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Abstract: It is generally believed foreign direct investment (FDI) has spillover effects which 

can affect the innovation capabilities of local firms in host countries. Comparatively little, 

however, is known about the contingent local contextual factors that influence how these FDI 

spillovers can be captured. Integrating the literature on FDI knowledge spillovers with that on 

inter and intra-industrial externalities we explore how local industrial agglomeration 

moderates the effect of FDI knowledge spillovers on innovation in the emerging market 

context of China. Empirical estimates, based on panel data of 1,610 listed indigenous Chinese 

firms recorded between 2000 and 2010, indicate that such spillovers are more easily captured 

in industrially diverse settings. By contrast, industrial specialization negatively moderates this 

relationship. We explore the implications of these findings, considering their relevance for 

emerging market policy-makers grappling with the challenges of navigating their economies 

through the ‘middle-income-trap’ to high-income status by promoting more innovative local 

firms. 
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1 Introduction 
The growth of FDI to emerging markets, coupled with their rapid industrialization and 

concomitant evolution in industrial structure are two marked and important features of 

emerging markets. Yet comparatively little is known about how FDI inflows and domestic 

industrial externalities interact with one another in these markets. Purported advantages of 

industrial externalities, such as Marshall-Arrow-Romer (MAR) externalities of specialization, 

include those of scale, lower transportation costs and intra-sector knowledge spillovers of 

tacit or codified specialized knowledge that flows more easily among clustered firms of the 

same sector. Industrial diversity, by contrast, also known as Jacobs externalities, include the 

advantages of size and the potential to tap multiple knowledge bases within a general 

geographic cluster. Do these different types of industrial externalities interact with inward 

FDI and what impact do they have on the innovation capabilities of host country emerging 

market (EM) firms, currently aspiring to rapidly catch-up with their developed market 

(DM)counterparts (Awate, Larsen & Mudambi, 2012, 2014; Tan & Mathews, 2014)?  

The question of how EM firms develop innovation capabilities is of central importance to 

Chinese policy-makers. As the Chinese economy rapidly approaches middle-income levels 

growth is predicted to slow. Transition to a more innovative society is considered the key 

challenge in overcoming the ‘middle-income-trap’ (World Bank, 2013). Indeed, China has 

declared its intention of moving from being a ‘global manufacturer’ to a leader in global 

innovation (Abrami et al., 2014). The upgrading and adjustment of regional industrial 

structures, moreover, is a process that is being led in part by the Chinese government, through 

among other things its control of key state-owned business groups (Nolan, 2013).  
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Exploring how FDI and industrial externalities interact to influence Chinese firm-level 

innovation has potentially important policy implications, as well being of theoretical interest 

(Li et al., 2013a; Li et al., 2013b). Here we focus on the moderating role of the local 

industrial context as a facilitator (or otherwise) of innovation. So far the debate on the role of 

industrial agglomeration on growth and innovation remains inconclusive, with 

methodological and contextual factors believed to be important reasons for this 

inconclusiveness (Beaudry and Schiffauerova, 2009). Most empirical and theoretical 

research, however, has concentrated on DM, not EM contexts. Further research on the effect 

of industrial specialization and diversity on firm innovation in China, therefore, may be 

helpful in advancing our understanding of MAR and Jacobs industrial externalities as well as 

the conditions under which innovation in EM firms benefits from inward FDI. Given it is also 

widely believed EM firms adopt different innovation strategies to DM firms, this is an 

interesting question (Awate, Larsen and Mudambi, 2012, 2014; Mathews, 2006). Our paper 

therefore aims to make a contribution to extend the aforementioned debates on FDI 

knowledge spillovers, industrial externalities, and EM firm innovation strategies by 

examining how these factors interact with each other and exert an effect on the innovation 

capabilities of EM firms. 

The remainder of this paper is organized as follows. The theoretical background and 

empirical hypotheses are developed in section 2, data and methodology are reported in 

section 3. Section 4 reports the results of descriptive analysis and panel regression 

estimations. Theoretical and practical implications of findings are discussed in the section 5. 

 

2 Theoretical background and hypothesis development 
2.1 FDI, industrial externalities and firm innovation 

FDI is generally believed to have positive knowledge spillover effects for domestic firms in 

both DM and EM recipient countries (Buckley et al., 2002; Kinda, 2010; Padilla-Pérez, 

2008). International business (IB) research suggests FDI brings not only capital but also 

advanced technology, new ideas, and further access to international markets for host country 

firms (Buckley et al., 2002; Crespo and Fontoura, 2007; Kokko et al., 1996). EM firms may 

not only benefit from acquisition of superior foreign technical knowledge, they may also 

improve their management capabilities through learning from other MNEs, both of which are 

critical for their development (Fu, 2012). Recent studies have increasingly emphasized, 

however, that FDI spillovers are conditional on a number of factors (Li et al., 2013a; Yuan et 

al., 2008). From the perspective of the FDI source, for example, FDI that originates from 

OECD countries is more likely to be accompanied by positive spillover effects on the 

innovation of indigenous firms. This is particularly so in technology-intensive sectors. 

Investments from Hong Kong, Macao and Taiwan, by contrast, are generally considered to be 

more concentrated in labor-intensive sectors and thus bring fewer benefits (Buckley et al., 

2007b). Such investments typically exploit low labour and land costs, rather than searching 

for new markets using advanced technologies. By contrast, MNEs from OECD countries 

have a propensity to focus on new and emerging sectors, or high technology industries. These 

MNEs launch new products using advanced knowledge which they exploit to compete 

against local counterparts in host markets (Buckley et al., 2007b). At the firm-level, 

moreover, absorptive capacity is deemed an important factor determining whether successful 

absorption of advanced knowledge available via knowledge spillovers from FDI may be 

realized (Ferragina and Mazzotta, 2013; Girma, 2005). Durham (2004), for example, showed 

that firms with higher levels of absorptive capacity can more easily gain technical 

opportunities from foreign presence. This evidence is supported by studies conducted in both 

developed and developing countries (Zhang et al., 2010). Though many prior studies have 

drawn attention to a variety of internal and external factors that condition how FDI spillovers 
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may be captured little is yet known about the interplay between FDI spillovers and local 

agglomeration economies in affecting innovation capabilities in indigenous firms. 

This is surprising, as the topic of agglomeration economies, like FDI, has also attracted 

considerable academic interest (Asheim and Isaksen, 1997; De Groot et al., 2009; Duranton 

and Puga, 2004; Henderson, 1997; Li et al., 2012; Neffke et al., 2010). The majority of these 

studies have investigated the impact of two dimensions of industrial structure: the 

specialization and diversity of regional economic composition in affecting economic 

performance and innovative capabilities (Beaudry and Schiffauerova (2009). On the one 

hand, based on the seminal work of Marshall (1890), a series of studies provide empirical 

evidence related to the question of whether agglomeration economies are beneficial for 

economic development or not (see De Groot et al. (2009) for a review of this literature). 

