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ABSTRACT
We measure the bulk flow of the local Universe using the 6dF Galaxy Survey peculiar velocity
sample (6dFGSv), the largest and most homogeneous peculiar velocity sample to date. 6dFGSv
is a Fundamental Plane sample of ∼104 peculiar velocities covering the whole Southern
hemisphere for galactic latitude |b| > 10◦, out to redshift z = 0.0537. We apply the ‘minimum
variance’ bulk flow weighting method, which allows us to make a robust measurement of the
bulk flow on scales of 50 and 70 h−1 Mpc. We investigate and correct for potential bias due
to the lognormal velocity uncertainties, and verify our method by constructing � cold dark
matter (�CDM) 6dFGSv mock catalogues incorporating the survey selection function. For a
hemisphere of radius 50 h−1 Mpc we find a bulk flow amplitude of U = 248 ± 58 km s−1 in the
direction (l, b) = (318◦ ± 20◦, 40◦ ± 13◦), and for 70 h−1 Mpc we find U = 243 ± 58 km s−1,
in the same direction. Our measurement gives us a constraint on σ 8 of 1.01+1.07

−0.58. Our results
are in agreement with other recent measurements of the direction of the bulk flow, and our
measured amplitude is consistent with a �CDM prediction.

Key words: surveys – galaxies: kinematics and dynamics – galaxies: statistics – cosmology:
observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

The standard model of cosmology, � cold dark matter (�CDM)
is now well supported by a wide variety of observational probes,
yet questions still remain about the nature of dark matter, and
whether the observed cosmic expansion is caused by a cosmological

�E-mail: morag.astro@gmail.com

constant, �, or some other form of dark energy. Galaxy peculiar
velocities are one of the only probes of large-scale structure in the
nearby Universe, and are gaining interest as a promising cosmo-
logical probe that offers new information on these problems at low
redshift. Peculiar velocities are the motions of galaxies caused by
gravitational infall into local matter overdensities. They are usually
measured statistically via redshift-space distortions (Kaiser 1987;
Peacock et al. 2001; Tegmark et al. 2004; Guzzo et al. 2008) but
can also be measured directly. The line-of-sight component of the
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peculiar velocity v of a galaxy at position r is given by

v ≡ v · r̂ = c

(
zobs − zr

1 + zr

)
, (1)

where c is the speed of light, zobs is the observed redshift, measured
spectroscopically and corrected to the cosmic microwave back-
ground (CMB) rest frame, and zr is the redshift corresponding to
the real-space comoving distance r of the galaxy.1 The hat on r̂
denotes the unit vector.

In the linear regime, the velocity field v(r) is directly related to
the density field δ(r), via (Peebles 1980)

v(r) = H0af

4π

∫
d3r ′ δ(r ′)(r ′ − r)

|r ′ − r|3 , (2)

where f ≡ dln D/dln a is the present-day growth rate of cosmic
structure (in terms of the linear growth factor D and cosmic scale
factor a), and δ(r) = [ρ(r) − ρ̄]/ρ̄ with ρ̄ the average density of
the Universe. Peculiar velocity measurements therefore allow us to
trace the total matter distribution, including dark matter, without the
complication of galaxy bias, and over a large range of scales. They
also probe the nature of gravity through the growth rate f.

The dipole of the velocity field or ‘bulk flow’ is particularly inter-
esting since it measures the large-scale streaming motion of matter
in the local Universe, which is sensitive to the large-scale modes
of the matter power spectrum, and the matter density. There has
been a lot of interest in the bulk flow on scales of 50–100 h−1 Mpc,
since some authors have suggested it is larger than expected in
�CDM; however, there has been a history of conflicting results in
the literature. Some early measurements gave indications of appar-
ently large bulk flows (Rubin et al. 1976; Dressler et al. 1987a;
Lynden-Bell et al. 1988), while others found values consistent with
predictions (Hart & Davies 1982; de Vaucouleurs & Peters 1984;
Aaronson et al. 1986) – see Kaiser (1988) and Strauss & Willick
(1995) for a review of early measurements. More recently, an in-
crease in the amount and quality of peculiar velocity data has led to
a surge of new measurements. Again, some of these claimed to find
evidence of an unusually large bulk flow (Kashlinsky et al. 2008;
Watkins, Feldman & Hudson 2009; Feldman, Watkins & Hudson
2010; Abate & Feldman 2012), while most find results consistent
with �CDM (Colin et al. 2011; Dai, Kinney & Stojkovic 2011;
Nusser & Davis 2011; Osborne et al. 2011; Turnbull et al. 2012;
Lavaux, Afshordi & Hudson 2013; Ma & Scott 2013; Carrick et al.
2015; Feix, Nusser & Branchini 2014; Hong et al. 2014; Ma & Pan
2014; Planck Collaboration XIII 2014).

Some reported detections of unusually large bulk flows have
been directly challenged. Kashlinsky et al. (2008) claimed to find a
large dipole in the Wilkinson Microwave Anisotropy Probe (WMAP)
kinetic Sunyaev–Zel’dovich (kSZ) effect, indicating a bulk flow of
600–1000 km s−1 out to z ∼ 0.1, while Keisler (2009) showed
their uncertainties were underestimated, reducing the significance
of their result. Watkins et al. (2009) combined several different
peculiar velocity catalogues, and used a ‘minimum variance’ (MV)
bulk flow estimator to find a bulk flow of 407 km s−1 on a scale
of 50 h−1 Mpc, while Ma & Scott (2013) repeated their analysis
using a hyperparameter method to combine the surveys, along with
a different choice of velocity dispersion parameter, and found a

1 Equation (1) is often approximated in the literature as v = czobs − H0D,
where H0 is the Hubble constant and D is the proper distance to the
galaxy. However, this is only accurate for z � 0.1 (Harrison 1993; Davis &
Lineweaver 2004; Davis & Scrimgeour 2014).

smaller bulk flow consistent with �CDM. Large-scale bulk flows
also appear to contradict measurements of large-scale homogeneity
in the galaxy distribution by Hogg et al. (2005) and Scrimgeour et al.
(2012). Hence, although a large bulk flow remains an intriguing
possibility, it could be attributed to unaccounted for systematic or
statistical errors in existing measurements.

Another aim of measuring the large-scale bulk flow is to put in
context the motion of the Local Group (LG) with respect to the
CMB, i.e. the bulk flow on the scale of a few Mpc. The LG motion
is 627 ± 22 km s−1 towards l = 276◦ ± 3◦, b = 30◦ ± 2◦ (Kogut et al.
1993). In the gravitational instability model of linear theory, this is
expected to be influenced by both nearby and large-scale structures,
and would converge to the CMB dipole when averaging over a
region of sufficiently large radius. However, attempts to reconstruct
the CMB dipole using the density field have been inconsistent.
Studies have suggested that it is necessary to go to scales of at
least that of the Shapley Supercluster at 150 h−1 Mpc to recover the
dipole motion (Kocevski & Ebeling 2006; Muñoz & Loeb 2008;
Lavaux et al. 2010) while Erdoğdu et al. (2006a,b) suggest only
∼30 per cent of the motion is due to structures beyond 50 h−1 Mpc.
Other studies show no convergence up to 200–300 h−1 Mpc (Bilicki
et al. 2011; Nusser, Davis & Branchini 2014).

In this work we aim to shine new light on the local bulk flow,
using peculiar velocity data from the 6-degree Field Galaxy Survey
(6dFGS; Jones et al. 2004; Magoulas et al. 2012). This data set is
the largest, most homogeneously derived peculiar velocity sample
to date, with 8885 Fundamental Plane (FP) distances. We apply the
optimal MV weighting method proposed by Watkins et al. (2009)
and Feldman et al. (2010) to measure the bulk flow.

This paper is structured as follows. In Section 2 we describe the
6dF Galaxy Survey peculiar velocity sample (6dFGSv). In Section 3
we explain how we derive peculiar velocities from the logarithmic
distances, and our method of defining the velocity uncertainty of
each galaxy to avoid bias in the estimated bulk flow. In Section 4 we
describe the maximum likelihood and MV methods that we use to
estimate the bulk flow. In Section 5 we describe our �CDM-based
6dFGSv mock catalogues. We present and discuss our results in
Section 6 and conclude in Section 7.

Throughout this work we assume a flat �CDM cosmology with
parameters from the Planck 2013 data release of �m = 0.3175,
�� = 0.6825, σ 8 = 0.8344, and H0 = 100 h km s−1 Mpc−1 with
h = 0.67. We only use this cosmology when converting between
distance and redshift, and for comparing our bulk flow results with
the �CDM predicted velocity dispersion. Since 6dFGSv is at low
redshift (z ≤ 0.054) the results are only weakly dependent on the
values of the cosmological parameters we assume. The uncertainties
on these parameters are also significantly smaller than the uncer-
tainties on our measurement, assuming a �CDM model, and so
we fix these parameters throughout this work, since varying them
would have a negligible effect.

2 6 dFG S P E C U L I A R V E L O C I T Y S A M P L E

The 6dFGS is a combined redshift and peculiar velocity survey of
almost the whole Southern hemisphere, performed using the Six-
Degree Field (6dF) multifibre spectrograph on the UK Schmidt
Telescope from 2001 May to 2006 January (Jones et al. 2004, 2006,
2009). The survey covers galactic latitudes |b| > 10◦ out to a redshift
of z ∼ 0.15. The redshift survey (6dFGSz) contains 125 071 near-
infrared (NIR) and optically selected spectroscopic galaxy redshifts,
over 17 000 deg2 and with a median redshift of 0.053. Targets were
selected in the JHK bands from the Two Micron All Sky Survey
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Figure 1. Redshift distribution of the 6dFGS peculiar velocity sample
(6dFGSv, solid red histogram) compared to the parent J-band spectroscopic
sample (6dFGSz, black line histogram). The vertical dashed line shows the
redshift cut imposed on the velocity sample.

