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Abstract

We propose a new fully Bayesian method to efficiently obtain the spectral representation of a spatial random

field, which can conduct spatial-stochastic basis selection and evaluation of generalized Polynomial Chaos

(gPC) expansions when the number of the available basis functions is significantly larger than the size of the

training data-set. We develop a fully Bayesian stochastic procedure, called mixed shrinkage prior (MSP),

which performs both basis selection and coefficient evaluation simultaneously. MSP involves assigning a

prior probability on the gPC structure and assigning conjugate priors on the expansion coefficients that

can be thought of as mixtures of Ridge-LASSO shrinkage priors, in augmented form. The method offers

a number of advantages over existing compressive sensing methods in gPC literature, such that it recovers

possible sparse structures in both stochastic and spatial domains while the resulted expansion can be re-used

directly to economically obtain results at any spatial input values. Yet, it inherits all the advantages of

Bayesian model uncertainty methods, e.g. accounts for uncertainty about basis significance and provides

interval estimation through posterior distributions. A unique highlight of the MSP procedure is that it

can address heterogeneous sparsity in the spatial domain for different random dimensions. Furthermore,

it yields a compromise between Ridge and LASSO regressions, and hence combines a weak (l2-norm) and

strong (l1-norm) shrinkage, in an adaptive, data-driven manner. We demonstrate the good performance of

the proposed method, and compare it against other existing compressive sensing ones on elliptic stochastic

partial differential equations.
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1. Introduction

Uncertainty quantification (UQ) provides a quantitative characterization of uncertainties in stochastic

systems and the efficient propagation of them for model prediction given available data. In physical systems,

for example, the mathematical models may be governed by stochastic partial differential equations (SPDEs)

that include random and spatial input variables. A mathematical representation of the stochastic solution

with respect to the input variables is usually of interest. In many cases, such a mapping does not have an

explicit analytical form. This requires the construction and use of a surrogate model, which is a tractable

but approximated mathematical expression of this mapping.

Monte Carlo (MC) methods (Metropolis et al., 1953; Ripley, 1987) have been extensively used in UQ. MC

methods allow for the evaluation of solution statistics from a sample of solutions collected after several system

realizations. Each system realization is performed by drawing a random input value from a given distribution

and running a solver for the system. Because they require many system realizations (MC samples) (Xiu,

2010), MC methods are generally impractical for large-scale systems if the solver is computationally expensive

to run.

The generalized Polynomial Chaos (gPC) methods (Xiu, 2010; Xiu and Karniadakis, 2002; Ghanem and

Spanos, 2003; Wan and Karniadakis, 2005, 2006) have been successively applied to a variety of UQ problems

as they can provide satisfactory surrogate models. Briefly, in the gPC context, the stochastic solution,

taking as arguments random and spatial input variables, is expanded as a convergent series of PC bases

and PC coefficients which include the random and spatial input dimensions correspondingly. The toolbox

of traditional computational approaches includes the stochastic Galerkin projection methods (Ghanem and

Spanos, 2003; Deb et al., 2001; Babuška et al., 2004) and stochastic collocation methods (Mathelin and

Hussaini, 2003; Babuška et al., 2007; Xiu and Hesthaven, 2005). Although these computational approaches

require less system evaluations than MC, they suffer from the curse of dimensionality.

Curse of dimensionality: When the dimension of the random input variables increases, the number of

unknown PC coefficients increases dramatically due to the tensor product involved in the design of the

multivariate PC bases. In practice, only a small number of training data may be available, perhaps even

smaller than the number of the unknown PC coefficients. Hence, the evaluation problem may become under-

determined, causing traditional computational approaches to give unstable and inaccurate results due to

over-fitting (Doostan and Owhadi, 2011; Yang and Karniadakis, 2012). Furthermore, in this context, the

consideration of the PC coefficients as functions over the whole spatial input –not just at a fixed spatial

input value– makes the evaluation of the gPC expansion even more challenging.
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In elliptic PDEs with high-dimensional random diffusion coefficients, the stochastic solution can be sparse

in the stochastic domain (Babuška et al., 2007; Doostan and Owhadi, 2011; Yang and Karniadakis, 2012;

Todor and Schwab, 2007; Bieri and Schwab, 2009; Bieri et al., 2009) when expanded as a gPC; namely

only a very small fraction of available PC bases are dominant and able to recover the stochastic solution

without any significant lose in accuracy. We will refer to these PC bases as significant. Here, the curse of

dimensionality occurs as a problem because the deterministic solver is expensive to run. Thus, the number

of available training data is limited. One remedy is to reduce the number of the PC bases –and hence, the

number of the unknown PC coefficients– by omitting those whose absence does not cause unreliable results

(Doostan and Owhadi, 2011).

To address the curse of dimensionality issue, dimension reduction techniques, such as compressive sens-

ing, have been proposed in the literature (Doostan and Owhadi, 2011; Yang and Karniadakis, 2012). These

techniques aim to approximate the solution economically, given a small MC sample and without sacrificing

accuracy, by shrinking the values of the PC coefficients towards zero in order to retain only the significant PC

bases. In particular, Doostan and Owhadi (2011) suggested the use of compressive sensing techniques based

on l1-minimization algorithm, while Yang and Karniadakis (2012) improved this idea computationally by

employing a re-weighted l1-minimization algorithm. These methods are non-adaptive, provably convergent

and well suited for high-dimensional cases with a limited number of MC samples. The use of the Bayesian

compressive sensing algorithm (Ji et al., 2008, 2009) as an alternative approach was suggested by Sargsyan

et al. (2013). These methods strictly require the solution to be sparse. Other approaches include, ANOVA

decomposition (Yang et al., 2012; Ma and Zabaras, 2010; Li et al., 2014; Wei et al., in press), sparse de-

composition for the stochastic Galerkin technique (Bieri et al., 2009), and adaptive sparse sparse grids for

the stochastic collocation (Ma and Zabaras, 2009; Nobile et al., 2008), however they are out of the scope

of this article. Until now, these compressive sensing methods only could recover the gPC expansion at a

particular fixed spatial input value, making them impractical if gPC expansion is needed for repeated use

to obtain results at different new spatial points since these methods require one to repeat MC sampling and

the compressive sensing to re-evaluate the expansion at each spatial input individually.

In this paper, we provide a fully Bayesian methodology for gPC that can evaluate the expansion as a

function over both the random and spatial input domains, when the curse of dimensionality occurs. In

the first instance, we provide an approximating gPC formulation where the gPC expansion is defined upon

an unknown combination of significant PC bases from an available set of bases, while each PC coefficient

is modeled as a series of an unknown combination of significant basis functions from another available
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set of bases. In the second instance, we develop a fully Bayesian procedure called mixed shrinkage priors

(MSP) that addresses the problem of specifying the composition of significant bases (gPC configuration) and

evaluating the coefficients in the Bayesian model uncertainty context. We propose a Bayesian hierarchical

model that involves assigning a prior probability on each gPC configuration in order to express uncertainty

about significant bases, and assigning conjugate priors on the coefficients that can be thought of as mixtures

of Ridge-LASSO shrinkage priors, in augmented form, able to group the bases in a desired way. We design

a Gibbs sampler to address the computations in a stochastic manner. We explain how the output of the

MSP procedure can be used to perform estimation, inference and prediction, in the gPC context, based on

Bayesian model averaging (Madigan and Raftery, 1994; Hoeting et al., 1999) that presents optimal predictive

ability, and median probability model (Barbieri and Berger, 2004) that performs dimension reduction.

The main contributions of the paper include:

• The gPC expansion can be evaluated over the whole spatial (and stochastic) domain at once even when

the aforementioned curse of dimensionality issue occurs. As such, it can be re-used to obtain results

at any new spatial input values without repeating MC sampling or any compressive sensing algorithm

to re-evaluate the expansion at those new spatial input values.

• The proposed gPC formulation encourages the recovery of possible sparse structures in both stochastic

and spatial domains.

• gPC is introduced in the Bayesian model uncertainty framework where uncertainty about the unknowns

(e.g. significance of bases and associated coefficients) is expressed from the posterior distributions,

allowing interval estimation, while prediction of the solution at different input values is performed via

predictive posterior distributions.

• We developed the MSP procedure that accomplices both basis selection and coefficient shrinkage si-

multaneously in a stochastic way, without the need of any ad hoc techniques or pilot runs.

• MSP is a fully Bayesian procedure that compromises between Bayesian Ridge and LASSO regressions

(applying l2-norm and l1-norm shrinkage correspondingly) in an adaptive, data-driven manner. Com-

bining l2-norm and l1-norm shrinkages is advantageous in estimating small but nonzero coefficients.

• MSP can consider heterogeneous sparsity in the spatial domain for different random input dimensions

(or different PC coefficients), because it allows shrinkage with different combinations of l1-norm and

l2-norm on different PC coefficients.
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• Bayesian elastic net (BEN) (Hans, 2011) is another procedure that combines l1-norm and l2-norm

shrinkages in the Bayesian framework by using a different prior specification than that of MSP. In the

context of gPC, unlike BEN, MSP allows different combinations of l1-norm and l2-norm shrinkage to

be applied on different PC coefficients, and hence can consider heterogeneous sparsity in the spatial

domain.

