
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015; 00:1–32
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

HTC-Sim: A trace-driven simulation framework for energy
consumption in High Throughput Computing systems

M. Forshaw1∗, A.S. McGough2, N. Thomas1

1School of Computing Science, Newcastle University, Newcastle upon Tyne, NE1 7RU
2School of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE

SUMMARY

High Throughput Computing (HTC) is a powerful paradigm allowing vast quantities of independent work to
be performed simultaneously across many loosely coupled computers. These systems often exploit the idle
time available on computers provisioned for other purposes – volunteer computing. However, until recently,
little evaluation has been performed on the energy impact of HTC. Many organisations now seek to minimise
energy consumption across their IT infrastructure. However, it is unclear how this will affect the usability
of HTC systems especially when exploiting volunteer computers. We present here HTC-Sim, a simulation
system which allows the evaluation of different energy reduction policies across an HTC system. We model
systems which are comprised of both collections of computational resources dedicated to HTC work and
resources provided through volunteer computing – a Desktop Grid. We demonstrate that our simulation
software scales linearly with increasing HTC workload. We go further to evaluate a number of resource
selection policies in terms of the overheads / slowdown incurred, and the energy impact on the HTC system.
Copyright c© 2015 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Simulation, Energy, High-Throughput Computing

1. INTRODUCTION

In recent years a number of large scale distributed computing paradigms have been developed which
facilitate parallel processing of computational work at a vast scale. These systems generally involve
the analysis of large quantities of data (so-called ‘Big data’), undertaking large scale simulations
or large collections of smaller simulations. The underlying computer facilities supporting these
applications typically consist of multiple processing units employed to solve a single problem.
Situations where it is possible to subdivide this problem into separate jobs that can be executed
independently is often termed as a pleasingly parallel problem which can be solved using High
Throughput Computing (HTC). There exists a number of HTC systems, including HTCondor [1]
and BOINC [2], which are typically used to help solve scientific problems at all scales.

Originally HTC systems were either created as dedicated resources or as shared facilities
(Desktop Grids), which are constantly powered up, whether servicing jobs or sitting idle. Shared
usage systems have the added complication that the execution of HTC jobs might be affected by
other users. For example, in University research environments the HTC system is typically based
on student accessible laboratories and, when these are required for teaching (or by individuals), the
HTC jobs are expected to relinquish the resources – either by job eviction or suspension. Here we
see job evictions as an unsuccessful execution.

∗Correspondence to: School of Computing Science, Newcastle University, Newcastle upon Tyne, NE1 7RU

Copyright c© 2015 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 M. FORSHAW

The performance and reliability challenges of large scale systems are generally well
understood [3]. However, energy issues have received less attention but are of increasing concern
due to high running costs, political pressures and potential environmental impact. The power
consumption of western European data centres alone was estimated at 56 TWh/year in 2007 and is
projected to double by 2020 [4] making it imperative to improve energy efficiency of IT operations.
Hence, unsuccessful execution of HTC jobs can be considered not only as a performability problem,
but also as an energy cost. In addition, measures to improve the reliability of HTC job execution,
such as replication or checkpointing, carry an extra energy cost which needs to be considered against
the performance benefits. HTC systems would therefore appear to offer significant potential for
energy efficiency savings.

Many energy aware approaches have been suggested. However, resource management policies
which favour reduced energy consumption over other attributes could have a significant impact
on performance, reliability and availability of resources for HTC users. For example, placing idle
resources into a sleep state too rapidly – without the ability to wake them up – could lead to
increased failures or HTC resource starvation. Conversely, policies which emphasise availability
may ultimately offer very little by way of energy savings. Therefore it is necessary to understand
the factors which lead to intelligent selection of energy saving policies to apply to the underlying
hardware and the management of HTC users and jobs. Suitable policies would control such factors
as a) the energy state of a collection of resources; b) how to deal with jobs which fail to complete,
and c) the choice of resources employed which potentially minimises energy consumption. Such
policies become especially powerful on shared facilities where interactive users may lead to the
eviction of an HTC job which could still complete; therefore selecting a less used (possibly higher
energy) resource, or executing at a different time of day, may have a significant potential energy
saving.

In [5] we described an architecture for managing policies for power management of resources
in an HTC system. However, determining an optimal, or near-optimal, set of policies across a set
of highly dependent shared resources is an extremely difficult and potentially costly process. This
is due to the fact that the combined system behaviour is in general very difficult to determine in
advance, as small policy changes can have significant influence on the overall system behaviour.
One possible approach to determining a suitable policy set is to experiment with policy changes on
a live system. This approach has three major drawbacks. Firstly, it is necessary to run the system
under the new policy for a significant amount of time to ensure statistical relevance. Even with a
long evaluation, some specific conditions may not occur during this time, which might lead to the
wrong policy being adopted. Secondly, it is necessary to perform detailed logging and monitoring
of the high throughput architecture in order to determine system wide energy consumption. Such
in-situ monitoring often constitutes significant capital expense, potentially requires additional
implementation, and may carry an overhead in performance and energy. Finally, there is a potential
that policy changes could have unpredicted consequences which might have a negative impact,
therefore leading to a significant degradation of the system during evaluation. Attempting to avoid
this problem may lead to only minor policy modifications being made, so that there is a degree of
certainty that the impact on users will be low; more significant changes being considered too risky.

Two potential alternatives to live experimentation are typically employed: these are either the
establishment of a test bed environment or through simulation. Test beds offer the potential for
detailed study but are generally costly and time consuming to develop and it can be hard to
apply the derived results to a live system. Such test environments remove the need for site-wide
monitoring and do not affect the production system. However, as test environments run in real
time, or near real time, a significant duration is needed in order to evaluate changes. Simulation
systems are also time-consuming to develop, but the same simulation environment can be tailored
to different environments vastly reducing the individual development time. In addition, unlike live
experimentation or test environments, many simulations can be run simultaneously to evaluate
many possible policies and system parameters. Finally, the use of a simulation approach does not
incur additional energy consumption on the real system; however, it should be noted that running
simulations is not an energy-free process.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 3

Wake-on-LAN
(WoL)

Z
ZZ

High-Throughput
Users

Interactive Users

High-Throughput
Management

Z
ZZ

Policy

Cluster Policy
Cluster Policy

Figure 1. Model of an HTC system and multi-use environment

In this paper we describe our Java-based trace-driven simulation, HTC-Sim, which we have
developed in order to study energy saving policies in HTC systems. HTC-Sim supports relatively
fast and quantifiable evaluation of competing policies under identical workload and the presence
of interactive users. The simulator supports a flexible approach to modelling energy consumption
and performance of a specified HTC system. As such, HTC-Sim is a powerful tool which can be
used by administrators to evaluate new policies and to assess the impact of changes to supporting
infrastructure.

A high level model for HTC-Sim is illustrated in Figure 1. Resources are grouped into clusters,
each representing a set of homogeneous resources subject to a given policy set. Thus we model
sets of co-located resources purchased together acting under identical policies, though different sets
of resources need not share these commonalities. The HTC system has its own policy set which
specifies how resources are managed and how jobs are allocated to resources. There are two types
of user who interact with the system - HTC users and interactive users. The actions of both types
of user are specified through historical trace logs. Trace logs for interactive users contain login and
logout times on the specific resource(s) used. These interactive sessions are assumed to be fixed.
The trace logs for the HTC workload specify the job submission time and the execution duration.
The job start time and the choice of resource used will be determined by the application of the active
policy set. These traces can then be used, through the simulation along with an identified policy set
to evaluate how the system would perform. Either user type can be removed from the system simply
by providing an empty log file for that type, allowing a baseline performance to be established for
each type of user.

The paper is organised as follows. Relevant related work is discussed in Section 2. We provide
details of the simulation model in Section 3, followed by a discussion of the implementation of
HTC-Sim in Section 4. A case study concerning the use of HTC-Sim to evaluate policies for an
HTCondor cluster is presented in Section 5. In Section 6 we consider the performance of HTC-Sim,
followed in Section 7 by a discussion of how we have used HTC-Sim in our work in recent years.
In Section 8 we highlight some future work to extend HTC-Sim and we provide some conclusions
in Section 9.

2. RELATED WORK

In this section we discuss a number of the related works pertaining to energy efficiency within
computers and clusters.

2.1. Evaluation of energy consumption in large-scale systems

Throughout our work we employ a trace-driven simulation approach to evaluating the performance
and energy consumption of operating policies within high throughput computing environments.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 M. FORSHAW

Here we discuss alternative approaches to evaluating the energy consumption of large-scale
distributed systems, classifying works based on their adopted approaches - namely experimental
testbeds and emulation.

2.1.1. Experimental testbeds Experimental testbeds, comprising a number of physical and virtual
machines, are frequently considered for the evaluation of large-scale systems. Practitioners may opt
to use one of a number of existing experimental testbeds or build their own private testbed. A key
consideration in selecting a testbed is the trade-off between the capital investment to acquire the
required hardware infrastructure and operational expenditure of using an external service. In the
context of using testbeds for scientific experimentation, project scale and duration are significant
factors. However, when considering the use of testbeds for the evaluation of energy efficiency, the
domain is dominated by private testbeds, with very few public infrastructures reporting energy
metrics. One exception is BonFIRE [6, 7], a scientific testbed distributed across seven sites in
Europe. A number of these sites operate managed power distribution units (PDUs) within the data
centres and expose end-user energy consumption to their users. A number of frameworks supporting
private testbeds exist with emphasis on the evaluation of energy consumption, e.g. Enacloud [8] and
Openstack Neat [9].

2.1.2. Emulation A further approach considered in a number of works is the emulation of
large-scale systems. In an emulation approach, performance evaluation is conducted against the
concrete implementation of the system under test, rather than a simulated implementation. Such
an approach boasts a number of key benefits, alleviating the need for an abstract model for
the system required in simulation or analytical approaches and allowing the same code used
for experimentation to be deployed into a production environment. Naicken et al [10] observed
significant inconsistencies between results produced by multiple simulation frameworks modelling
the same distributed environment. They attribute this variability to inconsistencies between abstract
models and implementations, making the ability to closely align experimental and production code
highly desirable. An emulation approach has been used in the context of peer-to-peer (P2P) [11]
systems and networking [12], but few have accounted for the energy consumption of systems
in emulation approaches, e.g. [13]. A significant constraint on emulation-based experiments is
that of scale. Emulation-based approaches are commonly only capable of evaluating systems with
small numbers of entities (orders of magnitude fewer entities than alternative approaches such as
simulation). In our context of large-scale high throughput computing systems, many of the operating
decisions and policies we propose may only be evaluated meaningfully at large-scale, so we do not
pursue an emulation approach further.

2.2. Simulation frameworks

A number of Grid and Cluster level simulators exist including SimGrid [14], GridSim [15], and
OptorSim [16] though these focus more at the resource selection process both within clusters and
between clusters and lack the modelling of energy. More recently Cloud simulators have been
proposed which are capable of modelling the tradeoff between not only cost and Quality of Service,
but also energy consumption. These include CloudSim [17], GreenCloud [18], and MDCSim [19].

In Table I we provide an overview of currently available simulation environments for the
modelling of grid and cloud systems. We identify a number of commonalities between the
capabilities of the simulation frameworks we consider. The ‘?’ symbol is used where information
was not obtainable on either of a) the reference (or associated) publications for the simulation
tool, nor b) on the homepage for the tool. We observe that all simulation frameworks support the
modelling of performance and/or SLAs, with the exception of OptorSim. Similarly, all simulation
frameworks except MDCSim support the modelling of heterogeneous compute resources. We find
few simulation frameworks which support the modelling of virtualised resources.

We observe that the implementation language upon which the simulation frameworks are based
is dominated by Java. We favour Java as a choice for implementation language because of the

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 5

simplified deployment of Java applications upon different platforms and due to its applicability to
rapid development.

Table I illustrates that our simulation framework HTC-Sim exhibits novelty in its ability to model
multi-use cluster and the presence of interactive users. Furthermore, HTC-Sim is one of only very
few frameworks which support the simulation of real workloads and fault tolerance mechanisms.

2.3. Energy efficient high throughput computing

Techniques to reduce energy consumption within high throughput computing environments is
receiving increasing attention.