Glaeser et al. (1992) coined the term ‘Marshall-Arrow-Romer externalities’, or MAR 

externalities, to refer to specialization. On the other hand, Jacobs (1969) suggested that a city 

with multiple disciplines is more likely to have a strong knowledge base and local innovators 

may more easily develop fresh ideas and novel technologies in such environments. This 

argument has become increasingly popular in recent years as increasing demand for variety 

has led to rapid changes in consumer demand. Product innovation, it is argued, is more 

closely related to the integration of cross disciplinary knowledge (Nieto and Santamaría, 

2007; Tatikonda and Rosenthal, 2000).  

Both industrial specialization and diversity are highlighted in prior studies for their specific 

effects in different settings. As yet, however, there is no consensus on the question of which 

type of industrial structure is more conducive for innovation. According to Beaudry and 

Schiffauerova (2009) only four studies focus on the effect of industrial specialization in 

developing countries, with none on China. Six studies have examined the role of diversity in 

emerging markets, with one of these focused on China. To the best of our knowledge, 

moreover, no research has explored the contingent role of industrial specialization and 

diversity, despite their very close relations to both economic and innovation activities (De 

Groot et al., 2009). Here we look to bridge this gap by integrating the two aforementioned 

literature streams and considering our findings also in the context of research on EM firm’ 

innovation strategy, so as to further probe inside the spillover ‘black box’ (Desrochers and 

Leppala, 2011: 844). 

2.2 Foreign presence and indigenous firm innovation 

The FDI of multinational enterprises (MNEs) may bring considerable opportunities for 

indigenous firms, including opportunities for collaboration, entry to the supply chain or 

involvement as a commercial agent. Collaborations with MNEs may help indigenous firms to 

learn both managerial and technical knowledge from the MNEs’ regional subsidiaries (Jindra 

et al., 2009). Since the technical gap between most indigenous EM firms and foreign 

enterprises is considerable, indigenous firms may look to imitate their foreign counterparts 

through cooperation in R&D or via participation in the DM MNE supply network (Glass and 

Saggi, 1998). For instance, foreign firms may care about their influence on the environment 

and may require their host suppliers to obtain international recognized quality standards 

(Javorcik, 2004). As well as collaboration, indigenous firms may also become locked in 

competition with foreign invested enterprises (FIEs) in their domestic markets. Indeed, as 

overseas investors often aim to explore new markets in host countries, intensified competition 

is also a typical outcome (Meyer and Sinani, 2009). Products launched by foreign firms are 

highly competitive, since their products usually incorporate advanced technologies, high 

levels of quality supported by stronger brands than their domestic market counterparts 

(Chang and Park, 2012). To take up the challenge posed by foreign firms, indigenous firms 

may attempt to imitate foreign firms’ products or develop their own competitive products via 

further investment in their own R&D capabilities (Buckley et al., 2007a; Xiao et al., 2013).  
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Since implementation of the ‘Reform and Opening Up’ policy, and particularly during the 

1990s and onward, foreign firms have rapidly become far more important players in the 

Chinese economy. FDI has not only significantly enriched and enlarged the Chinese domestic 

market, it has also brought with it significant challenges for indigenous firms. In particular, 

the huge volume of overseas’ investment that have poured into China since 2002 (when 

China became a formal member of the WTO) numerous key industrial sectors been opened 

up to the competition of foreign firms (He and Wang, 2012). Chinese indigenous firms 

remain hugely important contributors to the remarkable development processes of economic 

development and also the main industry players (Tian and Estrin, 2008). These firms, 

moreover, have benefitted considerably from the presence of foreign investment, in numerous 

ways. In general, therefore, it is argued inward FDI has led to significant improvements in the 

innovation capabilities of indigenous Chinese firms.  

 

Hypothesis 1: Inward FDI is positively related to the innovation capabilities of Chinese 

firms. 

 

2.3 The moderating role of local industrial structures: how do Chinese firms capture FDI 

spillovers? 

Diversified industrial structures allow firms to obtain knowledge from multi-disciplinary 

knowledge bases which in turn may promotes innovation (Jacobs, 1969). As innovation is a 

process of knowledge recombination and recreation (Cohen and Levinthal, 1990), access to 

multiple knowledge bases may provide the platform for innovators to communicate and 

transfer their ideas, findings, breakthroughs, and applications (Beaudry and Schiffauerova, 

2009). Successful innovation requires expertise or knowledge of multiple technological fields 

and subjects: ‘a more diverse industrial fabric in close proximity fosters opportunities to 

imitate, share and recombine ideas and practices across industries’ (Beaudry and 

Schiffauerova, 2009: 319). These knowledge spillovers from a diversified industrial structure 

may enable firms to conduct effective R&D and innovate and are commonly known as Jacobs 

externalities. 

Prior studies suggest that in-house R&D is full of uncertainties and resource restrictions. 

Firms are encouraged to conduct open innovation through which they may benefit from 

collaboration with external partners (Chesbrough, 2003). This idea has been shown to be a 

useful way for both process innovation and product innovation (Chesbrough and Crowther, 

2006). Technology purchases or licensing are found to be useful for firms in undertaking 

technological upgrading and innovation, especially in developing countries (Wang and Zhou, 

2013). Cross disciplinary knowledge transfer and diffusion are conducive for firms to 

conduct both incremental and radical innovations. Or, as Desrochers and Leppala (2011: 846) 

optimistically put it, the argument for Jacobs spillovers is ‘commonsensical in light of what is 

known about human creativity, at least inasmuch as, innovations are always the results of new 

combinations of pre-existing know-how, skills, ideas, processes materials and artifacts’. The 

frequent communication between knowledge workers in different economic actors can 

therefore facilitate knowledge diffusion and integration, which in turn may provide 

opportunities for indigenous firms to gain positive knowledge spillovers from FDI. 

Additionally, foreign firms in a diversified region are capable of utilizing the local knowledge 

base for complementing their understanding of host markets through collaborating with 

indigenous firms (Dunning, 2001; Liu et al., 2009). This offers indigenous firms valuable 

opportunities to learn from their foreign collaborators and in turn improve their R&D 

capability.  

The ability of EM firms to more efficiently capture FDI spillovers in the presence of a 

more diversified technological base may also be a result of their specific technological-catch 
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up strategies (Mathews, 2006; Awate, Larsen and Mudambi, 2012,2014). Strategies employed 

by EM firms typically look to exploit their ‘advantages of backwardness’ and the historical 

specificity of late-industrialization – namely the abundance and availability of foreign 

technologies, often traded on the international technology markets (Amsden and Hikino, 

1994). As Desrochers and Leppala put it in their investigation of Jacobs externalities, ‘from 

an economic perspective developing new applications for one’s existing expertise has always 

been a more sensible (if not always successful) proposition than developing a new product or 

expertise from scratch’  (Desrochers and Leppala 2011: 848). EM firms, following this logic, 

have evolved learning strategies to firstly imitate and then subsequently to improve upon 

foreign technologies (Mathews, 2006; Awate, Larsen and Mudambi, 2012,2014; Hennart, 

2012).  

