
 Procedia CIRP 38 (2015) 283 – 288

Available online at www.sciencedirect.com

2212-8271 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Programme Chair of the Fourth International Conference on Through-life Engineering Services.
doi: 10.1016/j.procir.2015.08.040

ScienceDirect

The Fourth International Conference on Through-life Engineering Services

FlightGear as a tool for real time fault-injection, detection and self-repair

Alan Purvisa, Ben Morrisa, Richard McWilliama

aSchool of Engineering and Computing Sciences, Durham University, South Road, Durham, DH1 3LE, UK
∗ Corresponding author. Tel.: +44-191-3342437-0000; mob: +44-771-350-5409. E-mail address: alan.purvis@durham.ac.uk

Abstract

The development of fault-detection and self-healing methods at both a hardware and software level in modern aircraft is an attractive prospect.

However it is expensive to design and test these techniques using real aircraft. This paper appraises the viability of using FlightGear, an open-

source Flight Simulator, as a test-bed for these approaches. The paper characterises the realism of various aspects of a model of the Airbus A380.

Interfaces are established to abstract critical control system routines from FlightGear. These functions are replicated in both software and hardware

environments. The control data can then be subjected to fault-injection and the control modules modified to enable fault-detection and self-healing.

By applying cluster analysis techniques to training sets of data, a fault-detection, diagnosis and self-healing model is designed to address these

injected faults. FlightGear is found to provide highly realistic simulation of aircraft systems and instrumentation. Hardware-in-the-loop testing

shows promise as an area for future work. The proposed fault-detection model is found to provide 96% accuracy.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Programme Chair of the Fourth International Conference on Through-life Engineering Services.

Keywords: Self-Healing; FlightGear; Hardware-in-Loop; Fault-Injection; Flight Simulation

1. Main Text

On 1 June 2009 Air France Flight 447, an Airbus A330, en-

tered an aerodynamic stall and crashed into the Atlantic Ocean,

killing all 228 people on board [R]. The final report into the ac-

cident found that the crash resulted from a succession of events

starting with an inconsistency in airspeed readings caused by

icing of the aircraft pitot tubes[1].

In this, as in over 50% of all fatal aircraft accidents, pilot

error was cited as a major contributing cause [2]. It is clear,

however, that these errors were prompted by a lack of accu-

rate information from the aircraft’s systems - the pilots were

unable to tell which instruments to trust. The icing of the pitot

tubes was evidently the root cause of the accident, further, as

was pointed out in [1] and [3], while angle of attack data was

sent back to the systems computer it was not displayed to the

pilots. The display of this and other data could have allowed

them to better handle the situation [4]. It can be said that the

safe operation of an aircraft depends on the pilot or auto-pilot

receiving clear and accurate data relating to its position, orien-

tation, velocity and the forces acting upon it. When the systems

providing this information malfunction it is, at best, an incon-

venience and in the worst cases can contribute to disaster given

time and oversight.

Fault-detection is a field of control engineering concerned

with monitoring a system and identifying when a fault has oc-

curred [5]. At the hardware level, a real-time fault-detection

approach permits the reliability of critical systems to be anal-

ysed on a second-by-second basis. If the system is sufficiently

understood it is feasible that the causes of errors could not only

be detected but diagnosed and possibly remedied in real-time.

Fault-Detection and Self-Repair techniques could provide an

extra layer of safety tolerance in aircraft systems which allow

safety improvement without the necessity for the introduction

of expensive redundancy.

Aircraft manufacturers are particularly sensitive to change.

Poorly designed or implemented fault detection routines can

result in high rates of false-positives which can be costly and

inconvenient for passengers and airliners. Any new system

must, therefore, be tested rigorously and its performance in a

wide range of scenarios characterised. Access to real aircraft

or professional grade simulators, however, is often limited and

expensive.