Minartz et al [26] proposed switching off nodes within a high-performance cluster to save energy.
We go further in this work to show how different policies over how jobs are distributed around a
high throughput heterogeneous cluster can be more energy efficient. Minartz et al goes further to
model the power consumption of individual components within a system based on the computation
performed. This could be adapted to work with our system.

Verma et al [27] explore the impact of dynamic consolidation and the use of low-power operating
states in the placement of HPC applications within a virtualised environment. Terzopoulos et al [28]
investigate the use of Dynamic Voltage Scaling techniques to reduce energy consumption in a
heterogeneous cluster to conform to power budgets imposed by the infrastructure.

Niemi et al [29] demonstrated that running multiple jobs on the same node within a high-
performance cluster was more energy efficient. We expect such to be the same here for our work.
Though at present we lack the knowledge about execution load for our workload to determine this.

Ponciano et al [30] evaluate strategies for energy-aware resource provisioning and job allocation
within opportunistic grids, transitioning worker nodes into energy-saving sleep modes during
idle periods. Zikos et al [31] model a cluster within a computational grid as an open queueing
network and evaluate the impact of resource allocation strategies on performance and energy
consumption. The authors model the heterogeneous nature of clusters though they model jobs as
being nonpreemptable (i.e. once they commence execution, they cannot be suspended or abandoned
until completion), which is unlikely given the potential for resource failures, and particularly in our
context of multi-use clusters where jobs may be preempted by interactive users. The scheduling
approach considered by Zikos et al also differs from ours; in their model jobs may be queued on
a compute resource prior to execution whereas, under our model, jobs are only allocated to idle
resources. The proposed resource allocation strategies consider queue length at each node and the
performance of the nodes; energy consumption is considered but only as a secondary optimisation
criteria in the event of multiple servers existing with empty queues and identical performance.
Policies are evaluated by simulation for various levels of system load. The authors acknowledge
the trade-off between energy consumption and performance, and the significance of system load on
the effectiveness of each resource allocation policy.

Faria et al [32] explore network and energy-aware resource allocation strategies for opportunistic
grids. The authors extend the Workqueue (WQ) [33] scheduling strategy to consider network traffic,
distance between input files and the execution node, as well as the current state of the execution
node.

Aupy et al [34] investigate energy-aware checkpointing strategies in the context of arbitrarily
divisible jobs. While divisible jobs encompasses a number of common applications including
BLAST sequencing and parallel video processing, such jobs represent only a proportion of our
workload, and HTC systems do not typically have control over the division of batched jobs.

2.4. Power modeling

The energy consumption of server and commodity hardware has been studied extensively in the
literature. Early works leveraged low-level metrics such as performance counters [35, 36] when
developing predictive models of energy consumption, while others aimed to simulate individual [37,
38] or groups of system components [39, 40]. These models tend to require significant architecture
knowledge and typically were not generalisable to other hardware, nor scalable to entire computer
systems.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 M. FORSHAW

C
lo

ud
Si

m
[1

7]
G

re
en

C
lo

ud
[2

0]
H

T
C

-S
im

M
D

C
Si

m
[1

9]
O

pt
or

Si
m

[1
6]

Si
C

oG
ri

d
[2

1]
Si

m
G

ri
d

[1
4]

G
ri

dS
im

[1
5]

E
ne

rg
y

m
od

el
X

X
X

X
–

–
–

–

Pe
rf

or
m

an
ce

/S
L

A
s

X
X

X
X

–
X

X
X

M
ul

ti-
us

e
/

In
te

ra
c-

tiv
e

us
er

s
–

–
X

–
–

–
–

–

C
an

us
e

re
al

w
or

k-
lo

ad
tr

ac
es

–
X

X
–

–
–

X
–

Fa
ul

tt
ol

er
an

ce
/c

he
ck

po
in

tin
g

–
–

X
X

X
–

–
–

L
an

gu
ag

e
Ja

va
C

++
Ja

va
Ja

va
Ja

va
H

as
ke

ll
C

Ja
va

O
n-

de
m

an
d

pr
ov

is
io

ni
ng

X
X

X
?

X
X

X
X

V
ir

tu
al

is
at

io
n

X
X

–
–

–
–

–
–

H
et

er
og

en
eo

us
re

so
ur

ce
m

od
el

s
X

X
X

?
X

X
X

X

U
nd

er
ly

in
g

fr
am

ew
or

k

Si
m

Ja
va

[2
2]

<
=2

.0
,

no
w

cu
st

om
co

re
N

S-
2

–
C

SI
M

[2
3]

–
Pa

rs
ec

[2
4]

an
d

D
is

kS
im

[2
5]

–
–

So
ft

w
ar

e
lic

en
se

L
G

PL
G

PL
–

–
E

U
D

at
ag

ri
d

–
L

G
PL

G
PL

Pu
bl

ic
ly

av
ai

la
bl

e
X

X
–

–
X

–
X

X

L
at

es
t

re
le

as
e

(d
d/

m
m

/y
yy

y)
(a

s
of

25
/0

3/
20

15
)

02
/0

5/
20

13
19

/1
2/

20
13

–
–

19
/0

3/
20

08
–

02
/0

6/
20

14
25

/1
1/

20
10

Ta
bl

e
I.

C
om

pa
ri

so
n

of
Si

m
ul

at
io

n
Fr

am
ew

or
ks

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 7

Fan et al [41] observed that total power consumption of server hardware was strongly correlated
with CPU utilisation, and power consumption may be modelled linearly for values between
active/idle and peak CPU consumption. The authors also present a linear model as well as an
empirical model which includes a parameter which may be obtained through a calibration phase.

Economou et al [42] introduce the Mantis model, which extends [41] to also include the
energy consumption of memory, storage and network subsystems. The model relies only on
readily-obtainable server utilisation metrics, and a single calibration step where resource utilisation
is correlated with full-system power consumption. The resulting models benefit from broader
applicability to non-CPU-dominant workloads, and for systems whose energy consumption is not
dominated by the CPU (e.g. systems with a very large RAM configuration).

More recently, Davis et al [43] explore predictive power models using performance measures
made available within the Microsoft Windows operating system. However, these models are not
applicable to systems running alternative operating systems. Davis et al also explore the inter-node
variability within homogeneous clusters [44], demonstrating that applying power models obtained
from a single node to the rest of the cluster is insufficient in achieving quality predictions. However,
this work is limited by using the same OS-specific measures as in [43].

Predictive models of energy consumption typically use the power consumption at peak resource
utilisation to represent maximum energy consumption for a server. Meisner et al [45] challenge this
assumption, demonstrating interactions between server utilisation and the behaviour of switched-
mode power supplies, and propose an operating system-level metric to more accurately predict peak
power consumption for a commodity and enterprise-level server.

2.5. Benchmarking

SPECpower ssj2008 [46], released in November 2007, was the first industry-standard benchmark
designed to evaluate and provide means of comparison between measured performance and
measured power consumption. SPECpower extends existing SPEC benchmarks incorporate energy
meaurement, and is based on an enterprise Java workload. The benchmark exerts graduated levels
of load on a given machine, typically evaluating the energy consumption and performance of server
hardware between active-idle (0%) and peak (100%) load at 10% graduated load levels. More
recently, SPEC released SPECvirt R©sc2013 [47], which combines a variety of benchmark workloads
(including web server, application server, mail server and CPU-dominant workloads) to evaluate the
performance of servers for virtualised environments.

A common limitation of many existing energy consumption benchmarking approaches is the
dependance on specific workloads, with performance and energy characteristics unpredictable
between workloads. Poess et al [48] present a survey of energy benchmarks for server systems.

3. SYSTEM MODEL

In this section we present an overall generic model for a HTC system examining the entities and
resources found in all such systems. The atomic entities within our model are those of compute
resources – either desktop computers or servers – and jobs (Figure 1) – representing the individual
pieces of work which will be carried out. Third and fourth atomic entities exists within our model
– those of interactive users, who may log into a desktop computer, and HTC users who submit
HTC jobs into the system. However, as these entities are not under our direct control we model
these entities as a consequence of their pre-observed actions. A number of compute resources are
collectively called a cluster where a cluster is assumed to be under a common policy – such as
opening hours and power down timings – and to comprise of equivalent hardware.

3.1. Compute resources

Compute resources are modelled as either multi-use computers – located within open-access clusters
or found on individual workers desks – which are shared with interactive users or dedicated
computers – normally located within a server machine room or as part of a cloud infrastructure.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 M. FORSHAW

The model characterises each compute resource through a set of parameters describing the resource
in terms of operating system, architecture type, memory size, performance metrics (such as number
of cores, CPU speed, MIPS) along with an energy profile. The model is extensible, allowing
simulation developers to define their own custom parameters for resources which are bespoke to
the environment they wish to model.

The energy profile is derived from the SPECpower [49] model of energy consumption within a
compute resource. Within this model a set of CPU load values (such as 0%, 10%, ..., 100%) have
known energy consumption values with interpolation being used to obtain intervening values. Thus
we can model the energy consumption of a resource based on its current CPU load level. However,
as a SPECpower model is not always available for a resource we can use the following two-point
interpolation approach to approximate values [41]:

P (u) = Pidle + (Ppeak − Pidle)c (1)

where Ppeak is the peak power consumption of the resource (as defined by the manufacturer), Pidle

the (manufacturer provided) idle energy consumption and c the CPU load level of the resource. If
the value of c is unavailable it is assumed that the resource consumes Ppeak while active with HTC
workload or an interactive user and Pidle whilst idle.

Figure 2 depicts the five states of a compute resource along with the valid state transitions. These
states are based on he ACPI specification [50] and are:

Idle

HTC

Sleep
Wake

Sleep

Job
allocation

Job
de-allocation

User
Interactive
user arrival

Interactive
user departure

HTC + User

Job allocation

Job
de-allocation

Interactive
user arrival

Interactive
user departure

Figure 2. State transition diagram for an HTC resource

Active: the compute resource is actively performing work either executing a high throughput job or
an interactive user is logged in. This maps to ACPI state ‘G0 (S0)’. This state is decomposed
into three states User, HTC and HTC+User in Figure 2.

Idle: the compute resource is in a powered up state though no high throughput job is active and
no user is logged in. The energy consumption in this state is much lower than the active state
and will often equate to a CPU load of between 5 and 10%. Although the energy consumption
here is typically much lower than active it also maps to ACPI state ‘G0 (S0)’.

Sleep: most of the components in the resource are powered down apart from the RAM which
remains active and holds the state of the resource. By keeping the RAM active the resource
may resume to an active or idle state without the need to restart the operating system –
allowing a much quicker return to active (idle) than would be required if the system were to
be fully powered down. This maps to ACPI state ‘G1 (S3)’. As most components are powered
down the resource consumes very little energy – normally of the order of 1-2W.

3.2. Interactive user sessions

An interactive user session represents a user who sits down in front of a desktop computer and
physically logs directly into that computer in order to perform some activity. This can be modelled
as a tuple 〈si, ci, ui, ei〉, where:

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 9

• si is the user login timestamp and ei is the corresponding logout timestamp

• ci is the unique name of the resource that was used – either an IP address or hostname

• ui is a hash of the username.

By storing the username as a hash we can help protect the anonymity of the user, while still allowing
correlations to be derived from the use of the system by a particular user.

An ordered set of all interactive sessions can then be used to replay the interactive user activity
across the different compute resources within an organisation. We assume here that we cannot affect
the actions of the interactive users within the system.

3.3. Cluster

A group of resources which share the same specifications, are located in the same physical space,
were provisioned at the same time and are managed through the same management policies,
is referred to as a ‘cluster’. If these are dedicated resources located in a machine room then
other energy impacts such as cooling can be taken into account using Power Usage Effectiveness
(PUE) [51]. However, if the resources are in an open location – such as an open plan office –
PUE cannot be, by definition, applied. In open locations we model an energy impact due to the
environment in a similar way to PUE. Though as heat energy from computers may have a beneficial
impact on the environment – reducing the amount of heating required – the value can be above or
below one.

