the definition of the form factors in Eg. (3) the contribution of the nucleon
intermediate state in the correlation function Eq. (6) is readily derived to be

1
2'To(P.q) = #(P/z){[ZFl(QZMP’z) — F2(0%)(q2)J¢ + F2(0?) [(P/z) + 5(qz>]% }N,,(p),

(10)
whereP’ = P — ¢. In order to get rid of terms- z, that give subdominant contributions on the light-cone and to
simplify the Lorentz structure we contracted the correlation function withAlternatively, one can calculate the

correlation function in Eq. (6) at large Euclidean momeftd and¢? = —Q? in terms of nucleon distribution
amplitudes. To the leading order in the strong coupling one gets expressions of the form (cf. [1])

d%t . k -
"Ty (P, q) i / d*x By e’<q+k>xk—§ (Ole ™ u (ar)u’ (azx)d] (azx)| P)Cupy . (11)
whereCyg, are certain coefficients (involving Lorentz structures) and the real nurabers either one or zero.

By assumption:? ~ 1/(P — ¢)? — 0 and in this limit the remaining three-quark operator sandwiched between the
proton state and the vacuum can be written in terms of the three-quark nucleon distribution amplitudes of different
twistr = 3,4, 5, 6, see [20-22].

(Ole7*u® (alx)uf (azx)d] (azx)|P) = Y  FOXPy?, (12)

]

whereF® = v® _ A® 7@ gre vector, axial-vector and tensor distribution amplitudesXé#tandy? are Dirac
structures which are listed in [22]. Equating Eq. (10) and the QCD calculation at a certain intermediate momentum
(P — ¢)? ~ —1 Ge\# yields a sum rule for the form factors in terms of the nucleon distribution amplitudes. The
matching procedure involves several technical steps that are common for the QCD sum rule approach in general
and have the purpose of suppressing contributions both from higher resonances and the continuum, and of higher-
twist operators. In particular a Borel transformation is performed, introducing the Borel paravhetastead of
(P — ¢)?, and the nucleon contribution is defined by introducing a cutoff in the spectral densjtyail.5 GeW)?
which is approximately the mass of the Roper resonance. The Borel paraigtisrchosen to be in the range
1.0-1.5 GeV, see [1,24] for detalils.

The nucleon distribution amplitudes that provide the necessary non-perturbative input to the sum rules are
usually written in terms of the conformal expansion [22,26]. The so-ca#gdhptotic distribution amplitudes
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correspond to taking into account the lowest conformal spin only and comparing the sum rule results with the
experimental data one may hope to get an estimate for the corrections. In Ref. [1] it is shown that large contributions
of higher conformal spins are not welcome by the data (the fact that higher terms of the conformal expansion tend
to overestimate the physical result is already known from the pion form factor [27]), but further work is needed in
order to make this conclusion quantitative.

The question that we address in this Letter is whether the accuracy of the sum rules can be improved by the
choice of the nucleon interpolation current. In particular, we look at the isospin symmetry. The CZ current (8)
does not have a definite isospin so that isospin relations between different nucleon distribution amplitudes are
imposed as the relations between the corresponding matrix elements. This current has been chosen for the surn
rules in [1] because with this choice the coefficie@tg, in (11) are of order one for the contributions of leading-
twist distribution amplitudes and are suppressed, generically, by a p0\M§ édr higher twists (to leading order
in the strong coupling). In [25] we will discuss in addition the loffe-current [28] and a current suggested by Chung
et al. [28]. Using this two currents within the LCSR approach the effect of higher twist will be enhanced, compared
to the use of the CZ-current. Therefore we start in this Letter with the CZ-current. The price to pay is, however, that
in the sum (7) there are contributions of both isospj2-and isospin-3/2 states, e.g., theresonance. It is usually
believed that the isospin separation is not important since isosf@me3onances are separated from the nucleon
by a relatively large mass gap and, therefore, sufficiently strongly suppressed by the Borel transformation. One may
also speculate that summing over states with different isospin in fact makes the spectral density more smooth and
thus improves the duality approximation for the continuum. Our starting observation is that these arguments can be
checked by studying the isospin relations for the sum rule predictions. If one determines only the electromagnetic
form factors of the nucleon, as it was done in [1], the necessity to fulfill isospin symmetry is hidden. If, however,
one determines in addition tEl’ffz’ (proton in the initial and final state) anéf'; (neutron in the initial and final

state) the form factorfl"”;, which arise in the vector part of the weak—currejﬂe(ak(x) =u()y(1— ys)d(x))
triggering theg-decay, one can show that the isospin relation

