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Abstract Numerical simulation of compositional flow problems commonly involves the use of 1st or 2nd order6

Euler time stepping. Method of lines (MOL), using highly accurate and efficient ODE solvers, is an alternative7

technique which, although frequently applied to the solution of two-phase, two-component flow problems, has8

generally been overlooked for problems concerning more than two components. This article presents the develop-9

ment of a numerical simulator for 1D, compressible, two-phase, three-component, radially symmetric flow using10

the method of lines (MOL) and a 3rd order accurate spacial discretization using a weighted essentially non oscil-11

latory (WENO) scheme. The MOL implementation enables application of the MATLAB ODE-Solver, ODE15s,12

for time integration. Simulation examples are presented in the context of CO2 injection into a reservoir containing13

a mixture of CH4 and H2O. Following an assumption of constant equilibrium ratios for CO2 and CH4, a ternary14

flash calculator is developed providing closed-form relationships for exact interpolation between equations of15

state for CO2-H2O and CH4-H2O binary mixtures. The numerical code is successfully tested and verified for a16

range of scenarios by comparison to an existing analytical solution.17

1 Introduction18

Continuum scale simulation of multi-component multi-phase (MCMP) flow in porous media is often used to bet-19

ter understand a range of reservoir pore-space exploitation problems including petroleum production, geothermal20

energy, groundwater management and waste disposal. Generally it is assumed that multiple fluid phases co-exist21

as volume fractions of an infinitesimal volume. These phases typically include aqueous liquid, non-aqueous liq-22

uid, gas and solid. Each phase can represent a mixture of multiple components (e.g., H2O, CO2 and CH4). The23
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volume fraction of the jth phase is mathematically represented as a volume fraction of the pore-space, often24

referred to as the saturation, S j [-]. Multiple components are then considered as mass fractions of the various25

phases. For example, Xi j would denote the mass fraction of the ith component in the jth phase.26

Mathematical simulation of such problems involves solving a coupled set of conservation equations for each27

component (Orr, 2007). Equations of state (EOS) are required to understand how the components partition into28

different phases. This is particularly important because the mobilities of the components are strongly controlled29

by their distribution between the present fluid phases. Firstly, component mass fractions, Xi j, affect the viscosity30

of the phases (Centeno et al., 2011). Secondly, the permeability available to each phase is a non-linear function31

of the phase saturations, S j (Mathias et al., 2013).32

In the absence of diffusion and capillary pressure, this problem is governed by a set of coupled hyperbolic33

and parabolic transport equations. Hyperbolic equations frequently give rise to the formation of shocks, leading34

to difficulties with regard to obtaining accurate solutions. Problems associated with one dimensional transport35

of incompressible fluids, in the absence of capillary pressure and under isothermal conditions, can be solved36

exactly using the method of characteristics (Orr, 2007). However, even under these restricting conditions, great37

care must be taken when considering non-zero initial conditions and non-unity boundary conditions (for example,38

see section 4.3 of Orr (2007)).39

Alternative techniques involve the application of approximate methods. The spatial dimension is typically40

treated using conservative methods such as finite volume (Chen et al., 2006). Alternatively, one can consider the41

use of finite elements (Chen et al., 2006) or pseudospectral methods (van Reeuwijk et al., 2009). Such spatial42

schemes give rise to either stability problems or numerical diffusion due to truncation terms associated with the43

Taylor’s expansion, the latter of which can be reduced using flux limiters or their variants (e.g. Mallison et al.,44

2005).45

Handling of the temporal term, which is critical to resolving the non-linear nature of the problem, generally46

revolves around the choice of explicit or implicit treatment. Fully explicit treatment, although easier to implement,47

can run into severe time-step limitations due to the well known CFL (Courant - Friedrichs - Lewy) condition. Fully48

implicit treatment leads to an unconditionally stable solution (as far as time-stepping is concerned), but leads to49

additional numerical diffusion. Furthermore, implementation of the solution is significantly more challenging.50

Popular approaches for solving MCMP problems in this context are the so-called semi-implicit methods, the51

most common variant of which is referred to as ImPES (Implicit Pressure Explicit Saturation) (Chen et al., 2006)52



Three component two phase flow using method of lines 3

or ImPEM (Implicit Pressure Explicit Mass). In ImPES, the governing equations are rearranged to identify a53

transport equation of hyperbolic (or nearly hyperbolic) nature and a pressure equation (of parabolic or elliptic54

character). The pressure equation is solved implicitly which allows for larger time-steps. The transport equation55

is solved explicitly, allowing easier implementation and reduced computational memory requirements, hence the56

semi-implicitness. Both the implicit and explicit time-stepping typically employ simple first-order schemes.57