The management policies for a ‘cluster’ determine the behaviour of the resources. This includes:
at what times the resources should be rebooted, at what times high throughput jobs can be run, the
times at which the ’cluster’ is open for interactive users, are high throughput jobs allowed to run
at the same time as interactive users are logged in, the length of time before an idle resource will
transition into the sleep state, or the length of time before an idle resource becomes available for
high throughput jobs. Management policies are defined by a specific time-frame over which they
are active, such as the day(s) of the week and the hours of the day when they apply. In addition to
the normal resource management policies it is also possible to model ‘special’ policy sets which
alter the normal management policies. For example this may be to cater for bank holidays, or the
closure of a cluster for maintenance/upgrades.

3.4. HTC Job

The workload of the HTC system is comprised of a set of high throughput jobs. Jobs may be
submitted independently or together as part of a ‘batch’ submitted at the same time. We define a
job by the tuple 〈ji, bi, qi, di, hi, ei, ui, oi〉, where:

• ji – the unique identifier of job i (or batch of jobs)

• bi – the unique identifier of a job within a batch (if present)

• qi – the timestamp of the job submission event

• di – the duration observed in the original system for job i

• hi – the hash of the username of the user who submitted the job

• ei – the final result state of the high throughput job (either ‘success’ or ‘terminated’). If a
job was terminated (result state ei equals ‘terminated’) then di is the timestamp of when the
request to terminate the job was submitted

• ui represents the size of the input data transferred to the resource prior to the job running

• oi represents the size of the result data transferred back from the resource on completion of
the job.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 M. FORSHAW

This represents the core elements which all HTC systems can provide. It should be noted that
although many HTC systems support many more elements as these are not common to all HTC
systems they cannot be considered as part of this ‘generic’ HTC simulation system.

The state transitions for a high throughput job is depicted in Figure 3. When a job is submitted
into the system it will initially be placed into the queued state. However, if an appropriate compute
resource is available at this time the job can be allocated to that resource and move immediately
to the running state. If no appropriate resource is available then the job will remain in the queued
state until an appropriate resource becomes available. Ideally once a job enters the running state
it will remain in this state until completed, at which stage it will transition into the job finished
state. However, if an interactive user logs into the computer (and high throughput jobs cannot run
at the same time as interactive users) then the job will initially be placed into the the suspended
state – where the job will receive no compute cycles. This prevents the loss of job execution when
an interactive user logs in for only a short (in the order of minutes) time and allows the job to
continue once the user logs out. If the suspension time exceeds a pre-determined threshold then the
job will be evicted from the resource and re-enter the queue. If the system supports checkpointing
and it is enabled then at regular intervals (defined by the checkpoint policy) the state of the job will
be checkpointed. If a checkpoint job is evicted then, when allocated to a new compute resource,
it can resume from the last checkpointed state. Note that this will require time to transmit the
checkpoint image to the new compute resource. At any point a job may be terminated – either
by the system administrator or the user who submitted the job – in which case the job will move to
the Job Removed state and execution terminated on any resource currently running the job.

Job Running Job FinishedJob Queued Allocation

Checkpointing
Job Removed

Suspended

Eviction

Eviction

Interactive

user arrival

Interactive

user departure

Completion

Removal

Eviction

Interactive

user arrival

Removal

Removal

Removal

Figure 3. Job state transition diagram for the HTC system

4. HTC-SIM IMPLEMENTATION DISCUSSION

Here we discuss the implementation of the HTC-Sim system along with the modular nature of our
system which allows the easy integration of alternative policies within the system. We conclude this
section with a discussion of the metrics for user impact, energy, cost and environmental implications.

4.1. Simulation Model

The HTC-Sim operates as a standard ordered event queue simulation system developed as a Java
based application. The main objects within the simulation are those entities defined within Section
3, namely Compute Resources, Clusters, Interactive Users, and HTC Jobs along with a entity
representing the HTC management system. As these entities may have multiple future events within
the event queue, for example a HTC job may have an event for the time the job would complete but
also a time when the job will be terminated by the submitter, rather than placing the entity itself in

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 11

the event queue a proxy object is placed in the queue which invokes the real object. In the case of our
two HTC job events above these would be JobFinishEvent and JobKillEvent respectively.
These will then call the appropriate code within the HTC job object.

4.2. Conceptual Model Architecture

Figure 4 represents the conceptual architecture of HTC-Sim. Each unshaded box within the
figure represents a different service within the simulation. Each of these can be directly
mapped to functionality commonly found within a HTC management system. The shaded boxes
represent metric collection points of which there is only one instance, of each type, within
the simulation. Solid arrows represent information flow between services whilst hollow arrows
represent information flow to the metrics collectors.

Each of the services within the architecture is implemented as a skeleton service which offers only
the common actions of that service – for example the Interactive User Model provides a mechanism
to feed interactive user tuples into the Interactive User Management service. Any functionality
which is specific to a particular realisation of that service is provided through a “pluggable”
extension interface – the plugin “Policy” element. Continuing our example two pluggable policy
extensions exist for the Interactive User Model – those of trace driven tuples or to generate a
synthetic log of user tuples based on a set of user arrival, departure and computer selection statistical
models. For each pluggable interface within the conceptual architecture we provide at least one
implementation – this provides the functionality equivalent to how the HTCondor system operated
in Newcastle University in 2010.

A full description of each pluggable policy interface and all implementations is beyond the space
available here. Instead we present some examples in Section 4.5 along signposting in the rest of
this paper where pluggable policy implementations are discussed. The selection of the pluggable
implementation to use is through a common configuration script. Which comprises of name / value
pairs. Elements within this script fall into one of three categories:

• Core Simulation configuration: relating to configuration parameters relating to the core
simulation. Including start and end time for the simulation and metrics to collect.

Cluster

 Policy

Cluster

 Policy

Cluster

 Policy

Cluster

Computer
 PolicyComputer

 PolicyComputer
 PolicyComputer

 Policy
 Policy

 Dedicated Cluster

Computer
 PolicyComputer

 PolicyComputer
 PolicyComputer

 Policy
 Policy

Interactive User
Management

High Throughput
Computing

Management

Network
ModelWake On

LAN

 Resubmission
Policy

 Scheduling
Policy

 Resource
Policy

Checkpointing
Policy

Queueing
Policy

Policy

 Policy

Resource Metrics

Interactive User
Model

HTC User
Model

User
Metrics

High Throughput
Computing

Metrics Policy Policy

 Policy

WOL
Policy Dedicated

Policy

 Suspension
Policy

Figure 4. Conceptual Architecture for HTC-Sim

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 M. FORSHAW

• Pluggable Policy implementation: to run for a given simulation. This is achieved through a
name representing the pluggable interface associated with a value giving the fully qualified
name of the Java class implementing this pluggable functionality. By default if no policy
implementation is given then the simulation will default back to the implementation providing
the functionality equivalent to HTCondor from Newcastle University in 2010.

• Pluggable Policy implementation configuration: provides a mechanism for configurations
to the pluggable policy implementations. To prevent name-space clashes names must start
with the fully qualified name of the Java Class implementing the policy. The remaining part
of the name and the value are as required by the Pluggable Policy implementation.

4.3. Convention over configuration

The configuration of HTC-Sim follows the convention over configuration paradigm, by providing
sensible default policies and operating behaviours. This aids the simplicity of configuring the
system, where a practitioner need only customise the particular configurations they wish to modify
from the default behaviour of the system. Therefore it should be noted that the simulation may be
invoked with an empty configuration file. In which case all default policy implementations, with
their default configurations will be executed.

4.4. Executing Ensembles of simulations

In many situations, in order to identify the optimal configuration of the system, it is desirable to run
a number of simulations with varying configuration files. In order to simplify this process a common
configuration file can be specified which contains alternative choices. It is then possible to iterate
through all of the possible combinations just by specifying the common configuration file and which
iteration is to be executed for this run.

We provide the following iteration logics:

• {v1, v2, ..., vn}: a set of alternate values which may be used with a specific name element.
Each vn will be run as a separate simulation.

• {vb; vs; ve}: allows sets of numerical alternative values to be specified by stating a start value
(vb), step size (vs) and end value (ve).

• {[nv?T ,F]}: a selection option indicating that if a specific name / value pair (nv) exists
within the document then the value represented within the T clause should be added into
the configuration file otherwise the F clause will be added.

If multiple value sets exist within the configuration file all possible combinations will be produced.

4.5. Pluggable Policy framework examples

We exemplify a number of Pluggable Policy interfaces used within our simulation framework
allowing us to simulate different HTC systems and to quickly evaluate different policies within
existing systems.

4.5.1. Policy – Job Descriptions

Job Description reader: (cf. HTC User Model Policy in Figure 4) Our simulation model consumes
tuples of elements describing jobs as discussed in Section 3.4. However, it is desirable
to evaluate policies for a wider range of HTC systems, and for workload traces available
in the literature [52, 53, 54, 55]. The Interactive User Model requests job tuples from
the Pluggable Policy implementation in time-stamp order. We have developed a workload
translator to support the use of workload traces in Grid Workload Format (GWF) [52], as well
as supporting HTCondor workload traces.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 13

4.5.2. Policy decisions for HTC The operating behaviour of HTC systems are governed by a
number of common policy decisions. Here we discuss some of those which have already been
developed in HTC-Sim:

Resource Allocation: (cf. Resource Policy in Figure 4) An HTC system must decide upon which
compute resource to allocate a job awaiting execution. The HTC system must select the
most appropriate candidates from a selection of avialable resources, in order to optimise the
required performance, energy and QoS metrics. Many approaches exist including random
allocation, reduced energy consumption, reduced likelihood of eviction, or fastest execution
time [56, 57, 58] – discussed further in Section 5.5. The Pluggable Policy interface provides
a simple interface which a developer can use to implement their own scheduler. The interface
provides link-in points for selecting a computer given the current state of the system, and
informs the scheduler that jobs have been terminated, evicted or completed.

Job resubmission: (cf. Resubmission Policy in Figure 4) In a system where jobs can be evicted
through activities outside of its own control (reboots and interactive user logins) there is a need
to decide if a job should be resubmitted or not. This is non-trivial as a job may exhibit multiple
evictions due to a number of factors; the job may be ‘broken’ and will never complete, or
these multiple evictions might just indicate that the job has been unfortunate in its previous
allocation to resources [58, 59]. Once a job is evicted the system will invoke the Pluggable
Policy providing information about the job, the time it was running, the reason for eviction
(interactive user login or computer reboot), the number of times the job has previously been
evicted and the amount of time it has run for previously. From this the implementation can
return whether to allow the job to be resubmitted or whether to consider it a bad job and
terminate it.

Reboots (deferral): (cf. Cluster Policy in Figure 4) The infrastructure on which many Desktop
Grids are installed have nightly reboot policies allowing for system clean-up and software
updates. Given that HTC workloads tend to have the greatest chance of running to completion
throughout the night, particularly true for longer-running jobs, the ability for HTC jobs to
defer these reboots can significantly improve the chance of jobs completing [56, 58].

Suspension: (cf. Suspension Policy in Figure 4) In the event of an HTC job being interrupted
during its execution, the ability to suspend jobs offers great potential for ‘saving’ the effort
already exerted on a job. Selecting an appropriate suspension timeout, after which the HTC
job is abandoned and commences execution on a different computing node, represents a
challenging trade-off. If the suspension timeout is too short then this benefit can be lost whilst
if the timeout is too long then a significant penalty is imposed on the time a job takes to
complete [56, 58].

Checkpointing: (cf. Checkpointing Policy in Figure 4) Checkpointing allows period snapshots of
the state of jobs throughout their execution to be persisted. In the event of an eviction, this
allows the job to resume execution from the last available checkpoint, thus aleviating the
time and energy associated with re-running execution which would otherwise have been
lost. However, as the process of checkpointing consumes both time and energy – copying
checkpoint images around the network – a careful balance is required to minimise energy
consumption [58, 60, 61].

4.5.3. Policy decisions for Infrastructure A number of infrastructure-level policy decisions govern
the power management and availability of resources to the HTC system [56] (implemented through
the Cluster Policy in Figure 4) including:

Time before HTC usage: As soon as a computing resources becomes idle it is a potential target for
HTC work. However, in busy multi-use clusters a user logout could be quickly followed by
another user logging in, resulting in a job eviction. Therefore allowing some time between

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 M. FORSHAW

user logouts and HTC use is desirable to reduce the likelihood of job evictions early in their
execution.