Extended Source Catalog (2MASS XSC; Jarrett et al. 2000), with
secondary samples in the bJ and rF bands.

The peculiar velocity sample, denoted 6dFGSv (Campbell 2009;
Campbell et al. 2014), is a subset of 8885 bright, early-type galax-
ies for which distances were derived using the FP relation. This
sample was drawn from ∼11 000 galaxies in 6dFGSz with mea-
sured FP data, in the form of velocity dispersions and photometric
scale lengths (Campbell et al. 2014). The sample was selected by
requiring good redshift quality (Q = 3–5), J-band magnitude J <

13.75, redshifts less than 16 500 km s−1 (or z < 0.0537), and veloc-
ity dispersions larger than σ 0 ≥ 112 km s−1, with signal-to-noise
ratio S/N > 5 Å−1.

The redshift distribution of 6dFGSv compared to that of the parent
J-band 6dFGSz sample is shown in Fig. 1. The fitting of the FP and
the selection cuts applied to obtain the FP and peculiar velocity
samples are described in detail in Magoulas et al. (2012, hereafter
M12). The derivation of the FP distances and peculiar velocities,
and correction for Malmquist bias and other selection effects, is
described in Springob et al. (2014, hereafter S14).

3 D E R I V I N G PE C U L I A R V E L O C I T I E S
F O R 6 dFG S v

The output of the FP peculiar velocity derivation for 6dFGSv (from
S14) is a probability distribution for the ‘logarithmic distance ratio’
for each galaxy, η, defined by

η ≡ log10(Dz/Dr ), (3)

where Dz is the comoving distance in the fiducial �CDM cosmology
corresponding to the observed redshift z, while Dr is the comoving
distance corresponding to the angular diameter distance inferred
from the FP.

Instead of obtaining η as a single value with an uncertainty, S14
derive the full posterior probability distributions P(η), in order to
retain all the available information resulting from the selection cuts
on the FP. These probability distributions are close to Gaussian in
log distance, with a small skew due to the different selection effects
and bias corrections, as described in S14.

The optimal MV estimator we wish to use for the bulk flow
measurement, described in the next section, takes as input peculiar
velocities in km s−1. To convert η to peculiar velocity v, we use the

Figure 2. Radial peculiar velocity v from equation (7), as a function of the
mean η value of each galaxy, 〈η〉, for the 6dFGSv sample, colour coded by
redshift distance Dz. The v(η) relation is single valued and monotonic for a
given Dz, and is increasingly non-linear for increasing Dz.

fact that

(1 + z) = (1 + zr )(1 + zp), (4)

where zr is the redshift corresponding to Dr in the assumed cos-
mology, and zp is the ‘peculiar redshift’, zp = v/c, where v is
the line-of-sight component of the galaxy’s peculiar velocity. The
relation between redshift and comoving distance is

D(z) = c

H0

∫ z

0

dz′

E(z′)
, (5)

where

E(z) = H (z)

H0
= [�m(1 + z)3 + ��]1/2 (6)

for which we use the fiducial �CDM parameter values listed in
Section 1.

The peculiar velocity v corresponding to η is then

v(η, z) = c

(
z − zr (η, z)

1 + zr (η, z)

)
, (7)

with zr obtained from η and z using equations (3) and (5). This
relation for v(η, z) is illustrated for the 6dFGSv sample in Fig. 2.

We see that v(η, z) is non-linear at fixed redshift, which poses
a problem for obtaining an unbiased estimate of v. The observable
quantity η has Gaussian uncertainty in log-space, which translates to
lognormal uncertainty on v. This is a standard problem for peculiar
velocity measurements.

We can see this by converting the P(η) distributions to probability
distributions of velocity, P(v), using the relation

P (v) = P (η)
dη

dv
= P (η)

1

Dr ln(10)

dDr

dzr

(1 + zr )2

c(1 + z)
, (8)

where ln is the natural logarithm. A typical velocity probability
distribution P(v) is illustrated in Fig. 3, where we have set 〈η〉 ≡ 0.
The distribution is close to lognormal.

We obtain the peculiar velocity for each galaxy by taking the mean
value of the P(η) distribution, 〈η〉 = ∫ ∞

−∞ ηP (η)dη, and converting
it to velocity using equation (7). This is equivalent to the median
of the P(v) distribution, as can be seen in Fig. 3. This is the least
biased way to determine velocity, correctly giving zero v for zero
η, and it is also the standard method used in the literature.

Since the uncertainty on η is Gaussian, the uncertainty on v

is lognormal, and is proportional to Dz. The uncertainty on v, as
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Figure 3. A typical P(v) distribution for 6dFGSv, for an imagined galaxy
at the mean redshift of 6dFGSv, and having the mean η uncertainty, ση , of
the sample, but with 〈η〉 ≡ 0. The red long-dashed line is the mean of P(v),
the magenta dot–dashed line is the maximum likelihood, the cyan solid line
is the median, and the black short-dashed line is the direct conversion of 〈η〉
to v, which is almost identical to the median. Since 〈η〉 is zero, the peculiar
velocity of the galaxy should be zero, but only the median and the direct
〈η〉 → v have this value.

Figure 4. The correlation between the standard deviation σ SDv
n of P(v), and

redshift distance Dz. The colour gradient shows the corresponding peculiar
velocity. A linear best fit to the points is shown in black.

derived from P(v), is also proportional to v, since the width of P(v)
increases with radial velocity. To derive the velocity uncertainties
as approximate Gaussian uncertainties, σv , which we need for the
MV estimator, we first calculate the standard deviation of each P(v)
distribution,

σ SDv
n =

(∫ ∞

−∞
v2P (v)dv − v̄2

)1/2

, (9)

and plot this against Dz, as shown in Fig. 4. Overall this is a lin-
ear relation, but there is a strong dependence on v, creating large
scatter. By taking the linear best fit we remove this dependence,
essentially taking the uncertainty a galaxy would have if it had zero
peculiar velocity. For our bulk flow estimation, we use the velocity
uncertainty given by this linear best fit:

σn = 0.324 H0Dz. (10)

This approximation removes the dependence of the velocity uncer-
tainty on the measured v. This is an important correction, because

the weights assigned to each galaxy in the bulk flow estimation
are derived depending on the galaxy’s velocity uncertainty. If the
weights were correlated with the velocities themselves, this would
produce a biased bulk flow measurement, made worse if the redshift
distribution of galaxies is not evenly distributed over the sky, as in
6dFGS.

4 BU LK FLOW ESTIMATO R S

The bulk flow is the average peculiar velocity in a given volume
of space, usually taken to be a spherical region centred on us, and
defined by

U(R) = 3

4πR3

∫ R

x=0
v(x)d3x, (11)

where R is the radius of the sphere in which the bulk flow is
measured. In practice, however, we can never perfectly sample
the velocity field. Peculiar velocity samples are typically sparse,
with complicated geometries and large measurement uncertainties.
Additionally, we only observe the line-of-sight component of the
peculiar velocities.

Different bulk flow estimators have been suggested in the litera-
ture to account for this, including the maximum likelihood estimate
(MLE; Dressler et al. 1987b; Kaiser 1988), comparison with the
density field (Bertschinger et al. 1990; Willick & Strauss 1998;
Dekel et al. 1999; Turnbull et al. 2012), reconstruction of the ve-
locity field based on a velocity power spectrum (Nusser & Davis
2011), and the so-called MV weighting method (Watkins et al. 2009;
Feldman et al. 2010).

In this paper we apply the MLE and the MV method to 6dFGSv.
These both evaluate the bulk flow as a weighted sum of the peculiar
velocities. Given a sample of objects with radial peculiar velocities
vn, these methods assign a weight wi,n corresponding to the ith
direction for each galaxy. The bulk flow U = (ux, uy, uz) is then

ui =
∑

n

wi,nvn. (12)

In the following two subsections we give an overview of these two
weighting methods.

A parallel analysis of the 6dFGSv bulk flow is currently being
made by Magoulas et al. (in preparation), who apply a different bulk
flow estimation method. They use forward modelling, performing
a maximum likelihood fit to a bulk flow model transformed into
the observational space of the FP parameters. This approach effec-
tively fits the measured logarithmic distance ratios η = log (Dz/Dr)
without converting to linear velocities, and can fully account for the
(Gaussian) error distribution in the observational space.

4.1 Maximum likelihood estimate

The MLE has traditionally been the most common technique used
to measure the bulk flow. We consider here the MLE using inverse
variance weighting from Kaiser (1988). Given a sample of N objects
at positions rn,i, each having a measured line-of-sight velocity vn

with uncertainty σ n, the MLE weight for the nth galaxy is

wi,n =
∑

j

A−1
ij

r̂n,j

σ 2
n + σ 2∗

, (13)

where

Aij =
∑

n

r̂n,i r̂n,j

σ 2
n + σ 2∗

. (14)
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The parameter σ ∗ is the 1D velocity dispersion, usually assumed to
be ∼300 km s−1; we assume galaxies have random motions drawn
from a Gaussian distribution with this dispersion, in addition to the
bulk flow component. These random motions add to the noise for
any given galaxy.

This solution makes a number of simplifying assumptions:

(i) the observational errors, σ n, are Gaussian;
(ii) linear theory holds, so vn � H0rn;
(iii) we can neglect uncertainty in rn;
(iv) ui is fairly insensitive to small-scale velocities, and that σ ∗,

which will be strongly influenced by non-linear flows, can be fixed
at a given value.