This paper is organized as follows. In Section 2, we briefly review the main concepts of the gPC and describe

the problem setup of the elliptic stochastic PDEs. In Section 3, we describe the proposed methodology that

involves the suggested gPC formulation, and the proposed MSP procedure. In Section 4, we demonstrate the

good performance of the proposed method on numerical examples with elliptic stochastic PDEs. In Section

5, we conclude and discuss further extensions and possible improvements of this work.

2. Preliminary

Briefly, we review the main concepts of the gPC expansion and set-up the problem of the elliptic SPDEs.

The notation we adopt for defining vectors is based on the list comprehension syntax. For instance, v :=

(a
(j)
i ; j = 1 : 2, i = 1 : j) is equivalent to the 3×1 vector v = (a

(1)
1 , a

(2)
1 , a

(2)
2 ), where the former index evolves

slower.

2.1. Generalized polynomial chaos

We consider a stochastic system with solution u(x; ξ) that depends on a dx-dimensional vector of spatial

input variables x ∈ X and a dξ-dimensional vector of random input variables ξ ∈ Ξ that admits distribution

f(d·).

The stochastic solution u(x; ξ) can be represented by an infinite series of PC bases {ψα(·)} and PC

coefficients {gα(·)} in the tensor form:

u(x; ξ) =
∑
α∈N

dξ
0

gα(x)ψα(ξ), (1)

for ξ ∼ f(d·) and x ∈ X (Xiu, 2010). We denote multi-indices α := (α1, ..., αdξ) of size dξ that are defined

on a set of non-negative integers Ndξ0 := {(α1, ..., αdξ) : αj ∈ N ∪ {0}}. The family of polynomial bases

{ψα(·); α ∈ Ndξ0 } contains multidimensional orthogonal polynomial bases with respect to the probability

measure f(d·) of ξ. Each multidimensional PC basis ψα(·) results as a tensor product of univariate orthogonal

polynomial bases ψαj (·) of degree αj ∈ N1
0 namely:

ψα(ξ) =

dξ∏
j=1

ψαj (ξj), αj ∈ N1
0, (2)
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where Ef (ψαj (ξ)ψαj′ (ξ)) = Zjδ0(j − j′), for j, j′ = 1, ..., dξ and Zj = Ef (ψ2
αj (ξ)). Here, δA(B) denotes

the indicator function, where δA(B) = 1 if A = B, and δA(B) = 0 otherwise. It is common in practice,

but not a panacea, for the family of PC bases {ψα(·)} to be pre-defined so that they are orthogonal with

respect to the distribution f(d·). In this way, many common distributions can be associated with a specific

family of polynomials, e.g. the Askey family (Xiu and Karniadakis, 2002). Otherwise, it is possible for

suitable polynomial bases to be numerically generated according to (Wan and Karniadakis, 2006). The PC

coefficients {gα(x); α ∈ Ndξ0 } can be computed as gα(x) = Ef (u(x; ξ)ψα(ξ))/Zα, for a ∈ Ndξ0 (Xiu, 2010),

however often they are not available in closed form because the integral in the expectation is intractable.

For computational purposes, a truncated version of (1) is used by considering a finite set of available PC

bases. Traditionally, the total truncated rule is used, which results in the expansion form:

upξ(x; ξ) :=
∑
α∈A

gα(x)ψα(ξ), (3)

that accounts for only a finite set of multi-indices A such that A = {α ∈ Ndξ :
∑dξ
i=1 αi ≤ pξ} with cardinality

mξ :=
(pξ+dξ)!
pξ!dξ!

. Other truncation rules can be adopted (Blatman and Sudret, 2011; Sargsyan et al., 2013).

Theoretical results show that, for a large enough PC degree pξ, the truncated upξ(x; ξ) converges to

u(x; ξ) under mild conditions (Xiu, 2010; Babuška et al., 2004). Following standard approximation theory

and provided that u(x; ξ) is square integrable with respect to f(d·), the gPC expansion (3) converges to

u(x; ξ) as:

lim
pξ→∞

Ef
(
u(x; ξ)− upξ(x; ξ)

)2
= 0,

and the rate of the convergence depends on the regularity of u(x; ξ) (Xiu, 2010).

It is possible to describe the uncertainty of u(x; ξ) with respect to ξ by computing the statistics of the gPC

expansion. For instance, the solution mean µ(x) := Ef (u(x; ξ)) ≈ Ef (upξ(x; ξ)) = g0(x), variance σ2(x) :=

Varf (u(x; ξ)) ≈ Varf (upξ(x; ξ)) =
∑
α∈A−{0} g

2
α(x)Zα and covariance C(x, x′) := Covf (u(x; ξ), u(x′; ξ)) ≈

Covf (upξ(x; ξ), upξ(x
′; ξ)) =

∑
α∈A−{0} gα(x)gα(x′)Zα, where Zα = Ef (ψ2

a(ξ)) for α ∈ A, (Xiu, 2010).

In practice, the evaluation of the gPC expansion (7) is challenging in high-dimensional scenarios if a high

degree of accuracy is required. The number of unknown PC coefficients is of order d
pξ
ξ and grows rapidly

with the dimension dξ and PC degree pξ. This can give rise to the aforesaid curse of dimensionality and

related computational problems when the training data-set is limited. Reduction of the PC degree or careless

omission of PC bases in order to reduce the number of the unknowns may lead to a significant increase of

bias and a poor approximation of the solution. Therefore, for the selection of significant bases, intuitive
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methods able to trade off efficiently between the bias (caused by omitting bases) and the over-fitting are

required.

2.2. Elliptic SPDEs with sparse solution

As discussed by Doostan and Owhadi (2011); Yang and Karniadakis (2012), elliptic SPDEs with random

coefficients provide a suitable scenario for stochastic systems where the researcher can afford only a small

number of system realizations due to the computationally expensive solver while the solution is sparse when

expanded as a gPC.

Let (Ω,F ,P) be a complete probability space where P is a probability measure on the σ-field F . We

consider the elliptic SPDE:

−∇ · (a(x;ω)∇u(x;ω)) = b(x), if x ∈ X ; (4)

u(x;ω) = 0, if x ∈ ∂X ,

P-a.s., ω ∈ Ω, defined on a bounded Lipschitz continuous domain X ⊂ Rdx , dx = 1, 2, 3, with boundary ∂X .

The diffusion coefficient a(x;ω) is an unknown stochastic function defined on (Ω,F ,P) and the source

of uncertainty in (4). We model a(x;ω) as a truncated Karhunen-Loéve (K-L) expansion

a(x;ω) = ā(x) + σa

dξ∑
j=1

√
`jϕj(x)ξj(ω), (5)

where ξ := (ξj ; j = 1 : dξ) is a dξ-dimensional random variable defined as ξ : Ω→ Ξ that admits distribution

f(d·), {(`j , ϕj); j = 1 : dξ} are pairs of eigenvalues and eigenfunctions of a covariance function Kaa(x1, x2) ∈

L2(X×X ) of a(x;ω), ā(x) is the mean of a(x;ω) and σa is the standard deviation that controls the variability

of a(x;ω). Given that the diffusion coefficient is modeled as in (5), the solution u(x;ω) and the diffusion

coefficient a(x;ω) admit representations u(x; ξ) := u(x; ξ(ω)) and a(x; ξ) := a(x; ξ(ω)), where α : X ×Ξ→ R

and u : X × Ξ→ R.

Similar to (Doostan and Owhadi, 2011; Yang and Karniadakis, 2012), we assume that a(x; ξ) satisfies

the following conditions (C-1, C-2, C-3):

C-1 : For all x ∈ X , constants amin and amax exist, such that 0 < amin ≤ a(x; ξ) ≤ amax <∞, a.s.

C-2 : The covariance function Kaa(x1, x2) is piecewise analytic on X ×X (Bieri and Schwab, 2009; Schwab

and Todor, 2006), implying that constants c1, c2 ∈ R exist, such that 0 ≤ `j ≤ c1 exp(−c2j1/dx) and

∀a ∈ Ndξ :
√
`j ||∂ϕj ||L∞(X ) ≤ c1 exp(−c2j1/dx) for j = 1, ..., dξ, where a ∈ N is a multi-index.
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C-3 : The random variables {ξj ; j = 1 : dξ} are independently and identically distributed according to the

uniform distribution U(−1, 1) in Ξ := [−1, 1]dξ .

SPDE (4) can be solved by expanding the solution u(x; ξ) as a gPC (3) using Legendre polynomials, where

ξ is the random input variable and x is the spatial input variable. Conditions C-1, C-2 and C-3 guarantee

that the solution is sparse in the stochastic domain and the gPC approximation converges exponentially fast

in the mean-square sense as the PC degree increases (Babuška et al., 2004, 2007; Bieri and Schwab, 2009).

Condition C-3 can be relaxed (Yang and Karniadakis, 2012).

Our interest lies in the representation of the stochastic solution u(x; ξ), with respect to x and ξ, as a gPC

expansion. This task can be challenging since the curse of dimensionality can occur because (i) a training

data-set, with small number of training samples, is often available due to the expensive solver (ii) a huge

number of unknown PC coefficients exist when ξ is large in dimension.

