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Abstract Numerical simulation of compositional flow problems commonly involves the use
of 1st- or 2nd-order Euler time stepping. Method of lines (MOL), using highly accurate and
efficient ODE solvers, is an alternative technique which, although frequently applied to the
solution of two-phase, two-component flow problems, has generally been overlooked for
problems concerning more than two components. This article presents the development of a
numerical simulator for 1D, compressible, two-phase, three-component, radially symmetric
flow using the method of lines (MOL) and a 3rd-order accurate spatial discretization using
a weighted essentially non-oscillatory (WENO) scheme. The MOL implementation enables
application of theMATLABODE solver, ODE15s, for time integration. Simulation examples
are presented in the context of CO2 injection into a reservoir containing a mixture of CH4 and
H2O. Following an assumption of constant equilibrium ratios forCO2 andCH4, a ternary flash
calculator is developed providing closed-form relationships for exact interpolation between
equations of state for CO2–H2O and CH4–H2O binary mixtures. The numerical code is
successfully tested and verified for a range of scenarios by comparison with an existing
analytical solution.

Keywords Enhanced gas recovery (EGR) ·CO2 injection ·Method of lines ·Compositional
flow · Analytical differentiation

1 Introduction

Continuum scale simulation of multi-component multi-phase (MCMP) flow in porous media
is often used to better understand a range of reservoir pore-space exploitation problems
including petroleum production, geothermal energy, groundwater management and waste
disposal. Generally, it is assumed that multiple fluid phases co-exist as volume fractions of
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2 S. Goudarzi et al.

an infinitesimal volume. These phases typically include aqueous liquid, non-aqueous liquid,
gas and solid. Each phase can represent a mixture of multiple components (e.g., H2O, CO2

and CH4). The volume fraction of the j th phase is mathematically represented as a volume
fraction of the pore space, often referred to as the saturation, S j [–]. Multiple components
are then considered as mass fractions of the various phases. For example, Xi j would denote
the mass fraction of the i th component in the j th phase.

Mathematical simulation of such problems involves solving a coupled set of conserva-
tion equations for each component (Orr 2007). Equations of state (EOS) are required to
understand how the components partition into different phases. This is particularly impor-
tant because the mobilities of the components are strongly controlled by their distribution
between the present fluid phases. Firstly, component mass fractions, Xi j , affect the viscosity
of the phases (Centeno et al. 2011). Secondly, the permeability available to each phase is a
nonlinear function of the phase saturations, S j (Mathias et al. 2013).

In the absence of diffusion and capillary pressure, this problem is governed by a set
of coupled hyperbolic and parabolic transport equations. Hyperbolic equations frequently
give rise to the formation of shocks, leading to difficulties with regard to obtaining accurate
solutions. Problems associated with one-dimensional transport of incompressible fluids, in
the absence of capillary pressure and under isothermal conditions, can be solved exactly using
the method of characteristics (Orr 2007). However, even under these restricting conditions,
great care must be taken when considering nonzero initial conditions and non-unity boundary
conditions (e.g., see Section 4.3 of Orr (2007)).

Alternative techniques involve the application of approximatemethods. The spatial dimen-
sion is typically treated using conservative methods such as finite volume (Chen et al. 2006,
p. 128). Alternatively, one can consider the use of finite elements (Chen et al. 2006, p. 94)
or pseudospectral methods (van Reeuwijk et al. 2009). Such spatial schemes give rise to
either stability problems or numerical diffusion due to truncation terms associated with the
Taylor’s expansion, the latter of which can be reduced using flux limiters or their variants
(e.g., Mallison et al. 2005).

Handling of the temporal term, which is critical to resolving the nonlinear nature of the
problem, generally revolves around the choice of explicit or implicit treatment. Fully explicit
treatment, although easier to implement, can run into severe time-step limitations due to
the well-known Courant–Friedrichs–Lewy (CFL) condition. Fully implicit treatment leads
to an unconditionally stable solution (as far as time stepping is concerned), but leads to
additional numerical diffusion. Furthermore, implementation of the solution is significantly
more challenging.

Popular approaches for solving MCMP problems in this context are the so-called semi-
implicitmethods, themost common variant ofwhich is referred to as implicit pressure explicit
saturation (ImPES) (Chen et al. 2006) or implicit pressure explicit mass (ImPEM). In ImPES,
the governing equations are rearranged to identify a transport equation of hyperbolic (or nearly
hyperbolic) nature and a pressure equation (of parabolic or elliptic character). The pressure
equation is solved implicitly which allows for larger time steps. The transport equation
is solved explicitly, allowing easier implementation and reduced computational memory
requirements, hence the semi-implicitness. Both the implicit time stepping and explicit time
stepping typically employ simple first-order schemes.

Multi-step multi-order time integration algorithms (Shampine and Reichelt 1997) rep-
resent an alternative method, which treats the temporal term in a more accurate fashion.
These techniques maintain a specific time integration error while maximizing the time-step
size. Moreover, due to the wide availability (e.g., MATLAB or FORTRAN with NAG) of
high-quality solvers and simplicity of implementation, there is no need to redevelop the
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sophisticated solution algorithms. Rather, the so-called method of lines (MOL) approach
can be taken. In this case, the partial differential equations (PDE) are discretized in space to
form a set of coupled ordinary differential equations (Wouwer et al. 2005). These can then
be solved simultaneously using any ordinary differential equation (ODE) solver of choice.