F'" =F/P —F™ fori=1,2 (13)
has to hold. Checking whether Eq. (13) holds numerically for the sum rule predictions, we can test the assumption
that the contamination by isospin-3contributions in the sum rules is negligible. The corresponding calculations
(see [25]) yield the following result: if one uses asymptotic distribution amplitudes, then the isospin sum rule in
Eq. (13) is violated by~ 20%. If higher conformal spin contributions of the distribution amplitudes are taken into
account, the isospin violations become even larger. In other words, the use of the CZ ggigremtthe evaluation
of the nucleon form factors leads to an unphysical uncertainty of at least 20% induced by the “pollution” of sum
rules by the isospin-3/2 contributions.

The problem can be overcome in a rather simple way by using a modified current which is a isospin-1/2
eigenstate. In particular, we suggest to use

2 .. . . ) .
7 (x) = §e’-/k([u'(x)(rzuf<x>]yszdk<x> — [ () Cd! ()] ystu* (x)), (14)

which is an isospin-22 eigenstate and it projects on the leading-twist distribution amplitudes as well so that all
“good” properties of the CZ current are retained. The factor 2/3 in Eqg. (14) is introduced to fulfill the same
normalization condition (9), so that the “hadronic” part of the sum rule (10) remains intact. On the other hand,
using the improved curreny for the quark level calculation the isospin relations in Eg. (13) are recovered exactly.
In order to be able to argue that the modified current in (14) is indeed superiour for the LCSR calculations, we
still need to check what happens with the sum rule predictions. Since in [1] it was found that large corrections
to the asymptotic distribution amplitudes seem to be in contradiction to the data, in this Letter we only consider
asymptotic distributions as an example. A general case will be studied in [25]. The final LCSRs using the improved
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currentn; read

1

p 2eu m*
/dX1[m+ (p2—p3) + —= 7 04}(161) EXPy

m? o o d xZpa(x1) m?(x9)?
+ pz—ps+—p4) Xi)—m-—— EXP;
|:( M123 ( 1) xl—xl Q2+(XO)2 2

dx1 Q2 + x2m?
1
+ —eq{x1— x3,u — d}, (15)

3/

4e m2 dx1 m?
FP=—"1_— / EXP
2 3fN{ M2 ( | |:/02+ MB ](X1) 1)

X1

2
m d  xipa(x1)
- |:<'02 + WKM) (X?) - X(l)mz—i
B

2.0
; __" ey,
dri Q2 +xZm2 |0 | 02 + (x9)2m?

2
+ ?ed{xl — x3,u — d}, (16)

where for asymptotic distribution amplitudes

B 2 2 2
EXP1:=exp( - 1A§2+ %) EXP2=exp(—s0M2m )
1 B B

p1(x) = 60(1—x)%xfw,
p2(x) = %3(1 — x)?[6x(1— 4x)A1 + (36— 370x+ 100622 — 1174) £ ],

p3(x) = —i(l —x)% [8(9%1 — 212) — 3(565— 417x) fiv],

pa(x) = 1—80(1 x)3x?[483q — 5(343— 15x) fiv ],

1
x0= 2m[\/(Q2+so— )2+4m2Q2—(Q2+so—m2)]. 17

The final result depends on the two ratlag fy andi,/fx of the non-perturbative parametefig = (5.3+ 0.5) x
103 GeV?, Ay = —(2.7£0.9) x 10 2GeV2 andir, = (5.1+1.9) x 10~2 GeV?, which are discussed, e.g., in [22].

3. The comparison of the sum rule results (15), (16) with the experimental data is shown in Figs. 1-5. In
all cases the central value of the LCSR prediction is shown by the solid curve while dashed curves show the
effect of the variation of the normalization /fx in the range-5.1 4+ 1.7 which is representative of the possible
uncertainty. Varying the Borel paramet¥dis in the range of 2 GeV to 16 GeV yielded no sizeable effect; in the
plotsMp = +/2 GeV is used.

In Fig. 1 we plotted the magnetic form factor of the proton normalized to the dipole formula. In this case the
difference compared to using the CZ current appears to be small and our results are close to [1]. In both calculations
the LCSR prediction using asymptotic distribution amplitudes tends to overestimate the form factor by about 50%.
This disagreement may signal that contributions of higher conformal spin have to be included, but in order to make
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Fig. 1. Solid line: LCSR prediction for the magnetic form factor
of the proton normalized to the dipole form faclﬁlf(l/(quD).
Dashed lines: errors due to the variation of the normalization
A1/fn. Symbols: experimental valuesk: SLAC 1994 [9]; A:
SLAC 1994 [8]; m: SLAC 1970 [6]*; 4: Bonn 1971 [7]*; O:
Stanford 1966 [5]* ¢: data actually taken from [13].)