3. Bayesian inference of a sparse gPC expansion

We reformulate the gPC expansion defined in Section 2.1 by modeling the PC coefficients as series of

basis functions. We present the proposed mixed shrinkage prior (MSP) procedure; a fully Bayesian procedure

that evaluates the gPC expansion in the Bayesian model uncertainty framework and uses a Gibbs sampler to

address the computations. In the Bayesian model uncertainty framework, we suggest suitable approaches to

make inference and prediction with the gPC expansion, by using the output of the proposed MSP procedure.

3.1. The gPC formulation of the expansion

We consider the gPC expansion as defined in Section 2.1. In practice, the PC coefficients {gα(x)} are not

available in closed form. We propose to model each PC coefficient ga(x) as an expansion of basis functions

(herein referred to as spatial bases). We consider truncated polynomial expansions of degree px, in the form:

ga,px(x) =
∑
b∈B

ca,bθb(x), x ∈ X , (6)

where {θb(x); b ∈ B} are polynomial bases and {ca,b; a ∈ A, b ∈ B} are the associated unknown coefficients

ca,b ∈ R, here called scalar coefficients. Note that B may depend on index a; however to simplify the

presentation of the method, we suppress this indexing. Without loss of generality, when dx > 1, the spatial

bases can be defined as tensor products of univariate bases {θbj (·); j = 1 : dx} of degree bj ∈ N1
0 and

B = {b ∈ Ndx :
∑dx
i=1 bi ≤ px}, with mx = card(B), similarly to (2) and according to the total truncated
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rule. Therefore, by plugging (6) in (3), we obtain u(x; ξ) = upξ,px(x; ξ) + εpξ,px(x; ξ), where

upξ,px(x; ξ) =
∑
α∈A

(∑
b∈B

ca,bθb(x)

)
ψα(ξ) (7)

= χ(x; ξ)c,

and εpξ,px(x; ξ) is the total truncation error. Here, χ(x; ξ) := (θb(x)ψa(ξ); a ∈ A, b ∈ B) denotes the vector

of basis functions and c := (ca,b; a ∈ A, b ∈ B) denotes the vector of scalar coefficients.

Standard polynomial and tensor product theories (Cheney, 1966; Todd, 1963) suggest that ga,px(x)

converges to ga(x) as px → ∞ under mild conditions that ga(·) is smooth. It is worth noting that the

spatial bases can be standard polynomial bases, e.g. Legendre, Chebyshev and Hermite (Xiu, 2010), or

more sophisticated ones, e.g. B-splines bases (De Boor, 1978; Silverman, 1985; Holmes and Mallick, 2001).

Here, modeling the PC coefficients as series of bases aims to facilitate the global approximation of the gPC

expansion and the recovery of possible sparse structure of the solution in both the stochastic and the spatial

domains.

We assume there is available a MC sample D =
{

(ui,j , x
(j)
i , ξj)

}
nξ;n

(j)
x

j=1;i=1, acting as a training data-set,

where nξ is the number of system realizations, n
(j)
x is the number of spatial points at j-th realization, ξj

denotes the random input value at j-th realization, x
(j)
i denotes the i-th spatial point at j-th realization

and ui,j := u(x
(j)
i ; ξj) denotes the solution at input values (x

(j)
i , ξj). Given the MC sample D and the gPC

expansion (7), it is

ui,j = upξ,px(x
(j)
i ; ξj) + εi,j , for j = 1, ..., nξ and i = 1, ..., n(j)

x , (8)

where εi,j ∈ R is a residual term, associated to the (i, j)-th datum of D, that refers to the discrepancy

between the exact system solution and the truncated gPC expansion (7) given that the training data-set has

been obtained. Therefore, residual term εi,j is considered to be the discrepancy for a given known-fixed input

value (x
(j)
i , ξj), of the (i, j)-th datum of training data-set D obtained. As such, once the training data-set is

obtained, given the (i, j)-th datum of D, possible randomness of εi,j may be subject to nuisance factors; for

example, related to the training data-set collection mechanism (see Section 3.2). Eq. 8 can be written as a

linear system:

u = Xc+ ε , (9)

where u := (ui,j ; j = 1 : nξ, i = 1 : n
(j)
x )ᵀ is the n-dimensional vector of solutions, ε := (εi,j ; j = 1 :

nξ, i = 1 : n
(j)
x )ᵀ is the n-dimensional vector of residuals, Xa,b := (ψa(ξj)θb(x

(j)
i ); j = 1 : nξ, i = 1 : n

(j)
x ) is
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the (a, b)-th vector of basis functions, X := (Xa,b; a ∈ A, b ∈ B) is an n ×m dimensional matrix of basis

functions, n =
∑nξ
j=1 n

(j)
x and m = mx ·mξ.

Reformulating (3) into (9) extends the scope of existing compressive sensing methods (Doostan and

Owhadi, 2011; Yang and Karniadakis, 2012; Sargsyan et al., 2013) which, until now, were able to evaluate

the gPC expansion only at a fixed spatial point. By applying these compressive sensing methods to (9),

one can evaluate the expansion in both stochastic and spatial domains at once and under a limited number

of MC samples. In the following, we propose a new fully Bayesian procedure performing stochastic basis

selection and evaluation of the gPC expansion simultaneously.

3.2. The Bayesian mixed shrinkage prior (MSP) procedure

We introduce a fully Bayesian procedure able to perform both stochastic basis selection and evaluation

of the gPC expansion simultaneously. According to the standard Bayesian practice (O’Hagan and Forster,

2004), inference about the unknown quantities of a statistical model is performed based on the associated

posterior distribution that is computed according to the Bayes’ theorem (Bayes and Price, 1763; de Laplace,

1812). This requires the specification of the likelihood function, and the prior model that can incorporate any

available information about the unknowns before obtaining training data-set. In what follows, we consider

that the gPC expansion is formulated as in (7), and that a MC sample D =
{

(ui,j , x
(j)
i , ξj)

}
nξ;n

(j)
x

j=1;i=1 (training

data-set) is available.

The likelihood function L(u|c, σ2) := L({ui,j}|{(x(j)
i , ξj)}, c, σ2) is:

L(u|c, σ2) =

nξ∏
j=1

n(j)
x∏
i=1

N
(
ui,j |χ(x

(j)
i ; ξj)

ᵀc, σ2
)

(10)

= Nn
(
u|Xᵀc, Inσ2

)
,

where N(·|µ, σ2) denotes the Normal density with mean µ and variance σ2. The choice of the likelihood is

merely a modeling choice. Here, the likelihood function can be considered as a measure of goodness-of-fit

of the truncated gPC expansion to the training data-set, where the statistical discrepancy between the real

model and the gPC expansion, for a given training data-set, is quantified by the residual term {εi,j}. The

rational is that, in the sense of maximum entropy principle (Jaynes, 2003), the residual term could be modeled

approximately as a Gaussian noise, with a ‘vanishing’ mean and a variance σ2 that represents the tolerance to

the fitting error (Sargsyan et al., 2013; Cressie and Johannesson, 2008). It is worth mentioning that although

the MC samples are usually generated by deterministic solvers with no random error, (Stein, 1999; Gramacy

and Lee, 2012) observed that treating {εi,j} as random leads to surrogate models with better statistical
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properties, possibly because it can “smooth out” several accumulated errors from: the deterministic solver,

truncation of the expansion and others (Gramacy and Lee, 2012).

We define a binary vector of inclusion parameters γ := (γa,b; a ∈ A, b ∈ B) that represents which of the m

possible basis functions involved in the gPC expansion are significant; for example γa,b = 0 implies ca,b = 0,

while γa,b = 1 implies ca,b 6= 0. This denotes which of those basis functions are significant or non-significant

(included in or excluded from the expansion). More precisely, the PC basis ψa(·) is significant if the PC

coefficient ga(·) is associated to, at least, one non-zero scalar coefficient {ca,b; b ∈ B} or equivalently non-zero

inclusion parameter.

To account for uncertainty about significant basis functions, we assign independent priors γa,b ∼ Bernoulli(ρ)

with ρ ∈ (0, 1). Regarding the scalar coefficients ca,b, we assign priors

π(ca,b|γa,b, σ2, ηa, λa) =


ηaN(ca,b|0, σ2/λa) + (1− ηa)DE(ca,b|0, σ/λa) , if γa,b = 1

δ0(ca,b) , if γa,b = 0

,

where ηa is a binary shrinkage label, such that ηa = 1 indicates the Normal component (applying l2-norm

shrinkage), while ηa = 0 indicates the Double Exponential component (applying l1-norm shrinkage) and

λa ∈ (0,∞) is the shrinkage parameter for a ∈ A. Here, larger values of λa force {ca,b, b ∈ B} closer to zero.

The rational is that in order to encourage further shrinkage of small but non-zero scalar coefficients ca,b, we

assign on each ca,b (associated to γa,b = 1) shrinkage priors: a Normal prior that applies l2-norm shrinkage

according to Ridge regression (Jeffrey, 1961), or a Double Exponential prior that applies l1-norm shrinkage

according to LASSO regression (Hans, 2010; Park and Casella, 2008). These two shrinkage priors encourage

different penalization and shrinkage for scalar coefficients associated to different PC coefficients by grouping

them according to the PC coefficients they belong; here l1-norm applies a stronger shrinkage than l2-norm.

The advantage of using two types of different shrinkage priors is that different shrinkage can be applied to

different PC coefficients in order to express different levels of sparsity in spatial domain for different random

input dimensions.

