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Abstract
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procedures can be thought of as being exact approximations of idealized RJ algorithms which
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1 Introduction

It will soon be 20 years since reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms

have been proposed by Green (1995). They have significantly extended the scope of Markov chain

Monte Carlo simulation methods, offering the promise to be able to routinely tackle transdimen-

sional sampling problems, as encountered in Bayesian model selection problems for example, in a

principled and flexible fashion. Their practical efficient implementation, however, still remains a

challenge. A particular difficulty encountered in practice is in the choice of the dimension matching

variables (both their nature and their distribution) and the reversible transformations which allow

one to define the one-to-one mappings underpinning the design of these algorithms. Indeed, even

seemingly sensible choices can lead to algorithms with very poor performance. The focus of this

paper is the development and performance evaluation of a method, annealed importance sampling

RJ-MCMC (aisRJ), which addresses this problem by mitigating the sensitivity of RJ-MCMC al-

gorithms to the aforementioned poor design. As we shall see the algorithm can be understood as

being an “exact approximation” (Andrieu et al., 2010; Andrieu and Roberts, 2009) of an idealized

MCMC algorithm that would sample from the model probabilities directly in a model selection set-

up. Such an idealized algorithm may have good theoretical convergence properties, but typically

cannot be implemented, and our algorithms can approximate the performance of such idealized

algorithms to an arbitrary degree while not introducing any bias for any degree of approximation.

Our approach combines the dimension matching ideas of RJ-MCMC with annealed importance

sampling (Jarzynski, 1997b,a; Neal, 2001) and its Markov chain Monte Carlo implementation

(Neal, 2004, 1996). We illustrate the performance of the algorithm with numerical simulations

which indicate that, although the approach may at first appear computationally involved, it is in

fact competitive.

The paper is organized as follows. In Section 2 we first introduce the notation required for

the dimension matching underpinning the design of RJ-MCMC and our extension, and briefly

discuss some difficulties involved in the efficient implementation of RJ-MCMC. In Section 3 we

then move on to the idea of introducing intermediate (artificial) models between existing models

and the subsequent idea of using importance sampling with non-homogeneous MCMC algorithms

in a transdimensional set-up. This effectively extends AIS to the transdimensional set-up via ideas

borrowed from the design of RJ-MCMC. This allows us in Section 4 to develop a practical MCMC
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implementation of AIS as suggested in (Neal, 2004), leading to AIS-RJMCMC. We conclude with

a numerical investigation in Section 5.

2 Difficulties with RJ-MCMC algorithms

We consider a situation where one is interested in sampling from a probability distribution

π(n, dθn) defined on a union of spaces ∪k∈K{k} × Θk where the spaces Θk may be of a differ-

ent nature (e.g. dimension) and K ⊂ N. We will throughout the paper refer to (k, θk) as model

k by reference to the Bayesian model selection problem, but it should be clear that the work de-

scribed below is not restricted to this framework. In order to simplify presentation we will assume

hereafter that for all k ∈ K, Θk ⊂ R`k for some `k ∈ N and that for any k ∈ K the conditional

distribution π(dθk|k) has a density with respect to the Lebesgue measure on R`k . Assume for

now that our primary interest is in computing quantities dependent on the model probability

distribution π(n) only. If this probability distribution was available up to an unknown normal-

izing constant, one could use the standard Metropolis-Hastings (MH) algorithm to sample from

it. Given a family of proposal distributions {q(k, ·), k ∈ K} the MH transition probability can be

algorithmically described as follows

Algorithm 1 MH transition probability between model

STEP 1 Given k, sample k′|k ∼ q(k, ·).

STEP 2 Accept the transition to k′ with probability min{1, rk→k′} where

rk→k′ :=
π(k′)q(k′, k)

π(k)q(k, k′)
.

This algorithm is guaranteed to converge under mild assumptions, but cannot however be im-

plemented in most scenarios of interest for which π(n) is intractable. We will therefore refer to this

algorithm as the “idealized algorithm” throughout the paper. Extending the standard Metropolis-

Hastings algorithm to sample from π(n, dθn) poses measure theoretic problems pertaining to the

fact that π(dθk|k) and π(dθk′ |k′) may be defined on spaces of different nature and/or dimension.

The reversible jump methodology addresses these issues with the idea of dimension matching and
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the introduction of reversible transformations, which allow one to embed the transdimensional

problem of sampling from π(n, dθn) into a family of non-transdimensional ones, while leaving the

features of interest of the initial problem unchanged.

The first important ingredient of the RJMCMC methodology consists for pairs (k, k′) ∈ K2

of extending the spaces Θk and Θk′ to the augmented spaces Θk × Uk→k′ and Θk′ × Uk′→k with

associated variables uk→k′ ∈ Uk→k′ ⊂ R`k→k′ and uk′→k ∈ Uk′→k ⊂ R`k′→k for `k, `k′ ∈ N such

that `k′ + `k′→k = `k + `k→k′ . This embedding of the initial spaces allows one to define one-

to-one mappings between the completed spaces. We denote these one-to-one mappings Gk→k′ :

Θk × Uk→k′ → Θk′ × Uk′→k, define

(θk′(θk, uk→k′), uk′→k(θk, uk→k′)) := Gk→k′ (θk, uk→k′) ,

and we will denote Gk′→k = G−1k→k′ its inverse. The initial spaces being adequately completed one

extends the initial probability distributions π(k, dθk) and π(k′, dθ′k′) to π(k, dθk)ϕk→k′(duk→k′) and

π(k′, dθ′k′)ϕk′→k(duk′→k) for some probability distributions ϕk→k′(duk→k′) and ϕk′→k(duk′→k) with

densities ϕk→k′(uk→k′) and ϕk′→k(uk′→k) with respect to the Lebesgue measure on each space. We

will always assume that ϕk→k′(uk→k′) and ϕk′→k(uk′→k) can be evaluated and in particular that

their normalizing constants are known. The two augmented spaces along with their associated

variables are now explicitly associated through the functions Gk→k′ and Gk′→k. We will denote

Jk→k′(θk, uk→k′) :=

∣∣∣∣det

(
∂Gk→k′(θk, uk→k′)

∂(θk, uk→k′)

)∣∣∣∣ ,
the Jacobian of the transformation Gk→k′ . A standard RJ-MCMC update is described in (ALG2).

Note that within dimension updates (i.e. k′ = k) may differ slightly - we do not develop this here

since this is standard material.

Algorithm 2 RJ-MCMC standard update

STEP 1 Given (k, θk), sample k′|k ∼ q(k, ·) and uk→k′ ∼ ϕk→k′(·).

STEP 2 Accept the transition to (k′, θk′(θk, uk→k′)) with probability min{1, rk→k′} where

rk→k′ :=
π(k′, θk′(θk, uk→k′))ϕk′→k(uk′→k(θk, uk→k′))q(k

′, k)

π(k, θk)ϕk→k′(uk→k′)q(k, k′)
Jk→k′(θk, uk→k′) .
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Although theoretically valid under mild assumptions, that is the algorithm is ensured to sample

asymptotically from the joint distribution π(n, θn), the actual efficient implementation of such

updates is known to be challenging : in particular good choices of ϕk→k′(uk→k′), ϕk′→k(uk′→k)

and Gk→k′ may not be straightforward. For example, a value of the parameter θk with large

density under model k may be mapped into a parameter θk′ of low density under model k′ with a

large probability, leading to high rejections rates even in situations where the model probabilities

π(k) and π(k′) are of comparable magnitude, thus resulting in very inefficient algorithms. Some

suggestions have been made in (Brooks et al., 2003) about how some of these issues may be

addressed.