In practice, nearly all of these assumptions will be violated to
some extent. The observational errors on v are not Gaussian, v ∼
20–30 per cent of H0r, and linear theory does not strictly apply, since
σ ∗ ∼ 300 km s−1 is comparable to the expected bulk flow amplitude
on the scales we measure. However, we do not expect these to
have a significant impact on our measurement. Since our analysis
is done in redshift space, the uncertainty on rn is the uncertainty on
the redshift distance, which is indeed negligible. We find that our
result is insensitive to the choice of σ ∗, which we discuss further in
Section 4.4. We leave further analysis of non-Gaussian uncertainties
to future work.

4.2 Minimum variance method

Although the MLE is simple to perform, it has several disadvan-
tages. It will have a complex window function dependent on the
geometry and uncertainties of a particular survey, making it diffi-
cult to compare between surveys and with theory. It is also density-
weighted rather than volume-weighted, as it tends to up-weight
high-density regions where galaxies are more likely to be mea-
sured, and down-weight low-density regions. Finally, because it
down-weights more distant galaxies which have larger uncertain-
ties, the MLE tends to be dominated by the nearest galaxies in
the sample and so minimizes the scale on which the bulk flow is
measured.

The MV method of Watkins et al. (2009, hereafter WFH09)
and Feldman et al. (2010) is an extension of the MLE method,
which constructs a more optimal set of weights that allow a volume-
weighted measurement of the bulk flow to be made with a specified
window function. This is achieved by determining weights wi,n that
minimize the variance between the bulk flow measured by the sam-
ple, and the bulk flow that would be measured by an ‘ideal’ survey,
with the specified window function. In their case, they choose this to
be a perfectly sampled, all-sky Gaussian survey with ‘ideal’ radius
RI.

While the MV method is more optimal than the MLE method, it
still has some disadvantages. It is not necessarily an unbiased esti-
mator, especially since it still assumes the velocity uncertainties are
Gaussian, and it minimizes the variance only on the particular quan-
tity it tries to measure (i.e. the bulk flow of a given window function)
rather than the bulk flow of the full data set. However, it provides a
much more optimal way of comparing the bulk flow in a survey with
a theoretical model and with other surveys. Tests of its robustness
using N-body simulations have shown that it correctly recovers the
underlying bulk flow, and is unbiased by the survey geometry and
non-linear flows (Agarwal, Feldman & Watkins 2012).

The MV weights are calculated from

wi = (G + λP)−1Qi , (15)

where i denotes the three bulk flow components. P is the k = 0 limit
of the angle-averaged window function, Qi incorporates information
about the input ideal window function, λ is a Lagrange multiplier,
and G is the covariance matrix of the individual peculiar velocities,
given by

Gnm = 〈vnvm〉
= δnm(σ 2

n + σ 2
∗ ) + (f (�m, z)H0a)2

2π2

∫
P (k)fmn(k)dk, (16)

where H0 is the Hubble constant, f ∼ �0.55
m (z) is the growth rate

of cosmic structure, and fmn(k) is the angle-averaged window func-
tion,

fmn(k) =
∫

d2k̂

4π
(r̂n · k̂)(r̂m · k̂) × exp[ik k̂ · (rn − rm)]. (17)

The first term in equation (16) is the noise term, while the second
part is the cosmic variance, or ‘geometrical’ term, and incorporates
the power spectrum of a given cosmological model. Equation (17)
can be calculated analytically, as shown in the appendix of Ma,
Gordon & Feldman (2011). Further details of how the weights
are calculated are presented in Appendix A; also see WFH09 and
Feldman et al. (2010).

Following WFH09 we also choose a Gaussian survey as our
ideal survey, using two different ideal radii: (1) RI = 50 h−1 Mpc
for comparison with WFH09; and (2) RI = 70 h−1 Mpc. We choose
the latter since it is close to the ‘MLE depth’ of 6dFGSv, which is
calculated via

dMLE =
∑

rnwn∑
wn

, (18)

where the MLE weights are wn = 1/(σ 2
n + σ 2

∗ ). We find this to be
∼72 h−1 Mpc for 6dFGSv. This is the optimal depth for a bulk flow
measurement in 6dFGSv.

The ideal Gaussian survey will have a radial density profile given
by

ρ(r) ∝ exp(−r2/2R2
I ), (19)

and its radial number distribution is

N (r) ∝ r2 exp(−r2/2R2
I ). (20)

We plot N(r) for our two ideal surveys in Fig. 5, along with the
number distribution of 6dFGSv for comparison. The 6dFGSv sam-
ple has a cut-off at 160 h−1 Mpc corresponding to z = 0.0537, so
we also apply this to our ideal surveys.

The ideal survey used by WFH09 is an all-sky survey, since the
data set they used was all sky; in the case of 6dFGSv, we only have
half the sky. We discuss the effect of partial sky coverage on our
measurement in Section 6.

4.3 Bulk flow uncertainties

The covariance matrix of the bulk flow moments, Rij, can be written
as

Rij = 〈uiuj 〉 =
∑
mn

wimwjnGmn = R
(ε)
ij + R

(v)
ij , (21)

where R
(ε)
ij represents the noise contribution,

R
(ε)
ij =

∑
n

wi,nwj,n(σ 2
n + σ 2

∗ ), (22)
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Figure 5. Radial number distribution N(r) of the Gaussian filters we use for
measuring the 6dFGSv bulk flow. The filters have (i) RI = 50 h−1 Mpc radius
(blue dot–dashed line), (ii) RI = 70 h−1 Mpc radius (red solid line), and (iii)
RI = 70 h−1 Mpc radius with a cut-off at 160 h−1 Mpc, corresponding to the
redshift cut of the data (black dashed). The distribution of the data is shown
by the grey histogram for comparison.

and R
(v)
ij represents the cosmic variance contribution,

R
(v)
ij = (f (�m, z)H0a)2

2π2

∫ ∞

0
dkW2

ij (k)P (k), (23)

where W2
ij (k) is the angle-averaged tensor window function,

W2
ij (k) =

∑
n,m

wi,nwj,mfmn(k). (24)

The errors on the bulk flow moments, σ i, are then σi = √
Rii , and

the error on the bulk flow magnitude is σ 2
U = J RijJ

T, where J is
the Jacobian of U, ∂U/∂ui .

4.4 σ∗ estimation

The 1D velocity dispersion parameter σ ∗, as previously mentioned,
accounts for small-scale random motions. The value of σ ∗ affects
the weights of nearby galaxies most strongly, since they have the
smallest velocity errors, but in the MV method where these are
down-weighted by the ideal window function, σ ∗ will only have a
small effect on the measured bulk flow (Feldman et al. 2010).

In the case of 6dFGSv, small-scale velocities need to be accounted
for in the fitting of the FP, since the fitting is done assuming each
galaxy is at its redshift distance, and so velocities add to the scatter
of the plane. A value of σ ∗ = 300 km s−1 is accounted for in the
fitting of the FP by M12 and S14, and is effectively subtracted from
the uncertainty in the P(η) distributions. This means we need to
‘add back in’ this uncertainty in our bulk flow weights. Johnson
et al. (2014) perform a fit to σ ∗ for the 6dFGSv sample and find it
to peak at zero. However, σ ∗ also acts to regularise the bulk flow
weights, to prevent galaxies with low error dominating the results,
so assuming a zero σ ∗ is not ideal. We find that varying σ ∗ from 0
to 250 km s−1 has little effect on our results, changing the MV bulk
flow on the order of ∼2 per cent. We therefore fix σ ∗ = 250 km s−1

for our analysis.

5 6 dFG S v SE L E C T I O N F U N C T I O N A N D �C D M
M O C K C ATA L O G U E S

In order to test possible systematics in our bulk flow measure-
ment arising from the survey selection function, we apply our bulk
flow analysis to �CDM mock catalogues of 6dFGSv, incorporating
the survey selection function. To create �CDM peculiar velocity
mocks, we need to make use of an N-body simulation which pro-
vides both the positions and velocities of galaxies. In this section
we describe how we determine the selection function of 6dFGSv,
and use this to generate mock catalogues using the GiggleZ N-body
simulation. This selection function also allows for the creation of
random catalogues for clustering analysis.

5.1 6dFGSv survey selection function

The selection function W (x) is a function indicating the expected
number density of 6dFGSv galaxies at a position x, due to the
different selection criteria of the sample. These can be both angu-
lar and redshift dependent. To implement the selection function in
our mocks, we reproduce the selection process described in M12
and S14 to obtain the 6dFGSv sample of 8885 galaxies from the
full 6dFGS redshift sample of 125 000 galaxies. In summary, they
first select galaxies suitable for fitting the FP, by choosing galaxies
with reliable redshifts (with redshift quality Q = 3–5) and red-
shifts less than 16 500 km s−1 (or z < 0.0537), above which a key
spectral feature used to measure velocity dispersion is shifted out
of the wavelength range. They then morphologically select early-
type (E/S0) galaxies, by matching the observed spectra to template
galaxy spectra. This produced a sample of ∼20 000 galaxies.

These ∼20 000 galaxies then had their velocity dispersions
measured using the Fourier cross-correlation technique (Campbell
2009). Of these, galaxies with a signal-to-noise ratio S/N > 5 Å−1,
and velocity dispersions larger than the instrumental resolution limit
(s ≥ 2.05, or σ 0 ≥ 112 km s−1) were selected, to produce a ‘FP
sample’ of 11 287 galaxies. This sample, with both spectroscopic
measurements from 6dFGS and photometric measurements from
2MASS in the J, H, and K bands, was used by M12 for the fitting
of the FP parameters.

Finally, the peculiar velocity sample 6dFGSv was obtained from
the FP sample after several further cuts. A stricter redshift limit of cz
< 16120 (z < 0.0537) was imposed in the CMB frame, along with
further magnitude cuts of J ≤ 13.65, H ≤ 12.85, and K ≤ 12.55,
to maintain high completeness over the sky. Further galaxies were
removed after a visual inspection, and a velocity dispersion χ2 cut,
to obtain the final peculiar velocity sample of 8885 galaxies.

