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making the arguments in this article more accessible.  I look forward to your 
response.  Jenni Case 
 
Reviewer #2: This paper is very clear in this iteration. I have only one remaining 
reservation: the author(s) were asked to provide an example. They have 
responded to this by providing a concrete example (a rather elementary one)in 
the form of Fig 4, 'Poppy's investigation'. This is neither discussed in the text, nor, 
more crucially for this reader, is it discussed in relation to Fig 3, the concept map. 
Perhaps this is because an actual investigation is never going to 'hit all the 
bases' of a concept map which is necessarily more comprehensive. It might have 
been more illuminating to use a teacher's specific pedagogical lesson plan 
teaching a specific feature of 'doing research; say, the importance of 'reliability'. 
This notwithstanding, I think this paper should now be published as is. 
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On p5, I’ve inserted the explanations shown here in red. 
 
Fundamentally the map draws attention to the interplay between the main 
concepts that have to be considered and on which decisions are made, 
regardless of the nature of the variables or the approach taken. The nuanced 
decisions involve trade-offs and contingencies according to the circumstances of 
the situation. This is explained in Author and other (2015) and is exemplified in 
the very technically and conceptually simple context of Figure 4. Decisions are 
made during the investigation ‘looking forward’ to ensure the quality of the data 
and ‘looking back’ on data as they are collected and as the basis for further 
decisions (Gott & Duggan 2003). How this is achieved will differ according to the 
context of the research and the practical circumstances but the decisions made 
will be with respect to this aim. The annotations in Figure 4 point to the nuanced 
application of the ideas in the concept map (Figure 3) as juxtapositions and 
contingencies are considered according to the context. Other annotated ‘worked 
examples’ can be found at Author and others (n.d.). The substantive simplicity of 
Figure 4 is deliberate, as a way of highlighting the thinking that requires the 
understanding represented on the concept map. The same ideas are there in the 
more substantively challenging contexts in HE: the shadowed concepts in Figure 
3 are all substantively informed. (An increase in substantive complexity increases 
the conceptual demand in the investigation. In Figure 4 the context was simplified 
by not requiring thought about ideas from the left of the concept map, about 
variation in the object/thing, since only a single bottle was investigated. The 
conceptual demand also increases in different research contexts where 
understanding of other areas of the map are drawn on to produce valid data: 
such as when the repeatability of the DV is low; where the magnitude of the 
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change in values of the DV are small for changes in the value of the IV; where 
measurement of the DV is less straightforward; and where confounding variables 
cannot be manipulated but require matching (Author & other, accepted)).   
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Abstract  
This article considers what might be taught to meet a widely held curriculum aim of students being able to 

understand research in a discipline. Expertise, which may appear as a ‘chain of practice’, is widely held to 

be underpinned by networks of understanding. Scientific research expertise is considered from this 
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concomitant effects on the validity of the data and the strengths of the claims made. Despite this variation, 

the overarching concepts of validity and reliability and the underpinning and inter-related network of more 

specific ‘concepts of evidence’ are applicable to understanding a wide range of research designs and the 

uncertainties in the resultant data and claims. These constituent ideas, which inter alia have been validated 

as relevant to professional and academic expertise, form an integrated knowledge-base about evidence 

which can be visualised on a concept map. The network of ideas underpinning research expertise across 

scientific disciplines is outlined. Research from explicitly teaching the concepts of evidence is reported and 

the implications for teaching and learning in science-based disciplines in HE are considered.  
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Understanding the validity of data: a knowledge-based network 
underlying research expertise in scientific disciplines 

Introduction 
Curriculum development in HE, despite variations across institutions, is an area where academics still maintain their 

professional autonomy (Louvel 2013), deciding both what to teach and how, so as to meet their aims. This article considers 

what might be taught to meet a widely held curriculum aim of students being able to understand research in a discipline. While 

the focus is on an understanding of research in science the ideas may be pertinent to other disciplines, such as in applied and 

social sciences, where research gives weight to data as evidence.  

Students’ understanding of research is incorporated in notions of ‘graduateness’ (Steur, Jansen & Hofman 2012) and generic 

graduate attributes (Barrie 2012) as well as being of importance in critical thinking (Moore 2011) and for postgraduate 

research (Cumming 2010). The varied research-teaching links (Willison 2013) widely established in HE in many countries and 

extensively reviewed by Malcolm (2014) also attest to the widespread engagement of undergraduates with research which 

requires that they have an understanding of evidence within their discipline. Understanding research is a key feature of the 

characteristic ways of thinking and practicing in a discipline (WTPs; McCune & Hounsel 2005) and of disciplinary expertise, 

both of which are now central notions in curriculum development in HE (Baillie, Bowden & Meyer 2013; Entwistle 2009; 

Kinchin & Cabot 2010; Meyer & Land 2003; 2005) and can, in Hay’s (2011) view, be described as ‘researcher-led’ teaching. 