Fig. 2. Solid line: LCSR prediction for the ratio of the electric
and magnetic form factors of the protonp G%.(0?)/ G}, (0?).
Dashed lines: errors due to the variation of the normalization
A1/fn - Grey (red in the web version) symbols: experimental values
obtained via polarization transfek: Jefferson Lab 2002 [16:
Jefferson Lab 2001 [15}: Jefferson Lab 2000 [14]; Black (blue

in the web version) symbols: experimental values obtained via
Rosenbluth separatioll: SLAC 1994 [8]; 4: SLAC 1994 [9]; A:
SLAC 1970 [6]*; %: Bonn 1971 [7]*; A: Stanford 1966 [5]*. £:
data actually taken from [13].)
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Fig. 3. Solid line: LCSR prediction for the magnetic form
factor of the neutron normalized to the dipole form factor
G",(0%)/(unG p(Q?)). Dashed lines: errors due to the variation

Fig. 4. Solid line: LCSR prediction for the electric form factor of
the neutronG’}E(QZ). Dashed lines: errors due to the variation of
the normalizatiorh1/f . Symbols: experimental value¢: SLAC

of the normalizationiy/fy. Symbols: experimental valuedi: 1993 [10]; A: Jefferson Lab 2001 [17M: Mainz 1999 [18].

SLAC 1993 [10];: Mainz 2002 [12]:¢: Mainz 1998 [11].

guantitative statements one first has to calculate perturb@tise) corrections to the sum rules which is beyond

the tasks of this Letter. The ratio of the electric and the magnetic proton form factors is shown in Fig. 2. Here the
LCSR prediction is surprisingly close to the experimental values and tends to favor the values obtained by the recent
experiments at Jefferson Lab [14—16]. However, in this case as well, without the inclusigrtofrections it is
premature to draw definite conclusions. The difference to the calculation in [1] is quite sizeable for this ratio, up to
50%. In Figs. 3 and 4 the magnetic and the electric form factors of the neutron are plotted, respectively. The LCSR
prediction tends to overestimate the magnetic form factor by about 25% while for the electric form factor both the
experiment and the LCSR give comparable small values. In this cases we again observe a noticeable improvement
compared to [1]. Finally, in Fig. 5 we study the rafip/ F for the proton multiplied byQ. We actually plotted
QF,/(kpF1), with the anomalous magnetic moment of proigy in order to have the same normalization as

the figures in [16]. The LCSR calculation shows a very weak dependence of this rafié which agrees with
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Fig. 5. Solid line: LCSR prediction for the ratio F (02)/(x, F{ (0?)). Dashed lines: errors due to the variation of the normalizatigfyy .
Grey (red in the web version) symbols: experimental values obtained via polarization tran#ei. Jones (private communication); Black
(blue in the web version) symbols: experimental values obtained via Rosenbluth sepMaGAC 1994 [8]; ¢: SLAC 1994 [9].

the scaling observed at Jefferson Lab [14—16]. In the LCSR approach such behavior results from an interplay of
soft and hard contributions with different scale dependence and only holds approximately in a limited range of
the momentum transfer. In comparison to the result of the calculation in [1Q &/ («, F1), which is presented

in [29], we are much closer to the experiment now.

To summarize, in this Letter we have presented arguments for the use of the improved nucleon current (14) in the
LCSR calculations. Our current retains all desired properties of the CZ current and in addition it fulfills all isospin
relations between form factors exactly. Our numerical estimates demonstrate that using the improved current one
eliminates an implicit uncertainty of the calculations in [1] that is due to the isospin symmetry violation and also
in all cases we obtain a better stability of LCSRs and a better agreement with the data using the set of asymptotic
three-quark nucleon distribution amplitudes up to twist-6 constructed in [22]. More details and the application to
nucleon axial form factors will be considered in a forthcoming publication [25]. It has to be mentioned that the
LCSRs to leading-order accuracy in the QCD coupling only take into account contributions of “soft” or “end-point”
regions that are subleading in the tr@é — oo limit. The leading contributions appear at the level of perturbative
corrections to the sum rules and their evaluation presents an important task for further studies. We believe that
LCSRs with radiative corrections included can provide quantitative information on nucleon distribution amplitudes.
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