There are very strong incentives for EM firms to acquire foreign technologies of all kinds 

and a diverse industrial environment may facilitate these acquisition processes. EM firms can 

leverage low domestic production costs and potentially out compete foreign rivals in their 

home market owing to preferential access to complementary local resources (i.e. government 

contracts, lower costs of capital etc.) and greater familiarity with it (i.e. lower psychic 

distances) (Hennart, 2012; Luo and Tung, 2007). Their domestic markets are often in the 

early stages of development with large market potential. Intellectual property right (IPR) 

laws, moreover, are often weakly enforced, guaranteeing prolonged use of any successfully 

acquired technology. Thus, over time, EM firms develop strong firm-level capabilities to 

unbundle foreign technologies - a process that has been referred to as the development of 

‘project execution capabilities’ (Amsden and Hikino, 1994). EM firms also develop strong 

capabilities to work with and learn from foreign MNEs, in doing so also exploiting these 

relationships to rapidly acquire their technologies (Mathews, 2006; Tan and Mathews, 2014).  

For many EM firms, moreover, the capability to acquire foreign technologies is often 

internalized within business groups, which itself may lead to firm-level diversification 

strategies (Amsden and Hikino, 1994). Inherent, therefore, in many EM firms, is the tendency 

towards the potential for the cross-fertilization of ideas that the pursuit and acquisition of all 

sorts of foreign technologies may bring. The capability to imitate foreign technologies, 

moreover, may also subsequently lead to innovation via further incremental process and 

product driven innovations building upon the acquired foreign technologies (Williamson and 

Yin, 2013). This leads to our second hypothesis.  

 

Hypothesis 2: Regional industrial diversity positively moderates the relationship between the 

innovation capabilities of Chinese firms and inward FDI. 
 

The Marshall-Arrow-Romer (MAR) model suggests that manufacturers clustered in the 

same or similar industrial sectors can reap benefits from spatial proximity (Viladecans-

Marsal, 2004). The short geographic distance between cluster members, for example, enables 

them to reduce transportation costs and in turn increase their profits. Although a highly 

specialized industrial structure is beneficial for the cluster members, it may potentially create 

barriers for innovation when local firms are also trying to benefit from FDI knowledge 

spillovers. Highly centralized regional industrial structures are associated with vertical 

linkages of firms within supply chains that are strong and stable. External actors may face 

fewer opportunities to take a leadership position in a specialized sector if they invest into that 

sector. This may prohibit potential foreign presence because one of the objectives of foreign 

investment is to search and occupy new markets in host countries (Dunning, 2001; Luo, 

2003). Moreover, specialized clusters are more likely to be locked-into specific technologies, 

which impedes cluster members from absorbing and utilizing new ideas and knowledge from 

fields outside of their main their R&D activities (Beaudry and Schiffauerova, 2009; Boschma 
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and Iammarino, 2009; Neffke et al., 2010). New knowledge spillovers from FDI may 

therefore be incompatible with the knowledge base of a highly specialized industrial 

structure, limiting the scope of potential benefits. For example, some very large companies in 

a specialized industrial structure play important roles as key innovators
1
. These firms have 

incentives to defend their considerable influence over other cluster members and also to 

prevent knowledge leakages. In other words, indigenous firms could facilitate technology 

transfer of their R&D outputs to compete with foreign companies rather than imitate or learn 

the spillover technologies from regional foreign counterparts. These have been referred to as 

‘defensive’ or ‘offensive’ technology strategies (see Xiao et al. (2013) and Freeman (1992)).  

MAR, in contrast to Jacobs externalities, take place when tacit or codified knowledge can 

be shared among cluster members more easily. This, it is argued, is done within the same 

sector as transmission costs are lower. More specialized regions, however, may also develop 

more specialized knowledge bases than diversified regions. As a result they may also be more 

prone to lock-in in their areas of expertise because the probability of local absorptive capacity 

‘being compatible with foreign technologies are less for specialized regions than for 

diversified ones’ (Wang et al. 2014: 13). Similarly, more diversified regions have broader 

knowledge bases and these can play ‘a crucial role in absorbing technology spillovers from 

local MNEs’ (Wang et al. 2014: 13). We argue on this basis that a region with highly 

specialized industrial structure will impede the positive effect of FDI spillovers. Hence, 

 

Hypothesis 3: Regional industrial specialization negatively moderates the innovation 

capabilities of Chinese firms and inward FDI. 

 

 

3 Data and method 
3.1 Data 

Chinese publicly listed companies (PLCs) play a dominant role in the Chinese economy (Tian 

and Estrin, 2008) and most PLCs are key players within their corresponding industrial 

sectors. For instance, SINOPEC in the oil and gas sector and SANY in the construction 

machinery sector are important players (Chen, 2004). Moreover, the financial data of PLCs 

are comparatively reliable, since they have to obey stricter accounting rules and are under the 

supervision of the China Securities regulatory commission (CSRC) (Ching Chi Heng and 

Noronha, 2011). We therefore use a panel dataset based around data from Chinese publicly 

listed companies (PLCs) for the period of 2000 to 2010. Specifically, the annual accounting 

and corporate governance information of all A-share firms listed on the Shanghai and 

Shenzhen stock exchanges are obtained from the China Stock Market Accounting Research 

(CSMAR) database. Regional data was also collected from various issues of The China 

Statistical Yearbook on Science and Technology, The China Industry Economy Statistical 

Yearbook, and The Database of China Main S&T Index (DCMSTI). The statistical yearbooks 

are official publications compiled by National Bureau of Statistics of China (NBSC) and 

State Intellectual Property Office (SIPO). The DCMSTI is compiled by the Ministry of 

Science and Technology (MOST). Contrasting with previous research that relies mostly on 

the China Statistical Yearbook (Fu, 2008; Huang et al., 2012), the DCMSTI and MOST data 

provide more fine grained detail on the local economic and S&T indicators, such as R&D 

expenditures, S&T personnel and regional GDP growth. 

As the CSMAR dataset includes no information on firm patenting activities we manually 

collected the number of patent registrations of each firm from the website of the China State 

                                                        
1
The ’key innovators’ refer to those giant firms in a cluster with power and ambitions to amplify their influence 

through allocating resources and/or proposing production and technological standards.  
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Intellectual Property Office (SIPO)
2
. We match the accounting information with the patent 

data for each firm as well as the local characteristics. Firms operating in service sectors are 

dropped because most of them have never applied for patents and have few R&D activities. 

We also deleted those records with missing values and firms that had some degree of foreign 

ownership, since our research objective is to examine the role of FDI knowledge spillovers 

on innovation in indigenous Chinese firms. The final unbalanced panel covers the period 

from 2000 to 2010 with 9,596 firm-year observations for 1,610 firms with 124,200 

successfully granted patents. 

3.2 Variables measurements 

3.2.1 Dependent variable 

Innovation capability (IC): we used patent counts to indicate innovation capability. This is a 

proxy showing the extent to which an innovator creates new knowledge. There are three 

advantages of using patents as the dependent variable. First, the procedures and criteria for 

assessing patents are reliable and respected(Griliches, 1990). SIPO is the only authority in 

China evaluating patent applications and issuing patent grants (Kroll, 2011; Xiang et al., 

2013). The patent system in China, moreover, has experienced significant development since 

China entered the WTO in 2001 (Li, 2012). The number of Chinese patents granted has 

considerably increased, from 105,345 in 2000 to 814,825 in 2010
3
. Patent number counts 

have become a core index of the competitiveness evaluation system at both regional and firm-

levels in China (Kroll, 2011). Chinese firms realize the importance of patenting as an 

indicator of innovativeness. Using the patent number count as the dependent variable also 

allows for further comparative analysis as a number of studies use this measure (for 

example,Choi et al. (2011)).  