5.2 Fundamental Plane fitting

Here we introduce the FP terminology we will use in making the
mocks – see M12 for further details. The FP relation can be written
in logarithmic units as

r = as + bi + c, (25)

where r ≡ log Re, s ≡ log σ 0, and i ≡ log 〈Ie〉, where Re is the effec-
tive radius in units of h−1 kpc, σ 0 is the central velocity dispersion
in units of km s−1, and 〈Ie〉 is the mean surface brightness, in units
of L� pc−2. The coefficients a and b are the slopes of the plane and
c is the offset of the plane. M12 use logarithms of base 10.

M12 determine the FP parameters for 6dFGSv using a maximum
likelihood fit to a 3D Gaussian model. The FP can be described
either in terms of the observational parameters (r, s, i), or in terms of
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the three unit vectors corresponding to the axes of the 3D Gaussian
describing the galaxy distribution. M12 refer to these as ‘FP-space’
and ‘v-space’, respectively. The model can then be described by
eight parameters: {a, b, r̄, s̄, ī, σ1, σ2, σ3}, where (r̄ , s̄, ī) define the
centre of the 3D Gaussian in FP-space and (σ 1, σ 2, σ 3) are the
dispersion of the Gaussian along each of the three axes in v-space.
The offset of the FP can be calculated as c = r̄ − as̄ − bī.

5.3 Mock sample algorithm

We create mock �CDM realizations of the 6dFGSv data set for the
set of FP parameters {a, b, c, r̄, s̄, ī, σ1, σ2, σ3} derived by M12. We
use the following steps to reproduce the 6dFGSv selection function
and generate the mock catalogue.

(i) For a �CDM mock, start by drawing haloes from an N-body
simulation in a mass range equivalent to the 6dFGS elliptical galax-
ies, i.e. pick haloes that match the bias of 6dFGS (this is effectively
a cut in morphological type).
Angular and redshift cuts

(ii) Define the location of the observer, and calculate RA, Dec.,
true comoving distance Dr, and radial peculiar velocity v for each
galaxy. Also calculate the true and observed redshifts zr, z, using
equation (4).

(iii) Only include haloes within hard angular cuts Dec. < 0◦ and
Galactic latitude |b| > 10◦.

(iv) Impose a redshift cut of cz < 16 120 km s−1.
(v) Normalise by applying a random subsampling to obtain the

number of galaxies in the 6dFGS parent redshift sample.
Magnitude and velocity dispersion cuts

(vi) For each galaxy, draw values for v1, v2, and v3 at random
from a 3D Gaussian with standard deviations σ 1, σ 2, and σ 3 as
listed in table 3 of M12. We use the J-band values as the J band has
the smallest photometric errors.

(vii) Transform these values from the v-space (principal axes)
coordinate system to the {r, s, i}-space (observed parameters) co-
ordinate system using the inverse of equation (6) in M12, with the
specified FP slopes (a and b) and FP mean values (r̄ , s̄, and ī). This
gives the true FP parameters (rt, st, it) for the simulated galaxies.

(viii) Re-order each set of (rt, st, it) parameters in descending
order of luminosity,

log L = l = 2r + i, (26)

and assign them to the haloes in descending order of maximum
circular velocity Vmax,sub.

(ix) Use the comoving distance Dr of each galaxy from the ob-
server to determine the angular radius θ from the physical radius rt,
by calculating the angular diameter distance DA:

DA ≡ rt

θ
= Dr

1 + ztrue
(27)

(this relation is true for �k = 0; see Hogg 1999). Then θ is obtained
from

log θ = log rt − log DA. (28)

(x) Determine the true apparent magnitude mt from the angular
radius θ and the degraded surface brightness i using

mt = 〈μe〉 − 2.5 log[2πθ2], (29)

where 〈μe〉 = M − 2.5i + 21.57, where M = 3.67 for the J band.
The surface brightness i is first degraded by ‘decorrecting’ for K-
correction and surface brightness dimming.

Figure 6. The mean redshift distribution of our 20 GiggleZ mocks (black
histogram), along with the standard deviation (blue dot–dashed histograms),
compared to 6dFGSv (solid grey histogram).

(xi) Obtain the correlated measurement uncertainties in r, s, and i,
(εr, εs, εi), from the magnitude mt, using the matrix in equation (13)
of M12.

(xii) Add these measurement errors to {r, s, i} to obtain the
observed values {ro, so, io} for each galaxy.

(xiii) Only include galaxies with velocity dispersion so >

log (116 km s−1) (cut for instrumental resolution).
(xiv) Determine the observed magnitude mo using the observed

values ro and io.
(xv) Keep the galaxy if the observed magnitude mo is brighter

than the faint limit for the velocity sample (J ≤ 13.65).
(xvi) Use the selection function described in Jones et al. (2006)

to determine the angular completeness of the 6dFGS spectroscopic
follow-up, given the (RA, Dec., mo) values for each galaxy. Sub-
sample the galaxies with this probability.

(xvii) Apply a random subsampling to account for cuts in signal-
to-noise ratio (S/N) and R.

5.4 The mocks

In order to generate �CDM mocks, we apply our mock sam-
ple algorithm to the GiggleZ (Giga-parsec WiggleZ) simula-
tion. GiggleZ (Poole et al. 2014) is a suite of dark matter
N-body simulations run at Swinburne University of Technol-
ogy. It has a WMAP-5 cosmology with (��, �m, �b, h, σ8, n) =
(0.727, 0.273, 0.0456, 0.705, 0.812, 0.960). We use the GiggleZ
main simulation, which contains 21603 dark matter particles in a pe-
riodic box of side 1 h−1Gpc. The particle mass is 7.5 × 109 h−1 M�,
which allows bound systems with masses �1.5 × 1011 h−1 M� to
be resolved.

Halo finding for GiggleZ was performed using SUBFIND (Springel,
Yoshida & White 2001), which utilises a friends-of-friends (FoF)
algorithm to identify coherent overdensities of particles and a sub-
structure analysis to determine bound overdensities within each FoF
halo. We place a galaxy at the centre of each subhalo, and rank-
order them by their maximum circular velocity (Vmax,sub) to obtain
the largest haloes, in order to reproduce the bias of the 6dFGSv
sample.

We have generated 20 independent mocks of 6dFGSv within the
GiggleZ volume. We show the mean and variance of the redshift
distribution of our 20 mocks, compared with 6dFGSv, in Fig. 6.
The mocks appear higher than the data in the highest redshift bins
(0.04 < z < 0.05), although this could possibly be attributed to
cosmic variance. However, the large-scale bulk flow properties of
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Table 1. Bulk flow results for the MV and MLE estimators, assuming peculiar velocity uncertainties σ n = 0.324H0Dz km s−1 for each galaxy. Columns
are the bulk flow magnitudes |U |, the vector components (ux, uy, uz), and angular coordinates. The top panel shows Galactic coordinates, with angles
in Galactic longitude (l) and latitude (b), while the lower panel shows equatorial coordinates, with angles in RA and Dec. The uncertainties quoted
are noise, with the cosmic variance uncertainty in parentheses. The MV methods use an ideal Gaussian window function, with radius RI = 50 or
70 h−1 Mpc, and with a cut-off at 160 h−1 Mpc corresponding to the redshift cut-off of the survey.

Bulk flow |U | ux uy uz l/RA b/Dec.
estimator (km s−1) (km s−1) (km s−1) (km s−1) (◦) (◦)

Galactic coordinates
MV (RI = 50 h−1 Mpc) 248 ± 58(100) 142 ± 66(106) −127 ± 72(114) 159 ± 59(103) 318 ± 20 40 ± 13
MV (RI = 70 h−1 Mpc) 243 ± 58(101) 139 ± 66(106) −125 ± 72(114) 154 ± 59(102) 318 ± 20 39 ± 13
MLE 295 ± 48(138) 43 ± 56(130) 72 ± 52(165) 283 ± 47(129) 59 ± 36 74 ± 11
Equatorial coordinates
MV (RI = 50 h−1 Mpc) 248 ± 58(100) −208 ± 55(96) −99 ± 63(101) −91 ± 77(125) 205 ± 16 −21 ± 17
MV (RI = 70 h−1 Mpc) 243 ± 58(101) −203 ± 55(95) −97 ± 63(100) −90 ± 78(124) 205 ± 16 −22 ± 18
MLE 295 ± 48(138) −212 ± 46(114) −125 ± 55(115) 162 ± 53(186) 211 ± 13 33 ± 10

the mocks will not depend strongly on the exact shape of the red-
shift distributions, since the bulk flow depends to first order on the
velocities of galaxies, not on their number density.

6 R ESULTS AND DISCUSSION

We present in this section the bulk flow results of our 6dFGSv
analysis, for the MV and MLE estimators, along with the bulk flow
results for our �CDM mocks. We then compare our results to a
theoretical �CDM prediction, first considering the 3D bulk flow
amplitude, and secondly considering each of the three 1D bulk flow
components, to obtain constraints on �m and σ 8.

6.1 Bulk flow results

We have calculated the bulk flow for 6dFGSv for the two different
bulk flow estimators described in Section 4.

(i) The MV estimate, using two different ideal surveys: (1) a
Gaussian survey with effective radius RI = 50 h−1 Mpc; (2) a Gaus-
sian survey of radius RI = 70 h−1 Mpc. To each ideal survey we
apply a cut-off at 160 h−1 Mpc, the survey limit.

(ii) The MLE.

Our measurement represents an estimation of the bulk flow in the
Southern hemisphere, out to 50–70 h−1 Mpc.