This paper considers whether the open source flight simula-

tor FlightGear could provide a useful test-bed for the develop-

ment of such approaches and additionally appraises its useful-

ness in hardware-in-the-loop integration. It also asks whether

fault-detection and self-healing techniques can be applied to

create an Autopilot Supervisor, offering a real-time picture of

the health of key system instruments and, where faults are de-

tected, present alternative readings clearly.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Programme Chair of the Fourth International Conference on Through-life Engineering Services.

284 Alan Purvis et al. / Procedia CIRP 38 (2015) 283 – 288

Fig. 1. Diagram of the Pitot-Static system and related instrumentation from [7]

2. FlightGear

At a fundamental level the variables that a pilot is most in-

terested in are those describing the position and orientation of

the aircraft and the forces acting upon it. It is when measure-

ments of these variables go wrong that the most serious prob-

lems arise.

The fundamental variables describing the relationships be-

tween these frames of reference are defined by the flight dy-

namics model (FDM) used by the simulation. A number of

FDMs are availale in FlightGear. The FDM typically used is

JSBSim. It is a lightweight, non-linear Six-Degree of Freedom

(6DoF) simulation for modelling flight dynamics and control

for aircraft [6].

2.1. Interfacing with FlightGear

The Property Tree is described as the "central nervous sys-

tem" of FlightGear and one of its most powerful assets. It is

an interface to low level, run time state variables stored in an

intuitive tree-like hierarchy.

2.2. Pitot-Static System

The Pitot-Static system drives several fundamental aircraft

instruments; the ASI, Altimeter and VSI, several commercial

disasters have been linked to its failure.

Mechanically the pitot-static system consists of a pitot tube,

a forward facing tube exposed to the relative wind which mea-

sures stagnation pressure, and a static pressure port, a side

mounted port which measures static pressure. These two pres-

sure measurements are then used to provide measurements of

Indicated Airspeed (IAS), Vertical speed (V/S) and Altitude

(Alt). Figure 1 demonstrates the way in which these systems

interact.

The pitot-static system is realistically modelled in Flight-

Gear. The FGSource environment module creates an environ-

mental static pressure around the aircraft from altitude lookup

tables. The pitot module update function takes the environmen-

tal pressure p, aircraft Mach speed (M), angle of attack (α) and

side-slip (β). It first calculates a projection factor, to account

for orientation errors, as in Equation 1 [8].

X = cos(α)|cos(β)| (1)

The stagnation or pitot pressure pt is then calculated using

Equation 2 [8].

pt = p
(
1 +
(
0.2M2X2

)7/2)
(2)

The static module, accounting for errors due to side-slip and

AoA in a similar way, calculates a static port pressure ps in a

similar manner [8].

Considering the ASI: Equation 3 shows how the difference

between ps and pt provides an impact pressure qc [8].

qc = pt − ps (3)

qc is related mathematically through Equation 4 - where p0
is standard pressure at sea level and a0 is the standard speed of

sound at 15◦C - to a velocity, the IAS [8] [9].

IAS = a0

√
5

[
(
(qc)

p0

+ 1)2/7 − 1

]
(4)

The IAS is not corrected for variations, with altitude, of dy-

namic air pressure and hence does not represent the true speed

at which the aircraft is travelling through the air (TAS) and will

under-read the greater the altitude of the aircraft [10]. However

the aerodynamic behaviour of an aircraft is linked directly to

the IAS; an aircraft at any altitude will stall at the same IAS. It

is therefore critically important that it be measured accurately.

When creating a fault detection model it is important to con-

sider the modes of failure of a system. There are a number of

modes of failure of the pitot-static system and the behaviour of

the attached instrumentation will depend both on which mode

of failure occurs and what phase of flight the aircraft is in. If

the pitot tube is blocked the only reading affected will be IAS,

which will increase in a constant speed climb - running the risk

of aircraft stall, and decrease during descent - running the risk

of over-speed beyond critical the critical Mach number, and air-

craft breakup [11].

A blocked static port is a more serious problem than pitot

failure. Altitude measurements will become stuck, V/S will be

frozen at zero and IAS will behave in the opposite manner to

a pitot failure - showing falling IAS during a constant speed

climb and rising IAS during constant speed descent [11].