Kinchin and Cabot (2010:153) argue that ‘The development of university pedagogy needs to consider the nature of expertise 

and how this can be modelled for students in such a way that teaching reflects the values of each academic discipline’. This 

article contributes to this aim with regard to research expertise in scientific disciplines. 

Understanding expertise 
If expertise is to inform curriculum development, then understanding expertise is important. Expertise has been extensively 

researched (Ericsson, Charness, Feltovitch & Hoffman 2006) while Amirault and Branson (2006) have identified particular 

aspects of importance to education. Only a few points can be addressed here. 

Expertise appears intuitive (Kinchin & Cabot 2010), develops through extensive experience (Shopkow 2010) and is considered 

to be hard to articulate since it draws on tacit knowledge (Polanyi 1966; Sternberg 1999). These characteristics would 

seemingly challenge attempts to teach students explicitly to develop expertise. Does this mean that experts’ ‘route to expertise 

is blocked for the student’ (Shopkow 2010:320)? Several authors (for instance, Bradley, Paul & Seeman 2006; Kinchin, Cabot 

& Hay 2008) suggest that tacit knowledge can be elicited. 

WTP research, with its focus on disciplinary expertise and ‘thinking like an expert’, is closely associated with research into 

threshold concepts (TCs; Meyer & Land 2003; 2005) – concepts associated with expertise, which are integrative and 

transformative and may be troublesome to learn. TC research has been influential (see, for instance, Flanagan n.d), focusing 

disciplinary academics’ recent attention on the concepts required for expertise and how they might be made explicit to students. 

Expertise can take many forms. Bradley, Paul and Seeman (2006) focus on the tacit knowledge specifically associated with 

experts’ decision making which underpins action. Articulation of the knowledge-base used in decision making is an important 

means of demystifying the thinking underpinning expert practice, a key aspect of curricula with a focus on deep understanding 

of disciplinary WTPs (Entwistle 2009). A validated and clearly integrated knowledge-base should go some way to helping the 

curriculum developer. 

Kinchin, Cabot and Hay and other colleagues (see reference list), have used concept mapping (based on Novak & Gowin 1984) 

as a means of eliciting experts’ (both teachers and researchers) understandings underpinning their practice; a technique that 

explicitly shows the propositional links between the concepts and that makes clear the integrative nature of expert thinking 

(Davies & Mangan 2007). Kinchin and colleagues have mainly studied in clinical contexts but have argued that their 

fundamental ideas are applicable to non-clinical university disciplines as well (Kinchin & Cabot 2010). 

Their findings about the nature of expertise, from analysis of thousands of concept maps, are represented in Figure 1. Experts’ 

work is often seen to involve relatively quick routes to a solution, which can be represented as ‘chains of practice’, but they 

show that, in experts, such seemingly linear chains are underpinned by a wider and integrated but often intuitive knowledge 

(Patel, Arocha & Kaufman 1999) that can be called on to inform practice, represented by a network of understanding. Kinchin, 

Cabot and Hay (2008) distinguish this underpinning expert knowledge from the application of the knowledge in practice 

(‘expertise’); the latter depending on the former. 

<<INSERT FIG 1 ABOUT HERE>> 

That such networks of ideas, the articulation of understanding – on the right of Figure 1 - are made explicit is important both 

for curriculum developers and for learners (Entwistle 2009; Hay 2007; Kinchin & Cabot 2010; Novak & Cañas 2007; 

Shopkow 2010; Cañas, Novak & Reiska 2015). The ideas can arguably form ‘the ‘know that’ part of the curriculum’ such that 
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students understand the ‘know how’ (Muller & Young 2014:137). Kinchin, Cabot, Kobus and Woolford (2011) have used 

concept maps to inform curriculum development. Since expertise includes a conceptual basis it should make it amenable to 

specification, teaching and learning. 

In summary, research has suggested that despite the apparently tacit nature of much of what constitutes expert practice, it is 

possible to analyse and articulate the ideas important for expert decision making; and that underpinning the observable chains 

of practice - which are more evident in some disciplines than others (Kinchin, Cabot & Hay 2008) - there is an integrated 

network of concepts.  

So now we need to consider specifically how expertise in scientific research might be framed so that we can help students 

develop this understanding.  

Framing research expertise in scientific disciplines  
Researchers in scientific disciplines - those disciplines that ‘allow direct empirical investigation of an important question’ 

(National Research Council 2002: 6); a description that focuses on the means of research rather than specifically what they are 

researching – carry out a multitude of diverse practices as they enquire into phenomena. These practices characterise the WTPs 

of the disciplines. 