3.2.2 Explanatory variable 

FDI (fdi): To test the relationship between FDI spillovers and innovation capability in 

indigenous firms we employ the proportion of total industrial product value contributed by 

foreign invested enterprises (FIEs) in a region (in this study the regional unit of analysis is the 

province-level) to measure the presence of FDI. This followsBuckley et al. (2002) andTian 

(2006). 

Industrial specialization (spe): Inspired by the work ofGlaeser et al. (1992) and Gao 

(2004), a local industrial specialization indicator was constructed to measure MAR 

externalities. This reflects the extent to which a region’s industrial structure is specialized 

relative to economic activities in the country as a whole(Wang et al., 2014). It is defined as 

follows: 

1
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where Yij is industrial output of industry  in region ,  is the number of employees of 

industry  in region , n and m are the numbers of industry and region respectively,
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 is an assigned weight to each industry j’s relative prominence in the total industrial 

employment in region . A higher value of Si indicates a greater degree of specialization in 
                                                        
2
 The search platform of SIPO patent is available at http://www.sipo.gov.cn/zljs/. 

3
 The details of the huge surge of Chinese patenting can be referred at the website of SIPO 

(http://www.sipo.gov.cn/). 
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region . 

Industrial diversity (div): to identify the impact of increased local diversity of industries 

(Jacobs externalities), we construct this diversity variable following the work of (Gao, 2004; 

Henderson, 1997). Let 
1

n

ij ij

j

Y Y


 be industry ’s share of the total industrial output in region 

. y is the industrial output. We then subtract iD  from 1 to allow a higher value of it to reflect 

higher diversity. It is defined as follows: 

2

1 1
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   , i=1, 2, 3,…, n                              (2) 

where iD  is the diversity index. The higher the value of iD , the more diversified the local 

industrial structure is in region .  

3.2.3Control variables 

We take into account both firm features and local characteristics when examining the specific 

effect of explanatory variables (Wang and Lin, 2013; Zahra et al., 2014). We control for 

possible effects of firm features. 

Firm R&D intensity (frd): R&D investment is found as one of the main drivers for firm 

R&D capability, prior studies show high R&D intensities lead to innovation outputs(Laursen 

and Salter, 2006). Contrary to international accounting standards, annual reports of publicly 

listed firms in China do not include R&D investment expenditure records. To overcome this 

deficiency, we followDong and Gou (2010) that the item of “Cash Paid for the Business 

Related Activities” reported in firms’ financial statement is equivalent to R&D investment in 

China. It includes the development and design cost, technology development cost and 

research cost. We therefore used the ratio of a firm’s R&D investment against its sales as a 

proxy for the firm’s R&D intensity. 

Firm age (age): innovation is found to be closely related to a firm age (Thornhill, 2006). 

Both firms’ R&D investment and innovation highlights are varied in different phase of a 

firm’s life cycle. We therefore used the number of years since the firm’s establishment as a 

proxy for the firm’s age. 

Firm size (size): prior studies suggest that bigger firms may have more resources to 

conduct R&D activities(Cohen and Klepper, 1996). The natural log of a firm’s total assets at 

the end of the fiscal year was used as a proxy of the firm’s size. 

Firm leverage (leverage): a high debt to equity ratio will impact on the R&D investment 

decisions as higher leveraging increases the likelihood of bankruptcy (Choi et al., 2012). We 

thus used the percentage of a firm’s percentage of total debt over total equity as a proxy of the 

firm’s leverage rate. 

Firm return on asset (ROA): a firm with higher profitability is more likely to invest in R&D 

resources in inventive activities (Choi et al., 2012), we thus used a firm’s return on assets as a 

proxy of the firm’s profitability. 

Firm performance (Tobin’s Q): better performing firms will invest more in innovation and 

set up long term R&D plans to ensure their competitiveness. Following prior studies, we use 

the market value of assets over book value of assets (Tobin’s Q) as a proxy of the firm’s 

performance (Talke et al., 2011). 

Local characteristics that are closely related to innovative activities are taken into account 

as well
4
.Regional human capital (hrc): the availability of human capital is essential to 

                                                        
4
The ‘local’ or ‘regional’ in this research refers to the provincial level in China. Advantages for using this spatial 

level are discussed in Li (2009). 
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enhance innovation capability as it represents the capability to absorb and recognize external 

knowledge (Fu, 2008; Mankiw et al., 1992; Wang, 2010). The hrc in this research is 

calculated as the ratio of residents with tertiary degrees divided by regional total inhabitants. 

Moreover, the regional scale is closely related to inventive output as increasing returns to 

scale yield externalities (Feldman and Audretsch, 1999). To account for such impacts, we use 

the natural logarithm of the number of total employees (lscale) in a region as a proxy for the 

economic size of the region (Rodríguez-Pose and Crescenzi, 2008). We also expect that R&D 

activities thrive in regions with a high rate of economic and industrial growth since regions 

with higher pace of development may attract more foreign and indigenous investment for 

innovation and grow faster (Fu et al., 2011). We thus use regional GDP growth rate (gdpg) as 

a proxy to control for the effect of local economic growth potential across regions and sectors 

(Cheung and Lin, 2004). The definition, operationalization and data source of each variable 

are summarized in Table 1 below. 

 

-------------------------------------------- 

INSERT TABLE 1 ABOUT HERE 

-------------------------------------------- 

 

3.3 Model specification 

As the dependent variable in this study is a patent count variable and takes only nonnegative 

integer values, linear regression is inappropriate. This is mainly because the distribution of 

residuals of the dependent variable will be heteroscedastic and nonnormal. Poisson regression 

is recommended to model count data (Hausman et al., 1984). The Poisson distribution, 

however, requires that the mean and variance of the sample data are equal, which is a strong 

assumption that usually cannot be achieved as patent data often displays overdispersion, 

where the variance exceeds the mean (Hausman et al., 1984). As the descriptive statistics 

show in Table 2, the standard variation (S.E.=123.50) of firms’ patent number is much greater 

than the mean (Mean=12.47), indicating that our patent data is over-dispersed. 

Though the coefficients will be estimated consistently in the presence of over-dispersion, 

their standard errors will generally be underestimated which produces spurious high levels of 

significance (Cameron and Trivedi, 1986). Extant empirical studies suggest an alternative 

method, i.e., negative binomial regression, to deal with the over-dispersion problem of patent 

data (Almeida et al., 2002; Chang et al., 2006; Choi et al., 2011; Schilling and Phelps, 2007). 

As Hausman et al. (1984) suggests, the negative binomial model is a generation of the 

Poisson model which allows over-dispersion by incorporating an individual, unobserved 

effect into the conditional mean. In other words, we relax the variance restrictions of the 

underlying Poisson model. Blundell et al. (1995) suggested the conditional probability 

density function in the Poisson model for firmi,t is: 

 

Pr( | )
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                                          (3) 

 

In line with prior studies (Almeida et al., 2002; Chang et al., 2006; Choi et al., 2011), 

individual, unobserved effect was introduced into a conditional mean as follows: 

 

[ ] exp( )it it t it i i itE Y x z                                   (4) 

 

where exp(𝜀𝑖𝑡)~Г[1, 𝛼] , which means the error term is assumed to have a gamma 

distribution. The subscripts i and t mean that the parameter λ is allowed to vary across 
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individuals (i=1, 2, …, n) and year (t=1, 2, …, m). The parameter α is estimated directly from 

the data and captures overdispersion. 