The system’s behaviour under an additional mode of fail-

ure, electronic faults, is less strictly defined. The nature of

hardware-based faults means that such instances can cause er-

ratic data behaviour, even occasionally causing erroneous data

in some situations but not others. This is explored more using

real hardware in Section 3.1.

3. Fault Injection

FlightGear has some rudimentary fault injection capability.

Systems such as the Vacuum, Pitot or Static can be turned on

and off by toggling Boolean values in the FlightGear property

tree. This was insufficient for the purposes of this paper and fur-

ther programming work was required to create an environment

where performance under many different failure modes could

be tested.

As discussed in Section 2.2 there are a number of different

modes of failure for the pitot-static system, both mechanical

and electronic [11]. In order to have the capability to model

a variety of different kinds of fault being introduced into the

system it was necessary to turn off the native Pitot-Static calcu-

lations and replace them with custom, faulty, calculations. Us-

ing understanding of the pitot.cxx and airspeed.cxx modules,

the mathematics behind the pitot-static system, and the failure

285 Alan Purvis et al. / Procedia CIRP 38 (2015) 283 – 288

Fig. 2. Image of Xilinx FPGA board

Fig. 3. The effect of hardware pitot fault injection

modes of the pitot static system, code was generated to inject a

number of different types of faults. These included stuck, low,

high, drifting and noisy values.

3.1. Implementation

A custom UDP protocol, outputting from FightGear the

environmental variables used in the Pitot-Static calculations,

and taking in the results from those calculations, was created.

This permitted Pitot-Static calculations to be carried out by

re-implementing the previously developed code onto a simple

UDP server written in C. It was then possible to toggle be-

tween the (correct) on-board and (incorrect) off-board calcu-

lations from within FlightGear by switching a variable in the

property tree. In this way it was possible to insert errors into the

Pitot-Static system without changing anything within Flight-

Gear.

3.2. Hardware-In-The-Loop

The UDP connection provided further interesting options.

The abstraction from the software did not need to be limited

to another software implementation. A parallel project by an-

other student was exploring the idea of hardware-based fault-

injection and self-repair on a Xilinx FPGA platform [12]. By

lifting the pitot-tube calculation from software and implement-

ing it on the FPGA picture in Figure 2 it was possible to exper-

iment with hardware-in-the-loop testing. Faults were injected

into the hardware in a manner to simulate bombardment by

high-altitude radiation.

The effect of the bit-flips involved in hardware fault-

injection saw data taking extreme values, or multipliers being

applied to pitot-tube data. Figure 3 shows this phenomenon -

switching the serviceable tag from true to false causes the sub-

routine to be switched from running in the software to running

on the Xilinx board. In this case the fault on the board causes an

extremely small pitot pressure, correspondingly the measured

IAS (on the sliding left-hand axis) becomes very close to zero.

The underlined green value is the true airspeed of the aircraft

and highlights this discrepancy.

While this helped develop a more robust software-level

fault-detection package the importance of this testing was not

in the results themselves but in that it demonstrated a useful

way of quantifying and observing how hardware faults propa-

gate in a real system. FlightGear can, in this way, act as a use-

ful tool or test-bed for developing and testing hardware-based

fault-correction methods, minimising the need to use expensive

professional-grade simulators.

4. Fault-Detection, Diagnosis and Self-Healing

Error-correction requires three-phases to be carried out -

fault-detection, fault-diagnosis and finally a self-healing phase.

To appraise the results of a proposed error-correction model the

effectiveness of each of these phases should be quantified.

Faults, in a model-based fault-detection system, are raised

when system values deviate significantly from the values ex-

pected by a model. Fault-detection is typically judged by two

metrics. These are the false positive and the false negative rate,

often used interchangeably with the terms Type I and Type II

errors respectively. In the context of a flying aircraft, which can

go wrong in a matter of seconds, it is also important to con-

sider the response-time - how quickly a fault flag is raised after

injection.