However, research practices vary across disciplines and also within them (McCune & Hounsell 2005), and not only because of 

the specific substantive knowledge required. How research is designed and conducted to solve different problems varies 

according to the disciplinary circumstances and conventions (for instance, using tightly controlled lab-based research; or the 

observation of phenomena; in surveys which suggest links between factors; or in Randomised Control Trials [RCTs]) with 

concomitant effects on the validity of the data and the strengths of the claims made. Research may also differ in, inter alia, the 

equipment employed, the manual skills required and the specific techniques selected. This presents a challenge to curriculum 

developers. How can such diversity of research practice be conceptualised to aid teaching and learning?  

The model in Figure 1 will be developed with respect to research expertise in scientific disciplines to aid such 

conceptualisation, using examples from research literature as well as drawing on 20 years of research and teaching that I have 

conducted with colleagues and to whom I am indebted. 

Chains of practice? 
It is easy to get the impression of scientific practice as chains. Research practice in science after all may well draw on 

‘routines’; those standardised techniques and protocols, which act as shortcuts to a solution and minimise ‘thinking’, other than 

in their selection. They have become established to make practice efficient and to ensure quality, whether that is how an 

instrument is deployed, a protocol for a procedure or the ‘rules’ for a specific approach, such as an RCT. These ‘routine 

chains’ and their appropriate selection are clearly important components of expertise - they represent part of the ‘practice’ in a 

discipline’s WTPs. 

However, expert research practice involves much more than just competence of routine chains! But experts’ familiarity with 

the context of their research and their quick thinking as they make necessary modifications to their practice can give the 

superficial appearance of chain-like procedures as they seek solutions to their research problems; the solution being to establish 

a valid pattern in their data that will be ‘good enough’ for the claims to be made. 

That practice appears to consist of chains on the left hand side of Figure 1 is strongly reinforced when formal written accounts 

of research represent research practice as linear. 

It is unsurprising, therefore, that a widespread traditional teaching approach in science disciplines in HE (Kinchin, Cabot & 

Hay 2010) has been to provide students with opportunities to familiarise themselves and enact chains of practice through the 

use of structured pre-specified practical activities, often designed to be illustrative of substantive ideas. Students are directed, 

by means of ‘methods’, written by experts and using disciplinary conventions, through the (more or less) detailed linear stages 

of the practical activity. However, with so many potential chains, the selection of practicals becomes an issue, as do the 

constraints of time. 

Another approach to help students has been to describe commonalities amongst the chains. Willison and O’Regan (2007:399) 

argue that despite the observed variation in chains ‘the fundamental facets of inquiry are, however, identical, with common 

processes being acted out across all research endeavours’. Such an approach underpins descriptions of research practice – in 

effect, generic descriptions of the steps in Figure 1’s chains – which can be couched in terms that Muller and Young (2014) 

describe as ‘know how’1 processes or skills. These are typified by terms like research skills or processes such as hypothesising, 

planning, designing, analysing, interpreting, evaluating etc. and they may be taught in research methods or statistics courses 

(Sotos, Vanhoof, Van den Noortgate & Onghena 2007). However these descriptions of chains may provide a limited basis for 

teaching; the concepts required for the thinking to be able to do these processes are seldom specified and in the absence of such 

                                                 
1 Muller and Young’s (2014) use of the term ‘know how’ implies ‘doing without thinking’ and the potential threat implicit 

within this to the place of expert knowledge. This is in contrast to, for instance, Manley and Garbett’s (2000:355) use of the 

term ‘know how’ which refers to the tacit knowledge involved in an expert’s chain of practice. 
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guidance there is a danger that students revert to ‘copying’ practices they have seen before (Author & 2 others 2010). 

Descriptions of chains without the explicit specification of the conceptual basis to guide the teacher and learner are a poor 

basis for a curriculum specification that aims to develop expertise2 (Kinchin, Cabot & Hay 2008). 

However, research with students into how open-ended science investigations are conducted (where the solution and routes to it 

are unknown to them) suggest that in science the appearance of practice as a chain may be deceptive (Author & 2 others 2010). 

Those with more sophisticated approaches to the research problem – working alone or in a group - employed an iterative rather 

than linear approach, with trials and decisions being made to refine the practice until eventually a valid pattern in the data was 

deemed ‘good enough’ for a claim to be made (Figure 2). Only once the iterative decisions have been made is something more 

akin to a ‘protocol’ established which is usually what is then written up as a ‘method’. 