For two-phase immiscible flow, where one of the phases is treated as inviscid, the MCMP
problem reduces to a single PDE often referred to as Richards’ equation (RE). This equation
is commonly solved to better understand hydrological problems associated with unsaturated
soils. Numerical studies by Farthing et al. (2003) and Kees andMiller (2002) have shown that
applyingMOLwith higher-order time integration to the solution ofRE leads to both improved
accuracy and computational efficiency. Indeed, there are many recent articles (Mathias et al.
2006, 2008b; Ireson et al. 2009) reporting MOL solutions of RE using the MATLAB ODE
solver, ODE15s, which is particularly suitable for stiff systems of ODEs (Shampine and
Reichelt 1997). ODE15s has also been found to provide useful solutions to non-Darcian flow
problems (Mathias et al. 2008a; Mathias and Wen 2015; Wen et al. 2009) and two-phase
immiscible flow problems (Mathias et al. 2009).

Often when dealing with partial differential equations, it is useful to distinguish between
dependent and independent variables (Stroud and Booth 2007, p. 122). In this case, time and
space are independent variables. All other variables are dependent variables.

Application of MATLAB ODE solvers to multi-component partially miscible problems
has proven more challenging. Consider Nc components residing in Np phases. The problem
will be defined by Nc mass conservation equations. However, considering the various values
of S j and Xi j , it can be understood that there will be at least (Nc+1)Np dependent variables.
It is therefore necessary to choose Nc dependent variables to solve for. Special care should
be taken to ensure that the dependent variables selected are persistent (Amaziane et al. 2012;
Bourgeat et al. 2013). This selected set of dependent variables is hereafter referred to as the
primary dependent variables (PDV).

When using anODE solver, the usermust construct anODE function.Within this function,
a scalar value of time is provided as an input alongwith an associated vector of the PDVs. The
user must define the ODE function such that it calculates the derivatives of the PDVs with
respect to time, which generally involves using a combination of chain rule and product rule
differentiation. This results in a need to evaluate the partial derivatives of the bulk fluid mass
per unit pore space, F [ML−3], with respect to each component mass fraction, zi [–] (these
terms will be mathematically defined later in the article). For conventional first-order time
stepping, it is arguably acceptable to evaluate these derivatives using first or second-order
finite differencing. However, given the high accuracy associated with the use of MATLAB’s
ODE solvers, it is pertinent to obtain these derivatives in exact form wherever possible.

There aremany detailed works concerning applications ofMOL for immiscible two-phase
flow and two-component two-phase flow problems (e.g., Amaziane et al. 2012; Vohralik and
Wheeler 2013; Bourgeat et al. 2013; Mathias et al. 2014). Mallison et al. (2005) present
a numerical simulation of an MCMP problem using MOL in conjunction with a 3rd- and
4th-order Runge–Kutta time integration method. However, Mallison et al. (2005) provide no
discussion concerning the casting of equations in terms of PDVs. Indeed, little information
is available as to how to obtain exact equations to describe the necessary partial derivatives,
∂F/∂zi , needed to solve MCMP problems for situations concerning more than two compo-
nents. In this article, we focus on obtaining such expressions for three-component two-phase
problems. These are implemented within a radial flow simulator using MATLAB. Compar-
isons are then made, in the context of enhanced gas recovery by CO2 injection, with an
associated analytical solution, previously presented by Hosseini et al. (2012).
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4 S. Goudarzi et al.

2 Governing Equations

Consider three components: CO2, CH4 and H2O, denoted hereafter as i = 1, 2 and 3, respec-
tively. The three components can partition into a gas phase and an aqueous liquid phases,
denoted hereafter as j = 1 and 2, respectively. A horizontally orientated, homogeneous and
isotropic cylindrical reservoir of radius, re [L], and formation thickness, H [L], is invoked.
The reservoir is initially filled with a mixture of CH4 and H2O·CO2 is injected into the center
of the reservoir via a fully completed vertically orientated injection well of radius, rw [L].
Fluid flow is assumed to be one-dimensional such that the problem reduces to the following
set of one-dimensional radially symmetric conservation equations:

∂Gi

∂t
= −1

r

∂(r Hi )

∂r
, i = 1, 2, . . . Nc (1)

where t [T] is time, r [L] is radial distance from the injection well, Nc [–] is the number of
components considered, and Gi [ML−3] and Hi [ML−2T−1] are the mass of component i
per unit volume of rock and mass flux of component i , respectively, found from:

Gi = φ

Np∑

j=1

ρ j Xi j S j (2)

Hi =
Np∑

j=1

ρ j Xi j q j (3)

where φ [–] is the reservoir porosity, Np [–] is the number of phases considered, ρ j [ML−3],
S j [–] and q j [LT−1] are the density, saturation (a volume fraction of the pore space) and
volumetric fluid flux of phase j , respectively, and Xi j [–] is the mass fraction of component
i in phase j . Note that

∑
i=1Nc Xi j = 1 and

∑
j=1Np S j = 1.

The volumetric fluxes are calculated using Darcy’s law:

q j = − k
kr j
μ j

∂Pj

∂r
(4)

where k [L2] is the reservoir permeability and kr j [–], μ j [ML−1T−1] and Pj [ML−1T−2]
are the relative permeability, dynamic viscosity and pressure of the j th phase, respectively.

For two-phase flow, without loss of generality, the relative permeability functions are
assumed to take the form of power laws (Mathias et al. 2013):

kr1 = kr10

(
S1 − S1c

1 − S1c − S2c

)n1
, S1c ≤ S1 ≤ 1 − S2c (5)

kr2 = kr20

(
S2 − S2c

1 − S1c − S2c

)n2
, S2c ≤ S2 ≤ 1 − S1c (6)

where S jc [–], kr j0 [–] and n j [–] are the critical saturation, end-point relative permeability
and power-law exponent for phase j , respectively.