The dynamic count data model of patent data on firms’ innovation capability was adopted, 

and we applied the negative binomial panel models with fixed effects to examine both the 

direct and interactive effects of foreign presence (fdii,t-1), specialization (spei,t-1) and diversity 

(divi,t-1) on innovation capability. The log-linear function of all covariates of this study can be 

showed as the following. 

 

1 , 1 2 , 1 3 , 1 4 , 1

5 7, 1 6 , 1 , 1 8 , 1

9 , 1 10 , 1 11 , 1 12 , 1

13 , 1 , 1 14 , 1

log

'

lsca

( ) (

it i i t i t i t i t

i t i t i t i t

i t i t i t i t

i t i t i t i

frd age size leverage

ROA Tobin sQ hrc gdpg

le fdi spe div

fdi spe fdi div

     

   

   

 

   

   

   

  

    

   

   

    , 1)t

            (5) 

 

As FDI knowledge spillovers take time to be absorbed and to have an effect on a firm’s 

innovation capability, we use a one year lag for all independent variables in our regression 

estimations (as shown in formula (5) above). Another advantage of lagging all independent 

variables by a year is that this procedure can remove possible endogeneity in the model (Fu, 

2008; Usai, 2011). Given that the length of gestation for inventive activities is varied, we 

additionally use two and three year lags for all independent variables in our estimations, 

which also serves as robustness tests for our results(Choi et al., 2011; Schilling and Phelps, 

2007).  

4 Results 
4.1 Descriptive analysis 

Table 2 shows the mean, standard deviation, and correlations of all variables. Most of the 

correlation coefficients for the independent variables are smaller than 0.10, indicating that the 

specific effects of explanatory variables will not be seriously affected by other control 

variables. Given that the biggest correlation value is -0.47 between regional human capital 

and scale, the Variance Inflation Factors (VIF) are computed. The VIF value for each 

independent variable is reported (Table 3).The average VIF value for each estimation are 

smaller than 2.0. The mean of all VIF values is 1.31, smaller than the recommended threshold 

of 10 (Belsley, 1980). Multicollinearity is therefore not a serious concern. 

 

-------------------------------------------- 

INSERT TABLE 2 ABOUT HERE 

-------------------------------------------- 

 

4.2 Estimation results 

Following prior studies, we use negative binomial panel regressions with fixed effects and 

report several fitness values of each model (e.g., Log Likelihood, Wald chi2, and VIF). 

Following Schilling and Phelps (2007), we also report estimates using negative binomial 

panel regressions with random effects as robustness tests (shown in the Appendix). To 

decrease any potential multicollinearity we standardize both the predictor (FDI) and 

moderator variables (specialization and diversity) before creating the interaction terms (Aiken 

and West, 1991). Moreover, as we explore a moderating effect in the empirical framework, 

we use the estimates of the full model (as shown in Equation (5)) to test if the interaction 

term is significant (Dawson, 2013).  

 

-------------------------------------------- 

INSERT TABLE 3 ABOUT HERE 
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Table 3 shows estimates for the three dependent variables (Patentsit+1; Patentsit+2; 

Patentsit+3). The results of the negative binomial regressions are reported separately for the 

three dependent variables. Models 1-3 report the results using a one-year lag between all 

independent variables and firm patenting (Patentsit+1). Models 4-6 report the results using a 

two-year lag between all independent variables and firm patenting (Patentsit+2). Models 7-9 

report the results using a three-year lag between all independent variables and firm patenting 

(Patentsit+3). For each dependent variable, the first models (i.e. 1, 4, 7 in Table 3) include firm 

and local characteristics only, the second models (2, 5, 8) add the direct effects of foreign 

presence (fdi), and the third model adds the interaction term, fdi×spe and fdi×div (i.e. 3, 6, 9). 

In hypothesis 1, we predicted FDI knowledge spillovers have a positive effect on 

innovation capability in indigenous firms. Table 3 shows that the main effect of FDI 

spillovers (fdi) is positive with a significance at 0.01 level (β=0.227, p<0.01, model 3 

(Patentsit+1)). This positive influence on firms’ patenting can also be found in longer year 

lagged settings (β=0.256, p<0.01, model 6 (Patentsit+2); β=0.252, p<0.01, model 9 

(Patentsit+3)), indicating that knowledge spillovers of FDI are beneficial for indigenous firms’ 

innovation capability and this argument is robust in various year-lagged settings. Therefore, 

hypothesis 1 is supported. 

In hypothesis 2, we predicted a positive effect of the interaction of foreign presence and 

diversity on firm patenting. In the one-year lagged model, the interaction term (fdi×div) is 

positive and highly significant (β=0.232, p<0.01, model 3 (Patentsit+1)). Moreover, the 

coefficient for fdi×div is positive and statistically significant in models using both two- and 

three-year lags (β=0.202, p<0.01, model 6 (Patentsit+2); β=0.155, p<0.01, model 9 

(Patentsit+3)). Therefore, hypothesis 2 receives strong support in models using different year 

lags. 

In hypothesis 3, we predicted a negative effect between the interaction of FDI and 

industrial specialization on innovation capability of firms. In the one-year lagged model, the 

interaction term, fdi×spe, is negative and is highly significance (β= -0.139, p<0.01, model 3 

(Patentsit+1)). Moreover, the coefficient for fdi×spe is negative and statistically significant in 

models using both two- and three-year lags (β= -0.154, p<0.01, model 6 (Patentsit+2); β= -

0.091, p<0.01, model 9 (Patentsit+3)). Therefore, hypothesis 3 received strong support in the 

models using different year lags.  

To illustrate the patterns of the significant moderating effects that support hypotheses 2 and 

3, in Table 3 we plot the effect of the interactions using Patentsit+1 as the dependent variable, 

illustrated in Figure 1 below. For ease of illustration and to help better interpret the results, 

the log-linear form of the negative binomial models in Table 3 was adopted to calculate 

interactive effects. 

 

-------------------------------------------- 

INSERT FIGURE 1 ABOUT HERE 

-------------------------------------------- 

 

Figure 1 shows the interaction plot of FDI knowledge spillovers and specialization (plot A) 

and FDI knowledge spillovers and diversity, respectively (plot B) in Patentsit+1. We use one 

standard deviation below and above the mean to denote the high and low levels of the 

moderating variables respectively. In plot (a) of Figure 1, the slope of “low specialization” 

(blue and solid line) is steeper than the slope of “high specialization” (red and dashed line). 

This is consistent with Hypothesis 3, indicating that firms in a local industrial structure with a 

lower level of specialization gain more benefits from the FDI knowledge spillovers in terms 
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of their improved innovation capabilities. Similarly, in plot (b) of Figure 1 the slope of “high 

diversity” (red and dashed line) is greater than the slope of “low diversity” (blue and solid 

line), implying that industrial diversity enhance the positive relationship between foreign 

presence and indigenous firms’ innovation capability, consistent with hypothesis 2.  