When m is large, the exact computation of all the posteriors Pr(γ|u,X) and π(c|u,X, γ) is practically

impossible because the number of all the different combinations of basis functions, 2m, increases dramatically

with m. For the computations, we design a Gibbs sampler (Geman and Geman, 1984) that generates a

Markov chain which visits different gPC configurations proportionally to Pr(γ|u,X). Thus, the procedure

spends most of the evaluation time at important (highly possible) gPC configurations. We consider a

Gibbs sweep with blocks updating each {(γa,b, ca,b); a ∈ A, b ∈ B} recursively. Direct sampling from the full
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conditional posterior of (γa,b, ca,b) is possible for a ∈ A, b ∈ B. This can be performed by decomposing the

associated conditional posterior distribution into:

π(γa,b, ca,b|u,X, γ−(a,b), c−(a,b), ηa, ρ, σ
2, λa) = Pr(γa,b|u,X, γ−(a,b), c−(a,b), ηa, ρ, σ

2, λa)

× π(ca,b|u,X, γ, c−(a,b), ηa, ρ, σ
2, λa), (11)

for a ∈ A, b ∈ B. Here, X−(a,b) and c−(a,b) denotes the sub-matrix of X and sub-vector of c that result

after removing the (a, b) column and element correspondingly. The conditional probability of γa,b on the

right-hand side of (11) is Bernoulli(P
(γ)
a,b ) with acceptance probability:

P
(γ)
a,b =


[
1 + 2 1−ρ

ρ
σ
λa
/

(
Φ(−µ−a,b/sa,b)
N(0|µ−a,b,s

2
a,b)

+
Φ(µ+

a,b/sa,b)

N(0|µ+
a,b,s

2
a,b)

)]−1

, ηa = 0[
1 + 1−ρ

ρ

√
2πσ2

λa
N(0|µ∗a,b, s

2,∗
a,b)
]−1

, ηa = 1

, (12)

and

µ+
a,b =

(
Xᵀ
a,bXa,b

)−1 [
Xᵀ
a,b

(
u−X−(a,b)c−(a,b)

)
− σλa

]
; (13)

=
(
Xᵀ
a,bXa,b

)−1 [
Xᵀ
a,bu−X

ᵀ
a,bX−(a,b)c−(a,b) − σλa

]
;

µ−a,b =
(
Xᵀ
a,bXa,b

)−1 [
Xᵀ
a,b

(
u−X−(a,b)c−(a,b)

)
+ σλa

]
; (14)

=
(
Xᵀ
a,bXa,b

)−1 [
Xᵀ
a,bu−X

ᵀ
a,bX−(a,b)c−(a,b) + σλa

]
;

s2
a,b = σ2(Xᵀ

a,bXa,b)
−1 ; (15)

µ∗a,b =
(
Xᵀ
a,bXa,b + λa

)−1

Xᵀ
a,b

(
u−X−(a,b)c−(a,b)

)
; (16)

=
(
Xᵀ
a,bXa,b + λa

)−1 [
Xᵀ
a,bu−X

ᵀ
a,bX−(a,b)c−(a,b)

]
;

s2,∗
a,b = σ2(Xᵀ

a,bXa,b + λa)−1, (17)

for a ∈ A, b ∈ B. The full conditional posterior distribution of ca,b in (11) admits density:

π(ca,b|u,X, γ, c−(a,b), ηa, ρ, σ
2, λa) =



δ{0}(ca,b) , if γa,b = 0

N(ca,b|µ∗a,b, s
2,∗
a,b) , if γa,b = 1, ηa = 1

(1− wa,b)N−(ca,b|µ−a,b, s2
a,b)

+wa,bN
+(ca,b|µ+

a,b, s
2
a,b) , if γa,b = 1, ηa = 0

, (18)
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where

wa,b =

[
1 +

Φ(−µ−a,b/sa,b)
N(0|µ−a,b, s2

a,b)

N(0|µ+
a,b, s

2
a,b)

Φ(µ+
a,b/sa,b)

]−1

, (19)

for a ∈ A, b ∈ B. Here, Φ(·) denotes the cumulative density function of the standard normal distribution,

while N−(x|µ, s2) := N(x|µ,s2)
Φ(−µ/s) δ(−∞,0)(x) and N+(x|µ, s2) := N(x|µ,s2)

Φ(µ/s) δ(0,+∞)(x) denote the right and left

truncated Normal distribution densities. A rough sketch on the derivation of the of Eq. (12)-(19) is given in

the Appendix. In what follows, we add progressively more blocks to the Gibbs sweep as we consider more

levels of uncertainty.

Different values of σ2 represent different amounts of residual variation and thus setting σ2 fixed may lead

to misleading results when different subsets of basis functions are considered. We treat σ2 as unknown and

assign a prior σ2 ∼ G(aσ, bσ) with aσ > 0 and bσ > 0. Choosing Gamma priors for the residual variance is

a standard practice in Bayesian regression (O’Hagan and Forster, 2004). Weakly informative priors can be

considered by letting aσ → 0 and bσ → 0. The resulting full conditional posterior distribution is not of a

standard form and has density known up to a normalizing constant as:

π(σ2|u,X, γ, c, η, λ) ∝
(

1

σ

)n
2 +

mγ
2 +aσ+1

exp

(
− 1

2σ2
|u−Xc|22

− 1

2σ2

∑
{a∈A:ηa=1}

λa |ca|22 −
1

σ

∑
{a∈A:ηa=0}

λa |ca|1 −
bσ
σ2

 , (20)

where ca := (ca,b; a ∈ A). However, it can be sampled exactly by using adaptive rejection sampling (ARS)

(Gilks, 1992; Gilks and Wild, 1992) since (20) is log-concave. Alternatively, one can employ a random

walk Metropolis (RWM) update (Metropolis et al., 1953; Robert and Casella, 2004) where the scale of the

proposal is properly calibrated by an adaptation scheme (Andrieu and Thoms, 2008) that forces the expected

acceptance probability to be close to its optimal value 0.5 (Roberts et al., 1997).

To account for uncertainty about the shrinkage norm, controlled by the vector of shrinkage labels η :=

(ηa; a ∈ A), and shrinkage parameter λ := (λa; a ∈ A), we assign priors ηa|$ ∼ Bernoulli($) with hyper-

parameter $ ∈ (0, 1) and λa ∼ G(aλ, bλ) with parameters aλ > 0 and bλ > 0 for a ∈ A. Gamma distribution

is a convenient choice of priors for the shrinkage parameters mainly because they are conjugate and there

are theoretical guidelines on how to choose the associated hyper-parameters (Lykou and Ntzoufras, 2012).

It is worth noting that marginalizing the conditional prior π(ca,b, ηa|γa,b = 1, $, λa, σ
2) = π(ca,b|γa,b =

1, ηa, λa, σ
2) Pr(ηa|$) over the shrinkage labels ηa results a mixture of Normal-Double Exponential shrinkage

priors π(ca,b|γa,b = 1, $, λa, σ
2) = $N(ca,b|0, σ2/λa) + (1−$)DE(ca,b|0, σ/λa), that apply a combination of
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l2-norm and l1-norm shrinkages. As noticed by Hans (2011), combining l2-norm and l1-norm shrinkages is

advantageous in estimating small but nonzero coefficients. Direct sampling from the full conditional posterior

of (ηa, λa) is possible for a ∈ A, as:

π(ηa, λa|u,X, γa, ca, σ2, $) = Pr(ηa|u,X, γa, ca, σ2, $)π(λa|u,X, γa, ca, ηa, σ2),

where the conditional posterior probability of ηa on the right-hand side is a Bernoulli(P
(η)
a ) with acceptance

probability

P (η)
a =

[
1 +

C
(0)
a

C
(1)
a

1−$
$

(π/2)mγ|a/2

]−1

, (21)

where C
(0)
a = Γ(mγ|a+aλ)

(
|ca|1
σ + bλ

)−(mγ|a+aλ)

and C
(1)
a = Γ(mγ|a/2+aλ)

(
|ca|2
2σ2 + bλ

)−(mγ|a/2+aλ)

, while

that of λa on the left-hand side is a Gamma λa|γa, ca, σ2, ηa ∼ ηaG
(
mγ|a

2 + aλ,
1

2σ2 |ca|22 + bλ

)
+ (1 −

ηa)G
(
mγ|a + aλ,

1
σ |ca|1 + bλ

)
. Of note, {(ηa, λa); a ∈ A} are aposteriori conditionally independent. Ef-

fectively, integrating over {(ηa, λa)}, the procedure creates aposteriori a mixture of Ridge-LASSO regression

models, allowing for adaptive, data-based shrinkage of the scalar coefficients. Compared to other non-

Bayesian approaches, the proposed procedure avoids the need for ad hoc techniques, such as Cross-Validation,

or pilot runs and allows the data to determine suitable values for the shrinkage quantities.