Furthermore, it is assumed that the following density mixing rule applies (Orr 2007)

ρ j =
( Nc∑

i=1

Xi j

ρi j

)−1

(7)

where ρi j [ML−3] is the density of the i th component in the j th phase.
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3 Recasting in Terms of Primary Dependent Variables

An appropriate choice of primary dependent variables (PDVs) to solve for is the global fluid
pressure, P [ML−1T−2], defined in this case by Chen et al. (2006), p. 342

P =
Np∑

j=1

S j Pj (8)

and the bulk mass fraction of each component, zi [–], defined by

zi = Gi/F (9)

where F [ML−3] is the bulk fluid mass per unit volume of rock

F =
Nc∑

i=1

Gi = φ

Np∑

j=1

ρ j S j (10)

Note that
∑Nc

i=1 zi = 1.
In some previous studies, the mass of each component per unit volume of rock, Gi , has

also proven effective as PDVs in this context (Amaziane et al. 2012; Bourgeat et al. 2013).
However, an advantage of using P and zi (for i = 1, 2, . . . Nc − 1) as PDVs (as opposed
to say Gi ) is that zi are independent of P . For a given volume of fluid mixture, the mass
fractions of each component, zi , will not change with pressure. However, the associated mass
of each component per volume of rock, Gi , may change with pressure, depending on how
the individual component mass densities, ρi j , vary with pressure. Furthermore, zi are the
variables used in the ternary diagram (discussed later in the article), which determine the
equilibrium properties of the three-component fluid mixture.

Differentiating Eq. (9) with respect to time leads to

∂zi
∂t

= 1

F

(
∂Gi

∂t
− zi

∂F

∂t

)
(11)

where, from Eqs. (1) and (10)

∂F

∂t
= −1

r

Nc∑

i=1

∂(r Hi )

∂r
(12)

Application of the chain rule to Eq. (10) and rearranging leads to

∂P

∂t
=

(
∂F

∂P

)−1
(

∂F

∂t
−

Nc−1∑

i=1

∂F

∂zi

∂zi
∂t

)
(13)

The main focus of this article is the derivation and application of exact formulae for the
relationships defining ∂F/∂P and ∂F/∂zi for i = 1, 2, . . . , Nc−1. Note that Eqs. (11)–(13)
are important because they directly relate the time derivatives of the PDVs to the original
mass conservation statements.
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4 Differentiating the F Function

Considering the identity in Eq. (10), the total derivative of F can be written as

dF = F
dφ

φ
+ φ

Np∑

j=1

S jρ j

(
dρ j

ρ j
+ dS j

S j

)
(14)

When there are only two phases, S2 = 1− S1. From Eqs. (2), (9) and (10), it can then be
understood that

S1 =
[
1 − ρ1(zi − Xi1)

ρ2(zi − Xi2)

]−1

(15)

which on differentiation leads to

dS1
S1

= S2

2∑

j=1

(−1) j
[
dρ j

ρ j
+

(
dzi − dXi j

zi − Xi j

)]
(16)

Invoking Eq. (7), it can also be shown that

dρ j

ρ j
= ρ j

Nc∑

i=1

Xi j

ρi j

(
dρi j
ρi j

− dXi j

Xi j

)
(17)

It is now assumed that component densities are unaffected by composition such that
∂ρi j/∂zi = 0. Additionally noting that

∂zi
∂zk

= 0, i �= k (18)

the remaining challenge is to define the dXi j terms.
The terms Xi j can be further defined by:

Xi j =
{
zi , S1 = 0, 1
xi j , 0 < S1 < 1

(19)

where xi j [–] are the equilibrium mass fractions of the i th component in the j th phase within
the two-phase region. Then dXi j is given by:

∂Xi j

∂zi
=

⎧
⎨

⎩

1, S1 = 0, 1
∂xi j
∂zi

, 0 < S1 < 1
(20)

∂Xi j

∂P
=

{
0, S1 = 0, 1
∂xi j
∂P

, 0 < S1 < 1
(21)

It is important to note that for two-component two-phase problems, xi j only varies with
pressure. However, for three-component two-phase systems, the problem is much more com-
plicated because the equilibrium constants, xi j , are no longer constant with composition (i.e.,
z1 and z2).

EOSs for the binary mixtures of CO2–H2O and CH4–H2O are well characterized by
relatively simple sets of equations. In this work, the binary mixture properties of CO2–H2O
and CH4–H2O were obtained using expressions provided by Spycher et al. (2003) and Duan
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Liquid

Gas

Two-Phase

C1

C3 C2

a32

a21a22

a31

Fig. 1 Illustration of a two-phase three-component system on a ternary diagram.Tie-lines are shown as dashed
lines. The barycentric coordinates of points of the ternary diagram correspond to the total composition of the
fluid mixture

and Mao (2006), respectively. These can be joined together to form a ternary system by
assuming that the equilibrium ratios, Ki [–], defined as