Multi-step-multi-order time integration algorithms (Shampine et al., 1997) represent an alternative method,58

which treats the temporal term in a more accurate fashion. These techniques maintain a specific time integration59

error while maximizing the time-step size. Moreover, due to the wide availability (e.g. MATLAB or FORTRAN60

with NAG) of high quality solvers and simplicity of implementation, there is no need to redevelop the sophisti-61

cated solution algorithms. Rather, the so-called method of lines (MOL) approach can be taken. In this case, the62

partial differential equations (PDE) are discretized in space to form a set of coupled ordinary differential equa-63

tions (Wouwer et al., 2005). These can then be solved simultaneously using any ordinary differential equation64

(ODE) solver of choice.65

For two-phase immiscible flow, where one of the phases is treated as inviscid, the MCMP problem reduces to66

a single PDE often referred to as Richards’ equation (RE). This equation is commonly solved to better understand67

hydrological problems associated with unsaturated soils. Numerical studies by Farthing et al. (2003) and Kees68

and Miller (2001) have shown that applying MOL with higher-order time integration to the solution of RE leads69

to both improved accuracy and computational efficiency. Indeed, there are many recent articles (Mathias et al.,70

2006, 2008b, Ireson et al., 2009) reporting MOL solutions of RE using the MATLAB ODE solver, ODE15s,71

which is particularly suitable for stiff systems of ODEs (Shampine et al., 1997). ODE15s has also been found72

to provide useful solutions to non-Darcian flow problems (Mathias et al., 2008a, 2015, Wen et al., 2009) and73

two-phase immiscible flow problems (Mathias et al., 2009).74

Often when dealing with partial differential equations it is useful to distinguish between dependent and inde-75

pendent variables (Stroud and Booth, 2007, p. 122). In this case, time and space are independent variables. All76

other variables are dependent variables.77

Application of MATLAB ODE solvers to multi-component partially miscible problems has proven more78

challenging. Consider Nc components residing in Np phases. The problem will be defined by Nc mass conservation79

equations. However, considering the various values of S j and Xi j, it can be understood that there will be at80

least (Nc + 1)Np dependent variables. It is therefore necessary to choose Nc dependent variables to solve for.81
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Special care should be taken to ensure that the dependent variables selected are persistent (Amaziane et al., 2012,82

Bourgeat et al., 2013). This selected set of dependent variables are hereafter referred to as the primary dependent83

variables (PDV).84

When using an ODE solver, the user must construct an ODE function. Within this function, a scalar value85

of time is provided as an input along with an associated vector of the PDVs. The user must define the ODE86

function such that it calculates the derivatives of the PDVs with respect to time, which generally involves using a87

combination of chain rule and product rule differentiation. This results in a need to evaluate the partial derivatives88

of the bulk fluid mass per unit pore-space, F [ML−3], with respect to each component mass fraction, zi [-] (these89

terms will be mathematically defined later in the article). For conventional first-order time-stepping, it is arguably90

acceptable to evaluate these derivatives using first or second order finite differencing. However, given the high91

accuracy associated with the use of MATLAB’s ODE solvers, it is pertinent to obtain these derivatives in exact92

form wherever possible.93

There are many detailed works concerning applications of MOL for immiscible two-phase flow and two-94

component two-phase flow problems (e.g. Amaziane et al., 2012, Vohralik et al., 2013, Bourgeat et al., 2013,95

Mathias et al., 2014). Mallison et al. (2005) present a numerical simulation of an MCMP problem using MOL96

in conjunction with a 3rd and 4th order Rung-Kutta time integration method. However, Mallison et al. (2005)97

provides no discussion concerning the casting of equations in terms of PDVs. Indeed, little information is avail-98

able as to how to obtain exact equations to describe the necessary partial derivatives, ∂F/∂zi, needed to solve99

MCMP problems for situations concerning more than two components. In this article, we focus on obtaining100

such expressions for three-component two-phase problems. These are implemented within a radial flow simula-101

tor using MATLAB. Comparisons are then made, in the context of enhanced gas recovery by CO2 injection, with102

an associated analytical solution, previously presented by Hosseini et al. (2012).103