5 Discussion and conclusions 

Both FDI spill-overs and industrial externalities are believed to be crucial knowledge sources 

for spurring innovation. Here we explore the question of the potential interaction between 

FDI and industrial externalities on the innovation outputs (as captured by patent counts) of 

indigenous firms. We have shown that the effect of FDI knowledge spillovers is contingent 

on the degree of industrial specialization and diversity. By integrating three streams of 

literature, namely that on FDI knowledge spillovers, agglomeration economies, and EM firm 

innovation strategies, we contribute to the important question of how EM firms develop 

innovation capabilities. After controlling for the possible impacts of firm and local 

characteristics on innovation capability, we find that the positive effect of FDI knowledge 

spillovers is significant and robust in models with different time-lag specifications. More 

importantly, the moderating roles of industrial specialization and diversity are significant for 

different year-lag specifications in our estimations. These results not only provide robust 

support for our predictions, but also indicate that local agglomeration economies are a crucial 

factor impacting on the association between FDI knowledge spillovers and indigenous 

Chinese firms’ innovation capability. Our results suggest EM firms can more easily capture 

FDI spillovers in diverse industrial environments and that specialized industrial structures, by 

contrast,retard the capacity of EM firms to capture innovation spillovers.  

How do we explain these findings, which contrast with many studies for DM firms, which 

mostly have found that DM firms actually benefit from specialization? Beaudry and 

Schiffauerova’s (2009) review of 67 empirical studies (mostly of developed markets) 

exploring MAR and Jacobs externalities, for example, shows approximately 70% of these 

studies found a positive significant impact of MAR externalities on innovation. While many 

studies have also found negative impacts of one or both externality, the negative impacts are 

indeed more pronounced for MAR externalities, albeit only 27% of the 67 studies have found 

negative impacts for MAR (compared with only 3% of the 67 for Jacobs externalities). This 

leads Beaudry and Schiffauerova (2009: 320) to conclude the solely negative influence for 

MAR externalities is found ‘much more often’. An implication of our findings is that 

indigenous Chinese firms may find it hard to benefit from FDI spillovers in the presence of 

local industrial specialization, which is insignificant in various year lag model settings. Our 

estimates for industrial diversity, by contrast, suggest it exerts positive externalities on 

indigenous firm innovation capability, indicating that indigenous firms can benefit from a 

multidisciplinary knowledge base at the local level. This result supports the findings drawn 

from many other countries (i.e. de Lucio et al. (2002) and Neffke et al. (2010)) which have 

generally found positive outcomes for Jacobs externalities. Beaudry and Schiffauerova’s 

(2009) review, for example, found positive significant impact of MAR externalities on 

innovation or growth in 75% of the 67 studies reviewed in the case of Jacobs externalities.    

Digging inside the ‘black box’ of the firm to trace spillovers is generally considered an 

impossible task: ‘Knowledge spillovers are invisible and “leave no paper trail by which they 

may be measured or tracked” (Krugman, 1991, p.53) (Beaudry and Schiffauerova, 2009: 

321). Or, as Desrochers and Leppala (2011: 844) put it, spillovers are the convenient black-

box that provides ‘an escape route to avoid studying the specific mechanisms at play’. We 

can, however, speculate here as to why diversification may facilitate innovation in theEM 

context. The international business literature argues EM firms are inherently different to DM 

firms, and in large part this is because of their innovation strategies (Awate, Larsen and 

Mudambi, 2012, 2014). As ‘late-industrializers’ looking to ‘catch-up’, EM firms engage in 
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different kinds of strategies when learning from DM MNEs. In contrast to DM MNEs, EM 

firms initially look to intensively and opportunistically learn from foreign competitors and 

exploit an existing stock of knowledge. They may do so via linkage, leverage and learning, 

the so-called LLL model (Mathews, 2006; Tan and Mathews 2014). This differentiates them 

from DM firms. Part of the EM strategy, therefore, at least in the initial stages, involves 

imitation of existing foreign technologies, including product and process related practices 

(Amsden and Hikino, 1994; Awate, Larsen and Mudambi, 2014; Mathews, 2006). EM firms 

are comparatively indiscriminate in the technologies they look to acquire. In this scenario, 

industrial diversity provides a greater opportunity for technology acquisition owing to the 

elevated volume of opportunities made available to EM firms. Moreover, after the initial 

imitation stages subsequent innovation may also take place, often in an incremental manner 

building from the acquired foreign technology. Willamson and Yin (2013), for example, 

discuss what they refer to as ‘cost’, ‘application’ and ‘business model’ innovation in Chinese 

firms, which are in essence related to the further exploitation of a diverse range of foreign 

technologies. In later stages, therefore, they argue efforts to indigenously innovate take place 

(Willamson and Yin, 2013). This can also start with recombinant forms of the foreign 

technologies. In contrast to EM firms, moreover, the comparative evidence also suggests that 

DM firms generally find industrial specialization more favorable for their innovation 

strategies (Beaudry and Schiffauerova, 2009: 321). DM firms look to push technological 

boundaries and make breakthrough discoveries, rather than engage in the intensive imitative 

behaviors of EM firms (Awate, Larsen and Mudambi, 2014; Williamson and Yin, 2013; Tan 

and Mathews, 2014). Owing to the different strategies and endowments of both DM and EM 

firms, therefore, we can speculate as to why we find diversified industrial structures more 

appropriate in supporting EM firms to capture spillovers from FDI and what, therefore, may 

lie inside the ‘black box’ of the firm (Desrochers and Leppala, 2011).  

We can also draw some practical implications for both policy-makers and business 

practitioners. Firstly, with a relatively recent dataset of Chinese firms, the findings of this 

research demonstrate the positive role of FDI spillovers in affecting indigenous firm’ 

innovation capability (at least in terms of patenting activity). Policy-makers are thus 

suggested to not only attract FDI, but also establish diversified local industrial structures 

which are more likely to amplify the positive effects of FDI knowledge spillovers for 

indigenous firms’ innovation capability. Indigenous innovators will find it harder to gain 

advance knowledge or technical opportunities from a specialized industrial structure (Jiang et 

al., 2011; Kang and Jiang, 2012). Local governments may look to reshape local 

agglomeration economies. This may play an important role in helping Chinese firms improve 

their innovative capabilities and facilitate transition beyond the middle-income levels (and 

avoidance of the much discussed ‘middle-income-trap’ (World Bank, 2013)).In  regions with 

low levels of FDI, policy-makers may consider promoting indigenous innovation in local 

firms by increasing the degree of industrial diversity.  