Time to sleep: Considerable energy savings may be sought by applying aggressive power
management strategies, such as sending resources to sleep as soon as they become idle.
However, this impacts on the execution time of HTC jobs, as the resources need to return
from the sleeping state before execution may commence. This is exacerbated if resources are
required to be idle for a certain amount of time before they can be used for HTC work.

Waking up resources: If the HTC system lacks the ability to wake up resources on demand, then
this can lead to resource starvation once the resources have gone to sleep. Likewise if an HTC
system can wake up computers then this leads to potentially increased energy consumption,
so it is important for such policies to provision resources carefully to balance the trade-off
between energy consumption and performance.

Allow HTC usage: At busy times of day, specific clusters may exhibit particularly high levels of
job eviction. In these situations, it may be desirable to disable HTC workload on specific
clusters, steering the workload towards quieter clusters where the jobs are more likely to
complete execution successfully. Furthermore, institutional policies often seek to disable the
use of HTC resources during special circumstances such as computer-based exams.

4.6. Metrics

When evaluating the effectiveness of proposed policies, a number of metrics are of particular
interest, providing insight into system attributes such as performance, energy consumption and cost
of operation. Below we outline the range of metrics currently supported by HTC-Sim:

Performance: We evaluate the performance of proposed policies using three metrics, namely
average job overhead, slowdown [62] and bounded-slowdown [63].

Average job overhead is defined as the difference in time between the job entering and
departing the system, and the actual job execution time. Average job overhead is defined
as follows: ∑j∈J

j (fj − sj − dj)
|J |

(2)

for a set of jobs J , where qj is the arrival time for job j, fj is the departure time, and dj is the
job duration. Here qj and dj are as defined in the job tuple.

Slowdown [62] is a metric providing the overhead for job j, normalised by the job runtime,
and is defined as follows:

Oj =
fj − qj
dj

. (3)

Furthermore, we can define the average Slowdown for a set of jobs:

∑j∈J
j Oj

|J |
. (4)

It should be noted that as each job slowdown is related to the actual execution time for that
particular job the average slowdown cannot be directly compared with average overhead.

A limitation of this slowdown metric is the disproportional representation of very short
running jobs. To address this we also report the average “bounded-slowdown” metric [63],
under which slowdown for jobs with short runtimes is measured against an interactive
threshold τ , and is defined as

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 15

∑j∈J
j max

{
O′j , 1

}
|J |

(5)

where:

O′j =
fj − qj

max{dj , τ}
. (6)

Energy consumption: HTC-Sim is capable of reporting energy consumption metrics at various
levels of granularity; at per-computer, cluster and system levels. Reported results may be
further broken down by operating state of resources e.g. sleep, idle, HTC and/or interactive
users. The total energy consumption is calculated as follows:

n∑
c=0

m∑
p=0

tc,pEc,p (7)

where n is the number of computers, m is the number of power states, tc,p is the time spent
by computer c in state p and Ec,p is the energy consumption rate of computer c in state p.

Power Usage Effectiveness (PUE) [51] values for environments such as data centres and
machine rooms may be utilised, describing the ratio of power consumed by compute resources
to the power consumed by the cooling and lighting infrastructure to support the resources. It
is important to note that PUE values may not be legitimately applied to desktop machines
based in users’ clusters due to the multi-use nature of the environment in which the machines
reside, and variations introduced by user occupancy.

We further model for each policy the proportional energy increase, which represents the
energy consumption of a job within our system relative to the lowest possible energy
consumed in servicing the job. This may be defined as:

Qj =

∑k∈A
k (fj,k − sj,k) · Ej,k

dj · Eopt
(8)

where A is the set of all attempts to run job j, fj,k is the finish time of invocation k of job
j on a compute resource, sj,k is the matching start time, Ej,k is the energy consumption rate
for the compute resource used for that attempt and Eopt is the energy consumed by the most
energy-efficient computer within the system. Note that here we only consider jobs which
do eventually complete and that only one of the elements in set A represents a successful
completion – the last one.

We can then compute the average proportional energy increase for a set of jobs J as:

∑j∈J
j Qj

|J |
(9)

Good jobs terminated: In order to minimise the amount of energy consumed by jobs which will
never terminate (due to a bug within the code or incorrect configuration) we may choose
to limit the maximum number of resubmission attempts. In doing such this may lead to a
policy which terminates a good job which has been unfortunate to receive too many evictions.
Under this situation we seek to record the number of good jobs which have been incorrectly
terminated and minimise the number of such circumstances. This reduction can be achieved
by looking at the conditions under which jobs have been evicted [59] or providing dedicated
resources for jobs which have been evicted [64].

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 M. FORSHAW

Data transfer: often represents a significant overhead to HTC jobs. This is particularly evident
for jobs which depend on large datasets as input, or when using checkpointing. HTC-Sim
models the bandwidth available between nodes, imposing time delays on data ingress/egress.
Estimated data transfer delays may then be used to inform resource allocation and other
decisions. The iperf [65] bandwidth measurement tool was used to ascertain the peak
bandwidth available between cluster machines and an average value of 94.75 MBits/s was
used within the HTCondor simulations.

Cluster utilisation and throughput: Many operating policies, such as fault tolerance and
replication, have the potential for significant impact on throughput and overall
cluster utilisation. HTC-Sim is capable of reporting measures of average and peak
utilisation/throughout, both in terms of the HTC workload in isolation, and also including
interactive user load.

Cost and environmental impact: It is insufficient to evaluate energy consumption and performance
of policies without also considering the implications of policy on operating cost. We
model electricity cost per kWh, and a carbon emissions charge for each kilogram of CO2

produced [66] (currently £16 per metric tonne in the UK). These values may be specified at
a system- or cluster-specific level to reflect the costs associated with the users’ infrastructure,
and any cost differences in federated and cloud contexts. We have in previous work
extended the energy model to account for additional costs including hardware and network
infrastructure [67].

Thus, the total operating cost C for set of resources r is calculated as:

C(r) =
∑
r=0

ur ∗ pr +
ur

1000er
∗ tr (10)

where ur is the energy consumed by resource r (measured in kWh), pr is the energy price per
kWh for resource r, er is the emissions factor for resource r, and t is the current tax rate per
metric tonne of CO2 for resource r.

5. CASE STUDY: MODELLING A HTCONDOR DEPLOYMENT

We present here a validation of the HTC-Sim simulation environment by modelling the Newcastle
University HTCondor deployment and evaluating the impact of a number of resource selection
policies. As part of the discussion we describe how the trace-logs for both the HTCondor system
and the interactive users can be obtained and cleaned such that they can be used within the HTC-Sim
system. We exemplify this through the use of twelve months of trace data obtained during 2010 †.

5.1. HTCondor pool at Newcastle University

The HTConodor pool comprised of ∼1400 desktop computers (resources) which were distributed
among 35 clusters located around the campus. The characteristics (management polices) for these
clusters varied depending on cluster location and expected student presence within those locations.
For example the opening hours of clusters reflected whether the location within the university would
be open for other reasons – clusters located deep within a particular department often adhered to
office hours, whilst clusters located within the library or the Students’ Union were often available
twenty-four hours per day. The university adopted a rolling four-year programme for replacing
computers. This lead to computers falling into one of three broad categories as listed in Table II.

†In this work we leverage HTC workload and interactive user logs collected throughout 2010. These traces are indicative
of current system usage and analysis that has been ongoing since 2010.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 17

Type Cores Speed Power Consumption
Active (Ppeak) Idle (Pidle) Sleep

Normal 2 ∼3Ghz 57W 40W 2W
High End 4 ∼3Ghz 114W 67W 3W
Legacy 2 ∼2Ghz 100-180W 50-80W 4W

Table II. Computer Types

It should be noted that the University, by 2010, had enacted a policy of choosing energy efficient
computers. Hence, all but the ’Legacy’ systems, which pre-date this policy, were low-energy
systems in comparison to their performance. ‘Normal’ computers are targeted for normal student
use such as word processing, email reading and web browsing, whilst ‘High End’ computers are
purchased for the more computationally intense student work – such as engineering CAD work
or video editing – which in general lead to higher energy utilisation. Due to purchasing policy
entire clusters would be replaced en-mass leading to clusters of homogeneous resources. This
leads to a situation where there is little variance of hardware within a cluster though there may be
significant variance between clusters. The sizes of clusters varied dramatically from clusters of just
ten computers to clusters of over one hundred computers. Some large open-access areas contained
multiple clusters – with each cluster being managed and upgraded separately.

Power consumption rates are provided for operating states equivalent to those detailed in
Section 3.1. The trace logs we were able to capture for 2010 lack any record of the utilisation
of the resources (desktop computers) – c in Equation 1. Therefore we were unable to employ the
linear interpolation model. Instead, we assumed that the energy consumption of the resources were
those provided by the manufacturer ‘nameplate’ power consumption values as depicted in Table II.
Where an active computer (interactive user or HTCondor job) consumed Ppeak watts, while the
same computer in idle or sleep mode consumed Pidle or Psleep respectively.

As the primary use of these computer clusters was for the use by students their configuration
were tailored to their preferences. The desktop computers ran a Microsoft Windows-based operating
system – as demanded by the students. Unfortunately the Windows based version of HTCondor
lacks the ability to perform checkpointing and migration of jobs. However, a small number of
computers (primarily within Computing Science) were Linux based – providing ∼5% of the
HTCondor pool – which provided the capabilities of checkpointing. Central management required
the computers to reboot nightly between 3am and 5am. This was performed to reset the computers
for the following day – restoring any transient crashed services, along with installing new software
and patches. Computers located within 24-hour clusters which had an interactive user at the time of
reboot would have the reboot postponed until the user logged out.

5.2. Specifics of HTCondor

Jobs within a HTCondor system are described using ClassAds [68]. Each ClassAd consists of a
number of name / value pairs – one per line of a text document – which holds all the data about
the given job. Although a ClassAd contains many name / value pairs – the Newcastle HTCondor
system provides more than fifty per job – there are only nine name / value pairs which are required
for HTC-Sim. A mapping of ClassAd names to their equivalent job characteristics – as identified in
Section 3.4 – is presented in Table III. Although the value of JobStatus can be any of the values
zero through four, the only values which a job can finally end in are those of ‘4’ for compleated
jobs and ‘3’ for jobs terminated by the user or system administrator. It should be noted that the
value of di does not take into account any time the job was in a suspend state. This can be rectified
by subtracting the value of CumulativeSuspensionTime.

The matching of resources to jobs within HTCondor is performed by the ‘Matchmaker’. The
Matchmaker inspects all resource ClassAds and all job ClassAds and attempts to find the most
compatible pairings. In order to achieve this it considers two name / value pairs within the
ClassAd documents – those of Rank and Requirements. Requirements provides a boolean set of

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 M. FORSHAW

requirements which must evaluate to true for the match to be considered possible. This can include
such things as minimum memory requirements, the required operating system or the existence of
pre-installed software. By contrast Rank (which exists in both resource and job ClassAds) is used
to order those matches which satisfy the Requirements and evaluates to a number – where higher
values are considered better. As the Requirements and Rank name / value pairs within our trace-
log was almost completely unused [5] and our intention here is to evaluate the energy consumption
under different policy sets we are not using these for the purpose of job to resource matching – thus
default HTCondor matching devolves to random resource selection. However, the resource selection
policy within HTC-Sim could easily be extended to take Requirements and Rank into account.

5.3. Preparation of the User logs

Access to the desktop computers for interactive users at Newcastle University is managed through a
central Managed Desktop Service (MDS) where historical records are stored in a backend database.
Queries can be run against the database to identify all login and logout events in 2010. Unfortunately,
these queries produce separate outputs for login and logouts and, due to the fact that user home
space is mounted as part of the login procedure, contain duplicate records – both in the form of
identical time stamps and records which vary by only a few milliseconds. Further the results of
the queries were not produced in chronological order. We have developed a small tool which is
capable of identifying the duplicates within the query results, re-ordering the login and logouts into
chronological order and then matching the appropriate login and logout events. This problem if
further compounded in the cases where an appropriate login and logout pair cannot be identified.
This was a consequence of a computer crashing whilst a user was logged in or the user powering
down the computer via the mains switch – leading to a login without matching logout. These
scenarios were deemed safe to ignore as they accounted for less than 0.1% of the dataset.