Another approach has been suggested in (Al-Awadhi et al., 2004), and consists of modifying the

RJ-MCMC in order to “improve” θk′(θk, uk→k′) before taking a decision about whether to accept

the model jump or not. More precisely the jump to θk′(θk, uk→k′) is followed by the exploration

of π(dθk′ |k′) with T iterations of a fixed dimension and time-homogeneous MCMC algorithm

targeting this distribution (or a tempered version of it) before taking any decision as to whether

one should accept a transdimensional transition or not. This is clearly a sensible intuitive idea

since we notice that the acceptance ratio of the idealized algorithm (ALG1) can, for example, be

recovered from the RJ-MCMC standard update by letting uk→k′ coincide with θk′ , Gk→k′ be the

identity and ϕk→k′ coincide with π(θk′ |k′). However, the practical implementation of the algorithm

imposes that the acceptance probability of the transdimensional jumps does not improve as T

increases, which is clearly not a satisfactory feature.

The approach we develop in this paper shares this idea of improving the sample quality before

deciding on a transdimensional transition, but differs in many respects, and most significantly in

the fact that our procedure is such that it converges to the idealized algorithm (ALG1) above as

T → ∞. This turns out to be an advantage since the idealized algorithm may have attractive

convergence properties. For example, it can be shown that the acceptance probability of the

marginal algorithm at stationarity is always larger than that of any RJ-MCMC algorithm, i.e.

more precisely for any k, k′ ∈ K,
ˆ
π(dθk|k)ϕk→k′(duk→k′)q(k, k

′) min{1, rk→k′} ≤ q(k, k′) min

{
1,
π(k′)q(k′, k)

π(k)q(k, k′)

}
,

suggesting a faster visit of all the models. The result is straightforward to prove by application of

Jensen’s inequality. Related results in (Andrieu and Vihola, 2012) show in fact that the idealized
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algorithm is always superior to an exact approximation in terms of asymptotic variance. Note

that as pointed out earlier, it is in principle possible to reach this upper bound in the RJ-MCMC

framework, provided that sampling from π(θk′ |k′) and π(θk|k) is possible.

Crucially, our procedure relies on the idea of introducing a sequence of smoothly evolving

intermediate artificial probabilistic models on the augmented space Θk′ × Uk′→k which thanks

to the RJ-MCMC embedding will ensure a smooth transition between π(dθk|k) and π(dθk′|k′) as

opposed to a standard RJ-MCMC transition. The smoothness of this transition will manifest itself

by the fact that as T increases the algorithm converges to the idealized algorithm (ALG1). This

approach is related to annealed importance sampling which we now describe in a transdimensional

scenario before moving to the description of aisRJ algorithms.

3 Annealed Importance sampling in a transdimensional setup

In this section we describe how the ideas of Jarzynski (1997b,a), later rediscovered in (Neal,

2001) who coined the term Annealed Importance Sampling (AIS), can be simply extended to

the transdimensional scenario using the completion variables and mappings introduced by Green

(1995) in the context of RJ-MCMC algorithms (see Section 2). This leads us to the introduction

of the notion of intermediate models.

3.1 Importance sampling with Markov chains

For two models k and k′ we are going to introduce two families of densities defined on the completed

space Θk′ × Uk′→k, the family of forward annealing densities {ρt(θk′ , uk′→k; k → k′), t = 0, ..., T}

and the family of backward annealing densities {ρt(θk′ , uk′→k; k′ → k), t = 0, ..., T} where the

parameter t will be referred as time and T ∈ N . As we shall see the role of these densities is

going to be to interpolate the densities π(θk|k)ϕk→k′(uk→k′) and π(θ′k′ |k′)ϕk′→k(uk′→k) in a smooth

manner and fight poor choices of completion variables and mappings in standard reversible jumps.

We will impose the following endpoint constraints (with Jk′→k = Jk′→k(θk′ , uk′→k))

ρ0(θk′ , uk′→k; k → k′) ∝π(k, θk(θk′ , uk′→k))ϕk→k′(uk→k′(θk′ , uk′→k))Jk′→k ;

ρT (θk′ , uk′→k; k → k′) ∝π(k′, θk′)ϕk′→k(uk′→k) ,
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and similarly

ρ0(θk′ , uk′→k; k
′ → k) ∝π(k′, θk′)ϕk′→k(uk′→k) ;

ρT (θk′ , uk′→k; k
′ → k) ∝π(k, θk(θk′ , uk′→k))ϕk→k′(uk→k′(θk′ , uk′→k))Jk′→k ,

where Jk′→k(θk′ , uk′→k) is the Jacobian of the transformationGk′→k expressed in terms of (θk′ , uk′→k).

The forward family {ρt(·; k → k′), t = 1, ..., T − 1} can be thought of as a path in an adequate

space of probability distributions between π(·|k)ϕk→k′(·) to π(·|k′)ϕk′→k(·), while the backward

distribution family {ρt(·; k′ → k), t = 1, ..., T − 1} provides a reverse path which does not have

to coincide with the forward path. It is worth pointing out that as suggested by the above, the

forward and backward annealing densities can be equivalently defined either in terms of (θk, uk→k′)

or (θk′ , uk′→k) thanks to the one-to-one nature of Gk→k′ and that we have simply chosen the latter.

Note that we leave intermediate distributions unspecified for t = 1, . . . , T − 1 for now, and that

two specific constructions will be discussed later in Subsection 3.3.

In addition to the densities above we will need a family of forward annealing transition proba-

bilities

{Kt((θk′ , uk′→k), (dθ
′
k′ , du

′
k′→k); k → k′), t = 1, ..., T − 1} ,

and a family of backward annealing transition probabilities

{Lt((θk′ , uk′→k), (dθ′k′ , du′k′→k); k′ → k), t = 1, ..., T − 1} ,

again defined on Θk′ × Uk′→k, which are such that they leave invariant the family of forward an-

nealing distributions {ρt(dθk′ , duk′→k; k → k′), t = 0, ..., T} and the family of backward annealing

distributions {ρt(dθk′ , duk′→k; k′ → k), t = 0, ..., T}, respectively.