2 Governing equations104

Consider three components: CO2, CH4 and H2O, denoted hereafter as i = 1, 2 and 3, respectively. The three105

components can partition into a gas phase and an aqueous liquid phases, denoted hereafter as j = 1 and 2,106

respectively. A horizontally orientated, homogeneous and isotropic cylindrical reservoir of radius, re [L] and107

formation thickness, H [L], is invoked. The reservoir is initially filled with a mixture of CH4 and H2O. CO2 is108

injected into the center of the reservoir via a fully-completed vertically orientated injection well of radius, rw109
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[L]. Fluid flow is assumed to be one-dimensional such that the problem reduces to the following set of one-110

dimensional radially symmetric conservation equations:111

∂Gi

∂t
=−1

r
∂(rHi)

∂r
, i = 1,2, . . .Nc (1)

where t [T] is time, r [L] is radial distance from the injection well, Nc [-] is the number of components considered112

and Gi [ML−3] and Hi [ML−2T−1] are the mass of component i per unit volume of rock and mass flux of113

component i, respectively, found from:114

Gi = φ
Np

∑
j=1

ρ jXi jS j (2)

115

Hi =
Np

∑
j=1

ρ jXi jq j (3)

where φ [-] is the reservoir porosity, Np [-] is the number of phases considered, ρ j [ML−3], S j [-] and q j [LT−1]116

are the density, saturation (a volume fraction of the pore-space) and volumetric fluid flux of phase j, respectively,117

and Xi j [-] is the mass fraction of component i in phase j. Note that ∑Nc
i=1 Xi j = 1 and ∑

Np
j=1 S j = 1.118

The volumetric fluxes are calculated using Darcy’s law:119

q j =−k
kr j

µ j

∂Pj

∂r
(4)

where k [L2] is the reservoir permeability and kr j [-], µ j [ML−1T−1] and Pj [ML−1T−2] are the relative perme-120

ability, dynamic viscosity and pressure of the jth phase, respectively.121

For two phase flow, without loss of generality, the relative permeability functions are assumed to take the122

form of power laws (Mathias et al., 2013):123

kr1 = kr10

(
S1 −S1c

1−S1c −S2c

)n1

, S1c ≤ S1 ≤ 1−S2c (5)

124

kr2 = kr20

(
S2 −S2c

1−S1c −S2c

)n2

, S2c ≤ S2 ≤ 1−S1c (6)

where S jc [-], kr j0 [-] and n j [-] are the critical saturation, end-point relative permeability and power law exponent125

for phase j, respectively.126

Furthermore, it is assumed that the following density mixing rule applies (Orr, 2007)127
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ρ j =

(
Nc

∑
i=1

Xi j

ρi j

)−1

(7)

where ρi j [ML−3] is the density of the ith component in the jth phase.128

3 Recasting in terms of primary dependent variables129

An appropriate choice of primary dependent variables (PDVs) to solve for are the global fluid pressure, P130

[ML−1T−2], defined in this case by (Chen et al., 2006, p. 342)131

P =
Np

∑
j=1

S jPj (8)

and the bulk mass fraction of each component, zi [-], defined by132

zi = Gi/F (9)

where F [ML−3] is the bulk fluid mass per unit volume of rock133

F =
Nc

∑
i=1

Gi = φ
Np

∑
j=1

ρ jS j (10)

Note that ∑Nc
i=1 zi = 1.134

In some previous studies, the mass of each component per unit volume of rock, Gi, have also proven effective135

as PDVs in this context (Amaziane et al., 2012, Bourgeat et al., 2013). However, an advantage of using P and zi136

(for i = 1,2, . . .Nc−1) as PDVs (as opposed to say Gi) is that zi are independent of P. For a given volume of fluid137

mixture, the mass fractions of each component, zi will not change with pressure. However, the associated mass of138

each component per volume of rock, Gi, may change with pressure, depending on how the individual component139

mass densities, ρi j, vary with pressure. Furthermore, zi are the variables used in the ternary diagram (discussed140

later in the article), which determine the equilibrium properties of the three-component fluid mixture.141

Differentiating Eq. (9) with respect to time leads to142

∂zi

∂t
=

1
F

(
∂Gi

∂t
− zi

∂F
∂t

)
(11)

where, from Eqs. (1) and (10)143
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∂F
∂t

=−1
r

Nc

∑
i=1

∂(rHi)

∂r
(12)

Application of the chain-rule to Eq. (10) and rearranging leads to144

∂P
∂t

=

(
∂F
∂P

)−1
(

∂F
∂t

−
Nc−1

∑
i=1

∂F
∂zi

∂zi

∂t

)
(13)