To account for uncertainty about the hyper-priors ρ and $, we assign Beta priors ρ|aρ, bρ ∼ Beta(aρ, bρ)

with aρ > 0, bρ > 0 and $|a$, b$ ∼ Beta(a$, b$) with a$ > 0, b$ > 0. Moreover, non-informative

priors can be considered, if aρ = bρ = 1, for ρ and if a$ = b$ = 1, for $. We chose Beta priors for

practical reasons because they are conjugate. The hyper-priors ρ and $ are aposteriori independent with

full conditional posteriors ρ|γ ∼ Beta (mγ + aρ,m−mγ + bρ) and $|η ∼ Beta (mη + a$,mξ −mη + b$),

where mη =
∑
a∈A ηa. The importance of treating the shrinkage hyper-parameter ρ as unknown has been

noticed by Scott and Berger (2010) who observed that even for seemingly reasonable choices of fixed values,

conditioning on ρ may lead to unsatisfactory results.

The pseudo-code of the Gibbs sweep is summarized in Alg. 1. The updates within Blocks III and IV can

be performed in parallel to reduce the execution time of the code. We refer to the proposed procedure as

mixed shrinkage prior (MSP), highlighting a main ingredient of the method.

Remark 1. The proposed method admits, as limiting cases, the Bayesian LASSO (Hans, 2010) using a
strong l1-norm shrinkage via Double Exponential priors for $ → 0 and the Ridge regression (Jeffrey, 1961)
using a strong l2-norm shrinkage via Normal distribution prior for $ → 1. By treating $ as unknown, the
procedure can adjust the shrinkage method between l1- and l2-norms for each PC coefficient in an adaptive,
data-based manner.

Remark 2. Increasing the size of the training data-set (nx, nξ and n) does not increase the computational
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Algorithm 1 Blocks of the Gibbs sweep

Block I Update {(γa,b, ca,b)} : For a ∈ A, b ∈ B,

1. Compute µ−a,b, µ
+
a,b, s

2
a,b, µ

∗
a,b and s2,∗

a,b according to (13), (14), (15), (16) and (17).

2. Update γa,b: draw γa,b from Bernoulli(P
(γ)
a,b ), according to (12).

3. Update ca,b: draw ca,b from π(ca,b|u,X, γ, c−(a,b), ηa, ρ, σ
2, λa, $) according to (18).

Block II Update σ2: Draw σ2 from ARS (or RWM update with adaptation).

Block III Update (ηa, λa): For a ∈ A,

1. Draw ηa from Bernoulli(P
(η)
a ), according to (21).

2. Draw λa from ηaG
(
mγ|a

2 + aλ,
1

2σ2 |ca|22 + bλ

)
+ (1− ηa)G

(
mγ|a + aλ,

1
σ |ca|1 + bλ

)
.

Block IV Update (ρ,$):

• Draw ρ from Beta(mγ + aρ,m−mγ + bρ).

• Draw $ from Beta (mη + a$,mξ −mη + b$).

cost of running Alg.1, significantly. The reason is because the quantities uᵀu, XᵀX and Xᵀu, whose compu-
tational cost increases with nx, nξ and n, can be computed offline and before the execution of the algorithm.
Therefore, in practice, one need to compute the quantities uᵀu, XᵀX and Xᵀu only once before the execution
of Alg. 1, so that large values of nx, nξ and n cannot increase significantly the computational cost.

3.3. Evaluation

Given the likelihood model in (10), we can consider an estimator for the stochastic solution as:

u(gPC)
px,pξ

(x; ξ) = EL(u|x; ξ) =
∑
a∈A

∑
b∈B

ca,bθb(x)ψa(ξ). (22)

Consequently1, the solution mean, µ(x), is evaluated as:

µ(gPC)(x) = EfEL(u|x; ξ) =
∑
b∈B

c0,bθb(x), (23)

the solution variance, σ2(x), is evaluated as:

σ2,(gPC)(x) = VarfEL(u|x; ξ) + EfVarL(u|x; ξ) =
∑

a∈A−{0}

(∑
b∈B

ca,bθb(x)

)2

Za + σ2, (24)

1Based on equations E(X) = E (E(X|Y )), Var(X) = Var (E(X|Y )) + E (Var(X|Y )) and Cov(X,X′) =
Cov (E(X|Y ),E(X′|Y )) + E (Cov (X,X′) |Y ), (Casella and Berger, 1990)
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and the solution covariance, C(x, x′), is evaluated as:

C(gPC)(x, x′) = Covf (EL(u|x; ξ),EL(u′|x′; ξ)) + Ef (CovL (u, u′|x, x′; ξ)) (25)

=
∑

a∈A−{0}

(∑
b∈B

ca,bθb(x)

)(∑
b′∈B

ca,b′θb(x
′)

)
Za + δ0(x− x′)σ2,

where u = χ(x; ξ) + ε and u′ = χ(x′; ξ) + ε′ according to the formalism in (8 & 10). Other statistical

quantities of the solution can be evaluated likewise. We observe that under the proposed setting, the

estimator of σ2(x), (24 & 25), takes into account the residual variance σ2, unlike the traditional estimation

practice in gPC literature that ignores it. This aims to provide more reliable estimates for σ2(x) since the

residual variance includes the contribution of the truncated terms of the gPC expansion. Yet, being fully

Bayesian, the MSP procedure can compute the point estimate, and whole posterior density, of σ2 directly.

The proposed method is fully Bayesian. As such, inference about all the unknown quantities of the gPC

expansion can be performed via the associated posterior distributions while prediction about solutions at

new input values given the training data-set is performed via the predictive distribution. In what follows, we

describe how the output of the MSP procedure can be used to perform estimation, inference and prediction

with the truncated gPC expansion in the Bayesian framework. We consider two fully Bayesian approaches:

the Bayesian model averaging (Hoeting et al., 1999) and the median probability model (Barbieri and Berger,

2004).

3.3.1. The Bayesian model average based evaluation

The evaluation of the expansion can be performed by Bayesian model averaging (BMA) (Hoeting et al.,

1999) if the predictive ability of the gPC expansion is of main interest. In the gPC context, BMA accounts for

uncertainty about the significant basis functions by combining inferences from different gPC configurations

and weighting them according to the associated posterior inclusion probabilities. Compared to other methods

that assume a single gPC configuration by selecting a fixed subset of possibly significant basis functions,

BMA presents optimal predictive performance (Hoeting et al., 1999; Madigan and Raftery, 1994).

We consider a Gibbs sample
{(
γ(t), c(t), σ2,(t), ...

)}T
t=1

generated by Alg. 1. Estimates and associ-

ated standard errors of σ2 and {ca,b} can be derived by the ergodic averages according to the standard

Bayesian practice (Robert and Casella, 2004), e.g ĉa,b = 1
T

∑T
t=1 c

(t)
a,b and s.e.(ĉa,b) =

√
sc,2a,b

√
%ca,b
T where

sc,2a,b is the sample variance and %ca,b is the integrated autocorrelation time of
{
c
(t)
a,b; t = 1 : T

}
for a ∈ A,

b ∈ B. For µ(gPC)(x), σ2,(gPC)(x), C(x, x′), ga(x) and u
(gPC)
px,pξ (x; ξ), point estimates can be computed

from the Gibbs sample analogously, e.g. σ̂2,(gPC)(x) = 1
T

∑T
t=1[

∑
a∈A−{0}

(∑
b∈B c

(t)
a,bθb(x)

)2

Za + σ2,(t)].
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It is worth noting that estimates for µ(gPC)(x), ga(x) and u(gPC)(x; ξ) can be computed equivalently by

using the sufficient statistics ĉ := (ĉa,b; a ∈ A, b ∈ B) in equations (23), (6) and (22) in order to

reduce the memory storage requirements when applied in practice. q%-Interval estimation can be per-

formed via q%-credible intervals (CI); that is the set of values bounded by the contour of the associated

posterior distribution for a fixed volume q/100. Prediction of the solution u′ := u(x = x′; ξ = ξ′) at

given new input values (x′; ξ′) and conditional on a training data-set D can be performed via the predic-

tive posterior distribution L(u′|D) =
´
L(u′|c, σ2)π(c, σ2|D)d(c, σ2) which is approximated numerically by

L̂(u′|D) = 1
T

∑T
t=1 N(u′|u(t)

px,pξ(x
′; ξ′), σ2,(t)), where u

(t)
px,pξ(x; ξ) = χ(x; ξ)c(t).

3.3.2. Median probability model based evaluation

The gPC expansion may need to be evaluated based on a single combination of significant basis functions

if there is interest in recovering a sparse (or parsimonious) representation of the stochastic solution. A

suitable probabilistic basis selection mechanism is that of the median probability model (MPM) (Barbieri

and Berger, 2004), which is mostly used for variable selection in Bayesian regression models. Barbieri and

Berger (2004) provide theoretical results showing that MPM leads to optimal Bayesian predictive model

selection (namely close to BMA) under conditions, and suggest that MPM may be successful even when

these conditions are not met. In the gPC context, MPM refers to the gPC that includes only the basis

functions associated with marginal inclusion posterior probabilities greater than 0.5.

Given a Gibbs sample
{(
γ(t), c(t), σ2,(t), ...

)}T
t=1

drawn from Alg. 1, the marginal inclusion posterior

probabilities can be estimated as P̂a,b = 1
T

∑T
t=1 γ

(t)
a,b. According to the MPM rule, the inclusion parameters

are estimated as γ̂
(MPM)
a,b = δ(0.5,1)(P̂a,b), for a ∈ A, b ∈ B. It is reasonable to consider that significant

scalar coefficients {ca,b} are those that correspond to non-zero inclusion parameters {γa,b}, significant PC

coefficients {ga(·)} are those that have at least one significant scalar coefficient {ca,b} and thus significant

PC bases {ψa(·)} are those that correspond to significant PC coefficients {ga(·)}. This allows the recovery

of possible sparse structures in both stochastic and spatial domains, without loosing in accuracy.