<<INSERT FIG 2 ABOUT HERE>> 

For expert researchers, many of the solutions to the decisions outlined in Figure 2 could already be familiar to them and others 

may be more or less quickly resolved (Kinchin, Cabot & Hay 2008), possibly giving the appearance of practice as a chain 

(Figure 1). It may well take very detailed observation (such as can be found in Roth 2009; 2013) to reveal that individual 

experts’ chains of practice may be a misleading model of expert practice in scientific research. 

Expertise can develop through extensive practice and with time (Feltovitch, Prietula, & Ericsson 2006; Shopkow 2010) but, for 

the most part, undergraduate students do not have this luxury. The traditional hope that through exposure to many different 

chains, over time students would develop expertise and pick up the tacit network of understanding is not supported by evidence. 

Literature shows (see for instance Taylor & Meyer 2010; Wilson et al. 2010 ) that aspects of scientific research expertise 

indicative of network thinking – such as the ability to design research from scratch; to understand how particular chains of 

practice have developed; to understand how and why to amend research plans; or the ability to evaluate others’ research and 

the quality of the claims made – are poorly developed in students following such traditional HE practice and are also unlikely 

to have been developed during school science (Author & 2 others 2010). 

Nets of ideas 
Figure 1 represents expertise as being underpinned by a network of ideas that can be constructed to form an understanding and 

Figure 2 suggests that decision making is an important element in scientific practice; but what is it that experts in scientific 

research understand so that they can make decisions like this? 

Identification of a conceptual underpinning for research expertise is the premise of recent TC-inspired research in different 

scientific disciplines. In any subject, the specific substantive knowledge is going to be of central importance to any research 

endeavour. In addition, concepts associated with conducting or evaluating research in scientific disciplines have been identified 

– referred to by some (see, for instance Perkins 2006; Mead & Gray 2010; Ross et al. 2010), as the subjects’ epistemes. 

For instance, research in biology has identified ‘hypothesis construction and testing’ as a TC (Taylor et al. 2011). Taylor and 

Meyer (2010:179) explain what is signified by this term: ‘Inherent in this role of hypothesis testing is the broader consideration 

of the conceptualisation of experimental design and the role that variation in this design may play in terms of verifying and 

extending previous findings. The concept of hypothesis testing thus provides a framework for experimentation and 

investigations’. Wilson et al. (2010:100) identified ‘measurement uncertainty’ as a potential TC for understanding in physics - 

which they explained as ‘an understanding of how to identify different sources of uncertainty, quantify their effects, take those 

effects into account in planning experiments, analysing data and making logical inferences from those data, and an 

appreciation of the consequences of uncertainty’. Despite these TCs having different names, the conceptual basis of what is 

being described has a lot of common ground.  

That their TCs transcend disciplinary boundaries has been recognised by the teams researching them (see, for instance, Ross et 

al. 2010; and Wilson et al. 2010). Hall (2010), studying understanding in the interdisciplinary area of climate change, found 

that uncertainty in the data and its weight as evidence was a key component. Other science researchers have identified aspects 

of research expertise to be critical and often problematic for students; for instance Ryan (2014) working in Earth and 

Environmental science recognised the determination of patterns in data and issues resulting from researching complexity and 

uncertainty as TCs. Understanding in some cross-disciplinary aspects of scientific research such as understanding of statistics 

(Gordon & Nicholas 2009) and quantitative numeracy (Frith & Lloyd 2013) are also shown to be dependent on understanding 

how the data has been derived. 

Whether these understandings related to research expertise are TCs per se or not is not the issue here; instead the focus in this 

article is on the network of concepts alluded to but not fully articulated in all these works that enable research expertise to be 

better understood; the net of ideas in Figure 1. 

In the UK, the Royal Society’s motto ‘Nullius in verba which roughly translates as ‘take nobody’s word for it’’ (Royal Society, 

n.d.) emphasises the central importance in science of evidence over assertion, as scientists make claims following 

investigations into the real world. All scientific research is judged on the quality of its data regardless of how that scientific 

                                                 
2 Many school science curricula around the world have been framed by such descriptions of performance and there are 

widespread concerns as to school students’ understanding of scientific practices (Author & other 2015).  
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practice is enacted. Ultimately such understanding is important both for the conduct of an investigation as well as other aspects 

of academic expertise, such as in the review of others’ work. These are the WTPs of scientific disciplines, but with the 

emphasis now on the ‘thinking’ about evidence. 