In order to alleviate notation, we now set θ̃(t)k′ := (θ
(t)
k′ , u

(t)
k′→k), for all t = 0, ..., T . We

now consider the following finite horizon non-homogeneous Markov chain with path θ̃
(0:T−1)
k′ :=

(θ̃
(0)
k′ , ..., θ̃

(T−1)
k′ ) on the augmented space (Θk′ × Uk′→k)T , with the following joint probability dis-

tribution,

µk→k′(dθ̃
(0:T−1)
k′ ) := ρ0(dθ̃

(0)
k′ ; k → k′)

T−1∏
t=1

Kt(θ̃
(t−1)
k′ , dθ̃

(t)
k′ ; k → k′) , (3.1)

that is θ̃(0)k′ is sampled from ρ0(dθ̃
(0)
k′ ; k → k′) and the θ̃

(t)
k′ ’s are generated sequentially from

Kt(θ̃
(t−1)
k′ , dθ̃

(t)
k′ ; k → k′) for t = 1, ..., T − 1. Similarly, we introduce the backward annealing process
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on the augmented space (Θk′×Uk′→k)T with path θ̃(T−1:0)k′ =
(
θ̃
(T−1)
k′ , ..., θ̃

(0)
k′

)
and joint probability

distribution

µk′→k(dθ̃
(T−1:0)
k′ ) =ρ0(dθ̃

(T−1)
k′ ; k′ → k)

T−1∏
t=1

Lt(θ̃
(T−t)
k′ , dθ̃

(T−t−1)
k′ ; k′ → k) . (3.2)

We now introduce the distribution νk→k′(k, dθ̃
(0:T−1)
k′ ) defined on K × (Θk′ × Uk′→k)T

νk→k′(k, dθ̃
(0:T−1)
k′ ) := π(k)µk→k′(dθ̃

(0:T−1)
k′ ) ,

where π(k) is the marginal probability distribution of model k and similarly the distribution

νk′→k(k
′, dθ̃

(T−1:0)
k′ ) on K × (Θk′ × Uk′→k)T defined as

νk′→k(k
′, dθ̃

(T−1:0)
k′ ) := π(k′)µk′→k(dθ̃

(T−1:0)
k′ ) ,

with π(k′) the marginal probability of model k′. We are now ready to introduce an importance

sampling estimator of π(k′)/π(k) (we assume π(k) > 0) which relies on importance sampling with

Markov chains. Provided that µk′→k is absolutely continuous with respect to µk→k′ the Radon-

Nikodym theorem applied to the measures νk→k′(k, ·) and νk′→k(k′, ·) together with a straightfor-

ward algebraic manipulation lead to the following identity

π(k′)

π(k)
=

ˆ
(Θk′×Uk′→k)

T

dνk′→k (k′, ·)
dνk→k′ (k, ·)

(θ̃
(0:T−1)
k′ )µk→k′(dθ̃

(0:T−1)
k′ ) , (3.3)

which suggests the following unbiased estimator of π(k′)/π(k),

r
(0:T−1)
k→k′ :=

dνk′→k (k′, ·)
dνk→k′ (k, ·)

(θ̃
(0:T−1)
k′ ) ,

for θ̃(0:T−1)k′ sampled from the non-homogeneous Markov chain µk→k′(dθ̃
(0:T−1)
k′ ). To fix ideas, in

the particular scenarios where the forward and backward transition probabilities have a density

with respect to the Lebesgue measure and common support Θk′ × Uk′→k, this estimator can be

rewritten in terms of all the densities involved, leading to the simple expression

r
(0:T−1)
k→k′ =

ρ0

(
θ̃
(T−1)
k′ ; k′ → k

)
ρ0

(
θ̃
(0)
k′ ; k → k′

) ∏T−1
t=1 Lt

(
θ̃
(T−t)
k′ , θ̃

(T−t−1)
k′ ; k′ → k

)
∏T−1

t=1 Kt

(
θ̃
(t−1)
k′ , θ̃

(t)
k′ ; k → k′

) . (3.4)

We discuss later in Subsection 3.2, a set of conditions which lead to the existence of this quantity

and a simple expression.
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This particular scenario does not cover the practically interesting situation where the tran-

sition probabilities are Metropolis-Hastings updates, which explains the earlier abstract presen-

tation. Naturally such estimators can be averaged for iid realizations of the process in order to

define consistent estimators of π(k′)/π(k). An interesting fact, however, is that under realistic

assumptions on the transition probabilities involved it is possible to show that this estimator is

also consistent as T →∞, that is when the number of interpolating densities increases. This will

turn out to have important implications on the properties of the aisRJ algorithm we later describe

in the paper. The pseudo-code of the transdimensional AIS algorithm is presented in (ALG3).

Algorithm 3 Transdimensional AIS algorithm.

STEP 1 Initialization.

Draw θ
(0)
k from the distribution π

(
dθ

(0)
k |k

)
.

STEP 2 AIS.

Dimension matching

Draw u
(0)
k→k′ from the distribution ϕk→k′

(
du

(0)
k→k′

)
and set

(
θ
(0)
k′ , u

(0)
k′→k

)
=

Gk→k′
(
θ
(0)
k , u

(0)
k→k′

)
.

Annealing procedure

Generate
(
θ
(t)
k′ , u

(t)
k′→k

)
∼ Kt

((
θ
(t−1)
k′ , u

(t−1)
k′→k

)
,
(

dθ
(t)
k′ , du

(t)
k′→k

)
; k → k′

)
, for t =

1, ..., T − 1.

Annealing importance weight

Compute the annealing importance weight r(0:T−1)k′→k .

Although attractive, this approach assumes that it is possible to sample exactly from

π (dθk|k)ϕk→k′ (duk→k′), which will however not be possible in most scenarios of interest. A simple

approach to address this problem could consist of running an MCMC with π (dθk|k) as invariant

distribution for a large number of iterations and use the last generated sample to initialize the

AIS procedure above. Another elegant approach suggested in (Neal, 2004) in a different context

consists of embedding the AIS procedure within another MCMC algorithm, effectively targeting

the joint distribution νk→k′(k, dθ̃
(0:T−1)
k′ ) : this is the approach we follow in Section 4. Before
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describing the aisRJ algorithm we first discuss a set of assumptions on the forward and backward

annealing transitions as well as the interpolating densities which ensure the existence of the Radon-

Nikodym derivative above and yields a simple expression for this quantity, valid in the situation

where the forward and backward annealing transitions are Metropolis-Hastings kernels. We also

discuss two systematic ways of constructing the forward and backward annealing distributions.

3.2 The AIS setup with symmetric & reversible MCMC transition prob-

abilities

The two families of annealing distributions and the two families of annealing transition distribu-

tions have been so far discussed in abstract terms, and it may not be clear that such quantities

can be defined, in particular in such a way that they can be used to perform importance sampling

with Markov chains, leading to a practical AIS procedure. In what follows, we describe specific

conditions on the annealing distributions and transition probabilities which lead to the existence

of the desired Radon-Nikodym derivative which turns out to have a convenient simple expression.

The conditions required are as follows:

Symmetry condition:

For all t = 1, ..., T − 1 the pairs of transitions Kt (·, ·; k → k′) and LT−t (·, ·; k′ → k) satisfy

the symmetry condition

Kt

(
θ̃k′ , dθ̃

′
k′ ; k → k′

)
= LT−t

(
θ̃k′ , dθ̃

′
k′ ; k

′ → k
)
, (3.5)

and for all t = 0, ..., T ,

ρt

(
θ̃k′ ; k → k′

)
= ρT−t

(
θ̃k′ ; k

′ → k
)
. (3.6)

Reversibility condition:

For all t = 1, ..., T − 1,

ρt

(
dθ̃k′ ; k → k′

)
Kt

(
θ̃k′ , dθ̃

′
k′ ; k → k′

)
= ρt

(
dθ̃′k′ ; k → k′

)
Kt

(
θ̃′k′ , dθ̃k′ ; k → k′

)
. (3.7)

Support condition:
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We assume that for all t = 0, ..., T − 1,

ρt+1(θ̃k′ ; k → k′) > 0⇒ ρt(θ̃k′ ; k → k′) > 0 . (3.8)

If the annealing transition distributions Kt (·, ·; k → k′) and LT−t (·, ·; k′ → k) are Metropolis-

Hastings transition probabilities sharing the same proposal distributions, then condition (3.5)

is automatically satisfied. Under these assumptions one can show the following crucial result.