For a chosen gPC configuration according to the MPM rule, inference about the unknown quantities of

interest can be performed using the part of Gibbs sample which corresponds to the significant subset of basis

functions, namely
{
t = 1, ..., T : γ(t) = γ̂(MPM)

}
. In practice, however, it is preferable to increase the size

of the available Gibbs sample up to a desired number, e.g. T , by re-running the Gibbs sampler (Alg. 1)

for fixed γ(t) = γ̂(MPM). Then, given the new Gibbs sample, inference about unknown quantities of interest

(e.g. solution mean) or prediction about solutions at new random or spatial input values can be performed

as described in Section 3.3.1.
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MPM evaluation primarily is recommended when the solution is sparse or a parsimonious representation

of the solution is preferred. Running Alg. 1 is cheaper if the solution is sparse because non-significant

scalar coefficients are omitted from the simulations, and hence the algorithm can perform fewer operations

in practice.

4. Numerical examples

We assume that interest lies in the representation of the solution u(x; ξ) of the 1D elliptic SPDE:

d

dx

(
a(x; ξ)

d

dx
u(x; ξ)

)
= −1, if ξ ∈ Ξ, x ∈ X ; (26)

u(0; ξ) = 0, u(1; ξ) = 0, if ξ ∈ Ξ,

where X = (0, 1), Ξ = [−1, 1]dξ and dξ ∈ N+, as a function of the random and spatial input variables.

Here, the solution u(x; ξ) is expanded as a finite gPC using Legendre polynomial bases. The associated

PC coefficients are modeled as a series of Legendre bases scaled linearly in (0, 1). We setup the Bayesian

hierarchical model with hyper-parameters aλ = 10−3, bλ = 10−3, aσ = 10−3, bσ = 10−3, aρ = 1, bρ = 1,

a$ = 1 and b$ = 1 that lead to weakly informative priors and evaluate the expansion by the proposed

procedure.

The proposed Bayesian method is demonstrated on a tractable 1-dimensional scenario, while its perfor-

mance is tested on two intractable high-dimensional scenarios with 14 and 40 dimensions in random input.

Under the proposed gPC formulation, we compare the MSP procedure with the Bayesian compressive sens-

ing (BCS) (Ji et al., 2008), l1-minimization (l1-min) (Doostan and Owhadi, 2011) and Bayesian elastic net

(BEN) (Hans, 2011) by applying them on the linear system (9). BCS and l1-min have been recently proposed

in the gPC context by Sargsyan et al. (2013) and Doostan and Owhadi (2011); Yang and Karniadakis (2012)

for evaluating the gPC expansion at only a fixed spatial point, while BEN, another Bayesian procedure, is

used for the first time in the gPC context here.

As measures of performance, we use the relative error of the solution mean ε(µ;x) :=
∣∣∣1− µ̂(x)

µ(x)

∣∣∣ and

standard deviation ε(σ;x) :=
∣∣∣1− σ̂(x)

σ(x)

∣∣∣, following Doostan and Owhadi (2011); Yang and Karniadakis (2012).

Given a test data-set D′ =
{(
u′i,j , x

′
i, ξ
′
j

)}n′ξ;n′x
j=1;i=1

, for n′x = 101 and n′ξ = 200, the performance is measured

globally by the total relative error of the solution mean ε(µ) = 1
n′x

∑n′x
i=1 ε(µ;x′i), standard deviation ε(σ) =

1
n′x

∑n′x
i=1 ε(σ;x′i) and mean squared predictive error mspe(u) = 1

n′x

∑n′x
i=1

1
n′ξ

∑n′ξ
j=1

(
u′i,j − ûpx,pξ(x′i; ξ′j)

)2
.
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4.1. One-dimensional example: case [1D]

The diffusion coefficient in SPDE (26) is assumed to be a(x; ξ) = a(ξ) = 1 + 0.5ξ, where ξ is distributed

according to U(−1, 1) and dx = 1. This leads to a tractable exact solution u(x; ξ) = x(1−x)
2+ξ with mean

µ(x) = x(1 − x) log(3)
2 , standard deviation σ(x) = x(1 − x)

√
1
3 −

1
4 log2(3) and covariance C(x, x′) = x(1 −

x)x′(1− x′)
(

1
3 −

1
4 log2(3)

)
, for x, x′ ∈ (0, 1), (see appendix in (Karagiannis and Lin, 2014)).

We wish to represent the solution of the SPDE as a gPC expansion with PC degree pξ = 80 and px = 15.

However, a MC sample of only nx = 5 and nξ = 20 system realizations is assumed to be available. Here, the

solution is sparse in stochastic domain because C-I, C-II & C-III are satisfied, and in spatial domain because

the solution is a 2-nd order polynomial with respect to x. We apply the MSP procedure where the Gibbs

sampler (Alg. 1) runs for 2 · 105 iterations, of which the first 105 are discarded as burn-in.

The inclusion posterior probabilities are presented in Fig. 1a and the significant scalar coefficients,

selected according to the MPM rule, are presented in Fig. 1d. We observe that the proposed method has

recovered a sparse representation both in stochastic and spatial domains. According to the MPM rule, 6

significant PC coefficients were selected. For each significant PC coefficient, 2 spatial bases, the 0-th and

the 2-nd, were selected as significant. These two spatial bases can recover the solution completely in the

spatial domain because the solution is a 2-nd degree polynomial with respect to x. Therefore, in this case,

the proposed method –based on the MPM rule– managed to select a minimal subset of significant spatial

bases. In Fig. 1d, we observe that the absolute values of the scalar coefficients reduce with the order of the

associated PC bases.

The estimation of the solution u(x; ξ) as functions of x and ξ, and the associated standard error, are

represented in Figs. 2a & 2b. We observe that the stochastic solution is satisfactorily recovered with standard

error small in value (< 2e− 6) and smooth over the input domain. The proposed method is able to produce

‘interval’ estimates and predictions. The predictive distribution of the solution u′ := u(x = 0.5; ξ = ξ′) at

given new random input values of interest in the range ξ′ ∈ (−1, 1) and spatial input value at x′ = 0.5, is

presented in Fig. 2c in log scale. We observe that the predictive density of the solution is quite narrow (Fig.

2c) indicating small predictive error at given input values (x = 0.5; ξ = ξ′) of interest. Figs. 3a, 3j, 3g &

3d plot the estimates and associated 95%-CI for the solution statistics and PC coefficients as functions of

x. So, the proposed Bayesian method can quantify uncertainty about the expansion itself as well, compared

to existing compressive sensing methods in gPC (Doostan and Owhadi, 2011; Yang and Karniadakis, 2012).

No visual difference regarding the estimates is observed between the results obtained by MSP-BMA and

MSP-MPM since the corresponding lines are very close to each other.
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Figure 1: Plots of the marginal inclusion posterior probabilities (panels a-c) and the significant scalar coefficients (in log scale)
(panels d-f) arranged according to the indexes in the stochastic and spatial domains. The color in (panels d-f) denotes the
absolute value of the scalar coefficients in log scale. Here, log denotes the natural logarithm.

Figs. 4a & 4b offer a comparison of the proposed MSP procedure against BEN, l1-min and BCS with

respect to the relative errors of the solution mean and standard deviation as functions of x. We observe

that the relative errors of MSP and BEN are smooth and constant with x while those of l1-min and BCS

present some bumps. This shows that the former methods, which perform a probabilistic basis selection,

have selected more suitable spatial bases (0-th and 2-nd), as significant, and more accurately estimated the

coefficients than the latter ones, which mainly shrink all of the coefficients toward zero. In this example,

we observe that under the proposed gPC formulation, MSP and BEN provide results with similar relative

errors uniformly over the spatial domain.

Figs. 5a, 5d & 5g present the total relative errors of the solution statistics and mspe. The basis selection

approaches (MSP, BEN) presented better performance than the compressive sensing approaches l1-min and

BCS, regarding the ε(µ). We observe that the ε(σ) of MSP is slightly smaller than that of BCS. In this

simple problem, the total relative errors of MSP and BEN are be close in value. We observe that, in the

gPC context, the MSP-MPM results in small relative errors and mpse that are close in value to those of

MSP-BMA. This indicates that the MPM-based evaluation is suitable for recovering a sparse representation
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Figure 2: [1D] The estimated solution (panel a) and the associated standard error (panel b) as functions of x and ξ, for
a(x; ξ) = 1+0.5ξ. The estimated predictive distribution (panel c), in log scale, of a solution u′(x = 0.5; ξ = ξ′) at given random
input values in the range ξ′ ∈ (−1, 1) and spatial input value at x′ = 0.5. The results were produced using the MSP procedure
after iterating Alg. 1 for 105 times and evaluation was based on MPM. Here, log denotes the natural logarithm.

of the solution in both stochastic and spatial domains without a significant loss in accuracy.