Fault-diagnosis is the process of categorising detected faults.

The success of a fault-diagnosis method is defined by the per-

centage of injected faults that are correctly identified.

Self-healing is the process of providing alternative read-

ings to instruments that are found to be faulty. The accuracy

of a self-healing method can be defined as the difference be-

tween the proposed alternative reading for an instrument, and

the value of that parameter were it operating normally at that

point in time. In FlightGear this can easily be measured by cre-

ating and measuring the output of fault-free duplicates of all

instruments under scrutiny.

286 Alan Purvis et al. / Procedia CIRP 38 (2015) 283 – 288

4.1. Modelling and Data Analysis

Time series cluster analysis is used to identify structure in

an unlabelled data set by organizing data into homogenous

groups [13]. Flight data variables consists of a regularly sam-

pled (10Hz) set of parameters. Many of these parameters are

correlated with one another and by analysing this data it is pos-

sible to detect unexpected behaviour and discrepencies. In this

instance cluster analysis was used, during a training phase, to

divide the aircraft’s systems and instrumentation time series

data into labelled faulty and non-faulty clusters. In this way,

it was hoped, a model could be developed to assign live data

in real-time to these clusters and identify those samples which

represented faulty data.

The initial time series used contained the ten parameters

obtained from five different systems (GPS contains two pa-

rameters, Altitude and True Ground Speed (TGS)). Some pre-

processing of the data was carried out. Equations 5 and 6 show

how an estimate for a GPS derived VSI at time k was obtained,

using the real-time change in altitude δAlt and sample rate S R
in Hz. A fourth-order low-pass Butterworth filter, with coeffi-

cients c0 - c4 was applied to filter out noise in GPS-Altitude[14].

The filter was chosen because it was stable and performed well

under testing.

δAltk = (GPS Altk −GPS Altk−1) (5)

GPS VS Ik = S R ∗ (c0δAltk + c1δAltk−1 + ... + c4δAltk−4)

4∑
i=0

ci

(6)

Indicated Airspeed can be approximately related to True Air-

speed (TAS) by increasing it by 2% for each 1000ft increase in

altitude [10]. Equations 6 - 7 show how GPS-TGS was approx-

imated to TAS and then used, with GPS-Alt, to provide a GPS

inferred IAS (note this fails to account for wind speed).

GPS T AS ≈ GPS TGS (7)

GPS IAS ≈ GPS T AS

1 + 0.02GPS Alt
1000

(8)

4.2. Variable Normalization

It is important that the variables used are of similar order

such that they have similar weight in the calculation of cluster

centroids. In order to carry out cluster analysis it was useful,

therefore, to normalize variables, creating dimensionless num-

bers representing relationships between multiple variables.

Some of these numbers were obtained heuristically - it is

fairly obvious that GPS Altitude would be expected to vary lin-

early with pressure Altitude. Others were obtained through a

combination of dimensionless analysis and examination of the

data - by looking at the rate of climb as a function of engine

speed (N1) and pitch it was possible to compare the VSI and

GPS VSI with the engine and vacuum systems. IAS is shown

to vary significantly with GPS IAS, then a quantity represent-

ing the ratio between the two is shown to be relatively consistent

across the duration of a flight.

Although many combinations of parameters were explored

in the end four normalized variables, Equations 9, 10, 11 and

12, representing correlations between seven of the ten parame-

ters initially analysed were selected. Note a multiplier has been

added in heuristically in Equation 12 to bring the mean value to

approximately 1.0.