Theorem 1. If the symmetry condition (3.5), the reversibility conditions (3.7) and the support

condition (3.8) are satisfied, then the resulting Radon-Nikodym derivative (3.3) exists. Moreover,

µk′→k(dθ̃
(T−1:0)
k′ ) =

T−1∏
t=0

ρt+1

(
θ
(t)
k′ , u

(t)
k′→k; k → k′

)
ρt

(
θ
(t)
k′ , u

(t)
k′→k; k → k′

) µk→k′(dθ̃
(0:T−1)
k′ ) . (3.9)

The proof is given in the appendix (available online).

Remark 2. We stress on the fact that the Conditions (3.5, 3.6 and 3.7 ) are not necessary for AIS or

the resulting aisRJ to be valid algorithms, but that their raison d’être is that they automatically

lead to the existence of the Radon-Nikodym derivative and a simple expression which can be

evaluated in practice. We note also that the expression for the Radon-Nikodym derivative obtained

can in fact be used directly to estimate normalizing constants without the recourse to the notion

of importance sampling with Markov chains, and in particular the introduction of {Lt}. But this

would not be sufficient to justify aisRJ in full generality.

3.3 Choice of the intermediate distributions.

We have until now left the annealing distributions families unspecified although they play a fun-

damental role in bridging the parameters of model k to those of model k′. We now describe two

simple ways of systematically defining such distributions; more general can be found for example

in (Gelman and Meng, 1998). Our aim here is to review two simple choices we have found useful

in practice and briefly discuss some of their possible shortcomings.

3.3.1 Geometric annealing distributions

A first possibility consists of using geometric averages of the densities involved. More precisely with

{γt,T , t = 0, . . . , T} ∈ [0, 1]T (with γ0,T = 0 and γT,T = 1) one can define the geometric annealing
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densities ρt(θk′ , uk′→k; k → k′) and ρt(θk′ , uk′→k; k′ → k) as follows (with Jk′→k = Jk′→k(θk′ , uk′→k)

)

ρt(θk′ , uk′→k; k → k′) ∝{π(k, θk(θk′ , uk′→k))ϕk→k′(uk→k′(θk′ , uk′→k)) Jk′→k}1−γt,T

× {π(k′, θk′)ϕk′→k(uk′→k)}γt,T , (3.10)

and

ρt(θk′ , uk′→k; k
′ → k) ∝{π(k, θk(θk′ , uk′→k))ϕk→k′(uk→k′(θk′ , uk′→k)) Jk′→k}1−γT−t,T

× {π(k′, θk′)ϕk′→k(uk′→k)}γT−t,T , (3.11)

respectively, for t = 0, ..., T . It should be clear that ϕk→k′ and ϕk′→k should be such that they let

uk→k′ or uk′→k evolve freely in order for the regions of high density under π(k′, θk′) to be easily

reached, and we note that it is, in principle, possible to make these densities and the transfor-

mations time dependent. In this situation and under the conditions of Theorem 1 the annealing

weight takes the form (with the convention θ(t)k := θk(θ
(t)
k′ , u

(t)
k′→k) and u(t)k→k′ = uk→k′(θ

(t)
k′ , u

(t)
k′→k)

r
(0:T−1)
k→k′ =

T−1∏
t=0

π
(
k′, θ

(t)
k′

)
π
(
k, θ

(t)
k

) ϕk′→k
(
u
(t)
k′→k

)
ϕk→k′

(
u
(t)
k→k′

)J−1k′→k(θ(t)k′ , u(t)k′→k)
γt+1,T−γt,T

, (3.12)

and one notices that computation of this quantity only requires one to be able to evaluate π(n, θn)

up to a normalizing constant. This choice may not always lead to an efficient AIS estimator.

Indeed the product form of these densities implies that, as is the case for standard RJ-MCMC

algorithms, a poor choice of matching variables and mapping can lead to large variations between

ρ0(θk′ , uk′→k; k → k′) and ρ1(θk′ , uk′→k; k → k′) w 0 for example, resulting in estimators with

a large variance. This may require increasing T significantly or making the grid initially finer.

Another approach, less sensitive to this phenomenon, consists of considering arithmetic means.

3.3.2 Arithmetic annealing distributions

It is important here to consider unormalized densities gk′(θk′ , uk′→k) ∝ π(k′, θk′)ϕk′→k(uk′→k)

and gk(θk′ , uk′→k) ∝ π(k, θk(θk′ , uk′→k))ϕk→k′(uk→k′(θk′ , uk′→k))Jk′→k(θk′ , uk′→k) that we are able

to evaluate in practice. The arithmetic forward annealing distribution densities are defined on

Θk′ × Uk′→k as

12



ρt,T (θk′ , uk′→k; k → k′) =
(1− γt,T )gk(θk′ , uk′→k) + γt,Tgk′(θk′ , uk′→k)

(1− γt,T )π(k) + γt,Tπ(k′)
, (3.13)

for t = 0, ..., T . Since no product is involved, the problem inherent to the geometric mean approach

seems to have disappeared. One should however be cautious. Due to the fact that we are in practice

forced to use unormalized densities, the true nature of (3.13) as a density on Θk′×Uk′→k is obtained

by rewriting

ρt,T (θk′ , uk′→k; k → k′) =

(1− γt,T )π(k)

(1− γt,T )π(k) + γt,Tπ(k′)

(
gk(θk′ , uk′→k)

π(k)

)
+

γt,Tπ(k′)

(1− γt,T )π(k) + γt,Tπ(k′)

(
gk′(θk′ , uk′→k)

π(k′)

)
, (3.14)

which reveals the true nature of the parametrization introduced. In particular, one notices that

ρt,T (θk′ , uk′→k; k → k′) may not evolve smoothly, even when the increments of {γt,T} are apparently

small, in the particular case where π(k) is very different from π(k′) for a given pair (k, k′) ∈ K2.

This may require choosing T large in order to ensure smoothness.

4 AISRJ MCMC

We are now ready to describe the aisRJ algorithm. Throughout this section we assume that

the conditions of Theorem 1 hold. The aisRJ algorithm builds on the AIS estimator introduced

in the previous section and its transition probability is described in (ALG4) (again we use the

convention θ
(0)
k := θk(θ

(0)
k′ , u

(0)
k′→k) and u

(0)
k→k′ = uk→k′(θ

(0)
k′ , u

(0)
k′→k). Note that T may depend on

the pair (k, k′), but we omit here this dependence in order to alleviate notation. The important

feature of the algorithm is that similarly to the algorithm of Al-Awadhi et al. (2004), an MCMC

algorithm is used to improve the standard RJ-MCMC initial “jump” to model k′, but in such a

way that it leads to a particularly interesting feature: under realistic assumptions, the acceptance

probability of (ALG4) converges to that of (ALG1), and can therefore be thought of as being an

approximation of this idealized algorithm. We now show that this algorithm is exact, that is it

leaves π(n, θn) invariant. This is shown by proving reversibility, which is a direct consequence of

the crucial result established in Theorem 1.
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Algorithm 4 aisRJ transition probability
Let (k, θk) be the current state of the Markov chain.