The results are presented in Table 1, in both Galactic Cartesian
coordinates and equatorial Cartesian coordinates. We include the
equatorial coordinates, since 6dFGSv covers only half the sky in
the equatorial z-direction (i.e. the Southern hemisphere), and we
would therefore expect increased variance in this direction; we wish
to make any such effect clearly distinguishable. We may expect a
smaller variance in the x- and y-directions. The uncertainties quoted
are the noise uncertainties, with cosmic variance in parentheses. The
cosmic variance is predicted for a given �CDM power spectrum,
as we discuss further in Section 6.4.

For the MV estimator with RI = 50 h−1 Mpc, we find a bulk flow
amplitude of |U | = 248 ± 58 km s−1 in the direction (l, b) = (318◦

± 20◦, 40◦ ± 13◦), and for RI = 70 h−1 Mpc, we find a bulk flow
amplitude of |U | = 243 ± 58 km s−1 in the direction (l, b) = (318◦

± 20◦, 39◦ ± 13◦).
For the MLE, we find a bulk flow of |U | = 295 ± 48 km s−1 in

the direction (l, b) = (59◦ ± 36◦, 74◦ ± 11◦), which is not consistent
with the direction of the MV results. The difference is largest in the
equatorial z-direction, and we can see why from looking at the
window function W2

ii of the different estimators, calculated from

Figure 7. The window functions W2
ii (from equation 24) of the bulk flow

components for 6dFGSv, for each of our three estimators: the MV estimate
with RI = 50 or 70 h−1 Mpc, and the MLE method. The equatorial Carte-
sian x, y, z components are the solid green, dashed blue, solid red lines,
respectively.

equation (24), in Fig. 7. While the x and y window functions are
similar for all the estimators, the z window function is less compact
for the MLE, giving more weight to smaller scales.

We wish to clarify that the MV and MLE methods are different
estimators of the bulk flow, and do not necessarily have to agree.
They are based on different weightings over the volume, hence their
different window functions, and so are quite free to give different
results for both the amplitude and direction of the bulk flow. The
MLE is much more sensitive to the window function of the survey
than the MV, since the MV up-weights a specified scale, while
the scale of the MLE depends on the number of galaxies, their
distribution, and their uncertainties. The 6dFGSv survey covers
only half the range of scales in the equatorial z-direction (i.e. the
north–south direction) than the x- and y-directions (i.e. east–west),
and so smaller scales contribute to the MLE bulk flow in the z-
direction. This is why the MLE window function is less compact
in the z-direction. There is significant variance in the small-scale
6dFGSv velocity field, as shown by S14, so a difference in window
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Figure 8. The 6dFGSv bulk flow result in this work, compared with other bulk flow measurements and nearby superclusters. The figure shows Galactic
longitude (l) and latitude (b), in an Aitoff projection. Our MV result for RI = 70 h−1 Mpc is shown as the black circle, while our MLE result is shown as the
green circle (labelled). The diameter of the circles is proportional to the amplitude of the bulk flow, with inner and outer circles indicating the 1σ confidence
interval of this amplitude. The error bars show the 1σ angular uncertainty. The cyan circles show the distribution of bulk flows measured in our 20 GiggleZ
6dFGSv mock catalogues. Again, the size of the circles corresponds to the bulk flow amplitude, and since these are from simulations they have no measurement
uncertainties. Our result for RI = 50 h−1 Mpc is almost identical to the one for 70 h−1 Mpc. The 6dFGSv galaxies are shown in grey for reference. We show
the directions of several other results from the literature by the solid blue circles: WFH09 (W09); Dai et al. (2011) (D11); Nusser & Davis (2011) (N11);
Turnbull et al. (2012) (T12); Lavaux et al. (2013) (L13); and Planck Collaboration XIII (2014) (P13). The four largest local superclusters are shown by the
solid magenta circles: the Shapley Supercluster; Hydrus–Centaurus (HC); Horologium–Reticulum (HR); and Perseus–Pisces (PP). The South Celestial Pole
(SCP) is also shown in magenta for reference. The CMB dipole is indicated by the red and blue stars (with red the direction of the dipole), and the direction of
the LG motion (from Kogut et al. 1993) is shown by the black star.

function can give quite a large difference in the bulk flow, which is
what we observe. What is important is how we compare the results
with a theoretical model. The MV method is more straightforward
to compare with theory, since it gives the bulk flow for a specified
window function which we can include in the theoretical model.

We show the sky positions of our MV and MLE bulk flow mea-
surements in Fig. 8. The CMB dipole is shown for comparison,
along with a number of recent bulk flow measurements from the
literature. We also show on this plot the position of the Shapley Su-
percluster (l = 312◦, b = 31◦). Our MV measurement is very close
to the direction of Shapley, and consistent with it within the angular
uncertainties. Unlike all sky peculiar velocity surveys, 6dFGSv will
be dominated by southern sky structures, since the gradient of the
velocity field towards these structures will be larger, and so it is
not surprising that our measurement is close to Shapley. Also, the
6dFGSv number density of galaxies peaks beyond 100 h−1 Mpc,
incorporating part of Shapley, so this survey selection criteria it-
self will likely cause the Shapley region to dominate our bulk flow
results.

In this figure, we also show the bulk flow results from our 20
GiggleZ-based mock catalogues, which we will discuss further in
Section 6.2.

6.2 6dFGSv bulk flow distribution in �CDM mocks

We use our N-body simulation-based mock catalogues to determine
the expected distribution of bulk flows for 6dFSGv in a �CDM
universe. We calculate the bulk flow amplitude in each of the 20
mocks, using the MV method with RI = 50 h−1 Mpc, and show
their histogram in Fig. 9. We also show the corresponding bulk
flow magnitude from the data, along with the 1σ noise uncertainty;
this is above the average, but within the expected range of the
mocks. Seven of the mocks, or 35 per cent, lie above our result,
while 65 per cent lie below.

Figure 9. Histogram of the bulk flow amplitudes |U | in our 20 GiggleZ-
based 6dFGSv mocks for the MV estimator with RI = 50 h−1 Mpc. The
vertical dashed line shows the corresponding amplitude for the data, and the
grey shaded area indicates the 1σ noise uncertainty in the measurement.

The direction and amplitude of the bulk flow measured in each
of these mocks is shown in Fig. 8. This is a useful test to see
whether the survey window function can bias the direction of the
measured bulk flow. We see that the directions of the mocks appear
fairly random and isotropic. There are more in the northern sky
(13) than the southern sky (7), but this is not significant. It is also
possible the mocks may share large-scale modes, since they all lie
within the same Gpc volume, so it could be they are not completely
independent.

6.3 Comparison with linear theory: 3D bulk flow

Since the bulk flow amplitude is sensitive to the large-scale modes
of the matter power spectrum, the measured bulk flow can be
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Figure 10. The 6dFGSv bulk flow results in this work (red squares with error bars) for the MV method with radius RI = 50 and 70 h−1 Mpc, compared to a
�CDM prediction. These results are plotted at ‘effective radii’, corresponding to the radius of a full sphere with the same volume as the half-sky measurement,
to show the variance we actually expect. The red arrows show how far we have shifted the points from the measured radii RI to the effective radii Reff. The black
solid curve is a linear theory �CDM prediction for an all-sky Gaussian window function. The dark grey and light grey regions show the 68.3 and 95.5 per cent
confidence levels, assuming a Maxwellian distribution of velocities. Other recent measurements are shown in in blue – these are Lavaux et al. (2013) (L13);
WFH09 (W09); Turnbull et al. (2012) (T12); Colin et al. (2011) (C11); Planck Collaboration XIII (2014) (P13); Dai et al. (2011) (D11); and Nusser & Davis
(2011) (N11). Several of these results – C11, D11, N11, and P13 – have top hat windows, and so we plot them at half their quoted radius, to be more comparable
to the characteristic radius of the Gaussian window prediction. All error bars are 1σ , while the two Planck arrows are the 95 per cent upper limits.

compared with the predicted value for a given cosmological model.
If the Universe is statistically homogeneous and isotropic, then
the expected mean bulk flow at any location is zero. The root-
mean-square (rms) variance of the bulk flow amplitude, however,
is cosmologically interesting, since it depends on the matter power
spectrum, as well as the scale and window function in which it is
measured.

We compare our 6dFGSv MV bulk flow amplitude, for both our
ideal survey radii, to a �CDM linear theory prediction in Fig. 10.
This prediction is the most likely bulk flow amplitude, VML(R),
which depends on the rms velocity dispersion, σ V. The rms velocity
dispersion is given by

σ 2
V (R) ≡ 〈V (R)2〉 = H 2

0 f 2

2π2

∫ ∞

k=0
dkP (k)W̃ (k; R)2, (30)

where P(k) is the matter power spectrum, and W̃ (k; R) is the
Fourier transform of the window function, W(R), at effective ra-
dius R. In this plot, we use an all-sky Gaussian window function,
W̃G = exp(−k2R2/2). (In the next section, we will use the exact
window function of the survey to perform cosmological fits.)

The expected bulk flow velocity V(R) can be predicted from
σ V, assuming the peculiar velocity field is Maxwellian, which it
will be if the density field is Gaussian random. For a Maxwellian
distribution, the probability distribution function of the bulk flow
amplitude V is (Bahcall, Gramann & Cen 1994; Coles & Lucchin
2002)

p(V )dV =
√

2

π

(
3

σ 2
V

)3/2

V 2 exp

(
−3V 2

2σ 2
V

)
dV . (31)

For such a distribution the most likely (maximum likelihood) bulk
flow amplitude is VML = √

2/3 σV , while the expectation value is
〈V 〉 = 2VML/

√
π = √

8/3π σV .