The main focus of this article is the derivation and application of exact formulae for the relationships defining145

∂F/∂P and ∂F/∂zi for i = 1,2, . . .Nc − 1. Note that Eqs. (11) to (13) are important because they directly relate146

the time-derivatives of the PDVs to the original mass conservation statements.147

4 Differentiating the F function148

Considering the identity in Eq. (10), the total derivative of F can be written as149

dF = F
dφ
φ

+φ
Np

∑
j=1

S jρ j

(
dρ j

ρ j
+

dS j

S j

)
(14)

When there are only two phases, S2 = 1−S1. From Eqs. (2), (9) and (10), it can then be understood that150

S1 =

[
1− ρ1(zi −Xi1)

ρ2(zi −Xi2)

]−1

(15)

which on differentiation leads to151

dS1

S1
= S2

2

∑
j=1

(−1) j
[

dρ j

ρ j
+

(
dzi −dXi j

zi −Xi j

)]
(16)

Invoking Eq. (7), it can also be shown that152

dρ j

ρ j
= ρ j

Nc

∑
i=1

Xi j

ρi j

(
dρi j

ρi j
− dXi j

Xi j

)
(17)

It is now assumed that component densities are unaffected by composition such that ∂ρi j/∂zi = 0. Addition-153

ally noting that154

∂zi

∂zk
= 0, i �= k (18)
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the remaining challenge is to define the dXi j terms.155

The terms Xi j can be further defined by:156

Xi j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zi, S1 = 0,1

xi j, 0 < S1 < 1

(19)

where xi j [-] are the equilibrium mass fractions of the ith component in the jth phase within the two-phase region.157

Then dXi j is given by:158

∂Xi j

∂zi
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, S1 = 0,1

∂xi j

∂zi
, 0 < S1 < 1

(20)

∂Xi j

∂P
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, S1 = 0,1

∂xi j

∂P
, 0 < S1 < 1

(21)

It is important to note that for two component two phase problems, xi j only varies with pressure. However, for159

three component two phase systems, the problem is much more complicated because the equilibrium constants,160

xi j, are no longer constant with composition (i.e., z1 and z2).161

EOSs for the binary mixtures of CO2-H2O and CH4-H2O, are well characterized by relatively simple sets of162

equations. In this work the binary mixture properties of CO2-H2O and CH4-H2O were obtained using expressions163

provided by Spycher et al. (2003) and Duan and Mao (2006), respectively. These can be joined together to form164

a ternary system by assuming that the equilibrium ratios, Ki [-], defined as165

Ki =
xi1

xi2
, (22)

for components 1 and 2 (but not 3) do not vary with composition.166

When K1 and K2 are constant, the two-phase region, for a given temperature and pressure, is defined by two167

straight lines on a ternary diagram (see figure 1). Consequently, following the work of Juanes (2008), it can be168

shown that values of xi j can be related back to their values obtained from the binary mixtures, ai j, by the set of169

linear equations:170
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x1 j = Aa1 j and x2 j = (1−A)a2 j (23)

where a1 j = x1 j when z2 = 0, a2 j = x2 j when z1 = 0 and A [-] is a weighting parameter that linearly interpolates171

between the bounding tie-lines that coincide with the z2 and z3 axes of the ternary diagram. Writing out Eq. (23)172

for components 1 and 2 and eliminating A leads to:173

ai1xi2 = ai2xi1 and x2 j = (a1 j − x1 j)a2 j/a1 j (24)

Similarly it can be said that, on a given tie-line in the two-phase region,174

zi = Bxi1 +(1−B)xi2 (25)

Liquid

Gas

Two-Phase

C1

C3 C2

a
32

a
21a

22

a
31

Fig. 1 Illustration of a two phase three component system on a ternary diagram. Tie-lines are shown as dashed lines. The barycentric
coordinates of points of the ternary diagram correspond to the total composition of the fluid mixture.

where B [-] is a weighting parameter that linearly interpolates between the bounding lines that define the two-175

phase region of the ternary diagram. Writing Eq. (25) out for components 1 and 2 and then eliminating B leads176

to177

(z1 − x12)(x21 − x22) = (z2 − x22)(x11 − x12) (26)

Note that the equilibrium ratio for H2O (component 3) is not necessarily constant and is defined by the178

relationship179
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K3 =
1− x11 − x21

1− x12 − x22
(27)

Using Eq. (24) to eliminate the xi2 and x2 j terms yields the quadratic equation180