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
u

m
b

e
r

o
f

u
s
e

r
lo

g
in

s
 p

e
r

d
a

y

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 5. Interactive user logins per day for 2010

Job characteristic Tuple term HTCondor parameter or expression

Job identifier ji ClusterId
Batch identifier bi ProcId
Submission time qi QDate
Job duration di EnteredCurrentStatus-JobCurrentStartDate
Owner hi Owner
Result state ei JobStatus
Data transfer in ui BytesSent
Data transfer out oi BytesRecvd

Table III. Job Characteristics to HTCondor mappings

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 19

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
u
m

b
e
r

o
f
S

u
b
m

is
s
io

n
s

1

10

100

1000

1000

10000

Figure 6. HTCondor workload trace for 2010

The number of user logins per day during 2010 is shown in Figure 5. This represents 1,229,820
login events. From this figure it is possible to identify the weekly usage patterns – less logins at the
weekend, along with the termly usage patterns – the three terms can be easily identified along with
the christmas, easter and summer breaks. As the MDS system does not capture resource utilisation
we assume here that when an interactive user is logged in the resource is being used at 100%
utilisation. Although this is clearly an overestimate we justify it by remarking that our goal here is
to determine ways to reduce energy consumption through HTC jobs within the system and that the
interactive users provide a constant background energy consumption which we cannot affect.

5.4. Preparation of the HTCondor logs

Once a job has finished within HTCondor – i.e. either completed or been terminated – its
ClassAd is archived within the history log. These ClassAds can be retrieved through the
condor_history -long command. In general HTCondor is normally configured to only keep
the previous N jobs which have finished (where N is a configurable value). Also, in terms of
simplicity for HTCondor the ordering of these records is based on completion times of the job rather
than submission time. Regular capturing of the history log can be used to overcome the first issue
– though this will lead to duplicate ClassAds held in consecutive captures. The second issue can be
overcome by post-processing the ClassAds to reorder them by submission time. This functionality,
along with functionality to remove duplicate records, is provided by a small tool. Once prepared the
ordered ClassAds can be fed into HTC-Sim via the HTCondor Pluggable Policy implementation.

The number of HTCondor jobs submitted per day in 2010 is shown in Figure 6. A total of 561,851
jobs were submitted over the whole year with a mean submission rate of 1,454 jobs submitted each
day. Unlike the interactive user logins per day there is no clearly visible pattern within this data.

Further information about the execution of a HTCondor job, which is normally only made
available to the submitter of the job, is available within the HTCondor system. This contains
information such as periodic recording of he memory and disk usage of the running job, a complete
log of all resources that the job was allocated to (not just the last allocation), along with records
of individual job suspensions and checkpoints. Modification to the configuration of the central
HTCondor configuration script allows this information to be collected centrally for all jobs. The
listing presented in Listing 1 shows the configurations required to achieve this. We have been
centrally collecting this level of job statistics since December 2012.

EVENT_LOG = /some/file/path
EVENT_LOG_USE_XML = True
EVENT_LOG_MAX_SIZE = 52428800
EVENT_LOG_MAX_ROTATIONS = 3

Listing 1: HTCondor configuration options to enable centralised usage collection.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 M. FORSHAW

Our trace logs were generated through Condor version 6.6. However, our tool for log reordering
and duplicate removal, along with the ability to run our logs through HTC-Sim remain compatible
through to the current version of HTCondor – currently version 8.4.2.

As HTCondor logs contain personal information in the form of usernames, executable command
names, parameters and paths to files it is often difficult to share logs between organisations. To aid
with this we provide tooling to anonymise and sanitise log files. ClassAd name / value pairs which
could provide useful insights to understanding usage patterns such as usernames and executable
names are replaced by hashes allowing analysis without access to the personal data.

Figure 7 shows the proportion of cluster time used by interactive users, HTC workload and time
spent in an idle state for our HTC pool in 2010. We observe significant differences in the levels of
interactive user usage between the clusters. The ‘GLOBE’ cluster, only available to the staff and
students of a particular department, and located far from main thoroughfairs, exhibits interactive
user usage of only 0.35%. Conversely, the ‘SIDE’ cluster is a popular 24-hour cluster with 36.17%
interactive user occupancy in 2010. Similarly, the ‘TARN’ and ‘WEAR’ clusters are located in
the main University library and are subject to significant footfall, were occupied for 31.05% and
31.18% of the year respectively. The ‘TEES’ cluster, also located in the main University library,
receives only 11.4% utilisation due to its basement location and 08:30-17:30 opening hours relative
to ‘TARN’ and ‘WEAR’ which were open 08:00-21:30. These inter-cluster differences highlight
the importance of resource allocation policies which are aware of interactive users to reduce energy
waste and maintain performance. When considering the HTC workload, we may observe that the
offered workload to our system in 2010 results in very low system utilisation (12%).

0

10

20

30

40

50

60

70

80

90

100

P
ro

p
o
rt

io
n
 o

f
c
lu

s
te

r
ti
m

e
 (

%
)

B
A

N
K

B
A

R
N

B
E

C
K

B
R

A
E

B
R

IG

C
H

A
R

T

D
E

N
E

E
L
D

O
N

F
A

Y
O

L

F
E

L
L

G
A

T
E

G
IL

L

G
L
O

B
E

H
U

L
L

IS
A

A
C

L
A

K
E

L
A

W
N

L
IN

N

L
O

C
H

M
O

S
S

N
A

IA
D

N
E

R
E

ID

N
ID

D

O
R

A
C

L
E

P
A

R
K

P
E

T
H

P
O

N
D

P
O

O
L

S
ID

E

T
A

R
N

T
E

E
S

T
R

E
E

T
U

R
F

T
Y

N
E

W
E

A
R

W
O

O
D

Y
A

R
D

Time for HTCondor

Time for User

Time for Idle

Figure 7. Proportion of cluster time used by interactive users and HTCondor

Figure 8 shows the probability that a job of length x hours will complete given that it is submitted
during hour y of the day [57]. Probabilities are obtained through simulation based on our Newcastle
University trace logs for interactive users, and knowledge of computer reboots. Note that this is
assuming that no other jobs are running at the time and should therefore be considered as an
overestimate of the probability. As all computers are rebooted at 3am this leads to the diagonal
cut-off within the heat map going from a 50% chance of completion to 0% in the lower right hand
side of the figure. There is only one hour slot under which a 24 hour job can complete - when
started immediately after a computer reboot at 3am. The highest chance of short jobs completing
successfully falls between 3am and 8am. By using Figure 8 along with largest prior execution time
for an evicted job we can determine with some degree of confidence the chances that the job will
complete at the time of (re)submission. The prediction of task completion time for our institutional
workload is explored in greater detail by Bradley et al [69].

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 21

Job length (hours)

H
o

u
r

o
f

d
a

y

0 5 10 15 20

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 8. Heat map showing the probability of successful job completion given job duration and submission
time

5.5. Example of evaluating policies: Energy-aware resource allocation

We exemplify here how HTC-Sim can be used to evaluate the energy-efficiency of a number of
resource allocation strategies (cf. Resource Policy in Figure 4). Each of these strategies can be
compared in terms of the metrics of average job overhead, slowdown, bounded-slowdown and total
energy consumption.

S1 HTCondor default: this degrades to a random resource selection policy which favours
computers which are powered up. We include this as the policy which was enacted on our
infrastructure during 2010, and as a commonly used default set by the HTCondor system.
We see this as a non-energy saving policy and expect all policies to do better than this.

S2 Target the most energy efficient computers. This process is an approximation to the efficiency
of a job, as different computers will handle different computational jobs with different
degrees of efficiency. One computer may be most efficient on memory-intensive jobs whilst
another may be more efficient on floating point-dominant jobs. However, this policy aims
only to steer jobs towards the more energy efficient computers based on our benchmarking.

S3(i) Targeting jobs towards computers which have the least interactive user activity, this can
be ranked by: a) the greatest average inter-arrival time between users and b) the lowest
number of interactive users within a given time period (e.g. one day). Our interactive user
workload traces demonstrate that computers placed in locations frequented by students tend
to have short durations between interactive users. By contrast, computers in less popular
locations typically observe much greater durations between interactive users. Computer
usage can also be affected by cluster ‘opening hours’. It is therefore beneficial to select less
used computers, thus reducing the chance of job eviction and hence less wasted power on
incomplete execution.
It is not possible to know a priori which computers will be unused in the future. However,
we can look for general trends in the usage patterns of computers from historical evidence
and use this to inform our resource selection decisions.

S4 Target clusters which are currently closed for use by interactive users. Each cluster has pre-
defined opening and closing hours. Here we propose seleting computers in closed clusters

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

22 M. FORSHAW

which have the greatest amount of time remaining until the cluster reopens, thus minimising
the likelihood of the job being evicted by the arrival of an interactive user.

S5(i) Target jobs towards clusters with the smallest amount of interactive user activity, this can be
ranked by: a) the lowest sum of interactive user durations, b) the smallest mean of interactive
user duration.

S6 Targeting jobs towards clusters which have the lowest number of interactive user arrivals over
the last ∆ minutes. This can be determined by:

min
c∈C

{
|Ec,t,∆|

}
(11)

where Ec,t,∆ is the set of user logins to computers in cluster c in the time window [t−∆, t),
C is the set of all clusters and t is the current time. This policy was first introduced in [70] as
an extension of resource allocation strategies first explored in [56].

5.6. Analysis of job length on slowdown and energy impact

We analyse here the impact on job length on the slowdown and proportional energy increase for
jobs run through our HTC-Sim configured for HTCondor. For these results we analyse slowdown
and proportional energy increase against the default resource selection policy (S1). In each case we
have grouped together all jobs which had an actual execution time (just the time for running the job,
ignoring any data transfer times) within the same hour-long interval (e.g. 0 to 1 hours is interval 1).
Note that we have ignored all results for intervals over 14 hours in length, as each of these intervals
contained less than five jobs, making any statistical analysis meaningless. It should also be noted
that we have ignored all jobs here which fail to complete as these have no meaningful interpretation
of actual execution time.

Figure 9 shows the average bounded slowdown of jobs for the default policy (S1), as defined in
Equation 5 with parameter τ = 60 minutes to ameliorate the disproportional impact of very short
running jobs on slowdown results. Error bars depict standard deviation for each bar, and the number
above each bar refers to the number of jobs falling within each interval; for example, there are
8580 jobs in the 2 to 3 hour interval. The figure shows that short-running (less than two hours)
jobs have significantly higher slowdowns than longer-running jobs (between four and ten hours).
The minimum slowdown occurs when the actual job execution time is in the range 6-7 hours. This
impact on short-running jobs is due to the overheads of running the job through an HTC system
– short intervals of waiting for deployment along with time to transfer data to (and back from)
remote computers can become significant in comparison to the short run-times. Likewise for longer
running jobs, although the overheads of the system (in comparison to the actual execution time)
become a less dominant factor the impact of the job being evicted and needing to be re-run on a
different resource starts to dominate. A similar scenario can be observed in Figure 10 which depicts
the proportional energy increase for the same selection policy – both of these figures sharing similar
shapes. The higher proportions visible in Figure 10 can be attributed to the fact that here we assume
that the ‘best’ case will be when the job is run on the lowest power computer available, whilst for
slowdown the choice of computer was irrelevant.