In Fig. 10 we plot VML along with the upper and lower 1σ and 2σ

confidence levels as the dark and light grey shaded regions, found
from integrating equation (31). These confidence levels correspond
to the variance ranges VML

+0.419σv
−0.356σv

(1σ ) and VML
+0.891σv
−0.619σv

(2σ ). To
calculate σ V, we use a �CDM matter power spectrum, generated
using CAMB (Lewis, Challinor & Lasenby 2000) with non-linear
evolution calculated using HALOFIT (Smith et al. 2003), and with the
parameters listed in Section 1.

Caution is needed in interpreting this plot, since the different
surveys have different window functions, and so cannot be directly
compared, either with each other or with the theoretical prediction
for a perfect all-sky Gaussian. A selection function tends to reduce
the effective scale of a survey, which increases σ V and hence V for
that survey. However, simulations show that the PDFs of bulk flows
depend primarily on σ V, and not on the type of window function,
and so assuming an effective radius for the window function used
in the model (e.g. a Gaussian in our case) that reproduces the same
σ V as the survey window function would allow a comparison at that
scale (Li et al. 2012). We have not done this in this plot, and note
that there is some uncertainty on the effective scale of the different
surveys.

Since 6dFGSv only covers half the sky, we would expect our
measurements at given radius RI to have more cosmic variance than
predicted by the full-sky model at this radius. Conversely, we could
consider 6dFGSv to be at a smaller effective radius. We therefore
plot our 6dFGSv MV results at ‘effective radii’ Reff accounting
for the fact that 6dFGSv covers only half the sky. For each of the
RI = 50 and 70 h−1 Mpc results, we calculate the radius of a full
sphere with the same volume as the half-sky measurement, i.e.

Reff = (R3
I /2)1/3. (32)

This gives effective radii of Reff = (39.7, 55.6) h−1 Mpc for the
RI = (50, 70) h−1 Mpc measurements. We plot arrows showing how
we have shifted the measurements from RI to Reff. However, since
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6dFGSv is not a perfectly sampled hemisphere, we might expect
the effective radii to be even smaller than the Reff we calculate.

From Fig. 10 we see that once shifted to the effective radii, both
the 6dFGSv RI = 50 and 70 h−1 Mpc bulk flow results appear to
be consistent within 68.3 per cent confidence with the theoretical
prediction.

The uncertainty on the effective radii of previous surveys may
mean that those that showed higher than predicted bulk flows could
have been compared to theory at too large a radius, without account-
ing for how the window function reduces the effective volume of
the survey. It would be illuminating to recalculate the effective radii
of these surveys to investigate this; we leave this for future work.

6.4 Comparison with linear theory: 1D bulk flow

Unlike the 3D bulk flow amplitude, the 1D bulk flow components ui

are Gaussian distributed, making them more useful for a robust test
of �CDM. The 1D rms velocity variance is given for a particular
survey by the covariance matrix of the bulk flow moments, Rij, which
we defined in Section 4.3. It is the sum of a noise component and a
cosmic variance component, and it depends on the survey geometry,
the measurement noise, and the matter power spectrum. It is very
similar to the rms velocity variance σ V in equation (30), except
for the addition of the noise component, and the cosmic variance
component R

(v)
ij contains the tensor window function Wij (k). (We

previously defined σ ∗ as the 1D velocity variance; this is in principle
the average variance over all scales, which we assumed to be equal
to ∼250 km s−1. Here, however, we are looking at the variance as a
function of scale.)

The deviation from zero of the observed bulk flow components
ui can be directly compared with the predicted dispersion, by cal-
culating the χ2 for the three moments:

χ2 =
∑
i,j

uiR
−1
ij uj , (33)

where i and j both go from 1 to 3 to specify the bulk flow com-
ponents, ui and uj are the measured bulk flow components, and
Rij is the covariance matrix of the moments for a specified set of
cosmological parameters.

Rij is dominated by the cosmic variance term, typically of order
∼100 km s−1, while the noise term is typically ∼40 km s−1. Since
the bulk flow depends on large-scale density fluctuations, Rij will be
most sensitive to the amplitude and shape of the power spectrum.
The power spectrum amplitude is parametrized by the rms density
fluctuations in spheres of 8 h−1 Mpc radius, σ 8, while the shape is
parametrized by the shape parameter, , which on large scales can
be approximated by  = �mh. The dependence on �m also comes
into the f(�m, z)2 factor. We therefore follow WFH09 in using the
bulk flow to constrain a combination of �m and σ 8 – in our case,
we fix h to the best-fitting value from Planck, h = 0.67.

In order to fit �m and σ 8 we use the likelihood, following WFH09,
which is given by

L(�) ∝ 1√|R| exp

⎛⎝∑
i,j

−1

2
uiR

−1
ij uj

⎞⎠ , (34)

where � is the vector of parameters. In our case, � = (�m, σ 8),
and we fix all other parameters to their Planck values.

We show our constraints on σ 8 and �m for our MV results in
Fig. 11. There is a degeneracy between σ 8 and �m, since a lower
σ 8 requires a lower �m to produce the same bulk flow; or, for fixed
σ 8, lower values of �m lead to a larger bulk flow. This is because

Figure 11. The likelihood-based confidence levels on �m and σ 8, obtained
from the 6dFGSv MV bulk flow measurement with RI = 70 h−1 Mpc. The
black point indicates the best-fitting values found by Planck, used as the
fiducial values in this work. The result for RI = 50 h−1 Mpc is very similar
to this plot.

Figure 12. Likelihood of the value of σ 8 from our bulk flow measurement,
after marginalising over �m. The black dashed curve is for the MV RI

= 50 h−1 Mpc measurement, and the red curve is for RI = 70 h−1 Mpc.
The dotted lines indicate the maximum of the likelihood and 68.27 per cent
confidence levels.

if σ 8 is fixed, then a lower �m requires a larger power spectrum
amplitude on large scales to allow this normalisation. However,
since a lower �m also decreases the growth rate f(�m, z), these two
effects partially cancel, and so the bulk flow does not have much
constraining power on �m. The Planck value is shown as the black
point, and is within the 1σ range of our measurement.

Marginalising over �m, we obtain the likelihood for σ 8. The
results are shown in Fig. 12. Our results favour a high value of
σ 8, but we do not find a significant disagreement with �CDM.
For the MV RI = 50 h−1 Mpc measurement, we find σ8 = 1.03+1.08

−0.58
(68.27 per cent confidence level), and for RI = 70 h−1 Mpc, we find
σ8 = 1.01+1.07

−0.58. Both of these are consistent with the Planck value
of 0.83 ± 0.03 (Planck Collaboration XVI 2014).
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Table 2. Comparison of the expected 1D rms velocity σV,i, and 3D rms velocity σV, for
6dFGSv, our GiggleZ-based 6dFGSv mocks, and for theory. We use equatorial Cartesian
coordinates, and assume a �CDM cosmology with parameters listed in Section 1.

Source and σV,x σV,y σV,z σV

RI (h−1 Mpc) (km s−1) (km s−1) (km s−1) (km s−1)

6dFGSva MLE, RI ∼ 70 122 122 193 139
MV, RI = 50 95 100 122 101
MV, RI = 70 95 100 123 102

Mocksb MV, RI = 50 129 114 120 210
Theoryc W̃G, RI = 50 – – – 218

W̃G, RI = 70 – – – 177

Notes. aσV ,i = √
Rii , from equation (21), and σ 2

V = J Rij J
T, where J is the Jacobian. Includes

both noise and cosmic variance.
bAll calculated from rms of bulk flow components of 20 mocks. Includes both noise and cosmic
variance.
cCalculated from equation (30). Includes noise only and assumes a full-sky window function.

Figure 13. The MLE bulk flow for 6dFGSv in redshift shells of width �z =
0.01. The coloured lines show the equatorial (x, y, z) components (labelled)
and are shifted to the right for clarity. The black line shows the bulk flow
magnitude. The number of galaxies in each redshift shell is {75, 813, 1371,
2563, 2802, 1261}. The error bars indicate the noise uncertainty in each bin.

The diagonal elements of Rij provide the expected 1D rms bulk
flow variance σ 2

V ,i in each of the three directions i, for a given survey
window function and model power spectrum. Following WFH09,
we list σV ,i = √

Rii in Table 2 for 6dFGSv, for the MLE and MV
estimators.

We also show in this table the 1D and 3D rms velocities calculated
from our 20 GiggleZ-based mocks, using the MV estimator with
RI = 50 h−1 Mpc. We would expect these to closely agree with the
6dFGSv results for RI = 50 h−1 Mpc, since the mocks reproduce
the window function of the data, and this is roughly true. The
last two rows of Table 2 show the analytic prediction for an all-
sky Gaussian window function with radius 50 or 70 h−1 Mpc, by
evaluating equation (30) at these values of R.

6.5 Bulk flow in redshift shells

It is interesting to look at how the bulk flow varies as a function of
redshift. In Fig. 13 we plot the MLE bulk flow, split into redshift
bins of �z = 0.01. In each redshift bin, we recalculate the MLE
weights for only galaxies in that bin. The results are noisy, but the
amplitude of the bulk flow seems to be fairly constant up to the
maximum redshift of z = 0.054. This is what would be expected if

the source of the bulk flow is an overdensity more distant than the
scales measured.

6.6 Zero-point uncertainty

So far our analysis has assumed a fixed zero-point for the FP. S14
fix the zero-point by assuming zero average radial peculiar velocity
in a ‘great circle’ around the equator, consisting of 3828 galaxies
with −20◦ ≤ Dec. ≤ 0◦. (In practice they assume zero average
logarithmic distance ratio η.) However, this zero-point estimation
has both statistical uncertainty and cosmic variance. We investigate
the effect of these on our bulk flow measurement here.

The statistical uncertainty on the zero-point was calculated by
S14 to be 0.003 dex. We test the effect of this uncertainty on our
bulk flow measurement, by repeating the analysis but first shifting
all the η values by +0.003 or −0.003 dex. This changes the derived
peculiar velocities v, the estimated velocity uncertainties σ n (see
Section 3), and the resulting bulk flow. We list the new σ n and MV
bulk flow values in Table 3.