Finally, the limitations in this study may be addressed in future research. Firstly, we used 

only Chinese publicly listed companies for our estimations. While this approach is used in 

many previous studies, (e,g., Choi et al. (2011)) in future enlarged datasets that encompass 

both listed and unlisted firms would be desirable. The comparative analyses of the roles of 

FDI knowledge spillovers and industrial structure in affecting different types of indigenous 

firms will extend the findings of this research. Secondly, we used the number of patents as the 

proxy for innovation capability. Other indicators, such as new product sales and total factor 

productivity are recommended in future research to verify these findings. Further, studies on 

MAR and Jacobs externalities are riven by problems concerning the appropriate unit of 

analysis (i.e. over what size of region should the spillovers be looked for?). Our approach 

follows fairly conventional procedures. Studies employing alternative approaches will be 
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useful in corroborating or otherwise the reliability of the observed relationships .Finally, we 

mainly focus on the interaction between FDI knowledge spillovers and industrial externalities 

on indigenous firm innovation capability. We do not account for a number of firm-level 

characteristics, such as absorptive capacity, ambidexterity of innovation, organizational 

culture and the like. Future studies may further examine how these firm-level attributes 

interact with industrial externalities and FDI to influence innovation.  
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Table 1 Definition and description of variables for firm level study 

Variable Acronym Operationalization Source 

Firm patent patenti,t Firm i’s patent count in year t SIPO website 

Firm R&D 

intensity 
frdi,t-1 Firm i’s R&D spending/sales in year t-1 CSMAR database 

Firm age agei,t-1 Year t minus firm i’s establishment year CSMAR database 

Firm size sizei,t-1 
Nature log of firm i’s total assets at the end 

of fiscal year t-1 
CSMAR database 

Firm leverage leveragei,t-1 
Firm i’s percentage of total debt over total 

equity in year t-1 
CSMAR database 

ROA ROAi,t-1 Firm i’s return on assets in year t-1 CSMAR database 

Tobin’s Q Tobin’sQi,t-1 
Firm i’s market value of assets over book 

value of assets in year t-1 
CSMAR database 

FDI intensity fdii,t-1 
Firm i’s regional FIEs’ product value/total 

product value in year t-1 

China Statistical 

Yearbook 

Specialization spei,t-1 
Firm i’s regional industrial specialization in 

year t-1, calculated using formula (1) 

China Industry 

Economy Statistical 

Yearbook 

Diversity divi,t-1 
Firm i’s regional industrial diversity in year 

t-1, calculated using formula (2) 

China Industry 

Economy Statistical 

Yearbook 

Human capital hrci,t-1 
Proportion of residents with a tertiary degree 

of the region where firm i located in year t-1 

China Statistical 

Yearbook on Science 

and Technology 

GDP growth rate gdpgi,t-1 
GDP growth rate of the region where firm i 

located in year t-1 

Database of China 

Main S&T Index 

Scale lscalei,t-1 
Nature log of total employment of the region 

where firm i located in year t-1 

Database of China 

Main S&T Index 
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Table 2 Descriptive statistics and correlation matrix of variables for the firm level study 

 Mean S.D. 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. patenti,t 12.47  123.50  1.00              

2. frdi,t-1 0.16  1.17  -0.01  1.00             

3. agei,t-1 10.64  4.48  0.02  0.03  1.00            

4. sizei,t-1 21.46  1.31  0.15  -0.08  0.10  1.00           

5. leveragei,t-1 1.39  6.67  0.00  0.00  0.05  0.13  1.00          

6. ROAi,t-1 0.04  0.10  0.02  0.12  -0.09  0.06  -0.06  1.00         

7. Tobin’sQi,t-1 1.72  1.52  -0.01  0.03  0.16  -0.27  -0.03  0.10  1.00        

8. fdii,t-1 (%) 39.95  26.97  0.06  0.01  0.17  0.12  0.02  0.05  0.04  1.00       

9. spei,t-1 0.96  0.34 -0.01  0.00  0.04  -0.01 0.00 -0.00  0.08 -0.20  1.00      

10. divi,t-1 0.90  0.04  -0.01  -0.01  0.04  -0.04  -0.01  0.04  0.06  -0.11  0.29  1.00     

11. hrci,t-1 8.82  6.69  0.03  -0.01  0.09  0.24  0.04  0.05  0.07  0.47  -0.15  -0.12  1.00    

12. gdpgi,t-1 (%) 12.30  2.22  0.00  0.01  0.17  0.05  0.02  0.01  0.00  0.09  -0.15  0.02  -0.04  1.00   

13.scalei,t-1 2932.83  1626.70  0.04  -0.02  0.07  -0.07  -0.03  0.05  0.07  -0.03  -0.02  0.38  -0.47  0.03  1.00  
Note: The unbalanced panel from 2000 to 2010. Correlation (absolute) value that bigger than 0.029 is at 0.05 significance. 
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Table 3 Negative binomial panel regressions (fixed effects) using patent number in t+1, 2, 3 as dependent variable 

 
Patentsit+1  Patentsit+2  

Patentsit+3 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Firm features           

R&D intensity 0.463*** 

(0.118) 

0.451*** 

(0.115) 

0.493*** 

(0.114) 
 

0.198 

(0.135) 

0.199 

(0.132) 

0.241* 

(0.131) 
 

0.270** 

(0.136) 

0.264** 

(0.133) 

0.293** 

(0.131) 

age 0.086*** 

(0.007) 

0.079*** 

(0.007) 

0.068*** 

(0.007) 
 

0.100*** 

(0.007) 

0.087*** 

(0.008) 

0.078*** 

(0.008) 
 

0.103*** 

(0.010) 

0.086*** 

(0.010) 

0.078*** 

(0.010) 

size 0.078*** 

(0.026) 

0.098*** 

(0.027) 

0.086*** 

(0.027) 
 

0.058** 

(0.029) 

0.078*** 

(0.029) 

0.067** 

(0.030) 
 

0.039 

(0.037) 

0.056 

(0.038) 

0.045 

(0.038) 

leverage -0.017*** 

(0.006) 

-0.017*** 

(0.006) 

-0.017*** 

(0.006) 
 

0.004 

(0.005) 

0.004 

(0.005) 

0.003 

(0.005) 
 

-0.014 

(0.014) 

-0.014 

(0.013) 

-0.013 

(0.012) 

ROA 1.003*** 

(0.342) 

1.021*** 

(0.343) 

0.986*** 

(0.341) 
 

0.624* 

(0.360) 

0.706* 

(0.365) 

0.721** 

(0.362) 
 

0.668* 

(0.399) 

0.721* 

(0.406) 

0.727* 

(0.404) 

Tobin’s Q 0.043** 

(0.017) 

0.053*** 

(0.017) 

0.037** 

(0.017) 
 

0.040* 

(0.023) 

0.042* 

(0.023) 

0.024 

(0.023) 
 

0.012 

(0.031) 

0.009 

(0.031) 

-0.007 

(0.032) 

Regional features           

human capital 0.061*** 

(0.006) 

0.045*** 

(0.006) 

0.051*** 

(0.006) 
 

0.049*** 

(0.006) 

0.028*** 

(0.007) 

0.035*** 

(0.007) 
 

0.040*** 

(0.008) 

0.018** 

(0.009) 

0.025*** 

(0.010) 

GDP growth 0.020** 

(0.009) 

0.013 

(0.009) 

0.028*** 

(0.009) 
 

0.034*** 

(0.009) 

0.027*** 

(0.009) 

0.039*** 

(0.009) 
 

0.076*** 

(0.011) 

0.071*** 

(0.011) 

0.079*** 

(0.011) 

lscale 0.585*** 

(0.054) 