Ki = xi1
xi2

, (22)

for components 1 and 2 (but not 3) do not vary with composition.
When K1 and K2 are constant, the two-phase region, for a given temperature and pressure,

is defined by two straight lines on a ternary diagram (see Fig. 1). Consequently, following
the work of Juanes (2008), it can be shown that values of xi j can be related back to their
values obtained from the binary mixtures, ai j , by the set of linear equations:

x1 j = Aa1 j and x2 j = (1 − A)a2 j (23)

where a1 j = x1 j when z2 = 0, a2 j = x2 j when z1 = 0 and A [–] is a weighting parameter
that linearly interpolates between the bounding tie-lines that coincide with the z2 and z3 axes
of the ternary diagram. Writing out Eq. (23) for components 1 and 2 and eliminating A lead
to:

ai1xi2 = ai2xi1 and x2 j = (a1 j − x1 j )a2 j/a1 j (24)

Similarly it can be said that, on a given tie-line in the two-phase region,

zi = Bxi1 + (1 − B)xi2 (25)

where B [–] is a weighting parameter that linearly interpolates between the bounding lines
that define the two-phase region of the ternary diagram. Writing Eq. (25) out for components
1 and 2 and then eliminating B lead to

(z1 − x12)(x21 − x22) = (z2 − x22)(x11 − x12) (26)

Note that the equilibrium ratio for H2O (component 3) is not necessarily constant and is
defined by the relationship

K3 = 1 − x11 − x21
1 − x12 − x22

(27)
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Using Eq. (24) to eliminate the xi2 and x2 j terms yields the quadratic equation

0 = T2x
2
11 + T1x11 + T0 (28)

where

T0 = (a21 − a22)a11z1 (29)

T1 = (a11 − a12)(a22 − z2) − (a21 − a22)(a12 + z1) (30)

T2 = (a12a21 − a11a22)/a11 (31)

which has the solutions

x11 =
−T1 ±

√
T 2
1 − 4T0T2

2T2
(32)

Equation (32) gives an explicit expression for x11 with respect to z1 and z2. Furthermore,
from Eq. (28) we have the total derivative of x11:

dx11 = − x211dT2 + x11dT1 + dT0
2T2x11 + T1

(33)

where

dT0 = (da21 − da22)a11z1 + (a21 − a22)(a11dz1 + da11z1) (34)

dT1 = (da11 − da12)(a22 − z2) + (a11 − a12)(da22 − dz2)

− (da21 − da22)(a12 + z1) − (a21 − a22)(da12 + dz1) (35)

dT2 = da12
a21
a11

+ da21
a12
a11

− da11
a12a21
a211

− da22 (36)

which, in conjunction with Eq. (24), provides expressions for all the other derivatives, dxi j .
Expressions for dXi j can then be obtained from Eqs. (21) and (20).

5 Additional Considerations Required for Accommodating Capillary
Pressure

When capillary pressures can be assumed negligible, the information in this section can
be ignored. However, for non-negligible capillary pressure, the fluid properties xi j and ρi j
should be calculated from the phase pressure, Pj , as opposed to the global pressure, P . An
equation of state can provide derivatives of these variables with respect to Pj . But to obtain
derivatives with respect to P , the following transformations must be applied:

∂xi j
∂P

= ∂Pj

∂P

∂xi j
∂Pj

(37)

∂ρi j

∂P
= ∂Pj

∂P

∂ρi j

∂Pj
(38)

For two-phase flow systems, Eq. (8) reduces to

Pj = P − (−1) j (1 − S j )Pc (39)

where Pc = P1 − P2 is the capillary pressure.
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Noting that Pc is generally expressed uniquely as a function of S1 (e.g., van Genuchten
1980) and that dS1 = −dS2, differentiating Eq. (39) with respect to P leads to

∂Pj

∂P
= 1 −

(
Pc + (−1) j (1 − S j )

∂Pc
∂S1

)
∂S1
∂P

(40)

Recalling Eq. (16) and that zi are independent of P , it can be said that

1

S1

∂S1
∂P

= S2

2∑

j=1

Y j
∂Pj

∂P
(41)

where

Y j = (−1) j
[
1

ρ j

∂ρ j

∂Pj
− 1

(zi − Xi j )

∂Xi j

∂Pj

]
(42)

from which we obtain

∂S1
∂P

=
⎡

⎣ 1

S1S2
+

2∑

j=1

(
Pc + (−1) j (1 − S j )

∂Pc
∂S1

)
Y j

⎤

⎦
−1

2∑

j=1

Y j (43)

6 Numerical Solution

A weighted essentially non-oscillatory (WENO) scheme (Shu 2009) was used to approxi-
mate the flux, Hi , in Eq. (1). For more details on the WENO method and its applications,
the reader is referred to Coralic and Colonius (2014), Noelle et al. (2007) and Zhang and
Shu (2012) and references therein. The WENO scheme implemented here uses a 2nd-order
stencil to approximate the flux at the mid-points (k + 1/2 and k − 1/2). A central difference
approximation is then used to evaluate the derivative of the flux at grid point k, which is
3rd-order accurate in space (Shu 2009):

(
∂Gi

∂t

)

k
= − 1

rk

[
rk+ 1

2
(Hi )k+ 1

2
− rk− 1

2
(Hi )k− 1

2

rk+ 1
2

− rk− 1
2

]
(44)

The pressure derivative contained within the (Hi )k+ 1
2
term was approximated using the

following central difference expression:
(

∂P

∂r

)

k+ 1
2

= Pk+1 − Pk
rk+1 − rk

(45)

The Jacobianmatrix is amatrix describing the dependencies of each equation in the system
of equations on every other equation. In this problem, we are solving for three PDVs, which,
by virtue of the discretised conservation equations, are mutually dependent on one another.
Conventional second-order finite difference approximations of second-order derivatives at a
grid point, k, will depend on three points, namely k − 1, k and k + 1. However, when using
theWENO scheme described above, additional information from k−2 and k+2 is required,
leading to a penta-diagonal structure for the Jacobian matrix. For systems of equations with
more than one PDV, a so-called block-diagonal structure is formed.