Var1 =
IAS

GPS IAS
(9)

Var2 =
Altitude

GPS ALT
(10)

Var3 =
VS I

GPS VS I
(11)

Var4 =
4 ∗ N1 ∗ pitch

GPS VS I
(12)

4.3. k-Means Clustering

A common partitioning method, the k-means algorithm,

aims to partition a sample of data-points into a predefined num-

ber of clusters, each with a mean value or centroid [15]. It

works by the minimization of an objective function, based on

the within cluster sum of squares (WCSS). Each vector in the

time series of the sample belongs to one of the clusters. The

algorithm starts by creating arbitrarily the desired number of

cluster centroids. In the assignment step each observation is

assigned to the cluster whose centroid is closest. The cluster

centroids are then updated, becoming the centroids of the sam-

ples now placed in the new clusters. The assigment phase then

recommences and the algorithm repeats until the assignments

no longer change [15].

The k-means algorithm was applied to various time series of

these normalized variables generated from test flights with and

without faults injected. These clusters were then labelled, using

knowledge of the data set from which they were derived, as

"fault-free", "pitot-high", "pitot low", "static blocked" etc., and

integrated into a fault-detection model. This created an initial

set of k vectors of the co-ordinates of the centroids or means of

the clusters, m1,...,mk.

Once the system is "trained" it is used to classify new data

points. At time t, the model takes a new vector of the n normal-

ized system parameters, vt, and calculates its squared Euclidean

distance from each of the cluster centroids, as in Equation 13,

which shows the squared euclidean distance from the ith cen-

troid.

d2(vt,mi) = (vt1 − mi1)2 + (vt2 − mi2)2 + ... + (vtn − min)2 (13)

The vector is then assigned to the cluster to which this dis-

tance is shortest. If the latest vector has been assigned to the

"fault-free" cluster then no action will be taken, if it has been

assigned to one of the faulty clusters then an error detected flag

will be raised with an associated diagnostic message and the

self-repair method will be called.

4.4. Expectation-Maximization Clustering

One problem with k-means clustering is that it forms hard,

spherical, cluster boundaries, using the Euclidean distance, that

do not account for any variation in the shape or size of the clus-

ters [16]. While this is useful for some applications, in the case

where distributions do not fit these pre-defined patterns it can

provide unsatisfactory results. Figure 4, showing the distribu-

tion of labelled data for Var 1 and Var 2 when a static fault is

287 Alan Purvis et al. / Procedia CIRP 38 (2015) 283 – 288

Fig. 4. Graph demonstrating two-dimensional K-Means Cluster Analysis

Fig. 5. Graph showing two-dimensional EM Cluster Analysis

introduced into the system, demonstrates this problem. While

the fault-free data is very tightly clustered, the labelled faulty

data set is much more broadly spread. As a result the k-means

method, despite introducing cluster centroids in sensible loca-

tions, will mis-classify a number of faulty points as being fault-

free. This results in lower detection rates and less satisfactory

performance.

An alternative to the k-means method is the Expectation-

Maximization (EM) algorithm. EM assumes samples are mem-

bers of a number of Gaussian distributions. Similar to k-means

it provides estimates of the locations of cluster centroids, repre-

senting the Gaussian means. However, in addition to the coor-

dinates of the mean, each cluster centre has an associated vector

of variances, representing the Gaussian width.

When the model is created it seeds randomly both the clus-

ter mean locations and a matrix of variances for each cluster.

The EM algorithm iteration then alternates between perform-

ing two steps. The Expectation step calculates, based on the

current estimate of the mean and variance for each cluster, the

expected value a log-likelihood function that describes the like-

lihood that the current position of the Gaussian distributions is a

correct representation of the observed data. The Maximization

step then chooses the values for means and variances that max-

imize this log-likelihood function. This log-likelihood function

of the new distributions is then calculated and the cycle contin-

ues until the a maximum value is reached.

Rather than being hard-assigned to a cluster, the probability

Fig. 6. Comparison of K-Means and EM clustering models over 20 flights

of a new sample belonging to each system cluster is calculated,

and the sample is then assigned to the cluster to which it is most

likely to belong. This means that the acceptance rate of clusters

with relatively tight groupings is much lower than in k-means

clustering and should provide a lower rate of false-negatives.

Figure 5 demonstrates this improvement by overlaying the re-

sults from EM clustering on the same data as before.