STEP 1 Model proposal move.

Propose model k′, with probability q(k, ·).

STEP 2 AIS sweep.

Dimension matching

Set θ
(0)
k = θk, draw u

(0)
k→k′ ∼ ϕk→k′ (duk→k′) and compute

(
θ
(0)
k′ , u

(0)
k′→k

)
=

Gk→k′
(
θ
(0)
k , u

(0)
k→k′

)
.

Annealing procedure

Generate a path
(
θ
(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ
(T−1)
k′ , u

(T−1)
k′→k

)
, where

(
θ
(t)
k′ , u

(t)
k′→k

)
is drawn from the

Markov transition distribution Kt

((
θ
(t−1)
k′ , u

(t−1)
k′→k

)
,
(

dθ
(t)
k′ du

(t)
k′→k

)
; k → k′

)
, for some

integer T > 1.

Annealing importance weight

Compute the annealing importance weight r(0:T−1)k→k′ ,

r
(0:T−1)
k→k′ =

π
(
k′, θ

(T−1)
k′

)
π
(
k, θ

(0)
k

) ϕk′→k

(
u
(T−1)
k′→k

)
ϕk→k′

(
u
(0)
k→k′

) J−1k′→k(θ(0)k′ , u(0)k′→k)
×

T−1∏
t=1

ρt

(
θ
(t−1)
k′ , u

(t−1)
k′→k; k → k′

)
ρt

(
θ
(t)
k′ , u

(t)
k′→k; k → k′

) . (4.1)

STEP 3 RJ: Accept/reject step

Accept the proposed value
(
k′, θ

(T−1)
k′

)
with acceptance probability:

a
(0:T−1)
k,k′ = min

{
1,
q(k′, k)

q(k, k′)
r
(0:T−1)
k→k′

}
. (4.2)

Theorem 3. Under the conditions of Theorem 1, namely (3.5, 3.6), (3.7) and (3.8), the aisRJ

algorithm in (ALG4) is reversible with respect to π(n, θn).
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The proof is given in the appendix (available online).

The ancestry of this algorithm can be traced back, to the best of our knowledge, to (Neal, 1996)

where the purpose was primarily to remove the random walk behavior of tempering methods and

the computation of normalizing constants a by-product used to justify the asymptotic expected

performance of the algorithm. The use of importance sampling with Markov chains for the com-

putation of normalizing constants was later rediscovered in (Jarzynski, 1997b,a) and (Neal, 2001),

but it is the algorithm in (Neal, 2004) which is the clear direct (and close) ancestor of the present

procedure.

5 Examples

In order to illustrate the properties and performance of the aisRJ approach, we apply the method-

ology to a toy example for purely pedagogical purposes, the Poisson multiple change problem

as investigated in (Green, 1995) and the classical finite Gaussian mixture model determina-

tion/selection problem as addressed in (Richardson and Green, 1997). Other examples have

been considered in (Karagiannis, 2011) and similar conclusions were drawn. The main aim of

our evaluation is to investigate the dependence of the performance of the algorithm on T (the

number of intermediate distributions), after N iterations : this includes the standard RJ-MCMC

(stdRJ) described in (ALG4) for the case T = 1 and the idealized algorithm (idlRJ) described in

(ALG1), which corresponds to the situation T = ∞. In the two examples, we have considered

that π(n) is not available to implement (ALG1), and we have therefore considered the simple

proxy which consists of using estimates π̂(n) of π(n) obtained from long runs of the other meth-

ods. For brevity, and since the two examples heavily rely on the modeling and algorithmic ideas

of (Green, 1995; Richardson and Green, 1997), we mainly focus on the algorithmic differences in

our implementation and the analysis of the performance and refer the reader to those papers for

details.

5.1 A toy example

Similarly to Andrieu and Roberts (2009), we assume that it is of interest to sample from the

transdimensional distribution π(n, θ) with density
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π(n, θ) =
1

4
N (θ = θ1;µ1 = 0,Σ1 = 1)I{1}×R(n, θ)

+
3

4
N2

θ = θ2;µ2 =

0

0

 ,Σ2 =

 1 −0.9

−0.9 1

 I{2}×R2(n, θ), (5.1)

defined on the space ({1}×R)∪ ({2}×R2). The marginal model posterior probability for models

is π(n) = 1
4
I{1}(n) + 3

4
I{2}(n) and the conditional posterior distributions for their within model

parameters are π(θ = θ1|n = 1) = N (θ1;µ1,Σ1), π(θ = θ2|n = 2) = N2 (θ2;µ2,Σ2) respectively.

A simple idlRJ algorithm (ALG1) that targets π(n) could use marginal proposal distribution

q(1, 2) = q(2, 1) = 1 if π(n) was tractable. Here, we pretend that π(n) is intractable and π(n, θ)

is known up to a common normalizing constant. In this case, a standard approach would be to

resort to a RJ-MCMC algorithm that targets the joint distribution π(n, θ). We will consider here

a stdRJ algorithm with marginal proposal distribution q(1, 2) = q(2, 1) = 1, dimension matching

proposal distribution ϕ1→2(u1→2) = N (u1→2; 3, 1) and transformation function the identity, i.e.

θ2 = G1→2(θ1, u1→2) = (θ1, u1→2). Although such a stdRJ converges in theory, the chosen reversible

jump proposals are a poor choice because the proposed values may often lie far from the mode of

π(2, θ2) when a move 1→ 2 attempts.

In order to improve the stdRJ algorithm, we design an aisRJ (ALG4) based on the aforemen-

tioned reversible jump proposals. We consider a family of forward geometric annealing distribu-

tions ρt(dθ2; 1→ 2), defined on the parameter space R2 of model 2, with density

ρt(θ2 = (θ2,1, θ2,2); 1→ 2) ∝
{

1

4
N (θ2,1;µ1,Σ1)×N (θ2,2; 3, 1)× 1

} t−T
T

×
{

3

4
N2 ((θ2,1, θ2,2);µ2,Σ2)

} t
T

,

which in the present special case is a sequence of weighted normal distributions with means

and variance interpolating (µ1, 3) and µ2, and diag(Σ1, 3) and Σ2. We take the forward anneal-

ing transition probabilities {Kt(·, d·), t = 1, ..., T} to be MALA Metropolis-Hastings updates

(Roberts and Rosenthal, 1998) targeting {ρt(d·; 1 → 2), t = 1, ..., T} with scale parameter δAIS.

Namely, the Metropolis-Hastings updates target {ρt(θ2; 1 → 2), t = 1, . . . , T} using proposals

{N2(θ
′
2; θ2 + δAIS

2
∇ log ρt(θ2; 1→ 2), δAIS), t = 1, ..., T}. The backward annealing proposal proba-
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Figure 5.1: Estimated expected acceptance probabilities and integrated autocorrelated times as

functions of the total annealing time T . The involved algorithms in the plots are aisRJ, idlRJ and

stdRJ. The estimates are computed after N = 105 iterations of the aisRJ update. The involved

scaling values δAIS for the annealing proposals of aisRJ are 0.5, 0.6, 0.7, 0.8, 0.9 and 1.

bilities {Lt(·, d·), t = 1, ..., T} are such that Lt = KT−t for t = 1, ..., T . The annealed importance

weight can be found to be

r
(0:T−1)
1→2 =

T−1∏
t=0

3N2

(
(θ

(t)
2,1, θ

(t)
2,2)

T;µ2,Σ2

)
N (θ

(t)
2,1;µ1,Σ1)

× 1

N (θ
(t)
2,2; 3, 1)

× 1


1
T

,

for the move 1→ 2 and r(0:T−1)2→1 = 1/r
(0:T−1)
1→2 for the move 2→ 1.