That the ‘doing’ of science includes, inter alia, an understanding of evidence was recognised by Millar, Lubben, Gott and 

Duggan (1995). So what is this knowledge-base? Author & others (n.d.) offered a tentative specification of the concepts of 

evidence – the ‘thinking behind the doing’ - which constitutes a knowledge-base for such an understanding; and this was 

further exemplified in Gott and Duggan (2003). Research with experts in HE and science-based industries has indicated that an 

understanding of these ideas validly represents the thinking they use in their scientific practice (Gott, Duggan & Johnson 1999; 

Author & other 1999); while Tytler, Duggan and Gott (2001a; 2001b) and Duggan and Gott (2002) have also shown them to 

be important in detailed case studies of the public engagement with science, the importance of which is clearly made by 

Goldacre (2011). 

If the ‘thinking behind the doing’ is a knowledge base of concepts to be understood (in effect, no different to other concepts 

with which we are familiar in ‘substantive’ science) it ought to be possible to represent that understanding with a concept map. 

Author & other (2015) have recently presented the inter-relationships between some of the key constituent ideas required for 

decision making as a concept map (Figure 3) and have shown how evidence is inherently related to the more traditional 

substantive knowledge and theories of science3. This network of inter-connected ideas about the quality of data, originally 

mapped as a conceptual basis for school science curriculum purposes is, I suggest, also a tentative articulation of the net in 

Figure 1 underpinning scientific research expertise.  

<<INSERT FIG 3 ABOUT HERE>> 

Through illustration with a range of scientific practices from different disciplines Author & other (2015) have argued that all 

require inter-related and nuanced decisions using these ideas, regardless of the context of the work or the approach adopted; 

decisions which are essentially all directed towards establishing the validity of data and its subsequent weight as evidence for a 

claim. Readers are referred to the original paper for a full explanation in which contexts ranging from tightly-controlled lab-

based science, field trials, RCTs and ecological surveys are used to illustrate how the understanding of the validity of data, 

represented in Figure 3, informs the decisions made in such approaches. 

The emphasis of our work is on such an understanding. I will expand on this briefly next and consider its relationship with the 

observed chains of practice. The curriculum implications of the map will then be explored. 

A concept map of evidence 
Any specification necessarily requires the use of a language. Different approaches to research have, historically, developed 

specific terminologies and the ‘territorial’ nature of research (Jones & Kinchin 2009) with specialised vocabularies is a 

challenge to the articulation of the concepts of evidence which, we believe, apply across disciplines. Green, Lewis, Loertscher 

and Minderhout (2014) refer to the notion of ‘signification’ (the relationship between a word and its meaning) and suggest that 

work on signification ‘may be especially useful when examining interdisciplinary fields’. In our original specification (Author 

& others n.d.) and in the explanation of the concept map (Author & other 2015) we have illustrated the concepts – the signified 

- with examples from different fields of science to try to reduce any ambiguity associated with the terminology (the signifier). 

Our use of terms is intended to be ‘neutral’, with weak ‘semantic gravity’ (Maton 2009) and does not privilege any one method 

or approach. 

The vocabulary associated with measurement on the right hand side of the map is a case in point. Categoric (qualitative) or 

continuous (quantitative) values all require ‘measurement’ (although often referred to as ‘observation’; see, for instance Gray 

2014). All measurements require an ‘instrument’, a term usually associated with the measurement of continuous variables. For 

categoric variables where the measurement entails the recognition of the defining features of the variable – identifying 

specimens of a species, for instance - the substantively-informed discernment of the observer acts like an instrument. The 

reliability of any measurement depends on its degree of uncertainty; vocabulary familiar to users of conventional instruments 

but taken, in the map, to also include uncertainties in identification and classification of categoric variables.  

Figure 3 indicates (by means of shadow on the box) those concepts that are directly informed by substantive knowledge. The 

map emphasises the intimate integration of substantive knowledge with scientific practice. Neither stands alone, each is only as 

good as the other. The production of data is conceived within, is guided by and uses instruments that depend on existing 

substantive knowledge. The soundness of substantive knowledge depends on the quality of the originating data as evidence. 

They are inextricably bound (which has curriculum implications to which we will return later), yet in this article the focus is on 

the understanding of the quality of data. 

                                                 
3 It is worth noting that understanding scientific practices has not only been the focus of research in HE. Recently other school 

science researchers (summarised in Author & other 2015) have moved beyond describing what scientists do (wherein any 

understanding may be implicit) and now explicitly articulate some of the ideas required for scientific practice; the knowledge-

base required to judge the quality of data and understand evidence. 
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Our map focuses on the ideas involved in carrying out a ‘whole’ scientific investigation4 from initial observation to the 

resultant claim and its position in the broader substantive theory. The map centralises the question of the validity of data since 

the confidence in the validity in any research practice gives it weight as evidence for a claim – it is this that all investigators are 

striving for, regardless of what they are researching or what conventions they are adopting, and is at the forefront of expert 

researchers’ thinking whether they are researching in a lab or the field, doing ‘classical experiments’ or ‘observational study’ 

(Gray 2014). The many different approaches to research and the resultant validity of the data and strength for a claim (Hodson 

& Wong 2014) can be viewed as the consequence of differences in the nature of the two inter-related sides of the map: in the 

variables involved and their measurement (as discussed above) in any investigation. Across scientific disciplines and in 

different experimental contexts the degree to which variables can be isolated and their values manipulated, and the amount of 

variation in a defined variable (all of which need measuring) influence how relationships are sought and the strength of any 

resultant claims. 