This ‘optimal’ job execution length (6 to 7 hours) would appear to go against the perceived
wisdom within the HTCondor community‡ where it is assumed that jobs of two hours or less are
‘optimal’. This can be explained through two justifications. First, although the slowdown for short
(less than one hour) jobs can be significant in comparison to the actual execution time of the job,
the amount of time wasted can still be relatively short – in the order of a few minutes, which is often
not observed by the user. A second explanation can be seen from Figure 11 in which the number of
times a job is submitted and fails to complete is compared with the actual job execution time. Here
we can see that there is a minima for average resubmissions – for 0 to 1 hour jobs. Most HTC users

‡As observed from delegates at the annual HTCondor user conference, HTCondor Week, 2010-2012.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 23

think only of the number of resubmission attempts when determining the ‘optimal’ job execution
length, and one may assume that they see 2 to 3 and 3 to 4 hour jobs having much higher average
resubmission counts and see that 0 to 1 hour is the minima value. It should be noted here that for
the 13 to 14 hour interval the true number of average resubmission attempts was 106 with the figure
being clipped to make the other bars easier to observe.

Job Length (hours)
1 2 3 4 5 6 7 8 9 10 11 12 13

A
v
e

ra
g

e
 j
o

b
 s

lo
w

d
o

w
n

 0

0.5

 1

1.5

 2

2.5

 3

3.5

 4

4.5

 5

3
9

0
6

5
8

8

5
8

0

 5

3
5

 1

5
6

 2

3
0

6
1

6
8

2

9

8
1

1
2

 9

 6

 5

Figure 9. Average slowdown results from exemplar policy

Job Length (hours)
1 2 3 4 5 6 7 8 9 10 11 12 13

A
v
e

ra
g

e
 j
o

b
 e

n
e

rg
y
 i
n

c
re

a
s
e

0

1

2

3

4

5

6

7

Figure 10. Energy consumption against job length

5.7. Analysis of Energy-aware resource allocation policies

The average overheads, as defined by Equation 2, for our policies S1 through S6 are presented in
Figure 12. There is a large detrimental impact on overheads observed with policy S3 (target clusters
with least interactive user activity). The overhead impact of policy S6 (target jobs towards clusters
with low user arrivals over previous ∆ minutes) is higher than the remaining policies. The remaining
policies have similar overheads with S2 having the best value. Unfortunately the size of the sliding
window for policy S6 seems to have no effect on the overheads observed and the overheads are
significantly larger than those for S5 which assumes perfect knowledge. The energy consumption,
as defined in Equation 7, for the different policies is shown in Figure 13. Policy S2 shows the lowest

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

24 M. FORSHAW

Job Length (hours)
1 2 3 4 5 6 7 8 9 10 11 12 13

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
re

s
u

b
m

is
s
io

n
s

0

0.5

1

1.5

2

2.5

3

Figure 11. Average number of resubmissions against job length

10

100

1000

S
1

S
2

S
3

(a
)

S
3

(b
)

S
4

S
5

(a
)

S
5

(b
)

S
6

(3
0

)

S
6

(6
0

)

S
6

(1
2

0
)

S
6

(2
4

0
)

S
6

(3
6

0
)

A
v
e
ra

g
e
 j
o
b
 o

v
e
rh

e
a
d
 (

m
in

u
te

s
)

Figure 12. Overhead results from exemplar policy

0

20

40

60

80

100

120

140

S
1

S
2

S
3

(a
)

S
3

(b
)

S
4

S
5

(a
)

S
5

(b
)

S
6

(3
0

)

S
6

(6
0

)

S
6

(1
2

0
)

S
6

(2
4

0
)

S
6

(3
6

0
)

E
n
e
rg

y
 c

o
n
s
u
m

e
d
 (

M
W

h
)

Figure 13. Energy consumption results from exemplar policy

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 25

energy consumption, this coupled with the low overheads from Figure 12 would make this the best
policy overall to adopt.

Figure 14 shows the relative difference in slowdown for each policy in comparison to policy S1.
Relative difference is calculated as vS1−vSx

vS1
× 100 where vSx is the slowdown for the policy being

evaluated, and vS1 is the slowdown for policy S1 against which the other policy is compared. We
report both average slowdown, and also bounded-slowdown (BSD) with interactive threshold τ of
one, ten, 30 and 60 minutes. The number of jobs in our workload which are encompassed by each
of these values of τ , such that dj ≤ τ where dj is the job duration dj , is 135,945 for τ = 1, 206,131
for τ = 10, 308,268 for τ = 30 and 390,658 for τ = 60.

Considering these slowdown metrics offers additional insights into the operation of the policies,
revealing whether policies provide equitable treatment to HTC jobs of varying durations, or whether
policies have a particularly positive or detrimental effect on jobs of a particular length. As discussed
in Section 4.6, since each job slowdown is related to the actual execution time for that particular job
the average slowdown cannot be directly compared with average overhead, and two policies may
exhibit very similar average overhead values but slowdown metrics may vary significantly.

We observe that each of the policies we consider – with the exception of S4 – are capable of
achieving reductions in energy consumption while incurring only a minimal increase of average job
slowdown. In the cases of policies S2, S5(a) and S5(b) we observe that the policy has a positive
impact in slowdown particularly for long-running tasks within our system. Policies S5(a) and S5(b)
target clusters less susceptible to interruptions by interactive users. While short-running jobs are
generally unaffected by this decision, these policies are particularly beneficial for long-running
tasks which would otherwise struggle to complete execution on a cluster with greater interactive
user activity.

In Figures 15 and 16 we demonstrate the use of HTC-Sim to reason over infrastructure decisions.
We explore the impact of removing clusters from the HTCondor pool on both energy consumption
and average job overhead. In doing so we simulate a situation where the operator of a student
clusters withdraws these from use by the HTC system. We remove clusters in descending order of
interactive user activity, removing the ‘busiest’ clusters first. We see in Figure 15 that the removal of
clusters offers modest benefits for energy consumption as it reduces the amount of energy consumed
by idle resources. However, in Figure 16 we see that up to seven clusters may be removed from HTC
operation while incurring modest increase in average job overhead, but further reductions begin to
severely restrict the computational resources available to the HTC system.

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

S
2

S
3

(a
)

S
3

(b
)

S
4

S
5

(a
)

S
5

(b
)

S
6

(3
0

)

S
6

(6
0

)

S
6

(1
2

0
)

S
6

(2
4

0
)

S
6

(3
6

0
)

D
if
fe

re
n
c
e
 i
n
 S

lo
w

d
o
w

n
 v

s
.
S

1
 (

%
)

Slowdown

BSD τ = 1 min

BSD τ = 10 mins

BSD τ = 30 mins

BSD τ = 60 mins

Figure 14. Difference in slowdown compared to policy S1

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

26 M. FORSHAW

Number of computer clusters removed
0 5 10 15 20 25 30

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

M
W

h
)

0

50

100

150

200

250

300

Figure 15. Impact of reducing cluster availability on energy consumption

Number of computer clusters removed
0 5 10 15 20 25 30

A
v
e
ra

g
e
 j
o
b
 o

v
e
rh

e
a
d
 (

M
in

u
te

s
)

 1

 10

 100

 1000

 10000

100000

Figure 16. Impact of reducing cluster availability on average job overhead

6. PERFORMANCE EVALUATION

Here we evaluate the performance of our simulation software and justify its applicability to arbitrary
sized HTC data sets. We evaluate this in terms of the wall-clock time to run the simulation and the
maximum (peak) memory footprint. The timing for a simulation and the memory footprint will be
a direct consequence of the policy set being evaluated.

In our evaluation we present figures for simulations based on baseline policy S1 and policy S4
which leverages historical information of resource availability to steer jobs to clusters which are
closed, or are soon to close. We seek to explore the impact of these policy decisions on the execution
time and maximum memory consumption of the simulation.

Each simulation was run on a machine with a 2.50GHz quad-core Intel Core i7 processor with
16GB 1600MHz DDR3 memory and a 500GB PCIe-based Samsung SSD storage, running the OS
X Yosemite 10.10.3 operating system. Results are based on fifteen simulation runs to reduce random
effects.

Running our real historical trace log of HTCondor workload requires an average of 2:41 minutes.
Running the simulation without the HTCondor requires 0:46 minutes, whist running without
interactive users (representing a dedicated cluster) requires 2:24 minutes. Note that you cannot sum
these two times to give the overall simulation time due to simulation bookkeeping and the processing
of cluster events such as computer reboots and clusters opening and closing. The memory footprint
for these simulations are 876MB, 280MB and 845MB respectively. The higher memory footprint
from the HTCondor-only simulation is a consequence of the larger ClassAds log file.

In order to evaluate the scalability of our simulation software we investigate the execution time
and memory footprint when running larger (synthetic) workloads [56] – over ten times our real

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 27

Number of jobs (Million)
0 1 2 3 4 5 6 7

M
e

m
o

ry
 u

ti
lis

a
ti
o

n
 (

M
B

)

0

100

200

300

400

500

600

700

800

900

1000

1100

S1
S4

Figure 17. Maximum memory footprint

Number of jobs (Million)
0 1 2 3 4 5 6 7

E
x
e

c
u

ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

0

200

400

600

800

1000

1200

1400

S1
S4

Figure 18. Execution time

workload (∼six million jobs). Figures 17 and 18 show the memory footprint and execution times
respectively for both our original simulation and synthetic trace logs under policies S1 and S4. Error
bars show the standard deviation between based on fifteen simulation runs.

Figure 17 shows our real dataset to consume 874MB of memory for policy S1 and 881MB for
policy S4. We observe a significant reduction in memory utilisation between our real dataset and
our first synthetic workload. This is a consequence of the characteristics of the real and synthetic
workloads, with the real workload featuring a large spike of approximately 93,000 jobs in May
2010, while such extreme bursty behaviours are not observed in our synthetic workloads. This
effect is also observable in Figure 18 as a modest reduction in execution time between the two
workloads. Memory utilisation is shown to scale linearly with the size of workload, and is similar
for both policies for all workloads. Figure 18 shows execution time to scale linearly with the size of
workload. We observe that for smaller workloads that policy S4 has similar execution time to policy
S1, as the size of workload increases, the execution time required to evaluate policy S4 increases
more quickly.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

28 M. FORSHAW

7. PRIOR USE OF HTC-SIM

HTC-Sim has been under active development for the past four years, and has seen extensive use
as a tool to evaluate the energy consumption of HTC workload based at Newcastle University.
Initial work [56] investigated different resource selection algorithms (cf. Resource Policy in Figure
4), simple polices to handle jobs which are repeatedly evicted from resources (cf. Resubmission
Policy) and polices for determining power management policies in clusters (cf. Cluster Policies).

The most significant energy consumption within a Desktop Grid HTC cluster can generally be
attributed to jobs which are evicted due to interactive users taking control back from a resource.
This problem is exacerbated further when jobs are incapable of completing due to excessive
execution time or faulty hardware / software, leading to a situation where jobs are perpetually
reallocated between computers – wasting time and energy. We term those jobs which were evicted
as ‘miscreant’ jobs. HTC-Sim was used to evaluate a number of candidate polices which sought
reduce wasted energy in these circumstances [59]. We evaluated miscreant policies based on last
execution time, total number of evictions and the reasons for job eviction (cf. Resubmission Policy).
These policies offered a potential 50% saving of the energy for a HTC cluster when only considering
evictions due to resource reboots. We are now evaluating two different approaches to energy
saving to further reduce the impact of miscreant jobs – those of checkpointing and migration of
jobs to different resources (cf. Checkpointing Policy) and more intelligent job placement using
Reinforcement Learning [71] (cf. Resource Policy).

Checkpointing and Migration are fault-tolerance mechanisms commonly used in HTC systems.
These allow the execution of long-running computational jobs on compute resources subject to
hardware or software failures, as well as interruptions from resource owners and more important
jobs. Checkpointing allows the application state of jobs to be periodically persisted to stable storage.
In the scenario where a job is evicted by an interactive user arrival, the availability of a checkpoint
saves both execution time, as the jobs do not need to restart from the beginning, and energy as
effort is not expended repeating the previously performed work. However, the act of checkpointing
itself impacts performance and energy, so careful balancing is required when determining how
often checkpointing should be performed. Performing too many checkpoints will waste time and
energy in performing checkpoints which will not be used – including time and energy required
to move checkpoints to a new resource. Conversely, checkpointing too infrequently will require
more work to be repeated. We demonstrate, using real-world datasets, that existing checkpointing
strategies are inadequate at maintaining an acceptable level of energy consumption whilst retaining
the performance gains expected. We identify factors important in determining whether to exploit
checkpointing within an HTC environment, and propose novel strategies to curtail the energy
consumption of checkpoint approaches while maintaining the performance benefits [58, 60, 61].