InMATLAB, it is possible to provide the ODE solver with the Jacobian pattern as a sparse
matrix of zeros and ones to indicate where the Jacobianmatrix is nonzero. This tells the solver
to only evaluate the sparse system and not the full matrix. In stiff problems with non-constant
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0 10 20 30

0

10

20

30

nz = 396

P

z2

z1

P z2z1

Fig. 2 Block penta-diagonal Jacobian pattern for the sparse system for n = 10 grid points and 3 PDVs (nz
number of nonzero elements)

Jacobian matrices, specifying the Jacobian pattern a priori can lead to significant savings in
computation time.A pictorial representation of the Jacobian pattern for the problemdiscussed
in this article is presented in Fig. 2.

Spatial gridswere locally refined near thewell bore and gradually coarsened away from the
injection well to ensure simulation stability. Simulation time steps are refined automatically
using MATLAB’s ODE15s adaptive time stepping scheme. ODE15s is particularly suitable
for stiff problems where the governing equations include a combination of terms that lead to
rapid variation in the solution and terms that vary slowly. For the problem described in this
article, compositions propagate very slowly thorough the reservoir compared to the pressure
waves, which move much more rapidly.

ODE15s is a multi-order multi-step solver. The scalar relative error tolerance and the
absolute error tolerance are set to MATLAs default values, 10−3 and 10−6, respectively. For
more information about how the solver is implemented, readers are referred to Shampine and
Reichelt (1997) and Shampine and Thompson (2001).

7 Model Verification

Results from the numerical solution (implemented in MATLAB) were compared against
results from the analytical solution by Hosseini et al. (2012). Both models assume a fully
completed well at the center of a 1D radially symmetric flow field of radial extent, re. Cap-
illary pressure, molecular diffusion and gravity effects were neglected. Initial and boundary
conditions were applied as follows:
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Table 1 Model parameters used
for verification of the numerical
simulation

Parameter (unit) Deep Shallow

P0, initial pressure (MPa) 32 10

T , temperature (◦C) 124 40

M0, injection rate (kg/s) 16.21 16.21

rw , well radius (m) 0.25 0.25

re , reservoir radius (km) 13.7 13.7

φ, porosity (−) 0.2 0.2

k, permeability (m2) 10−13 10−13

H , formation thickness (m) 50 50

Table 2 Relative permeability
model parameters used in Eqs.
(5) and (6)

Parameter

S1c , critical gas saturation 0.10

S2c , residual aqueous phase saturation 0.50

kr10, gas end-point relative permeability 0.30

kr20, liquid end-point relative permeability 0.512

n1 = n2, power-law exponents 3.0

z1 = 0, rw ≤ r ≤ re, t = 0

S1 = S10, rw ≤ r ≤ re, t = 0

P = P0, rw ≤ r ≤ re, t = 0

H1 = M0/(2πrwH), r = rw, t > 0

H2 = 0, r = rw, t > 0

H3 = 0, r = rw, t > 0

H1 = 0, r = re, t > 0

H2 = 0, r = re, t > 0

H3 = 0, r = re, t > 0 (46)

where S10 [–] is the initial gas saturation and the other parameters are as specified in Tables
1 and 2.

Figure 3 shows gas saturation profiles for CO2 injection into deep (Fig. 3a, b) and shallow
(Fig. 3c, d) reservoirs with 10% residual CH4, during a simulation period of 1000days.
The solid lines and dashed lines represent results from the analytical solution and numerical
solution, respectively.

The high gas saturation around the injection well, often referred to as a dry-out zone
(Mathias et al. 2011), is due to the vaporization of the residual water saturation by the injected
CO2. A CH4 bank with about 22% gas saturation in front of the CO2 plume develops. The
length of the CH4 bank increases with time. Correspondence between the analytical solution
and thenumerical solution is verygood for both gas phase saturation andpressure buildup.The
numerical solution is seen to accurately locate the associated shock fronts while considering
the partial miscibility of both CO2 and CH4 in H2O.
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Fig. 3 a Comparison of gas
saturation profiles between the
analytical and numerical
simulation of CO2 injection into
a deep reservoir with initial gas
saturation, S10 = 0.1, after 10,
100 and 1000days.
b Corresponding pressure
profiles for deep reservoir. c Gas
saturation profiles for a shallow
reservoir. d Corresponding
pressure profiles for a shallow
reservoir. A total of 300 nodes
were used for the numerical
simulation
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For the shallow reservoir, just ahead of the CH4 bank, it can be seen that the numerical
solution predicts a slightly lower gas saturation as compared to the analytical solution. This is
due to the fact that the analytical solution assumes constant fluid properties and hence is not
capturing volume change effects due to pressure change. This discrepancy is not noticeable
for the deep reservoir because the gas compressibility is a lot lower at 34MPa.
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Fig. 4 The same as Fig. 3 but
only showing profiles after
1000days and assuming initial
gas saturations, S10, of 0.02, 0.05
and 0.1
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The possibility that the above-mentioned discrepancy was due to insufficient mesh refine-
ment was investigated by comparing simulation results using a 600 point grid and a 900 point
grid. The comparison study confirmed that the discrepancy was not due to numerical error.