0.558*** 

(0.054) 

0.577*** 

(0.056) 
 

0.447*** 

(0.057) 

0.407*** 

(0.057) 

0.450*** 

(0.062) 
 

0.308*** 

(0.065) 

0.282*** 

(0.065) 

0.339*** 

(0.071) 

Explanatory variables           

fdi 
 

0.008*** 

(0.001) 

0.227*** 

(0.034) 
  

0.009*** 

(0.001) 

0.256*** 

(0.037) 
  

0.009*** 

(0.002) 

0.252*** 

(0.045) 

specialization 
  

-0.030 

(0.032) 
   

-0.053* 

(0.030) 
   

-0.021 

(0.033) 

diversity 
  

0.175*** 

(0.037) 
   

0.142*** 

(0.038) 
   

0.085** 

(0.043) 

fdi×spe 
  

-0.139*** 

(0.034) 
   

-0.154*** 

(0.032) 
   

-0.091*** 

(0.033) 

fdi×div 
  

0.232*** 

(0.035) 
   

0.202*** 

(0.035) 
   

0.155*** 

(0.039) 

Constant -8.732*** 

(0.696) 

-8.957*** 

(0.702) 

-8.664*** 

(0.720) 
 

-7.224*** 

(0.751) 

-7.295*** 

(0.754) 

-7.151*** 

(0.780) 
 

-5.969*** 

(0.946) 

-6.032*** 

(0.945) 

-5.967*** 

(0.970) 
Log Likelihood -10072.71 -10053.47 -10022.06  -8930.82 -8909.07 -8884.04  -6495.01 -6480.26 -6469.72 

Wald chi2 941.66*** 964.32*** 1029.81***  633.62*** 679.99*** 731.74***  435.07*** 473.65*** 498.99*** 

VIF 1.18 1.25 1.52  1.19 1.27 1.55  1.21 1.29 1.58 

Firms 894 894 894  770 770 770  609 609 609 

Obs. 5452 5452 5452  4773 4773 4773  3385 3385 3385 

Note: The panel includes Chinese PLCs in the period of 2000 to 2010. Standard errors are reported in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 
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Table A1 Negative binomial panel regressions (random effects) using patent number in t+1, 2, 3 as dependent variable 

 
Patentsit+1  Patentsit+2  

Patentsit+3 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Firm features            

R&D intensity -0.035 

(0.055) 

-0.034 

(0.052) 

-0.031 

(0.046) 
 

-0.101 

(0.114) 

-0.095 

(0.111) 

-0.076 

(0.103) 
 

-0.040 

(0.070) 

-0.039 

(0.066) 

-0.036 

(0.055) 

age 0.056*** 

(0.006) 

0.048*** 

(0.006) 

0.035*** 

(0.006) 
 

0.072*** 

(0.007) 

0.058*** 

(0.007) 

0.046*** 

(0.007) 
 

0.067*** 

(0.009) 

0.049*** 

(0.009) 

0.039*** 

(0.009) 

size 0.083 

(0.024) 

0.106*** 

(0.024) 

0.092*** 

(0.025) 
 

0.074*** 

(0.027) 

0.096*** 

(0.027) 

0.084*** 

(0.027) 
 

0.071** 

(0.034) 

0.089*** 

(0.034) 

0.075** 

(0.034) 

leverage -0.016*** 

(0.006) 

-0.016*** 

(0.006) 

-0.015*** 

(0.006) 
 

0.002 

(0.004) 

0.001 

(0.004) 

0.001 

(0.004) 
 

-0.012 

(0.011) 

-0.012 

(0.011) 

-0.011 

(0.010) 

ROA 1.305*** 

(0.305) 

1.306*** 

(0.305) 

1.253*** 

(0.303) 
 

0.962*** 

(0.333) 

1.034*** 

(0.334) 

1.032*** 

(0.331) 
 

1.080*** 

(0.381) 

1.117*** 

(0.383) 

1.114*** 

(0.380) 

Tobin’s Q 0.035** 

(0.016) 

0.044*** 

(0.016) 

0.024 

(0.017) 
 

0.030 

(0.022) 

0.032 

(0.022) 

0.008 

(0.022) 
 

-0.016 

(0.030) 

-0.019 

(0.030) 

-0.045 

(0.031) 

Regional features           

human capital 0.080*** 

(0.005) 

0.062*** 

(0.006) 

0.070*** 

(0.006) 
 

0.063*** 

(0.006) 

0.038*** 

(0.006) 

0.047*** 

(0.007) 
 

0.054*** 

(0.007) 

0.027*** 

(0.008) 

0.037*** 

(0.008) 

GDP growth 0.028*** 

(0.008) 

0.019** 

(0.008) 

0.039*** 

(0.009) 
 

0.038*** 

(0.008) 

0.030*** 

(0.008) 

0.046*** 

(0.009) 
 

0.093*** 

(0.011) 

0.085*** 

(0.011) 

0.097*** 

(0.011) 

lscale 0.821*** 

(0.050) 

0.785*** 

(0.050) 

0.813*** 

(0.055) 
 

0.643*** 

(0.054) 

0.587*** 

(0.054) 

0.644*** 

(0.060) 
 

0.511*** 

(0.061) 

0.470*** 

(0.061) 

0.540*** 

(0.067) 

Explanatory variables           

fdi 
 

0.008*** 

(0.001) 

0.249*** 

(0.031) 
  

0.010*** 

(0.001) 

0.299*** 

(0.034) 
  

0.011*** 

(0.001) 

0.300*** 

(0.041) 

specialization 
  

-0.003 

(0.032) 
   

-0.042 

(0.030) 
   

-0.011 

(0.032) 

diversity 
  

0.200*** 

(0.036) 
   

0.179*** 

(0.036) 
   

0.133*** 

(0.041) 

fdi×spe 
  

-0.143*** 

(0.034) 
   

-0.169*** 

(0.032) 
   

-0.105*** 

(0.033) 

fdi×div 
  

0.295*** 

(0.033) 
   

0.268*** 

(0.033) 
   

0.220*** 

(0.037) 

Constant -10.57*** 

(0.641) 

-10.77*** 

(0.646) 

-10.52*** 

(0.664) 
 

-8.915*** 

(0.704) 

-8.826*** 

(0.707) 

-8.826*** 

(0.734) 
 

-8.127*** 

(0.860) 

-8.089*** 

(0.859) 

-7.997*** 

(0.884) 

Log Likelihood -15993.08 -15965.61 -15909.57  -13998.61 -13963.65 -13919.55  -10751.13 -10725.32 -10702.43 

Wald chi2 1029.9*** 1064.6*** 1186.3***  620.82*** 695.47*** 792.32***  433.41*** 497.41*** 552.57*** 

Firms 1524 1524 1524  1310 1310 1310  1175 1175 1175 

Obs. 9291 9291 9291  8065 8065 8065  5965 5965 5965 

Note: The panel includes Chinese PLCs in the period of 2000 to 2010. Standard errors are reported in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 
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(a) Moderating role of specialization 

 

 

 
(b) Moderating role of diversity 

 

Figure 1 Moderating plots of specialization and diversity on the association between foreign 

presence and indigenous firm’s innovation capability (Patentt+1) 
 

 

 