The changes in the MV bulk flow values we find, after adding or
subtracting 0.003 dex, are all smaller than the noise uncertainties
on our bulk flow measurement. Hence the statistical uncertainty on
the zero-point does not significantly affect our measurement.

There is also cosmic variance in the zero-point, i.e. in the net
velocity of galaxies within the ‘great circle’, −20◦ ≤ Dec. ≤ 0◦. We
can estimate this using our �CDM mock catalogues, as follows.

(i) In each mock catalogue, calculate the mean radial component
of peculiar velocity of galaxies within −20◦ ≤ Dec. ≤ 0◦.

(ii) Then subtract this mean radial velocity from all of the galax-
ies in the mock.

(iii) Calculate the MLE bulk flow of the mock before and after
doing this.

(iv) Calculate the vector difference between these.

We find the rms variance in the mean radial peculiar velocity in the
great circle, over all the mocks, is 82 km s−1, and the rms variance
in logarithmic distance ratio η is 0.004 dex. The rms variance in
the vector shift in bulk flow, over all the mocks, is (δux, δuy, δuz)
= (3, 8, 128) km s−1 in equatorial Cartesian coordinates, shown in
Table 4. In other words, the zero-point calibration induces a rms
variance primarily in the north–south direction.

We note that if the net radial peculiar velocity in the ‘great circle’
is negative, i.e. towards the observer, then calibrating it to zero shifts
the measured bulk flow to more negative Dec. If the net velocity is
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Table 3. The effect of statistical uncertainty in the FP zero-point on the 6dFGS bulk flow measurements. The
best-fitting velocity uncertainty σ n, and MV bulk flow magnitude |U | and Galactic latitude and longitude (l, b)
are listed for the 6dFGSv measurement after adding or subtracting the statistical uncertainty on the zero-point,
0.003 dex, from all the logarithmic distance ratios η.

Quantity measured Amount by which we shift η values of all galaxies
−0.003 dex 0 dex (result) +0.003 dex

σ n 0.326H0Dz 0.324H0Dz 0.322H0Dz

MV BF, RI = 50 h−1 Mpc
|U | (km s−1) 238 ± 55(97) 248 ± 58(100) 266 ± 62(105)
(l, b) (◦) (324 ± 25, 51 ± 14) (318 ± 20, 40 ± 13) 315 ± 16, 30 ± 12
MV BF, RI = 70 h−1 Mpc
|U | (km s−1) 231 ± 55(97) 243 ± 58(101) 263 ± 62(105)
(l, b) (◦) (324 ± 26, 51 ± 14) (318 ± 20, 39 ± 13) (314 ± 16, 30 ± 12)

Table 4. Uncertainty in the 6dFGS MV and MLE bulk flow measurements due to cosmic variance in the FP
zero-point. We list the rms variance found from our mocks in equatorial Cartesian coordinates (ux, uy, uz), Galactic
coordinates (l, b), equatorial coordinates (RA, Dec.), and bulk flow magnitude |U |.

δux δuy δuz δl δb δRA δDec. δ|U |
(km s−1) (km s−1) (km s−1) (◦) (◦) (◦) (◦) (km s−1)

MV BF, RI = 50 h−1 Mpc 3 8 128 28 21 2 25 51
MV BF, RI = 70 h−1 Mpc 3 8 128 30 22 2 25 52

positive, then the shift is towards more positive Dec. Either way,
there is negligible shift in RA, since 6dFGSv is fairly symmetrical
in equatorial x and y.

The cosmic variance this adds to our 6dFGSv bulk flow measure-
ment depends on the direction and amplitude of the measurement.
We show the resulting cosmic variance on the amplitude and direc-
tion of our MV bulk flow measurements at RI = 50 and 70 h−1 Mpc
in Table 4. The uncertainty on the bulk flow amplitude due to cos-
mic variance in the zero-point is ∼50 km s−1, slightly smaller than
the statistical uncertainty of 58 km s−1.

6.7 Comparison with other results

We compare our bulk flow result to other recent measurements in
the literature, in Table 5. Our result is one of the most precise to date,
thanks to the large number of galaxies in 6dFGSv. Our MV result of
248 ± 58 km s−1 at RI = 50 h−1 Mpc is a significantly lower ampli-
tude than that of WFH09 at the same scale, despite the fact that the
6dFGSv survey volume is smaller than the COMPOSITE sample
that they use, and so might be expected to have more cosmic vari-
ance. The level of disagreement between our result and WFH09, not
accounting for this volume difference, is 1.56σ . Our measurement
also does not appear to support the high-redshift 600–1000 km s−1

measurement of Kashlinsky et al. (2008), although since their scale
is much larger we cannot directly rule it out.

Our result is consistent with a growing number of recent mea-
surements that find a bulk flow amplitude consistent with �CDM,
including Colin et al. (2011), Dai et al. (2011), Nusser & Davis
(2011), Turnbull et al. (2012), Feindt et al. (2013), and Carrick et al.
(2015).

As we see in Table 5 and Fig. 8, the direction of our bulk flow
is much closer to Shapley than other bulk flow measurements. This
is reasonable, since 6dFGSv covers only the Southern hemisphere,
and so the bulk flow we measure is likely to be dominated by large
southern structures such as Shapley.

We note again that the different surveys quoted in this table all
have different window functions, so even those at the same effective

distance may not be directly comparable. In particular a region
of a ‘quiet’ Hubble flow has been identified in the northern sky
(Courteau et al. 1993) which is in contrast to the southern sky that
has large motions arising from the Great Attractor and the Shapley
Supercluster (see e.g. Hudson et al. 1999; Feindt et al. 2013). If the
Turnbull et al. (2012) Type Ia supernova data set is subdivided into
north and south samples, the measured bulk flow amplitudes are
110 ± 90 and 320 ± 120 km s−1, respectively. As data sets improve
such biases will need to be fully addressed.

As a final point, recently Johnson et al. (2014) measured the
velocity power spectrum of the 6dFGSv data set as a function
of scale, and found it to be 1σ larger than the prediction given
by a Planck cosmology on the largest scale they measured (k =
[0.005, 0.02]). However, they find it to be consistent at the 2σ

level. This is consistent with our fit to �m and σ 8 in Fig. 11,
which is also consistent with Planck at the 1σ level. As John-
son et al. (2014) mention, this is not a significant disagreement with
�CDM.

6.8 Implications for cosmography

An important aim for bulk flow measurements has been to under-
stand the motion of the LG with respect to the CMB, of 627 ±
22 km s−1 towards l = 276◦ ± 3◦, b = 30◦ ± 2◦ (Kogut et al. 1993).
From gravitational instability theory, this is expected to be caused
by nearby structures, and to converge to the CMB dipole beyond
them.

As we showed in Fig. 8, the direction of our bulk flow is consistent
with the direction of the Shapley Supercluster. We also saw in Fig. 13
that the amplitude of the bulk flow remains fairly constant with
distance, indicating that it is sourced by a distant rather than a nearby
overdensity. This therefore seems to indicate that Shapley may be
the dominant source of the bulk flow motion we detect. Shapley
is at a distance of 152 h−1 Mpc, and is the largest supercluster in
the local Universe out to 200 h−1 Mpc (Lavaux & Hudson 2011).
Our result is consistent with many other bulk flow measurements
that find directions close to Shapley (e.g. Feindt et al. 2013) and a
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Table 5. Summary of some recent bulk flow results in the literature, compared to the result in this work. For
each measurement, we list the distance indicator used (DI), the number of peculiar velocities in the sample N, the
radius of the measurement R, the measured bulk flow magnitude |U |, and the direction of the bulk flow in Galactic
longitude l and latitude b. A dash for the DI means a combination of data sets were used – these results all used the
COMPOSITE sample. For measurements of the kSZ effect, N shows the number of clusters used in combination
with the CMB (with the exception of Lavaux et al. 2013, who use galaxies instead of clusters). A number of these
results use the same, or overlapping, data sets, but apply different analyses, and the window functions differ for
each survey.

DI N R |U | l b
(h−1 Mpc) (km s−1) (◦) (◦)

6dFGSv (this work) FP 8885 50 248 ± 58 318 ± 20 40 ± 13
FP 8885 70 243 ± 58 318 ± 20 39 ± 13

Dressler et al. (1987a) FP 423 �60 599 ± 104 312 ± 11 6 ± 10
Watkins et al. (2009) Mix 4481 50 407 ± 81 287 ± 9 8 ± 6
Feldman et al. (2010) Mix 4536 50 416 ± 78 282 ± 11 6 ± 6
Macaulay et al. (2012) Mix 4537 33 380+99

−132 295 ± 18 14 ± 18
Ma & Scott (2013) Mix 3304 50 340 ± 40 280 ± 8 5.1 ± 6
Nusser & Davis (2011) TF 2859 40 333 ± 38 276 ± 3 14 ± 3
Ma & Pan (2014) TF 2915 58 290 ± 30 281 ± 7 8+6

−5
Colin et al. (2011) SNe 142 160 260 ± 150 298+62

−48 8+34
−52

Dai et al. (2011) SNe 132 150 188+199
−103 290+39

−31 20 ± 32
Turnbull et al. (2012) SNe 254 50 249 ± 76 319 ± 18 7 ± 14
Feindt et al. (2013)a SNe 128 74 243 ± 88 298 ± 25 15 ± 20
Weyant et al. (2011) SNe 30 112 446 ± 101 273 ± 11 46 ± 8
Kashlinsky et al. (2008) kSZ 782 ∼300–800 ∼600–1000 283 ± 14 12 ± 14
Planck Collaboration (2013) kSZ 1405 350 <390 (95 per cent CL)

2000 <254 (95 per cent CL) ∼120 ∼34
Lavaux et al. (2013) kSZ 5290 50 533 ± 263 324 ± 27 −7 ± 17

200 284 ± 187 26 ± 35 −17 ± 19
∼500 <470 (95 per cent CL)

Note. aThe result for their lowest redshift shell.

source distance greater than ∼50–80 h−1 Mpc as the origin of the
flow (e.g. Hudson 1994; Kocevski, Mullis & Ebeling 2004; Pike &
Hudson 2005; WFH09).