Similar simulations but with different initial gas saturations are compared in Fig. 4. It
is found that the extent of the dry-out region is insensitive to the initial gas saturation. The
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extent of the dry-out region is smaller for the shallow reservoir, and the volume of the gas
plume is larger. The reduced dry-out region, in this case, is due to the reduced evaporation that
occurs at cooler temperatures. The increased gas volume is due to the reduced gas density
that occurs at lower pressures. Again it can be seen that the numerical solution is able to
accurately predict the analytical results of Hosseini et al. (2012).

7.1 Numerical Solution Performance

The performance of the MOL numerical solution was explored further through a grid con-
vergence study. The shallow reservoir scenario, depicted in Fig. 3c, d, was repeated using
different numbers of grid cells. Numerical solution performance was quantified by calculat-
ing the mean absolute normalized error (MANE) between results (from each grid cell) from
the numerical solution and those from the analytical solution for a given time. Figure 5 shows
a plot of MANE for gas saturation and pressure for the different times previously presented
in Fig. 3c, d. Grid convergence can be seen to have been achieved at around 300 grid cells.

The converged MANE for pressure is around 0.02%. However, the converged MANE for
gas saturation is quite high at around 0.25%. This is due to conceptual differences between
the numerical solution and the analytical solution. Recall that the analytical solution assumes
constant fluid properties, whereas the numerical solution is allowing for variations of fluid
properties with pressure and composition, as discussed above. Hosseini et al. (2012) were
able to achieve a very similar level of accuracy for a very similar set of simulations using the
commercial reservoir simulator, CMGGEM (ComputerModelingGroup Ltd. 2015) (see Fig.
5 of Hosseini et al. (2012)). GEM uses an adaptive-implicit solver as described by Collins
et al. (1992).

In terms of computation time, the 300 grid cell numerical solution using our new MOL
approach was able to simulate 1000days of gas injection in around 5min using an Intel Xeon
CPU E5-2630 2.30GHz (2 processors). For comparison, the GEM simulations undertaken

Fig. 5 Mean absolute
normalized error (MANE)
between the numerical and
analytical pressure and gas
saturation values for different
times, plotted against the number
of grid cells used for the shallow
reservoir case previously
depicted in Fig. 3c and d
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by Hosseini et al. (2012) took around 2h on an Intel Xeon CPU E5-2687 3.10GHz (2
processors) (Hosseini, 2015, Personal Communications). Clearly, our new MOL solution
has the potential to offer significant computation time savings in this context.

8 Effect of Initial Gas Saturation

Aswas shown in the previous section, numerical simulations of CO2 injection into a reservoir
containing CH4 predict the accumulation of a CH4 bank at the head of the CO2 plume
(Oldenburg and Doughty 2011; Battistelli and Marcolini 2009; Taggart 2010).

The system in discussion can be differentiated into three regions (Hosseini et al. 2012).
These regions, starting from the injection point and moving outward, are:

1. a single-phase, dry-out region around the well bore filled with pure CO2.
2. a two-phase, two-component system containing CO2 and H2O.
3. a two-phase, two-component system containing CH4 and H2O.

Within the two-phase mixture, each phase propagates at a rate according to its mobility.
Themobility of each phase varies from one region to another due to associated compositional
changes. As a consequence, a trailing shock forms at the contact between regions (1) and (2)
and a leading shock forms at the contact between regions (2) and (3).

The development of theCH4 bank ahead of theCO2 has been explained as follows (Taggart
2010; Oldenburg and Doughty 2011; Hosseini et al. 2012). As CO2 is injected, it partitions
into the gas phase and the aqueous phase. The initially dissolved CH4 exsolves immediately
and is then pushed ahead of the growing CO2 plume leading to the development of a CH4

bank (Oldenburg andDoughty 2011).Mathematically, the system is constrained to constantly
enter and leave the two-phase region along the tie-lines representing the injection and initial
compositions; therefore, the leading CH4 bank is free from injected gas, CO2 (Taggart 2010).

Intuitively, it is expected that the amount of CH4 initially present should affect themethane
bank saturation; the more the initial CH4 saturation, the higher the bank saturation. However,
numerical simulation of CO2 injection for different initial gas saturations (everything else
being the same), shows that the bank saturation is independent of the initial CH4 saturation
(see Figs. 4, 7). In fact, Hosseini et al. (2012) showed mathematically that the CH4 bank
saturation is independent of the initial gas saturation.

This can be further explained using the principles of fractional flow theory (Pope 1980;Orr
2007). Because of the differences in phase viscosities in the two-phase region (i.e., between
mixtures of CO2–H2O and CH4–H2O), flow occurs on different fractional flow curves in
the two-phase region (Fig. 7). Figure 7a, c and e shows the fractional flow curves (plots of
Hi/ρi1 against Gi/ρi1) for CO2 and CH4 along with the locations of the shock fronts for
different initial gas saturations.

The partial derivative ∂Hi/∂Gi represents the wave velocity of the system. The wave
velocities of the shock fronts are found from the gradients of straight lines that link the two
conditions on either side of the shock. Fractional flow theory dictates that valid solutions
should satisfy both the velocity constraint and the so-called entropy constraint (Orr 2007).
The velocity constraint implies that wave velocity should always decrease with increasing
distance from the injection boundary. The entropy constraint implies that the shock wave
velocity should be equal to the gradient of the fractional flow curve immediately upstream
of the shock.