In our numerical example, we ran aisRJ for N = 105 iterations and total annealing times T

in the range {1, ..., 500}. A reasonable scaling parameter for the annealing proposals is δAIS = 0.8

according to Roberts and Rosenthal (1998). We observe that the expected acceptance probability

increases with T (Fig. 5.1a) while the integrated autocorrelation time of index n decreases when

T increases (Fig. 5.1b). For large enough T , aisRJ is observed to converge to idlRJ in terms of

the expected acceptance probability and integrated autocorrelation time of n. The plots suggest

that the aisRJ implementation of RJ-MCMC improves significantly on the poorly designed stdRJ

caused by the badly chosen RJ proposals ϕ1→2(·) and values of δAIS.
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5.2 Poisson multiple change point models

We consider the analysis of the coal-mining disasters dataset by using the model proposed in

(Green, 1995). Hence, following (Green, 1995) we assume that the n data points {yi, i = 1, ..., n}

(times of occurrence of disasters and we set y0 = 0) arise from a non-homogeneous Poisson process

model on a time interval [0, L] with intensity x(·) modeled as a step function. The number of

steps, k + 1, is unknown, (k ∈ K = {0, ..., kmax}) and we denote the starting points for each step

as {sj,k, j = 1, . . . , k}, with the constraint 0 = s0,k < s1,k < ... < sk+1,k = L. The step function

takes the value hj,k, referred to as the height, for the segment [sj,k, sj+1,k), for j = 0, ..., k. We

denote the random parameter vector of model k as φk = (sj,k, hj,k, j = 0, ..., k). As a result, the

likelihood of the model k is

log (Lk (y1:n|φk)) =
n∑
i=1

log (xk (yi;φk))−
ˆ L

0

xk (t;φk) dt , (5.2)

where xk(t;φk) =
∑k

j=0 hj,kI[sj,k,sj+1,k)(t), for t ∈ [0, L]. We use the priors and hyperparameters

suggested by Green (1995) which involves the introduction of hyperparameters αk, βk for the

prior distribution of the heights within model k (a Gamma distribution), which form part of the

inference. As a result in the present example θk := (φk, αk, βk) and Θk = [0, L]k × (0,+∞)k+1 ×

(0,+∞)× (0,+∞).

We build our aisRJ around the pair of reversible jump updates proposed in (Green, 1995),

which consist of a step split and a steps merge moves. The first move splits one segment into

two neighbouring segments by adding one change point at location ν drawn uniformly at random

in [0, L] and distributing the corresponding level between the two new steps according to the

formulae of Green (1995). The second move combines two neighboring segments drawn uniformly

at random, segments number uk+1→k = j∗k+1 and j∗k+1 + 1, into one segment by removing the

change point at their boundaries and inverting the formulae used in the split move. As a result,

one has θ̃k+1 = (θk+1, j
∗
k+1), defined on extended space and Θ̃k+1 = Θk+1×{0, ..., k}. The proposal

distributions {q(k, ·); k ∈ K} are as in (Green, 1995). We have considered the geometric mean
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type intermediate distributions with γt,T = t/T leading to

ρt

(
θ̃k+1; k → k + 1

)
∝

π (k, θk|y)
1

L

(
hj∗k+1,k+1 + hj∗k+1+1,k+1

)2
hj∗k+1,k


T−t
T

×
(
π (k + 1, θk+1|y)

1

k + 1

) t
T

, (5.3)

for t = 0, ..., T .

It is important to ensure that the required reversibility (3.7) for the annealing transition

probabilities {Kt, t = 0, . . . , T} is satisfied and we consider random permutation blockwise MCMC

sweeps as outlined in (ALG5) (which target ρt(d·; k → k+ 1) for t = 0, ..., T ). The same update is

used for the within model updates, for which T = 1. We naturally made the choice Lt(·, d·; k+1→

k) = KT−t(·, d·; k → k + 1) for t = 0, ..., T .

It is worth pointing out that sampling j∗k+1 is required in order to ensure that aisRJ converges

to idlRJ as T → ∞ and that although we have focus throughout the paper on approximating

idlRJ, one may alternatively target partially marginalized algorithms. In Fig. 5.2 we report the

expected acceptance probabilities of the two updates (conditionally or unconditionally on the type

of move), and observe that as expected they increase as T increases. In particular the standard

RJ-MCMC (T = 1) performs worse, while idlRJ (T =∞) performs best.

In Fig. 5.3 we report the autocorrelation function of k for increasing values of T and observe

again the benefit of increasing T (omitting for now the additional computational overhead). The

corresponding integrated autocorrelation times are reported as a function of T in Fig. 5.4c. The

striking and important feature which we have repeatedly observed in our experiments is the initial

sharp drop in the value of the integrated autocorrelation time as T increases (for T ≤ T0 for

some T0 ∈ N), at a rate clearly faster than the standard Monte Carlo rate of T−1, which is then

followed by a much slower rate of improvement of the order O(T−1). This suggests to us that T0

is related to the difficulty of transiting from models to models, the problem precisely addressed

by the AIS strategy, and that once this difficulty is overcome we recover the standard Monte

Carlo rate of convergence. In Fig. 5.4a and 5.4b, we observe the same phenomenon for the

estimated integrated autocorrelation times for the functions I{1}(k) and I{4}(k) and similarly for

s2I[2,+∞)(k), h2I[2,+∞)(k) and s3I[3,+∞)(k) (renormalized to compute the corresponding conditional

expectations) in Fig. 5.5.
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Figure 5.2: Estimated expected acceptance probabilities for the complete split & merge pair of

moves, the split move only and the merge move only. The involved algorithms in the plot are the

stdRJ (- - -), the aisRJ ( –o– ) and the approximated idlRJ (-·-).
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(c) aisRJ(T = 100), stdRJ, idlRJ
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(d) aisRJ(T = 500), stdRJ, idlRJ
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(e) aisRJ(T = 1000), stdRJ, idlRJ
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Figure 5.3: Autocorrelation function plot of k. The involved algorithms in the plot are the stdRJ

(—), the aisRJ ( –o ) and the approximated idlRJ (—). The number of iterations N is equal to

5 · 105.
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Figure 5.4: Estimated integrated autocorrelation times %(k), %(I{1}(k)) and %(I{4}(k)). The in-

volved algorithms in the plot are the stdRJ (- - -), the aisRJ ( –o– ) and the approximated idlRJ

(-·-). The number of iterations N is equal to 5 ·105 and the total annealing time T = {1, ..., 2000}.
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Figure 5.5: Estimated integrated autocorrelation times %(s2I[2,+∞)(k)), %(s3I[3,+∞)(k)) and

%(h2I[2,+∞)(k)). The involved algorithms in the plot are the stdRJ (- - -) and the aisRJ ( –o–

). The number of iterations N is equal to 5 · 105 and the total annealing time T = {1, ..., 2000}.
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Algorithm 5 Components of the blockwise MCMC sweep.