4.2. High-dimensional example: cases [14D] & [40D]

We assume that the diffusion coefficient α(x; ξ) is not available in closed form but modeled by a K-

L expansion that uses the dξ largest eigenvalues and eigenfunctions of covariance kernel Kaa(x1, x2) =

exp
(
− (x1−x2)2

l2K

)
, where lK ∈ (0,+∞) is the correlation length that dictates the decay of the spectrum of

α(x; ξ).

We collect a MC sample by performing system realizations of the SPDE (26) that use the deterministic

solver in (Yang and Karniadakis, 2012). Herein, we consider two high-dimensional scenarios: [14D] with

dξ = 14, lK = 1/5, ᾱ = 0.1, σ = 0.03, pξ = 3, px = 20, nx = 11 and nξ = 120 and [40D] with dξ = 40,

lK = 1/14, ᾱ = 0.1, σ = 0.021, pξ = 2, px = 20, nx = 11 and nξ = 240. Here, the conditions (C-I, C-II &

C-III) are satisfied and therefore the solution is sparse in the stochastic domain. However, we do not have

apriori a clear picture about the sparsity in the spatial domain for different random input dimensions (or

within each PC coefficient). The reference values of µ(x) and σ(x), needed for the evaluation of the measures

of performance, are estimated by Monte Carlo integration (Robert and Casella, 2004) because they are not

available in closed forms.

In Figs. 1b & 1c, we present the estimated marginal inclusion posterior probabilities of spatial and PC

bases, in pairs, for [14D] and [40D] cases. Figs. 1e & 1f illustrate the significant scalar coefficients (of lower-

order) for cases [14D] and [40D]. Only 73 out of 680 available PC bases in [14D] and 71 out of 850 available

PC bases in [40D] are detected as significant by the proposed method according to the MPM rule. This shows

that the proposed method based on the MPM rule has recovered sparse representations of the solutions in

the stochastic domain, in both [14D] and [40D] cases. It is worth noting that, in the [40D] case, the PC
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Figure 3: Estimates and 95%-CI of significant PC coefficients (panels a-c & j-l), the solution standard deviation (panels d-f)
and covariance (panels g-i) as functions of the spatial input variable x. Notation: Mixed shrinkage (MSP), Bayesian model
average (BMA) and median probability model (MPM).

22



0 0.5 1
−12

−11

−10

−9

−8

−7

x

lo
g
(ε
(µ

;x
))

 

 

MSP−MPM
MSP−BMA
BEN−MPM
BEN−BMA
BCS
L1−min

(a) [1D] log(ε(µ;x))

0 0.5 1
−5.4

−5.3

−5.2

−5.1

−5

−4.9

−4.8

x

lo
g
(ε
(σ

;x
))

 

 

MSP−MPM
MSP−BMA
BEN−MPM
BEN−BMA
BCS
L1−min

(b) [1D] log(ε(σ;x))

0 0.5 1
−14

−12

−10

−8

−6

−4

x

lo
g
(ε
(µ

;x
))

 

 

MSP−MPM
MSP−BMA
BEN−MPM
BEN−BMA
BCS
L1−min

(c) [14D] log(ε(µ;x))

0 0.5 1
−11

−10

−9

−8

−7

−6

−5

−4

−3

x

lo
g
(ε
(σ

;x
))

 

 

MSP−MPM
MSP−BMA
BEN−MPM
BEN−BMA
BCS
L1−min

(d) [14D] log(ε(σ;x))

0 0.5 1
−13

−12

−11

−10

−9

−8

−7

−6

−5

x

lo
g
(ε
(µ

;x
))

 

 

MSP−MPM
MSP−BMA
BEN−MPM
BEN−BMA
BCS
L1−min

(e) [40D] log(ε(µ;x))

0 0.5 1
−12

−10

−8

−6

−4

−2

x

lo
g
(ε
(σ

;x
))

 

 

MSP−MPM
MSP−BMA
BEN−MPM
BEN−BMA
BCS
L1−min

(f) [40D] log(ε(σ;x))

Figure 4: Relative errors of the solution mean ε(µ;x) and standard deviation ε(σ;x), in the log scale, as functions of the spatial
input variables. Approaches under comparison (by acronym): Mixed shrinkage (MSP), Bayesian elastic net (BEN), Bayesian
compressive sensing (BCS) and l1-minimization (l1-min). Evaluation approaches for (MSP & BEN): Bayesian model average
(BMA) and median probability model (MPM). Here, log denotes the natural logarithm.

bases associated to random dimensions between 23rd–40th were found to be statistically non-significant and

so those random dimensions are statistically not important (Fig. 1f). The proposed gPC formulation in the

Bayesian framework can provide detailed information regarding the sparsity of the solution in both stochastic

and spatial domains. For instance, in Figs. 1e & 1f we observe that the sparsity in the spatial domain among
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Figure 5: Comparative results concerning the total relative error of the solution mean ε(µ), standard deviation ε(σ) and the
mean squared predictive error mspe. Approaches under comparison (by acronym): The mixed shrinkage (MSP), Bayesian
elastic net (BEN), Bayesian compressive sensing (BCS) and l1-minimization (l1-min). Evaluation approaches for (MSP, BEN):
Bayesian model average (BMA) and median probability model (MPM). Here, log denotes the natural logarithm.
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different PC coefficients (or random input dimensions) varies. In fact, higher-order PC coefficients appear to

be more sparse than the lower-order ones. Moreover, we observe that higher-order PC coefficients (associated

with random input interactions) tend to be adequately modeled by lower-degree polynomials. Given that

PC coefficients reflect the effect of the associated PC bases (or random input dimensions) on the solution as

functions of the spatial input, we observe that smaller-scale variation with respect to ξ, captured by higher-

order PC bases, changes in a smooth manner over the spatial domain. This indicates that the solution is

relatively smooth regarding x and ξ.

Interval estimation for the solution statistics and the PC coefficients can be performed. For representation

purposes, the estimates and associated 95%-CI for the solution mean, standard deviation, covariance and PC

coefficients are plotted over the spatial input domain in Figs. 3b, 3e, 3h & 3k for [14D] case and Figs. 3c, 3f,

3i & 3l for [40D] case. Figs. 3h, 3i, 3k & 3l refer to MPM evaluation as we have noticed no remarkable visual

difference between MPM and BMA estimates. The plots highlight an advantage of the proposed method

over existing compressive sensing approaches in gPC literature (Yang and Karniadakis, 2012; Doostan and

Owhadi, 2011), which is that the PC coefficients and statistics of the gPC expansion can be recovered over

the whole spatial domain at once, allowing results to be obtained at any spatial input value without the

need to repeat the MC sampling and expansion evaluation each time. Moreover, the uncertainty regarding

the solution statistics and PC coefficients can be quantified through their posteriors or credible intervals as

shown in Figs. 3k & 3l.

The proposed method provides accurate enough results in high-dimensional cases. Meanwhile, the MSP

procedure outperforms the other evaluating algorithms under comparison according to the performance

measures considered as reported in Figs. 5b, 5e & 5h for the [14D] case and Figs. 5c, 5f & 5i for the [40D]

case. MSP appears to present better performance than BEN due to its ability to directly address non-

homogeneous group sparsity for different PC coefficients (or random input dimensions). We observe that

MSP (both BMA and MPM) outperforms l1-min and BCS possibly because different PC coefficients present

different sparsity in the spatial domain (as displayed in Figs 1e & 1f ) and so different penalization shrinkage is

required for each. Moreover, the probabilistic basis selection procedures (MSP, BEN) seem to outperform the

standard compressive sensing (l1-min, BCS) algorithms. Thus, we observe empirically that the probabilistic

basis selection approach provides a preferable mechanism for choosing significant basis functions compared to

those of standard compressive sensing algorithms that mainly shrink all of the coefficients to zero. Although

outperformed by MSP-BMA that accounts for uncertainty about bases significance, MSP-MPM results in

mspe and relative errors that are small in value and close to those of MSP-BMA in spite of the omission of
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basis functions.

The relative errors for the solution mean and standard deviation, in log scale, are reported as functions

of spatial input variable in Figs. 4c & 4d for the [14D] case and Figs. 4e & 4f for the [40D] case. We observe

that MSP tends to present smaller relative errors in the biggest part of the spatial domain when compared

to the other computational algorithms considered. Moreover, we observe that the lines of relative errors of

MSP-MPM are closely above those of MSP-BMA over the whole spatial domain, with respect to the relative

errors over the spatial domain. This indicates that MSP-MPM is a preferable alternative to MSP-BMA, in

the gPC context, if the solution is sparse or the researcher needs to have a sparse representation of it without

sacrificing in accuracy.

We study the performance of the proposed method, in [40D] cases: (i) for an increasing number of MC

samples nξ ∈ (200, 800) but a fixed number of spatial points nx = 11 and (ii) for an increasing number

of spatial points nx ∈ (10, 50) but a fixed number of MC samples nξ = 300 (Fig. 6). We compare the

proposed methodology that involves modeling the PC coefficients as a series of Legendre bases and using

(MSP, BEN, l1-min, BCS) against a 2-stage MC approach that involves evaluating the solution statistics at

each spatial point individually and interpolating them over the spatial domain. Fig. 6a, 6b, 6d & 6e show

that the proposed Bayesian method outperforms the 2-stage MC approach in terms of the total relative errors

of the solution mean and standard deviation. When the gPC expansion is evaluated under the proposed

gPC formulation (7), we observe that the accuracy of the expansion and its statistics improve as nξ and nx

increase with respect to the measures of performance considered (Fig. 6). This behavior is even more striking

in Figs. 6b, 6e, 6c & 6f that show the decrease of ε(σ) and mspe as nξ and nx increase. Given the proposed

gPC formulation (7), Fig 6 shows that MSP produces better results for the evaluation of the expansion and

its statistics than BEN, BCS and l1-min as nξ and nx increase. Possibly, this is due to the MSP procedure’s

ability to consider heterogeneous sparsity in the spatial domain among different PC coefficients which are

included in the estimator. In Figs. 6c & 6f, we observe that MSP outperforms the other algorithms under

comparison in terms of mspe. Moreover, the mspe from MSP decreases quicker than those from the other

algorithms under comparison as nξ and nx increases.