Due to the zero initial condition for G1, the only valid path on the CO2 fractional flow
curve is a tangent (i.e., (0,0) to L). On the other hand, velocities must be equal at the contact
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Fig. 6 Schematic diagram
illustrating the three-region
system associated with CO2
injection into a reservoir initially
containing CH4 and H2O.
Jinjection, T trailing shock,
L leading shock, G gas bank,
I initial
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between a pair of different fluids (Pope 1980) (i.e., points G and L in Fig. 6). This means
that the gas bank saturation (point G) is dictated by the intersection of the tangent to the CO2

curve with the CH4 curve.
Figure 7b, d and f shows the corresponding saturation profiles for different initial gas

saturations. The level of saturation at point G is always determined by the tangent from (0,0)
to point L. Physically, this implies that the bank saturation is only dependent on how fast the
injected gas propagates. The solid and dashed lines in Fig. 7b, d and f are from the analytical
solution and numerical solution, respectively. There is an excellent correspondence between
the two. The analytical solution was developed on the basis of the fractional theory described
above. The numerical solution therefore further confirms the finding of Hosseini et al. (2012)
that the CH4 bank saturation is independent of the initial gas saturation.

However, if the initial gas saturation is sufficiently high it may not be possible to build a
solution that travels from the initial condition (point I in Fig 6) to the intersection point of
the tangent line with the CH4 fractional flow curve (point G in Fig 6). As a consequence, a
CH4 bank will no longer be present. Therefore, it should be noted that the existence of the
CH4 bank is dependent on the initial gas saturation (LaForce and Johns 2010). Nevertheless,
providing the CH4 bank exists, the CH4 bank saturation is independent of the initial gas
saturation.

9 Summary and Conclusions

A numerical simulator was developed for 1D, compressible, two-phase, three-component,
radially symmetric flow using the method of lines (MOL) and a 3rd-order accurate spa-
tial discretization using weighted essentially non-oscillatory (WENO) scheme. The MOL
implementation enabled application of the state-of-the-art MATLAB ODE solver, ODE15s,
for time integration. Pressure and overall component mass fraction (zi ) were selected as
the primary dependent variables (PDV). The sparsity of the system of equations was taken
advantage of by provision of a penta-diagonal Jacobian pattern for the ODE solver. Simula-
tion examples were developed in the context of CO2 into a reservoir containing a mixture of
CH4 and H2O.

Following an assumption of constant equilibrium ratios (Ki ) for CO2 and CH4, it was
possible to derive a ternary flash calculator by deriving closed-form relationships for exact
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Fig. 7 Illustration of CH4 bank saturation independence of initial CH4 mass fraction for the deep reservoir
scenario after 1000days of injection (with parameters as set in Table 1): a and b S1I < S1G , c and d
S1I = S1G , e and f S1I > S1G
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interpolation between equations of state for CO2–H2O and CH4–H2O binary mixtures. This
helped ensure improved stability and mass conservation and led to reduced computational
requirements associated with multi-dimensional lookup tables. The numerical code was suc-
cessfully tested and verified for a range of scenarios by comparisonwith an existing analytical
solution.

Acknowledgments This work was funded by Centrica plc and a NERC Oil and Gas Catalyst award
(NE/L008076/1). The authors are also grateful for the useful commentsmade by several anonymous reviewers.
These have led to a significantly improved manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Amaziane, B., Jurak, M., Zgaljic-Keko, A.: Modeling compositional compressible two-phase flow in porous
media by the concept of the global pressure. Comput. Geosci. 18, 297–309 (2012)

Battistelli, A., Marcolini, M.: TMGAS: a new TOUGH2 EOS module for the numerical simulation of gas
mixtures injection in geological structures. Int. J. Greenh. Gas Control 3, 481–493 (2009)

Bourgeat, A., Jurak, M., Sma, F.: On persistent primary variables for numerical modeling of gas migration in
a nuclear waste repository. Comput. Geosci. 17, 287–305 (2013)

Centeno, G., Sanchez-Reyna, G., Ancheyta, J., Muoz, J.A., Cardona, N.: Testing various mixing rules for
calculation of viscosity of petroleum blends. Fuel 90, 3561–3570 (2011)

ComputerModeling Group Ltd.: GEM—Compositional and Unconventional Oil and Gas Reservoir Simulator
(2015). http://www.cmgl.ca/software/gem2015

Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media. Computational
Science & Engineering. In: Society for Industrial and AppliedMathematics (SIAM), Philadelphia (2006)

Collins, D.A., Nghiem, L.X., Li, Y.K., Grabonstotter, J.E.: An efficient approach to adaptive-implicit compo-
sitional simulation with an equation of state. SPE Reserv. Eng. 7, 259–264 (1992)

Coralic, V., Colonius, T.: Finite-volume WENO scheme for viscous compressible multicomponent flows. J.
Comput. Phys. 274, 95–121 (2014)

Duan, Z., Mao, S.: A thermodynamic model for calculating methane solubility, density and gas phase com-
position of methane-bearing aqueous fluids from 273 to 523K and from 1 to 2000bar. Geochimica et
Cosmochimica Acta 70, 3369–3386 (2006)

Farthing, M.W., Kees, C.E., Miller, C.T.: Mixed finite element methods and higher order temporal approxi-
mations for variably saturated groundwater flow. Adv. Water Resour. 26, 373–394 (2003)

Hosseini, S.A.,Mathias, S.A., Javadpour, F.: Analytical model for CO2 injection into brine aquifers-containing
residual CH4. Transp. Porous Media 94, 795–815 (2012)

Ireson, A.M., Mathias, S.A., Wheater, H.S., Butler, A.P., Finch, J.: A model for flow in the chalk unsaturated
zone incorporating progressive weathering. J. Hydrol. 365(3), 244–260 (2009)