Lavaux & Hudson (2011) calculate, using linear theory applied
to 6dFGS redshift data, that Shapley should be responsible for
∼15 per cent of the total velocity of the LG with respect to the
CMB, or 90 ± 10 km s−1, while the Horologium–Reticulum super-
cluster generates ∼60 km s−1. However, it appears that our sample
is dominated mostly by Shapley. This makes it possible that its mass
could be even larger than inferred from redshift data alone, which
would agree with the finding of Feindt et al. (2013), who find that
the bulk flow does not appear to reverse beyond Shapley, suggesting
there could be more mass beyond it sourcing the bulk flow. They
calculate that their bulk flow would be caused either if the mass of
Shapley were twice as large as current estimates (from Muñoz &
Loeb 2008; Sheth & Diaferio 2011), or if there were a more distant
mass behind Shapley.

As we have previously noted, however, 6dFGSv partially sam-
ples the Shapley region, with no sampling at all of northern sky
structures, so this could be partially responsible for Shapley domi-
nating our results. Additionally, S14 show that the 6dFGSv sample
shows not only an excess of positive velocities towards Shapley, but
also an excess of negative velocities on the other side of the sky
towards the Cetus Supercluster, compared to model predictions, in-
dicating other structures are also contributing to the velocity dipole
of the sample. As we found in Section 6.6, the cosmic variance in
the zero-point of the FP also gives additional angular uncertainty to
our measurement in the north–south direction. More analysis would
therefore be needed to confirm whether the bulk flow is truly closer
to Shapley than any other structure.

7 C O N C L U S I O N

The question of whether a large bulk flow exists in the local Uni-
verse remains of much interest. A large part of the disagreement
between previous measurements is likely due to the noisy, sparse
peculiar velocity samples to date, as well as possible unknown sys-
tematics such as differently calibrated data sets and Malmquist (or
selection) biases. In this paper we aimed to make an improved mea-
surement using a large new peculiar velocity data set, the 6dFGSv.
This sample is homogeneously selected, so avoids any bias from
combining data sets, and the uncertainties and Malmquist biases
have been carefully studied and accounted for (M12; S14).

We have presented a new bulk flow analysis using this data set.
Using the MV bulk flow estimator, we find a bulk flow of magnitude
|U | = 248 ± 58 km s−1 in the direction (l, b) = (318◦ ± 20◦, 40◦

± 13◦) at a distance of 50 h−1 Mpc, and |U | = 243 ± 58 km s−1 in
the direction (l, b) = (318◦ ± 20◦, 39◦ ± 13◦) at a distance of
70 h−1 Mpc. This is somewhat higher than the �CDM prediction
on these scales, implying a high value of σ 8, but consistent with
Planck results within 2σ . After marginalizing over �m, we find
from our bulk flow measurement at RI = 70 h−1 Mpc a value of
σ8 = 1.01+1.07

−0.58, consistent with the Planck value of 0.83 within
68.27 per cent confidence.

Our result is in agreement with a number of recent measurements
that also find a bulk flow consistent with �CDM, including Turnbull
et al. (2012), Feindt et al. (2013), and Hong et al. (2014). Our result
is also supported by the higher redshift measurement of Planck
Collaboration XIII (2014), who used Planck CMB data combined
with a large X-ray cluster catalogue, and found no evidence for a
bulk flow from 350 h−1 Mpc to 2 h−1 Gpc scales.
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A challenge for the 6dFGSv analysis here (and for any pecu-
liar velocity analysis made using linear velocities instead of log
distances) is accounting for the lognormal uncertainties on the pe-
culiar velocities. When combined with the fact that 6dFGSv only
covers half the sky, these can result in a spurious polar bulk flow
component if not properly accounted for. We have shown that it is
important to propagate uncertainty from the Gaussian observable
(in our case, the logarithmic distance ratio η = log10Dz/Dr) to the
non-Gaussian velocity in a way that is independent of the η → v

conversion itself, so that the velocity uncertainties, and hence bulk
flow weights, do not correlate with the velocities. A further effect
may come from the fact that the distribution of measured velocities
themselves will be affected by the lognormal uncertainties. A pos-
sible solution to this problem was recently suggested by Watkins &
Feldman (2015). We leave investigation of this for 6dFGSv to future
work.

Our measured bulk flow is very close to the direction of the
Shapley Supercluster, consistent with many other measurements,
and its amplitude appears to be fairly constant out to the distance
of Shapley. This suggests that a large part of the bulk flow we
measure is likely to be sourced by Shapley, which is reasonable
since 6dFGSv is a southern sky survey.

Finally, we have also generated a set of �CDM mock catalogues
of 6dFGSv, based on the GiggleZ N-body simulation and incorporat-
ing the 6dFGSv selection function, to be used for testing systematic
biases in the data set. We find the 6dFGSv bulk flow amplitude
is consistent with the distribution measured in the mocks. Using
the mocks, we also estimate the additional uncertainty in our bulk
flow amplitude, due to cosmic variance in the FP zero-point, to be
∼50 km s−1.

These mocks are available on request for further analyses of
the 6dFGSv sample. The C++ code written to calculate the MV
bulk flow for this paper is publicly available on GitHub, at
https://github.com/mscrim/MVBulkFlow.
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A P P E N D I X A : M I N I M U M VA R I A N C E BU L K
F L OW M E T H O D F RO M WAT K I N S
E T A L . (2 0 0 9 )

For a data set consisting of N peculiar velocities with positions
rn = xi , where i indicates the three directions (x, y, z), and measured
radial peculiar velocities Sn, the MV method (WFH09; Feldman
et al. 2010) constructs a set of weights wi, n such that the bulk flow
is given by equation (12). The weights act to minimize the variance
between the bulk flow moments measured by the survey, ui, and the
bulk flow moments that would be measured by an ‘ideal’ survey,
Ui.

To calculate the weights, the authors apply constraints to en-
sure that the estimator gives the correct average amplitudes for the
velocity moments, i.e. 〈ui〉 = Ui, of the form∑

n

wi,ngj (rn) = δij . (A1)

Here, gj (r) are the mode functions corresponding to given moments
of the velocity field; for the three bulk flow moments, they are

gj (r) = {r̂x, r̂y, r̂z}. (A2)

The authors implement the set of constraints in equation (A1) using
Lagrange multipliers, and so the quantity to be minimized is

〈(Ui − ui)
2〉 +

∑
j

λij

[∑
n

wi,ngj (rn) − δij

]
. (A3)

Feldman et al. (2010) show that the weights can be evaluated as

wi,n =
∑

m

G−1
nm

⎛⎝Qim − 1

2

∑
j

λij gj (rm)

⎞⎠ . (A4)

We define the matrices G, Q, and λ below.

A1 Velocity covariance matrix, G

Gnm = 〈SnSm〉 is the covariance matrix for the individual velocities,
which can be calculated for a given power spectrum. In linear theory

it can be written in terms of the velocity field v(r) as

Gnm = 〈SnSm〉
= 〈vnvm〉 + δnm(σ 2

∗ + σ 2
n ). (A5)

The first, ‘geometrical’ term can be expressed as an integral over
the density power spectrum P(k):

〈vnvm〉 = f (�m, z)2H 2
0 a2

2π2

∫
dk P (k)fmn(k), (A6)

where H0 is the Hubble constant in units of (h km s−1 Mpc−1), a is
the cosmological scale factor, essentially equal to unity for the low
redshifts we are considering, and the function fmn(k) is the angle
averaged window function,

fmn(k) =
∫

d2k̂

4π
(r̂n · k̂)(r̂m · k̂) × exp[ik k̂ · (rn − rm)]. (A7)

This equation can be calculated analytically, as shown in the
appendix of Ma et al. (2011).

A2 Velocity bulk flow cross-correlation, Q

The correlation matrix Qi,n is calculated in a similar way, but in-
corporates the window function of the input ‘ideal’ survey. It is
evaluated by generating an ideal survey with N′ random positions
r ′

n′ with the desired radial distribution function. Qi,n is then given
by

Qi,n = 〈Uivn〉 =
N ′∑

n′=1

w′
i,n′ 〈vn′vn〉. (A8)

The weights w′
i,n′ for the ideal survey simply give the bulk flow as

the average of the projections of the radial velocities on the three
coordinate axis directions:

wi,n = 3x̂i · r̂n

N
. (A9)

(Note in WFH09 the factor of 3 has been omitted from this equation.)
Following WFH09 we create an ‘ideal’ survey with N′ = 104 and
a Gaussian radial density n(r) ∝ exp(−r2/2R2

I ), where RI is the
effective radius of the Gaussian.

Then, we evaluate 〈vn′vn〉 by

〈vn′vn〉 = f (�m, z)2H 2
0 a2

2π2

∫
dkP (k)fn′n(k). (A10)

A3 Lagrange multiplier, λ

The Lagrange multiplier λij is given by

λij =
3∑

l=1

[
M−1

il

(∑
m,n

G−1
nmQlmgj (rn) − δlj

)]
, (A11)

where

Mij = 1

2

∑
n,m

G−1
nmgi(rn)gj (rm). (A12)

For the bulk flow, with gi(r) = r̂i , the latter equation becomes

Mij = 1

2

∑
n,m

G−1
nmr̂i(n)r̂j (m). (A13)
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