Significant energy can be saved by placing jobs onto a resource less likely to be used by an
interactive user before the job completes. However, this is not possible to compute a priori as the
times when an interactive user will login, nor the execution times for jobs, can be known at the time
of resource selection. Analysis of our interactive user trace logs shows a high degree of daily and
weekly seasonality, with significant variation also observed between different clusters. We evaluate
the use of Reinforcement Learning (as a Resource Policy) in order to determine when and where
jobs should be allocated within the institution. In doing so we seek to minimise energy consumption
and reduce the number of evictions. Through this work we have shown that it is possible to save up
to 53% of the wasted energy within an institution [57].

A modified version of HTC-Sim was used for evaluating the cost implications for running work
on the cloud [67] – using the same HTC workload trace. These two simulation models were then
combined in order to compare the cost of running workloads on the Cloud versus an existing
Desktop Grid comprising non-dedicated resources.

HTC systems operating on non-dedicated computers (so called ‘volunteer computing’) offers
a compelling opportunity to perform significant computation without the need to invest in
computational resources. However, such systems are typically configured to prioritise the interactive
user of the computer in situations where there is resource contention between users and HTC

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HTC-SIM 29

jobs. In [72] we relax some of the common policies used in management of computers in large
organisations in order to evaluate if alternative policies which may have a minor impact on the
primary users of the computers could save enough energy to make this impact tolerable. We focus
on our scenario of institutional clusters, augmenting reboot policies to reduce their impact on HTC
workloads, and introducing a scheme whereby student users arriving to a cluster are directed away
from computers currently servicing HTC jobs.

Alongside the development of HTC-Sim, we have been developing an extension to the job
scheduling (cf. Scheduling and Queueing Policy) and management system within HTCondor [1],
allowing us to deploy a number of our developed polices [5]. Our simulation software is allowing
us to build up confidence in our policy sets before deploying them to a production cluster.

8. FUTURE WORK

Computational grids may be used to execute jobs belonging to one of a number of categories [73];
Bag-of-task, Message Passing Interface (MPI), and Workflow. In this work we consider a Bag-of-
tasks workload [74], comprising multiple independent jobs with no communication among each
other. By contrast, MPI workloads are required to communicate with one another throughout
execution, so there is a need for a number of resources to be made available at the same time,
likewise the loss of one resource will cause the whole MPI application to terminate. We have a
strong desire to broaden the applicability of HTC-Sim to other contexts, and in further work we
shall extend HTC-Sim to other paradigms in large-scale distributed computing which would benefit
from our simulation support. We shall extend our simulation environment to include; a) support MPI
workloads spanning multiple compute nodes, b) incorporate support for Workflow workloads, e.g.
by modelling the functioning of the Directed Acyclic Graph Manager (DAGMan) [75], the meta-
scheduler used by HTCondor to handle the dependencies between Workflow jobs. Our preliminary
work in this area is presented in [76]. This would allow the extension of existing DAG-based
application mapping techniques [77, 78, 79] to be evaluated for energy consumption in the context
of multi-use clusters. An overview of the workflow support of grid systems is available in [80].

In our previous experimentation, at most one HTC job may execute on a computer at a time. We
are confident that further energy savings may be sought through the consolidating of multiple HTC
jobs onto the same computer. We are not able to explore this at this time as our HTC workload trace
lacks the resource consumption information required to determine which consolidation possibilities
would be feasible. We see this as an important area of future work and are working to obtain the
required trace data to reason over consolidation policies.

Dynamic Voltage and Frequency Scaling (DVFS) is commonly used within the literature to reduce
energy consumption in HTC and HPC systems [81, 82, 83]. To date we consider many of these
works to be complementary to our own but have been unable to evaluate them due to a lack of
performance knowledge in our trace datasets. We see the exploration of DVFS policies within our
context of an HTC system operating within a multi-use cluster of great interest, and shall extend our
model of our compute resources to facilitate DVFS.

Finally, we see value in a combined approach whereby simulation-based studies facilitated
by HTC-Sim may be verified against real infrastructure. However, in situations where energy
consumption is considered, the required monitoring infrastructure involves often prohibitive
capital expense. Furthermore, the deployment of invasive in-situ monitoring within a production
environment is non-trivial. One promising possibility is in emerging systems which include energy
monitoring deployed as standard. This is often at an aggregate level, e.g. a smart meter per
cluster room, or measurement infrastructure at a per-rack level in a datacenter setting. While this
would not provide per-machine energy consumption measurements, this would not be a major
limitation when evaluating policies governing the operation of large-scale computing environments
comprising many hundreds or thousands of computers. Furthermore, existing approaches to energy
disaggregation [84] could be applied in these contexts to provide greater insights into individual
computer usage within these environments. We see these as compelling areas of future work, and
ones whose results could easily be combined with the existing HTC-Sim framework.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

30 M. FORSHAW

9. CONCLUSIONS

We have presented our Java-based trace-driven simulation, HTC-Sim, for simulating High
Throughput Computing systems comprising both dedicated resources and multi-use resources
shared with interactive users. We have presented the core model of the simulation along with
discussion of implementation, the trace logs required and the methods needed to obtain such logs.
We demonstrate how a set of resource selection policies for HTCondor can be tested using the
simulation software. Although we focus on the modelling of our HTCondor system, our simulation
base and system model is easily generalisable to other HTC systems.

We evaluate the performance impact of HTC-Sim both in terms of memory footprint and
execution time. We demonstrate, through the use of synthetic trace logs, that the simulation software
scales linearly in both memory and execution time with the number of simulated jobs; hence, we
consider HTC-Sim a suitable tool to simulation large workloads. We go further to analyse the impact
of slowdown and proportional energy impact on different job execution times and are able to show
that, against commonly held beliefs, the ‘best’ execution times for an HTC job in our environment
is around 6 to 7 hours in length.

Although HTC-Sim is not developed for normal users – we see it as a tool which would be used
by either system administrators or researchers – it possesses a low barrier to entry. The software
itself can be executed from a Java .jar file with an empty configuration file, thus allowing immediate
execution of the software. Only if a user wishes to evaluate alternate configurations would they
need to start learning about how to write a configuration file or develop their own Pluggable Policy
implementations. As we supply the software with a number of alternate policy implementations
users can try out many alternative cluster configurations without the need to develop their own code.
This is in contrast to many large-scale computer simulation systems which require programmatic
development from the outset.

We now continue to investigate more advanced policies to further reduce the energy consumption
of HTC systems whilst minimising overheads. We are also extending HTC-Sim to model federation
of HTC systems both on owned resources and resources obtained through Cloud bursting.

ACKNOWLEDGEMENT

We thank the authors of previous papers culminating in HTC-Sim. Newcastle University: Ben Allen, Clive
Gerrard, Paul Haldane, Jonathan Noble, Dave Sharples & Dan Swan; Arjuna Technologies Ltd: Sindre
Hamlander & Stuart Wheater; Red Hat Inc: Paul Robinson.

REFERENCES

1. Litzkow M, Livney M, Mutka MW. Condor-a hunter of idle workstations. ICDCS ’88, 1998; 104–111.
2. Anderson DP. Boinc: A system for public-resource computing and storage. IEEE, 2004; 4–10.
3. Jarvis S, Thomas N, van Moorsel A. Open issues in grid performability. IJSSSP 2004; 5(5):3–12.
4. Bertoldi P, Anatasiu B. Electricity Consumption and Efficiency Trends in European Union Status Report 2009.
5. McGough A, Gerrard C, Haldane P, Sharples D, Swan D, Robinson P, Hamlander S, Wheater S. Intelligent Power

Management Over Large Clusters. CPSCom, 2010; 88–95.
6. BonFIRE Consortium. Bonfire (homepage) 2014. URL http://www.bonfire-project.eu/.
7. Kavoussanakis K, Hume A, Martrat J, Ragusa C, Gienger M, Campowsky K, Seghbroeck GV, Vázquez C, Velayos

C, Gittler F. BonFIRE: the clouds and services testbed. CloudCom 2013, vol. 2, IEEE, 2013; 321–326.
8. Li B, Li J, Huai J, Wo T, Li Q, Zhong L. Enacloud: An energy-saving application live placement approach for cloud

computing environments. CLOUD 2009, IEEE, 2009; 17–24.
9. Beloglazov A, Buyya R. OpenStack Neat: A framework for dynamic consolidation of virtual machines in

OpenStack clouds–A blueprint. Cloud Computing and Distributed Systems (CLOUDS) Laboratory 2012; .
10. Naicken S, Livingston B, Basu A, Rodhetbhai S, Wakeman I, Chalmers D. The state of peer-to-peer simulators and

simulations. SIGCOMM Comput. Commun. Rev. Mar 2007; 37(2):95–98, doi:10.1145/1232919.1232932.
11. Evans NS, Grothoff C. Beyond simulation: Large-scale distributed emulation of p2p protocols. CSET’11, USENIX

Association, 2011; 4–4.
12. Hibler M, Ricci R, Stoller L, Duerig J, Guruprasad S, Stack T, Webb K, Lepreau J. Large-scale Virtualization in the

Emulab Network Testbed. USENIX Annual Technical Conference, 2008; 113–128.
13. Carrera EV, Pinheiro E, Bianchini R. Conserving disk energy in network servers. Proceedings of the 17th annual

international conference on Supercomputing, ACM, 2003; 86–97.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.bonfire-project.eu/

HTC-SIM 31

14. Legrand A, Marchal L. Scheduling distributed applications: The simgrid simulation framework. CCGrid, 2003;
138–145.

15. Buyya R, Murshed M. Gridsim: A toolkit for the modeling and simulation of distributed resource management and
scheduling for grid computing. CCPE 2002; 14(13):1175–1220.

16. Bell WH, Cameron DG, Capozza L, Millar AP, Stockinger K, Zini F. Optorsim - a grid simulator for studying
dynamic data replication strategies. IJHPCA 2003; .

17. Buyya R, Ranjan R, Calheiros RN. Modeling and simulation of scalable cloud computing environments and the
cloudsim toolkit: Challenges and opportunities. HPCS’09, IEEE, 2009; 1–11.

18. Kliazovich D, Bouvry P, Audzevich Y, Khan SU. Greencloud: A packet-level simulator of energy-aware cloud
computing data centers. GLOBECOM, 2010; 1–5.

19. Lim SH, Sharma B, Nam G, Kim EK, Das C. MDCSim: A multi-tier data center simulation, platform. Cluster
Computing and Workshops, 2009. CLUSTER ’09. IEEE International Conference on, 2009.

20. Kliazovich D, Bouvry P, Khan SU. Greencloud: a packet-level simulator of energy-aware cloud computing data
centers. The Journal of Supercomputing 2012; 62(3):1263–1283.

21. Méndez V, Garcı́a F. Sicogrid: A complete grid simulator for scheduling and algorithmical research, with emergent
artificial intelligence data algorithms.

22. Howell F, McNab R. SimJava: A discrete event simulation library for java. Simulation Series 1998; 30:51–56.
23. Schwetman H. CSIM: a C-based process-oriented simulation language. Proceedings of the 18th conference on

Winter simulation, ACM, 1986; 387–396.
24. Leijen D, Meijer E. Parsec: Direct style monadic parser combinators for the real world. Technical Report, Technical

Report UU-CS-2001-27, Department of Computer Science, Universiteit Utrecht 2001.
25. Bucy JS, Schindler J, Schlosser SW, Ganger GR. The disksim simulation environment version 4.0 reference manual

(cmu-pdl-08-101). Parallel Data Laboratory 2008; :26.
26. Minartz T, Kunkel J, Ludwig T. Simulation of power consumption of energy efficient cluster hardware. Computer

Science - Research and Development 2010; 25:165–175.
27. Verma A, Ahuja P, Neogi A. Power-aware dynamic placement of hpc applications. Proceedings of the 22nd annual

international conference on Supercomputing, ACM, 2008; 175–184.
28. Terzopoulos G, Karatza HD. Dynamic voltage scaling scheduling on power-aware clusters under power constraints.