4.5. Model Testing

The data from the training sets were used to assemble nine

labelled clusters in the four normalized variables. One clus-

ter represented the data behaving normally and the other eight

clusters represented different types of labelled fault.

Both models, one based on k-means and one based on E-M

clustering, were tested on 20 sets of flight data. All flights fol-

lowed the same pattern, taking off from runway 27L at Lon-

don Heathrow (EGLL) airport and following a standard in-

strument departure (SID) path before setting on a course for

New York JFK (KJFK). Once the airspeed had settled at 210kts

and an altitude of 5000ft had been reached data recording be-

gan. The fault-injection window lasted for approximately 5

minutes and contained two faults that fell into six broad cat-

egories, Pitot-Stuck, Pitot-High, Pitot-Low, Static-Stuck Static-

High and Static-Low. These faults were injected at random

times within the window for between 15-30 seconds each.

The results of this testing are shown in Figure 6. The model

based on the EM clustering method, as expected, performed

significantly better at fault detection, with an average detec-

tion rate of 96% compared to 84% for the k-means method.

This difference in performance comes about from the flawed

assumption of the k-means model that clusters in the data have

identical widths, and led to misassignment of faulty data as be-

ing fault-free. This same property lead to the k-means method

performing slightly better in terms of throwing false-positives.

It is expected that the implementation of a sensibly calibrated

low-pass filter could allow the EM model to find an acceptable

balance between false-positive rate and response-time, which

was almost instant when analysing data on a sample-by-sample

basis.

Of faults that were detected the EM model correctly iden-

tified the faulty system (pitot/static) in 95% cases and the pre-

cise nature of the fault (high, stuck etc) in 89%. The k-means

method performed poorly in this area. Once faults had fully

manifested it provided the correct categorisation, but in the in-

288 Alan Purvis et al. / Procedia CIRP 38 (2015) 283 – 288

terim period it failed to deliver good results, on average deliver-

ing 80% system categorisation and classifying the nature of the

fault 62% of the time.

The self-healing model was similar for both methods. When

faults were isolated the system used Var1 - Var4 to provide al-

ternative instrument readings for those instruments deemed to

be faulty. Both methods performed extremely well here, de-

livering alternative IAS, Altimeter readings with 98% of the

correct value and and VSI readings within 90% of the true

value. While these results seem very positive the GPS system

in FlightGear is overly accurate and this could be going some

way towards providing these excellent results.

5. Conclusions and Further Discussion

This paper finds that FlightGear provides detailed simulation

of many areas of aircraft avionics. In particular the fundamen-

tal flight instruments are modelled accurately and in a detailed

manner. It concludes that in these areas FlightGear can be a

useful tool for testing and visualising methods of real-time fault

detection and diagnosis.

FlightGear does not have sufficiently realistic modelling of

engine thrust control to carry out fault-analysis in this area. An

XML or Nasal-based implementation of a control system sim-

ilar to a simple FADEC, monitoring engine and environmental

parameters while actuating fuel-flow, would introduce the ex-

tra layer of abstraction necessary to fault-test electronic engine

faults and could provide interesting results.

5.1. Fault-Detection and Self-Healing

The goal of the Fault-Detection and Self-Healing experi-

mentation was to explore the possibility of creating an Autopilot
Supervisor that provides a layer of software-redundancy in the

case that physical or non-recoverable electrical fault causes a

system to become unreliable. The suggested model, based on

an Expectation-Maximization clustering approach, detects 96%

of faults and has a false-positive rate of 1.5%. The self-repair

system implemented provides very accurate results. While this

is partly due to an over accurate GPS implementation it demon-

strates that the methods are sound. However, due to the limited

testing (only 20 flights worth of data was tested). While this

model is an improvement on no error-detection at all a complete

solution needs further study. Significantly more fault-types and

flight situations must be explored before this model could be

described as a reliable Autopilot Supervisor.