Fundamentally the map draws attention to the interplay between the main concepts that have to be considered and on which 

decisions are made, regardless of the nature of the variables or the approach taken. The nuanced decisions involve trade-offs 

and contingencies according to the circumstances of the situation. This is explained in Author and other (2015) and is 

exemplified in the very technically and conceptually simple context of Figure 4. Decisions are made during the investigation 

‘looking forward’ to ensure the quality of the data and ‘looking back’ on data as they are collected and as the basis for further 

decisions (Gott & Duggan 2003). How this is achieved will differ according to the context of the research and the practical 

circumstances but the decisions made will be with respect to this aim. The annotations in Figure 4 point to the nuanced 

application of the ideas in the concept map (Figure 3) as juxtapositions and contingencies are considered according to the 

context. Other annotated ‘worked examples’ can be found at Author and others (n.d.). The substantive simplicity of Figure 4 is 

deliberate, as a way of highlighting the thinking that requires the understanding represented on the concept map. The same 

ideas are there in the more substantively challenging contexts in HE: the shadowed concepts in Figure 3 are all substantively 

informed. (An increase in substantive complexity increases the conceptual demand in the investigation. In Figure 4 the context 

was simplified by not requiring thought about ideas from the left of the concept map, about variation in the object/thing, since 

only a single bottle was investigated. The conceptual demand also increases in different research contexts where understanding 

of other areas of the map are drawn on to produce valid data: such as when the repeatability of the DV is low; where the 

magnitude of the change in values of the DV are small for changes in the value of the IV; where measurement of the DV is less 

straightforward; and where confounding variables cannot be manipulated but require matching (Author & other, accepted)).   

 

<<INSERT FIG 4 ABOUT HERE>> 

 

That expert practice involves an understanding of the quality of data - even if ‘doing’ research may appear to involve 

procedural chains – perhaps becomes more obvious when we consider the understandings experts draw upon when evaluating 

research. In both informal and formal peer review others’ ‘routes to a solution’ are judged. Were the decisions made – during 

every aspect of the research – ‘good enough’ for the claims the authors made? Such evaluation is not based on chains of 

practice of ‘doing’ but requires the ‘thinking behind the doing’ represented by the concept map. 

Chains from the net 
Figure 2’s model of scientific research as involving trialling and iterative decision making suggests that the appearance of 

expert practice as a linear chain (the left of Figure 1) may not always fit with detailed observations. However, both models 

point to expert practice being underpinned by an understanding that enables decisions to be made. Figure 3 attempts to 

articulate this network as an understanding of the quality of data. 

The concept map (Figure 3) represents the conceptual basis of this – the ‘thinking behind the doing’ - not a series of 

procedures, processes or methods. It is not a flow diagram of the sort that is often associated with descriptions of scientific 

practices nor does it represent any particular pattern of reasoning (Cleland 2002). The focus is on the concepts and emergent 

understanding we suggest are required to make decisions. The arrow directions in conjunction with the linking terms are there 

to represent the propositional relationships which give meaning to the concepts and do not imply a procedural or reasoning 

sequence. The map represents a network of linked ideas and it is the ‘joined up thinking’ and mental ‘juggling’ of these linked 

ideas that demonstrates higher-level thinking about research practice which is manifest in the iterative practice of Figure 2 

(even if, as discussed earlier, it may have the superficial appearance of the chain in Figure 1). The map may go some way to 

articulating the understandings common to the different disciplinary TCs discussed earlier.  

In established chain-like practices, whether ‘routines’ or the ‘methods’ provided in traditional lab-manuals, all the decisions 

about the design to establish valid data have already been made. The ‘thinking behind the doing’ went into creating the chain 

so that practice can be standardised and little further thinking is required. For instance, in illustrative practicals to demonstrate 

a substantive concept, in contexts where variables can be manipulated, matters can be contrived to give a very small variation 

in comparison to the effect of changing the independent variable so that only a few (if any) repeated measurements of the 

dependent variable suffices (for example as in Royal Society of Chemistry n.d.; Nuffield Foundation n.d.).In summary, Figure 

                                                 
4 The term investigation includes all types of inquiry. Different practices will place greater emphasis on some areas of the map 

than others, according to the context.  
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3 is a map of the ‘thinking behind the doing’, whatever form the ‘doing’ might take. Its main purpose is in its being a concept 

map and so emphasising that scientific practice is about ideas to be understood and that can be specified – just like substantive 

knowledge – and that its teaching should follow accordingly. This, I propose, goes some way to distinguishing Kinchin, Cabot 

and Hay’s (2008) ‘underpinning expert knowledge’ and it is to the implications for a curriculum that aims to teach this that we 

now turn.  