5. Conclusions and future work

For the first time, in the gPC context, we proposed a new fully Bayesian method to efficiently obtain

the spectral representation of a spatial random field, which can conduct spatial-stochastic basis selection

and evaluation of gPC expansions when the number of the available basis functions is significantly larger
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Figure 6: Total relative errors of the solution mean ε(µ), standard deviation ε(σ) and total mean square predictive error mspe,
in the log scale, for an increasing number of MC samples, nξ ∈ (200, 800) and nx = 11, (panels a & b) and increasing number
of spatial points, nξ = 300 and nx ∈ (10, 50) (panels c & d). Approaches under comparison (by acronym): Monte Carlo
(MC), mixed shrinkage (MSP), Bayesian elastic net (BEN), Bayesian compressive sensing (BCS) and l1-minimization (l1-min).
Evaluation approaches for (MSP & BEN): Bayesian model average (BMA) and median probability model (MPM). Here, log
denotes the natural logarithm.

than the size of the training data-set. Hence, the gPC expansion is suitable for repeated use to obtain

results economically at any new spatial input values without repeating the MC sampling or the algorithm

to evaluate the expansion that existing compressive sensing methods in gPC require. We developed a fully

Bayesian stochastic procedure, called mixed shrinkage prior (MSP) able to perform both basis selection and

coefficient evaluation simultaneously. In general lines, the proposed methodology, we suggested, involves

reformulating the traditional gPC expansion by modeling the PC coefficients as a series of basis functions

and performing stochastic basis selection and evaluation of the coefficients by using our newly developed

Bayesian MSP procedure. The method allows the recovery of possible sparse structures of the solution in

stochastic and spatial domains. Due to its Bayesian nature, it is more informative than traditional l1-min

approaches since it quantifies the uncertainty about significant bases and provides interval estimation via

the associated posterior distributions. In addition, the MSP procedure developed can address heterogeneous

sparsity in the spatial domain for different random input dimensions by compromising between LASSO and
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Ridge regressions suitably.

The good performance of our method was exploited through applications to elliptic SPDEs with high-

dimensional random diffusion coefficients, where the sparsity of the solution in the stochastic domain was

guaranteed. We observed that the proposed method recovered a sparse representation of the solution in both

stochastic and spatial domains adequately. Compared to a 2-stage MC method that performs evaluation of

the solution statistics at several locations and interpolation of them over the spatial domain, the proposed

Bayesian method presented more accurate results. Our empirical comparison showed that the proposed

Bayesian MSP procedure is preferable to other existing algorithms under comparison, with respect to the

measures of performance considered, especially in scenarios where PC coefficients present heterogeneous

sparsity in the spatial domain for different random input dimensions.

Future work can focus on whether it is possible to reduce the number of available basis functions

{θb(·)ψa(·); (a, b) ∈ A × B} for the gPC expansion (7) by applying a truncation rule before performing

the MSP procedure and without increasing the truncation error significantly. In fact, our examples imply

that higher-order PC coefficients may be sparser in the spatial domain and adequately approximated by

lower-degree polynomial series. The proposed method can be possibly extended to consider discontinuity by

using binary tree partitioning (Chipman et al., 1998; Konomi et al., 2014) or capture smaller-scale variations,

unexplained by the gPC part, by modeling the total truncation error term as a Gaussian process (O’Hagan,

1978; Bilionis et al., 2013). We believe that the former can lead to simpler gPC expansions while the latter

can improve the estimates. This is ongoing work and the results will be presented in future publications.
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Appendix

We give a rough sketch of the derivation of Eq. (12)-(19).

A summary of the Bayesian model is:

• The likelihood function is:

L(u|c, σ2) = Nn
(
u|Xᵀc, Inσ2

)
.

• The prior model is :

Pr(γa,b|ρ) =Bernoulli(γa,b|ρ), ∀(a, b);

π(ca,b|γa,b, σ2, ηa, λa) =


N(ca,b|0, σ2/λa) , if γa,b = 1, ηa = 1

DE(ca,b|0, σ/λa) , if γa,b = 1, ηa = 0

δ0(ca,b) , if γa,b = 0

, ∀(a, b);

π(σ2|aσ, bσ) =G(σ2|aσ, bσ);

π(ηa|$) =Bernoulli(ηa|$), ∀a;

π(λa|aλ, bλ) =G(λa|aλ, bλ), ∀a;

π(ρ|aρ, bρ) =Beta(ρ|aρ, bρ);

π($|a$, b$) =Beta($|a$, b$).
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The joint posterior distribution (computed according to the Bayes’ theorem) density is such that

π(γ, c, η, ρ,$, σ2, λ|u,X) ∝Nn
(
u|Xᵀc, Inσ2

)
×
∏
∀(a,b)

Bernoulli(γa,b|ρ)

×
∏
∀(a,b)

(
γa,b

(
ηaN(ca,b|0, σ2/λa) + (1− ηa)DE(ca,b|0, σ/λa)

)
+ (1− γa,b)δ0(ca,b)

)
× G(σ2|aσ, bσ)

×
∏
∀a

Bernoulli(ηa|$)×
∏
∀a

G(λa|aλ, bλ)

× Beta(ρ|aρ, bρ)× Beta($|a$, b$).

Regarding the derivation of Eq. (12)-(19). The full conditional posterior distribution density of π(γa,b, ca,b|u,X, ...)

is such that

π(γa,b, ca,b|u,X, ...) ∝N
(
u|Xᵀc, Imσ2

)
×
(
γa,b

(
ηaN(ca,b|0, σ2/λa) + (1− ηa)DE(ca,b|0, σ/λa)

)
+ (1− γa,b)δ0(ca,b)

)
× Bernoulli(γa,b|ρ).

We consider π(γa,b, ca,b|u,X, ...) = Pr(γa,b|u,X, ...)×π(ca,b|u,X, γ...). For the marginal Pr(γa,b|u,X, ηa...) =
´
π(γa,b, ca,b|u,X, ηa...)dca,b, it is

Pr(γa,b = 1|u,X, ηa...) =

´
π(γa,b = 1, ca,b|u,X, ηa...)dca,b´

π(γa,b = 1, ca,b|u,X, ηa...)dca,b +
´
π(γa,b = 0, ca,b|u,X, ηa...)dca,b

;

=

[
1 +

´
π(γa,b = 0, ca,b|u,X, ηa...)dca,b´
π(γa,b = 1, ca,b|u,X, ηa...)dca,b

]−1

.

Note that P
(γ)
a,b = Pr(γa,b = 1|u,X, ηa...). We distinguish cases for ηa ∈ {0, 1}, and find

´
π(γa,b=0,ca,b|u,X,ηa...)dca,b´
π(γa,b=1,ca,b|u,X,ηa...)dca,b

=
[
1 + 2 1−ρ

ρ
σ
λa
/

(
Φ(−µ−a,b/sa,b)
N(0|µ−a,b,s

2
a,b)

+
Φ(µ+

a,b/sa,b)

N(0|µ+
a,b,s

2
a,b)

)]−1

, ηa = 0[
1 + 1−ρ

ρ

√
2πσ2

λa
N(0|µ∗a,b, s

2,∗
a,b)
]−1

, ηa = 1

.

For π(ca,b|u,X, γ...), we distinguish cases for ηa ∈ {0, 1}, and γa,b ∈ {0, 1}

π(ca,b|u,X, γ...) ∝


N
(
u|Xᵀc, Imσ2

)
× DE(ca,b|0, σ/λa) , ηa = 0,&γa,b = 1

N
(
u|Xᵀc, Imσ2

)
× N(ca,b|0, σ2/λa) , ηa = 1,&γa,b = 1

δ0(ca,b) , γa,b = 0

,
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and find

π(ca,b|u,X, γ...) ∝


(1− wa,b)N−(ca,b|µ−a,b, s2

a,b) + wa,bN
+(ca,b|µ+

a,b, s
2
a,b) , ηa = 0,&γa,b = 1

N(ca,b|µ∗a,b, s
2,∗
a,b) , ηa = 1,&γa,b = 1

δ0(ca,b) , γa,b = 0

,

where the calculations for (13), (14), (15), (16), (17), and (12) are straightforward, and the same as those of

the standard Bayesian Ridge and LASSO regressions using slap-and-spike priors (Gilks et al., 1996; Hans,

2010). This is because the case (ηa = 1,&γa,b = 1) leads to the standard Bayesian Ridge regression using

slap-and-spike priors, while (ηa = 0,&γa,b = 1) leads to the standard LASSO regressions using slap-and-spike

priors.
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