• Metropolis-Hastings block which updates the j-th height:

Draw h′j,k+1 such that log
(
h′j,k+1/hj,k+1

)
∼U(−0.5, 0.5).

Accept h′j,k+1 with probability min
{

1,
ρt(h′j,k+1|...;k→k+1)

ρt(hj,k+1|...;k→k+1)

}
.

• Metropolis-Hastings block which updates the j-th change point:

Draw s′j,k+1 from U(sj−1,k+1, sj+1,k+1)

Accept s′j,k+1 with probability min
{

1,
ρt(s′j,k+1|...;k→k+1)

ρt(sj,k+1|...;k→k+1)

}
.

• Metropolis-Hastings block which updates βk+1:

Draw β′k+1from Ga
(
ẽt, f̃t

)
where ẽt = e+ (k + 1 + γt)αk and

f̃t = f +
∑

j 6=j∗,j∗+1

hj,k+1 + (1− γt)hj∗,k + γthj∗,k+1 + γthj∗+1,k+1.

• Metropolis-Hastings block which updates αk+1:

Draw α′k+1 as α′k+1 = αk+12
u−0.5, where u ∼U(0, 1).

Accept α′k+1 with probability min
{

1,
ρt(α′k+1|...;k→k+1)

ρt(αk+1|...;k→k+1)

}
.

• Gibbs block to update j∗k+1:

Draw j∗k+1 from %t(j
∗
k+1|...; k → k + 1).

In order to assess the benefits of aisRJ we have numerically estimated the variance of estimators

as a function of N and T for a wide range of values. In Fig. 5.6a and 5.7a, we report the ergodic

averages of r(0:T−1)1→2 and r
(0:T−1)
2→3 , which yield estimators of the ratios π(2)/π(1) and π(3)/π(2)

respectively, for varying values of N and T . We observe the apparent instability of the estimates

for small values of T (which includes the standard RJ-MCMC algorithm) even for large values of

N , the number of RJ-MCMC sweeps, while the estimators seem to become consistently reliable

as T increases, even for moderate values of T and N . In the remaining panes of Fig. 5.6 and 5.7

we display different views of the estimated standard errors for both estimators as a function of

N and T and again observe the dramatic improvement brought by the aisRJ for relatively small
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values of T . Again while, as expected, for fixed values of T the performance improvement as a

function of N follows a rate of N−1/2, the improvement as a function of T for fixed values of N is

initially very sharp and much faster than the rate T−1/2. The superimposed green lines correspond

to the curves C =
√
NT for a range of values of C. We notice that these curves seem to match

closely the isocontours of the standard error. Making the assumption that the computational cost

of the algorithm is O(N×T ) (which is realistic since we expect the cost of evaluating the posterior

distributions to dominate), this suggest that beyond some value T0 the standard error decreases

as 1/
√
N × T and that one is free to increase either N or T to achieve equivalent performance

for a fixed computational budget. However, in this discussion, we have focused on the efficiency

of the exploration of the models but one should also bear in mind that one may be interested in

within model parameters. In such situations one would rather consider large values of N and base

the inference on the samples generated by according to π(n, θn) directly, rather than increase T

and attempt to reweight the intermediate sampled of the AIS procedure.

5.3 Gaussian mixture models

We consider the classical Bayesian univariate finite Gaussian mixture model with unknown number

of components as proposed by Richardson and Green (1997) and analyze the enzyme dataset used

in the paper. In the context of mixtures of normals, the likelihood of n observations y1:n is assumed

to be of the form

Lk
(
y1:n|w1:k,k, µ1:k,k, σ

2
1:k,k

)
=

n∏
i=1

k∑
j=1

wj,kf
(
yi|µj,k, σ2

j,k

)
, (5.4)

where k ∈ K is the number of mixture components, wj,k is the weight of the j-th component,

(such that wj,k ≥ 0 and
∑k

j=1wj,k = 1), and f(yi|µj,k, σ2
j,k) is the normal distribution density

with mean µj,k ∈ R and variance σ2
j,k ∈ (0,+∞), for 1 ≤ j ≤ k. We use the prior model and

the associated hyperparameters suggested in (Richardson and Green, 1997), which introduces

the random hyperparameter βk for the prior of the variances within model k. The within model

parameter to be inferred is therefore θk := (w1:k,k, µ1:k,k, σ
2
1:k,k, βk) and is defined on the space

Θk = [0, 1]k−1 × Rk × (0,+∞)k × (0,+∞). Following Richardson and Green (1997), we enforce

the following identifiability constraints on the means, i.e. µj,k ≤ µj+1,k for j = 1, ..., k− 1, in order

to handle the standard label switching issue.
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Figure 5.6: Ergodic average of r(0:T−1)1→2 and Monte Carlo standard error of AIS estimate π(2)
π(1)

. The

mesh points are T = {1, ..., 1000} and for N = {1, ..., 5 · 105}. The contour plot has 40 levels. The

curved green lines correspond to constant total annealing costs C.
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Figure 5.7: Ergodic average of r(0:T−1)2→3 and Monte Carlo standard error of AIS estimate π(3)
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. The

mesh points are T = {1, ..., 200} and for N = {1, ..., 5 · 105}. The contour plot has 40 levels. The

curved green lines correspond to constant total annealing costs C.
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We have tested our aisRJ in the particularly challenging scenario where the local split/merge

move of Richardson and Green (1997) was the only pair of moves used to communicate between

models, and ignored their birth/death move. This pair of moves consists of either splitting one

component into two neighboring ones or combining two adjacent components into one by using

a moment matching strategy as described in (Richardson and Green, 1997). In order to describe

our algorithm, it is sufficient here to introduce uk+1→k = j∗k+1 (distributed according to a uniform

distribution on {1, . . . , k}), which allows one to choose the components j∗k+1 and j∗k+1 + 1 to be

merged. We therefore have here that θ̃k+1 = (θk+1, j
∗
k+1), which is defined on the extended space

Θ̃k+1 = Θk+1 × {1, ..., k}. The random variable uk→k+1 and the corresponding ϕk→k+1 are as in

(Richardson and Green, 1997). We have tried both the geometric and arithmetic construction for

the sequence of intermediate distributions, and have found the arithmetic approach to outperform

the geometric construction. The results we present below correspond to the latter construction.

As for the earlier example, we ensure the required reversibility conditions for {Kt, t = 1, . . . , T}

and use a random permutation blockwise MCMC sweeps whose components are given in (ALG6).

In Fig. 5.8, we report the estimated expected acceptance probabilities for each move and

their combination as T increases. Again the expected acceptance probabilities increase as the

total annealing time T increases and converge to those of idlRJ. In Fig. 5.9-5.10, we report the

autocorrelation function of k and I{3}(k) as a function of T and again observe the same and now

familiar phenomenon.

In Fig. 5.11 and 5.12, we report the Monte Carlo standard errors of the estimators of π̂(3) and

π̂(4) as a function of N and T and observe again a sharp initial improvement in performance as T

increases. As for the previous example we have superimposed the curves C =
√
N × T for various

values of C and although their matching with the isocontours of the standard error is not as clear

as for the earlier example, we again conclude that given a computational budget, it is preferable

to increase N beyond some value T0.