Implications 
Shopkow (2010:324) reminds us that ‘until the practitioner is clear about the schemas he or she employs, it is difficult to help 

students construct them’. Viewing evidence as having a conceptual knowledge-base to be understood rather than practice 

involving skills or processes to be mastered represents an ontological shift in the characterisation of scientific practice and has 

implications for the curriculum. Muller and Young (2014:136-137), in a paper critical of the potential loss of expert knowledge 

in ‘can do’ university curricular outcomes, capture this: 

The …various kinds of ‘know how’ supplement and depend upon the ‘know that’ or conceptual knowledge. They do 

not replace it … Crucially, the ‘know how’ abilities are dependent on the conceptual knowledge of the domain 

concerned in all but a small number of mechanical skills and techniques. The ‘skills talk’ that most worries us is that 

form of discourse which pays lip service to the importance of knowledge but then goes on to concentrate almost 

entirely on the ‘know how’ requirements of the curriculum. This has the effect of shoehorning the ‘know that’ part of 

the curriculum into a ‘know how’ box, which obscures the curriculum requirements of the conceptual knowledge—its 

requirements for sequence, pace, progression and level of difficulty. 

As an interviewee points out (Shopkow 2010:324):  

‘[Students] don’t have a map. Of how to understand the different parts of the puzzle or the complexity you want them 

to understand and they have this understanding that this should be a straight forward type of story and they don’t have 

a map to navigate themselves around through this sea of information’.  

Kinchin, Cabot and Hay (2010:85) advocate concept maps as a way of granting students ‘epistemological access’ to the 

discipline. I propose that a map like that of Figure 3 would go some way to address this and would also help students better 

understand the connections of the net to the chains of practice which they are familiar with from teaching (Kinchin & Cabot 

2010) and may be relevant to other disciplines in which research gives weight to data as evidence. The map can act as a 

pedagogic and curriculum planning tool for the lecturer as well as being of value in a metalearning activity for students (Meyer, 

Knight, Callaghan & Baldock 2015). 

Since there has been little research from this cognitive perspective, we have little data on how students take to these ideas or 

how a curriculum might best be structured. In our experience, undergraduates prior to teaching have some knowledge of these 

ideas, at least in isolation (Author & 3 others 2009a) but they fail to ‘join them up’ to develop an understanding that can be 

readily applied (Author & 2 others 2010). But if explicitly taught the understanding on the map they are more critical (Author 

& other 2010) and are better able to investigate (Author & 2 others 2010). The ideas and understanding in the map are not 

‘rocket science’ but they are concepts that are missing from traditional science curricula. 

We have found that there is the need for activities aimed at explicitly developing students’ understanding of the quality of data; 

i.e. the ideas in the map contributing to the validity of data. This has involved students carrying out their own investigations, 

enacting Figure 2. We start with simple contexts (similar to those described in Author & other 2015 and exemplified in Author 

and others n.d.) chosen so that they do not make high demands on specialised substantive understanding and where the 

outcome is not part of prescribed disciplinary content, better still if the outcome is genuinely unknown (an approach also 

advocated by, for instance, Sternberg 1999; Baillie, Bowden & Meyer 2013). This allows the focus to be on getting good 

enough data to make a claim and develops an understanding of the interplay between the ideas on the map. 

Students can feel very disconcerted by such work – it feels so different from the linear practice with ‘right answers’ that they 

have become accustomed to (Author & 2 others 2010; Author 2015). Demonstration of an understanding of the interaction 

amongst the ideas in the map is seen when students carry out trials and work iteratively in response to the data – making 

nuanced decisions based on the understanding in the map as they work – which are not features common to usually chain-like 

illustrative practicals. 

Since the focus is on learning ideas and developing understanding, non-practical teaching activities are also appropriate; in our 

experience, explicit teaching of ideas from distinct sections of the map, with ample opportunities for students to discuss the 

effects of potential decisions in relation to real data and the quality of claims (their own or others’ – see, for example, Bennett 

2014) is valuable (Author 2015). 