Distributed Simulation and Real Time Applications (DS-RT), 2013 IEEE/ACM 17th International Symposium on,
IEEE, 2013; 72–78.

29. Niemi T, Kommeri J, Happonen K, Klem J, Hameri AP. Improving energy-efficiency of grid computing clusters.
Advances in Grid and Pervasive Computing, LNCS, vol. 5529. 2009; 110–118.

30. Ponciano L, Brasileiro F. On the impact of energy-saving strategies in opportunistic grids. Grid Computing (GRID),
2010 11th IEEE/ACM International Conference on, IEEE, 2010; 282–289.

31. Zikos S, Karatza HD. Performance and energy aware cluster-level scheduling of compute-intensive jobs with
unknown service times. Simulation Modelling Practice and Theory 2011; 19(1):239–250.

32. Faria I, Dantas M, Capretz MA, Higashino W. Network and Energy-Aware Resource Selection Model for
Opportunistic Grids. Convergence of Distributed Clouds, Grids and their Management (CDCGM) track of
WETICE, 2014 IEEE 23rd International Workshop on, 2014.

33. Da Silva DP, Cirne W, Brasileiro FV. Trading cycles for information: Using replication to schedule bag-of-tasks
applications on computational grids. Euro-Par 2003 Parallel Processing. Springer, 2003; 169–180.

34. Aupy G, Benoit A, Melhem RG, Renaud-Goud P, Robert Y. Energy-aware checkpointing of divisible tasks with
soft or hard deadlines. CoRR 2013; abs/1302.3720.

35. Bellosa F. The benefits of event: driven energy accounting in power-sensitive systems. Proceedings of the 9th
workshop on ACM SIGOPS European workshop, ACM, 2000; 37–42.

36. Singh K, Bhadauria M, McKee SA. Real time power estimation and thread scheduling via performance counters.
ACM SIGARCH Computer Architecture News 2009; 37(2):46–55.

37. Zedlewski J, Sobti S, Garg N, Zheng F, Krishnamurthy A, Wang RY. Modeling hard-disk power consumption.
FAST, vol. 3, 2003; 217–230.

38. Brooks D, Tiwari V, Martonosi M. Wattch: a framework for architectural-level power analysis and optimizations,
vol. 28. ACM, 2000.

39. Gurumurthi S, Sivasubramaniam A, Irwin MJ, Vijaykrishnan N, Kandemir M. Using complete machine simulation
for software power estimation: The softwatt approach. IEEE HPCA, IEEE, 2002; 141–150.

40. Argollo E, Falcón A, Faraboschi P, Monchiero M, Ortega D. Cotson: infrastructure for full system simulation. ACM
SIGOPS Operating Systems Review 2009; 43(1):52–61.

41. Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer
Architecture News, vol. 35, ACM, 2007; 13–23.

42. Economou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-system power analysis and modeling for server
environments. International Symposium on Computer Architecture-IEEE, 2006.

43. Davis JD, Rivoire S, Goldszmidt M, Ardestani EK. No hardware required: building and validating composable
highly accurate os-based power models. Technical Report, Technical Report, Microsoft Research Technical Report
No. MSR-TR-2011-89 2011.

44. Davis JD, Rivoire S, Goldszmidt M, Ardestani EK. Accounting for variability in large-scale cluster power models.
Exascale Evaluation and Research Techniques Workshop (EXERT), 2011.

45. Meisner D, Wenisch TF. Peak power modeling for data center servers with switched-mode power supplies. Low-
Power Electronics and Design (ISLPED), 2010 ACM/IEEE International Symposium on, IEEE, 2010; 319–324.

46. Lange KD. Identifying Shades of Green: The SPECpower Benchmarks. IEEE Computer 2009; 42(3):95–97.
47. Standard Performance Evaluation Corporation (SPEC). Spec virt sc2013 (homepage) 2014. URL http://www.

spec.org/virt_sc2013/.
48. Poess M, Nambiar RO, Vaid K, Stephens Jr JM, Huppler K, Haines E. Energy benchmarks: a detailed analysis.

e-Energy 2010, ACM, 2010; 131–140.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.spec.org/virt_sc2013/
http://www.spec.org/virt_sc2013/

32 M. FORSHAW

49. SPEC. SPECpower ssj2008. http://www.spec.org/power_ssj2008/.
50. Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd and Toshiba

Corporation. ACPI Specification. http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf.
51. Belady C, Rawson A, Pfleuger J, Cader T. Green grid data center power efficiency metrics: PUE and DCiE.

Technical Report, Green Grid 2008.
52. Iosup A, Li H, Jan M, Anoep S, Dumitrescu C, Wolters L, Epema DH. The grid workloads archive. Future

Generation Computer Systems 2008; 24(7):672–686.
53. Archive TGW. http://gwa.ewi.tudelft.nl/ 2014.
54. http://www.cs.huji.ac.il/labs/parallel/workload/.
55. Feitelson DG, Tsafrir D, Krakov D. Experience with using the Parallel Workloads Archive. J. Parallel & Distributed

Comput. Oct 2014; 74(10):2967–2982, doi:10.1016/j.jpdc.2014.06.013.
56. McGough AS, Forshaw M, Gerrard C, Robinson P, Wheater S. Analysis of power-saving techniques over a

large multi-use cluster with variable workload. Concurrency and Computation: Practice and Experience 2013;
25(18):2501–2522. URL http://dx.doi.org/10.1002/cpe.3082.

57. McGough AS, Forshaw M. Reduction of wasted energy in a volunteer computing system through reinforcement
learning. Sustainable Computing: Informatics and Systems 2014; .

58. Forshaw M. Operating policies for energy efficient large scale computing. PhD Thesis, Newcastle University, UK
2015.

59. McGough A, Forshaw M, Gerrard C, Wheater S. Reducing the number of miscreant tasks executions in a multi-
use cluster. Cloud and Green Computing (CGC), 2012 Second International Conference on, 2012; 296–303, doi:
10.1109/CGC.2012.111.

60. Forshaw M, McGough AS, Thomas N. On energy-efficient checkpointing in high-throughput cycle-stealing
distributed systems. 3rd International Conference on Smart Grids and Green IT Systems (SMARTGREENS), 2014.

61. Forshaw M, McGough AS, Thomas N. Energy-efficient checkpointing in high-throughput cycle-stealing distributed
systems. Electronic Notes in Theoretical Computer Science 2015; 310:65–90.

62. Feitelson DG. Metrics for parallel job scheduling and their convergence. Job Scheduling Strategies for Parallel
Processing, Springer, 2001; 188–205.

63. Feitelson DG, Rudolph L, Schwiegelshohn U, Sevcik KC, Wong P. Theory and practice in parallel job scheduling.
Job scheduling strategies for parallel processing, Springer, 1997; 1–34.

64. McGough A, Gerrard C, Noble J, Robinson P, Wheater S. Analysis of Power-Saving Techniques over a Large
Multi-use Cluster. IEEE DASC 2011, 2011; 364–371, doi:10.1109/DASC.2011.78.

65. Sourceforge project. The iperf project. http://iperf.sourceforge.net/.
66. Department of Energy and Climate Change, UK Gov. CRC Energy Efficiency Scheme Order: Table of Conversion

Factors 2013/14 2014; .
67. McGough AS, Forshaw M, Gerrard C, Wheater S, Allen B, Robinson P. Comparison of a cost-effective virtual

cloud cluster with an existing campus cluster. Future Generation Computer Systems 2014; .
68. Solomon M. The ClassAd Language Reference Manual. Computer Sciences Department, University of Wisconsin,

Madison, WI, Oct 2003; .
69. Bradley JT, Forshaw M, Stefanek A, Thomas N. Time-inhomogeneous population models of a cycle-stealing

distributed system. 29th Annual UK Performance Engineering Workshop (UKPEW) 2013, 2013; 8–13.
70. Forshaw M, Thomas N, McGough S. Trace-driven simulation for energy consumption in high throughput

computing systems. 18th IEEE/ACM International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), 2014.

71. Sutton R, Barto A. Reinforcement Learning: An Introduction. 1998.
72. Forshaw M, McGough AS. Flipping the priority: effects of prioritising htc jobs on energy consumption in a multi-

use cluster. Proceedings of the 8th International Conference on Simulation Tools and Techniques, 2015; 357–364.
73. Rahman M, Ranjan R, Buyya R, Benatallah B. A taxonomy and survey on autonomic management of applications

in grid computing environments. Concurrency and computation: practice and experience 2011; 23(16):1990–2019.
74. Cirne W, Brasileiro F, Sauvé J, Andrade N, Paranhos D, Santos-Neto E, Medeiros R. Grid computing for bag of

tasks applications. Proc. of the 3rd IFIP Conference on E-Commerce, E-Business and EGovernment, Citeseer, 2003.
75. Tannenbaum T, Wright D, Miller K, Livny M. Condor: a distributed job scheduler. Beowulf cluster computing with

Linux, MIT press, 2001; 307–350.
76. McGough AS, Forshaw M. Energy-aware simulation of workflow execution in high throughput computing systems.

19th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT), 2015.
77. He L, Jarvis SA, Spooner DP, Bacigalupo D, Tan G, Nudd GR. Mapping dag-based applications to multiclusters

with background workload. 2005; 855–862 Vol. 2.
78. He L, Jarvis SA, Spooner DP, Nudd GR. Performance evaluation of scheduling applications with dag topologies on

multiclusters with independent local schedulers. IPDPS, 2006.
79. He L, Jarvis SA, Spooner DP, Nudd GR. Dynamic, capability-driven scheduling of dag-based real-time jobs in

heterogeneous clusters. IJHPCN 2004; 2(2/3/4):165–177.
80. Yu J, Buyya R. A taxonomy of workflow management systems for grid computing. Journal of Grid Computing

2005; 3(3-4):171–200.
81. Zhang Y, Chakrabarty K. Energy-aware adaptive checkpointing in embedded real-time systems. Design, Automation

and Test in Europe Conference and Exhibition, 2003, 2003; 918–923, doi:10.1109/DATE.2003.1253723.
82. Unsal OS, Koren I, Krishna CM. Towards energy-aware software-based fault tolerance in real-time systems.

ISLPED 2002, 2002; 124–129.
83. Mills B, Grant RE, Ferreira KB, Riesen R. Evaluating energy savings for checkpoint/restart. Proceedings of the 1st

International Workshop on Energy Efficient Supercomputing, E2SC ’13, ACM, 2013; 6:1–6:8.
84. Batra N, Kelly J, Parson O, Dutta H, Knottenbelt W, Rogers A, Singh A, Srivastava M. Nilmtk: An open source

toolkit for non-intrusive load monitoring. ACM e-Energy, 2014; 265–276.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.spec.org/power_ssj2008/
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://gwa.ewi.tudelft.nl/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://dx.doi.org/10.1002/cpe.3082
http://iperf.sourceforge.net/

	1 Introduction
	2 Related Work
	2.1 Evaluation of energy consumption in large-scale systems
	2.1.1 Experimental testbeds
	2.1.2 Emulation

	2.2 Simulation frameworks
	2.3 Energy efficient high throughput computing
	2.4 Power modeling
	2.5 Benchmarking

	3 System Model
	3.1 Compute resources
	3.2 Interactive user sessions
	3.3 Cluster
	3.4 HTC Job

	4 HTC-Sim implementation Discussion
	4.1 Simulation Model
	4.2 Conceptual Model Architecture
	4.3 Convention over configuration
	4.4 Executing Ensembles of simulations
	4.5 Pluggable Policy framework examples
	4.5.1 Policy – Job Descriptions
	4.5.2 Policy decisions for HTC
	4.5.3 Policy decisions for Infrastructure

	4.6 Metrics

	5 Case Study: Modelling a HTCondor deployment
	5.1 HTCondor pool at Newcastle University
	5.2 Specifics of HTCondor
	5.3 Preparation of the User logs
	5.4 Preparation of the HTCondor logs
	5.5 Example of evaluating policies: Energy-aware resource allocation
	5.6 Analysis of job length on slowdown and energy impact
	5.7 Analysis of Energy-aware resource allocation policies

	6 Performance Evaluation
	7 Prior use of HTC-Sim
	8 Future Work
	9 Conclusions