6 Conclusions

The implementation of efficient reversible jump MCMC (Green, 1995) algorithms, of interest for

example in the context of model selection in a Bayesian framework, is notoriously difficult. In

this paper, we show how it is possible to combine ideas from Jarzynski (1997b,a) and Neal (2004)
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Figure 5.8: Estimated expectations of the acceptance probabilities for the complete split & merge

pair of moves, the split move only and the merge move only. The involved algorithms in the plot

are the stdRJ (- - -), the aisRJ (–o–) and the approximated idlRJ (-·-). The expected acceptance

probabilities for stdRJ are 0.0910 for the Split move, 0.0920 for the Merge move and 0.0916 for

the whole reversible pair of moves. The expected acceptance probabilities for the idlRJ is 0.6796

for a Split move, 0.6806 for a Merge move, and 0.6801 for the whole reversible pair of moves (i.e.

the expectation of the latter two at stationarity).
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(b) aisRJ(T = 50), stdRJ, idlRJ

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Lag

E
st

im
at

ed
 a

ut
oc

or
re

la
tio

ns
 o

f k

 

 

stdRJ
aisRJ(T= 100)
idlRJ

(c) aisRJ(T = 100), stdRJ, idlRJ
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(d) aisRJ(T = 500), stdRJ, idlRJ
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(e) aisRJ(T = 5000), stdRJ, idlRJ
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Figure 5.9: Autocorrelation function plot of k. The involved algorithms in the plot are the stdRJ

(—), the aisRJ ( –o ) and the approximated idlRJ (—). The number of iterations N is equal to

2 · 105.
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(b) aisRJ(T = 50), stdRJ, idlRJ
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(c) aisRJ(T = 100), stdRJ, idlRJ
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(d) aisRJ(T = 500), stdRJ, idlRJ
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(e) aisRJ(T = 5000), stdRJ, idlRJ
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Figure 5.10: Autocorrelation function plot of I{3}(k). The involved algorithms in the plot are the

stdRJ (—), the aisRJ ( –o ) and the approximated idlRJ (—). The number of iterations N is

equal to 2 · 105.
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(a) Mesh plot
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(b) Contour plot (zoom in)

Figure 5.11: Monte Carlo standard error of π̂(3) as a function of the total annealing time T and

number of iterations N . The mesh points are T = {1, ..., 10000} and for N = {1, ..., 105}. The

contour plot has 40 levels. The curved green lines correspond to constant total annealing costs C.
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Figure 5.12: Monte Carlo standard error of π̂(4) as a function of the total annealing time T and

number of iterations N . The mesh points are T = {1, ..., 10000} and for N = {1, ..., 105}. The

contour plot has 40 levels. The curved green lines correspond to constant total annealing costs C.

32



Algorithm 6 Components of the blockwise MCMC update.

• Random walk Metropolis in logit scale which updates the weights:

Draw ε′wj,k+1
∼ N

(
0, νwj,k

)
and set w′j,k such that log

(
w′j,k+1

1−
∑k

i=1 w
′
i,k+1

)
= log

(
wj,k+1

1−
∑k−1

i=1 wi,k+1

)
+

ε′wj,k+1
, for all j = 1, ..., k, and w′k+1,k+1 = 1−

∑k
j=1w

′
j,k+1.

Accept w′1:k+1,k+1 with prob. min

{
1,

ρt(w′1:k+1,k+1|...;k→k+1)

ρt(w1:k+1,k+1|...;k→k+1)

k+1∏
j=1

w′j,k+1

wj,k+1

}
.

• Random walk Metropolis which updates the means:

Draw ε′µj,k+1
∼ N

(
0, νµj,k+1

)
and set µj,k+1 such that µ′j,k+1 = µj,k+1 + ε′µj,k+1

, for all j =

1, ..., k + 1.

Accept µ′1:k+1,k+1 with prob. min
{

1,
ρt(µ′1:k+1,k+1|...;k→k+1)

ρt(µ1:k+1,k+1|...;k→k+1)

}
.

• Random walk Metropolis in log scale which updates the variances:

Draw ε′
σ2
j,k+1
∼ N

(
0, νσj,k+1

)
and set σ′2j,k+1 such that log

(
σ
′2
j,k+1

)
= log

(
σ2
j,k+1

)
+ ε′

σ2
j,k+1

, for

all j = 1, ..., k + 1.

Accept σ′21:k+1,k+1 with prob. min

{
1,

ρt(σ
′2
1:k+1,k+1|...;k→k+1)

ρt(σ2
1:k+1,k+1|...;k→k+1)

k+1∏
j=1

σ
′2
j,k+1

σ2
j,k+1

}
.

• Random walk Metropolis in log scale which updates βk+1:

Draw ε′βk+1
∼ N (0, νβ) and set βk+1 such that log (βk+1) = log (βk+1) + ε′βk+1

.

Accept βk+1 with probability min
{

1,
ρt(β′k+1|...;k→k+1)

ρt(βk+1|...;k→k+1)

β′j,k+1

βj,k+1

}
.

• The Gibbs block to update j∗:

Draw j∗ from %t(j
∗
k+1|...; k → k + 1).

in order to facilitate the practical and efficient design of such algorithms. A crucial feature of

the approach is that it allows one to approximate to an arbitrary degree an idealized Metropolis-

Hastings algorithm with potentially very good convergence properties. This is achieved by adding

T artificial bridging models between the models of interest in order to construct efficient transitions

even in situations where a standard RJ-MCMC algorithm would not perform well. This naturally

comes at an additional computational cost per model transition. However empirical evaluation
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on various models suggest that even moderate values of T can lead to dramatic improvements

in the asymptotic error of estimators (at a rate superior to the standard Monte Carlo rate of

T−1/2) over standard RJ-MCMC implementations, making the approach very competitive when

designing good reversible jump MCMC moves is difficult. There is however a trade-off between T

and N the number of “outer loop” updates : our numerical experiments indicate the existence of

an optimal value T0 which is such that increasing T beyond this threshold or N leads to identical

performance. This phenomenon is also mentioned in (Hendrix and Jarzynski, 2001). For practical

purposes it is nevertheless important to be able to choose N as large as possible in order to allow

for the reliable estimation of within model parameters. Given a fixed computational budget this

therefore requires knowledge of T0, which is not available in practice. Future work involves the

theoretical determination of T0 and the design of adaptive MCMC algorithms strategies (Andrieu

and Thoms, 2008) that would allow one to determine such a value automatically.
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SUPPLEMENTAL MATERIALS

Supplemental materials for the article are available online. All the supplemental files are

included in a single archive. (aisRJ.code.tar.gz, GNU zipped tar file)

README file Description of the supplemental materials provided along with the paper.

(README, text file)

Code for Ex. 5.1 Python code used in the article (Ex. 5.1) for the demonstration of the aisRJ

algorithm.

(aisRJ.toy.tar.gz, GNU zipped tar file)

Code for Ex. 5.2 FORTRAN code used in the article (Ex. 5.2) to implement aisRJ algorithm

on the Poisson multiple change point model. The “coal mining disasters” dataset is included.

(aisRJ.CPT.tar.gz, GNU zipped tar file)

Code for Ex. 5.3 FORTRAN code used in the article (Ex. 5.3) to implement aisRJ algorithm

on the Gaussian mixture model example. The “enzyme” dataset is included.

(aisRJ.Nmix.tar.gz, GNU zipped tar file)
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