Once students have developed this basic understanding in different contexts they will, arguably, be in a better position to 

understand the diverse practices and conventions employed across the sciences (Hodson & Wong 2014). Science research is 

intimately bound with disciplinary knowledge and an understanding of this, as well as an understanding of the quality of data, 

are necessary conditions for success (Author & 3 others 2009b). Students, of course, need to understand disciplinary 

conventions associated with research in their discipline but an understanding of the ‘thinking behind the doing’ will, arguably, 

demystify some of the conventions they find problematic (Taylor & Meyer 2010).   
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Conclusions 
Entwistle (2009:88) reminds us that it is important to determine the ‘inner logic of the subject and its pedagogy’ since how 

lecturers ‘understand their subject affects how they explain it to their students’. The broad concern of this article is with the 

network of concepts of evidence that our work shows underpins a deep understanding, vital to expertise, about the quality of 

data in scientific disciplines where research gives weight to data as evidence. Conceptualising evidence as having a 

knowledge-base represents an ontological shift compared with practice described as processes and has implications for the 

curriculum; there are ideas underpinning research expertise that can be specified and taught. 

The map shows scientific research expertise as drawing on both the specialist disciplinary knowledge-base and an 

understanding of the quality of data, and that the concepts of evidence in turn are framed by that substantive knowledge. As 

such, this map can be seen as extending the disciplinary knowledge-base of scientific disciplines. Further research both within 

and across disciplines is needed to better understand how the specification and teaching of these ideas can best enhance 

students’ understanding of research expertise. 
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Figures and title captions  
 
Fig. 1 A concept map of the dual-processing knowledge structures perspective on the nature of expertise (from Kinchin & 

Cabot 2010:161) 

Fig. 2 A flow diagram showing an iterative approach to scientific research (from Gott & Murphy 1987:24)  

Fig. 3 A concept map with the focus question “What is the ‘thinking behind the doing’ for determining the validity of data?” 

(from Author & other, 2015). [Concepts directly informed by substantive knowledge are highlighted with a shadow on the 

box.] 

Fig. 4 Annotated extracts from a school student’s account written to make explicit their ‘thinking behind the doing’ (Author 

and Others 1999:71-74). [The substantive demand in this example is very low, as is the practical context, so that the concepts 

of evidence are the focus of this illustration.] 
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#1. As a school student’s 

account, written to justify exactly 

how they are working, this is not 

a perfect example of executing 

an investigation. Throughout the 

account the student is making 

decisions using understanding 

represented on the concept map 

to obtain valid data. 

#2. The key variables affecting 

the relationship between IV and 

DV have been identified. In this 

simple context their identification 

does not rely on sophisticated 

substantive knowledge. All the 

variable values can be 

manipulated by the investigator.  

#3. Trial runs characterise 

iterative working wherein 
decisions are made to establish 
the quality of the data (including 
the reliability of the DV, see #5). 
The investigator gets a feel for 
the relationship across the full 
range of IV; makes decisions to 
‘operationalise’ the DV; and 
selects the values for the CVs. 
Decisions about one variable 
cannot be made without 
reference to others and 
determining their impact on the 
DV. The investigator avoids 
variation between types of bottle 
(shape and size) by selecting 
only one (and recognises this 
later, see #8). Measurement 
decisions are made to reduce 
uncertainty (but see also #8). 

#4. By selecting consistently 

textured ‘coarse sandpaper’ as 

the value of surface variation is 

reduced.  

Figure Click here to download Figure Figure 4 HE exemplar.pdf 

http://www.editorialmanager.com/high/download.aspx?id=61417&guid=22172ed9-64f2-4b3d-9d35-b4f9c3d69404&scheme=1
http://www.editorialmanager.com/high/download.aspx?id=61417&guid=22172ed9-64f2-4b3d-9d35-b4f9c3d69404&scheme=1


 

 

 

 

 

 

#5. This establishes a pattern 

over the range of the IV in 

relation to the scale of the 

variation in the repeated 

readings (the reliability of the 

data). The investigator judges 5 

repeats to be enough but does 

not explain why.  

#6. The reasoning that the 

variation in the IV in relation to 

changes across different 

values of the DV is behind the 

judgement to dismiss Reading 

2 at 10cm as anomalous. 

#7. Further data are collected 

at smaller intervals of the IV to 

help establish a pattern. This 

couldn’t have been ‘pre-

planned’; it was in response to 

the quality of the data as it was 

collected. 

In more traditional ‘apparatus, 

methods, results’ accounts, 

written up post hoc, the 

iterative working shown here 

would, by convention, have 

been presented as a more 

linear account. 

 

#8. The validity of the data 

depends on the variation in the 

repeated readings and the 

magnitude of the effect of 

changing the IV. Greater 

resolution of the measurements 

of both IV and DV would have 

increased the reliability. 