In terms of improving the model a number of the false-

positives detected were a result of system noise causing data en-

tries to cross cluster boundaries. Many engine and inertial (ac-

celerometers) system variables showed promising correlations

with various system instrumentation. By reconciling more in-

struments into normalized variables the diversity of the solution

space will be increased more system cross-checks provided. Ul-

timately this will create a more complete picture of the system

and should allow for faults to be characterised more accurately

and reliably.

5.2. Hardware-in-the-Loop

FlightGear shows enormous promise as a test-bed for hard-

ware fault-injection. Rather than extracting only the pitot-tube

subroutine, it could be possible to extract multiple subroutines

to FPGAs, or even use real aircraft components in the loop,

providing a rigorous and exciting testing environment. Further

testing of system performance under hardware fault-injection

should be carried out and the performance at software level of

hardware self-healing methods characterised.

If combined with a top-down software based approach the

hardware route could help pave the way to a complete suite of

fault-detection and self-healing methods. Providing a hybrid

top-down and bottom-up approach to fault-detection and self-

healing that could lead to improved component resilience and

ultimately lower costs and higher levels of safety in aircraft.

Acknowledgements

This work was carried out with the support of the EPSRC

Centre for Innovative Manufacturing in Through-life Engineer-

ing Services. [EP/IO33246/1]. AP is also grateful for the sup-

port and welcome he received whilst a visitor at the University

of Sydney Australian Centre for Field Robotics.

References

[1] BEA, “Final report on the accident on 1st june 2009 to the air-

bus 330-203 registered f-gzcp operated by air france flight af 447 rio

de janeiro - paris,” http://www.bea.aero/docspa/2009/f-cp090601.en/pdf/f-

cp090601.en.pdf, 2012, (Accessed April 2015).

[2] “Plane crash info,” http://www.planecrashinfo.com/cause.htm, (Accessed

April 2015).

[3] N. Ross, “Air france flight 447 - damn it we’re going to crash,”

http://www.telegraph.co.uk/technology/9231855/Air-France-Flight-447-

Damn-it-were-going-to-crash.html, 2012, (Accessed April 2015).

[4] G. Salvendy. and M. J. Smith., Eds., Human Interface and the Management
of Information. Springer Verlag ISBN 978-3-642-21669-5, 2011, (Pilot

Information Presentation on the Flight Deck, Machiarella et al. p500).

[5] I. Hwang, “A survey of fault detection, isolation and reconfiguration meth-

ods,” IEEE Control Systems Society, vol. 18, 2010.

[6] “Jsbsim,” http://jsbsim.sourceforge.net/, (Accessed December 2014).

[7] D. Parry, “Pitot-static instruments,” http://www.langleyflyingschool.com-

/Pages/CPGS/(Accessed April 2015).

[8] “Flightgear pitot module,” flightgear-3.0.0/src/, (Accurate as of version

3.0.0).

[9] “True, equivalent and calibrated airspeeds,” http://www.mathpages.com-

/home/kmath282/kmath282.htm, (Accessed January 2015).

[10] CSG, “True airspeed calculator,” http://www.csgnetwork.com-

/tasinfocalc.html, (Accessed February 2015).

[11] L. Monteiro, “The dramatic effects of pitot-static system blockages and

failures,” LuizMonteiro.com, vol. 1, pp. 1–14, 2013.

[12] T. Carney, Modelling Electronic Circuit Failures using a Xilinx FPGA sys-
tem, preprint, April 2015.

[13] T. Liao, “Clustering of time series data - a survey,” The Journal of The
Pattern Recognition Society, vol. 38, 2005.

[14] C. Bond, “Butterworth filters,” Polynomials, Poles and Circuit Elements,

2003, http://www.crbond.com/papers/btf2.pdf.

[15] D. MacKay, Information Theory, Inference and Learning Algorithms.

Cambridge University Press, 2003, (Chapter 20: An Example Inference

Task: Clustering).

[16] N. Alldrin, “Clustering with em and k-means,” http://cseweb.ucsd.edu/ at-

smith/project1_253.pdf, (Accessed March 2015).