Juanes, R.: A robust negative flash based on a parameterization of the tie-line field. Fluid Phase Equilib. 267,
6–17 (2008)

Kees, C.E., Miller, C.T.: Higher order time integration methods for two-phase flow. Adv. Water Resour. 25,
159–177 (2002)

LaForce, T., Johns, R.T.: Effect of initial gas saturation on miscible gasflood recovery. J. Petrol. Sci. Eng.
70(3), 198–203 (2010)

Mallison, B.T., Gerritsen, M.G., Jessen, K., Orr, F.M.: High order upwind schemes for two-phase multicom-
ponent flow. SPE J. 10, 297–311 (2005)

Mathias, S.A., Butler, A.P., Jackson, B.M., Wheater, H.S.: Transient simulations of flow and transport in the
Chalk unsaturated zone. J. Hydrol. 330, 10–28 (2006)

Mathias, S.A., Butler, A.P., Zhan, H.: Approximate solutions for Forchheimer flow to a well. J. Hydraul. Eng.
134, 1318–1325 (2008a)

Mathias, S.A., Butler, A.P.,Wheater, H.S.:Modelling radioiodine transport across a capillary fringe. J. Environ.
Radioact. 99, 716–729 (2008b)

123

http://creativecommons.org/licenses/by/4.0/
http://www.cmgl.ca/software/gem2015


Simulation of Three-Component Two-Phase Flow in Porous Media... 19

Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W.: Approximate solutions for pressure buildup
during CO2 injection in brine aquifers. Transp. Porous Media 79, 265–284 (2009)

Mathias, S.A., Gluyas, J.G., Gonzalez Martinez de Miguel, G.J., Hosseini, S.A.: Role of partial miscibility on
pressure buildup due to constant rate injection of CO2 into closed and open brine aquifers. Water Resour.
Res. 47, W12525 (2011)

Mathias, S.A., Gluyas, J.G., Gonzalez Martinez de Miguel, G.J., Bryant, S.L., Wilson, D.: On relative perme-
ability data uncertainty and CO2 injectivity estimation for brine aquifers. Int. J. Greenh. Gas Control 12,
200–212 (2013)

Mathias, S.A., McElwaine, J.N., Gluyas, J.G.: Heat transport and pressure buildup during carbon dioxide
injection into depleted gas reservoirs. J. Fluid Mech. 756, 89–109 (2014)

Mathias, S.A., Wen, Z.: Numerical simulation of Forchheimer flow to a partially penetrating well with a
mixed-type boundary condition. J. Hydrol. 524, 53–61 (2015)

Noelle, S., Xing, Y., Shu, C.W.: High-order well-balanced finite volume WENO schemes for shallow water
equation with moving water. J. Comput. Phys. 226, 29–58 (2007)

Oldenburg, C.M., Doughty, C.: Injection, flow, and mixing of CO2 in porous media with residual gas. Transp.
Porous Media 90, 201–218 (2011)

Orr, F.M.: Theory of Gas Injection Processes. Tie-Line Publications, Copenhagen (2007)
Pope, G.A.: The application of fractional flow theory to enhanced oil recovery. Soc. Petrol. Eng. J. 20, 191–205

(1980)
Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)
Shampine, L.F., Thompson, S.: Solving ddes in matlab. Appl. Numer. Math. 37, 441–458 (2001)
Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM

Rev. 51, 82–126 (2009)
Spycher, N., Pruess, K., Ennis-King, J.: CO2–H2O mixtures in the geological sequestration of CO2. I.

Assessment and calculation of mutual solubilities from 12 to 100◦C and up to 600 bar. Geochimica
et Cosmochimica Acta 67, 3015–3031 (2003)

Stroud, K.A., Booth, D.J.: Engineering Mathematics, 6th edn. Palgrave Macmillan, Basingstoke (2007)
Taggart, I.J.: Extraction of dissolved methane in brines by CO2 injection: implication for CO2 sequestration.

SPE Reserv. Eval. Eng. 13, 791–804 (2010)
van Genuchten, MTh: A closed form equation for predicting the hydraulic conductivity of unsaturated soils.

Soil Sci. Soc. Am. J. 44, 892–898 (1980)
van Reeuwijk, M., Mathias, S.A., Simmons, C.T., Ward, J.D.: Insights from a pseudospectral approach to the

Elder problem. Water Resour. Res. 45, W04416 (2009)
Vohralik,M.,Wheeler, M.F.: A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows.

Comput. Geosci. 17, 789–812 (2013)
Wen, Z., Huang, G., Zhan, H.: A numerical solution for non-Darcian flow to a well in a confined aquifer using

the power law function. J. Hydrol. 364(1), 99–106 (2009)
Wouwer, A.V., Saucez, P., Schiesser, W.E., Thompson, S.: A MATLAB implementation of upwind finite

differences and adaptive grids in the method of lines. J. Comput. Appl. Math. 183, 245–258 (2005)
Zhang, X., Shu, C.W.: Positivity-preserving high order finite difference WENO schemes for compressible

Euler equations. J. Comput. Phys. 231, 2245–2258 (2012)

123


	Simulation of Three-Component Two-Phase Flow  in Porous Media Using Method of Lines
	Abstract
	1 Introduction
	2 Governing Equations
	3 Recasting in Terms of Primary Dependent Variables
	4 Differentiating the F Function
	5 Additional Considerations Required for Accommodating Capillary Pressure
	6 Numerical Solution
	7 Model Verification
	7.1 Numerical Solution Performance

	8 Effect of Initial Gas Saturation
	9 Summary and Conclusions
	Acknowledgments
	References