0 = T2x2
11 +T1x11 +T0 (28)

where181

T0 = (a21 −a22)a11z1 (29)

T1 = (a11 −a12)(a22 − z2)− (a21 −a22)(a12 + z1) (30)

T2 = (a12a21 −a11a22)/a11 (31)

which has the solutions182

x11 =
−T1 ±

√
T 2

1 −4T0T2

2T2
(32)

Eq. (32) gives an explicit expression for x11 with respect to z1 and z2. Furthermore, from Eq. (28) we have183

the total derivative of x11:184

dx11 =−x2
11dT2 + x11dT1 +dT0

2T2x11 +T1
(33)

where185

dT0 = (da21 −da22)a11z1 +(a21 −a22)(a11dz1 +da11z1) (34)

dT1 = (da11 −da12)(a22 − z2)+(a11 −a12)(da22 −dz2)

186

−(da21 −da22)(a12 + z1)− (a21 −a22)(da12 +dz1) (35)

187

dT2 = da12
a21

a11
+da21

a12

a11
−da11

a12a21

a2
11

−da22 (36)

which, in conjunction with Eq. (24), provides expressions for all the other derivatives, dxi j. Expressions for dXi j188

can then be obtained from Eqs. (21) and (20).189
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5 Additional considerations required for accommodating capillary pressure190

When capillary pressures can be assumed negligible, the information in this section can be ignored. However, for191

non-negligible capillary pressure, the fluid properties xi j and ρi j should be calculated from the phase pressure, Pj,192

as opposed to the global pressure, P. An equation of state can provide derivatives of these variables with respect193

to Pj. But to obtain derivatives with respect to P, the following transformations must be applied:194

∂xi j

∂P
=

∂Pj

∂P

∂xi j

∂Pj
(37)

∂ρi j

∂P
=

∂Pj

∂P

∂ρi j

∂Pj
(38)

For two phase flow systems, Eq. (8) reduces to195

Pj = P− (−1) j(1−S j)Pc (39)

where Pc = P1 −P2 is the capillary pressure.196

Noting that Pc is generally expressed uniquely as a function of S1 (e.g. van Genuchten, 1980) and that dS1 =197

−dS2, differentiating Eq. (39) with respect to P leads to198

∂Pj

∂P
= 1−

(
Pc +(−1) j(1−S j)

∂Pc

∂S1

)
∂S1

∂P
(40)

Recalling Eq. (16) and that zi are independent of P it can be said that199

1
S1

∂S1

∂P
= S2

2

∑
j=1

Yj
∂Pj

∂P
(41)

where200

Yj = (−1) j
[

1
ρ j

∂ρ j

∂Pj
− 1

(zi −Xi j)

∂Xi j

∂Pj

]
(42)

from which we obtain201

∂S1

∂P
=

[
1

S1S2
+

2

∑
j=1

(
Pc +(−1) j(1−S j)

∂Pc

∂S1

)
Yj

]−1 2

∑
j=1

Yj (43)
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6 Numerical solution202

A weighted essentially non oscillatory (WENO) scheme (Shu, 2009) was used to approximate the flux, Hi, in Eq.203

(1). For more details on the WENO method and its applications, the reader is referred to (Coralic and Colonius,204

2014, Noelle et al., 2007, Zhang and Shu, 2012) and references therein. The WENO scheme implemented here205

uses a 2nd order stencil to approximate the flux at the mid-points (k+ 1/2 and k− 1/2). A central difference206

approximation is then used to evaluate the derivative of the flux at grid point k, which is 3rd order accurate in207

space (Shu, 2009):208

(
∂Gi

∂t

)
k
=− 1

rk

[
rk+ 1

2
(Hi)k+ 1

2
− rk− 1

2
(Hi)k− 1

2

rk+ 1
2
− rk− 1

2

]
(44)

The pressure derivative contained within the (Hi)k+ 1
2

term was approximated using the following central209

difference expression:210 (
∂P
∂r

)
k+ 1

2

=
Pk+1 −Pk

rk+1 − rk
(45)

The Jacobian matrix is a matrix describing the dependencies of each equation in the system of equations211

on every other equation. In this problem we are solving for three PDVs, which by virtue of the discretised212

conservation equations, are mutually dependent on one another. Conventional second-order finite difference ap-213

proximations of second-order derivatives at a grid point, k, will depend on three points, namely k − 1, k and214

k+1. However, when using the WENO scheme described above, additional information from k−2 and k+2 is215

required, leading to a penta-diagonal structure for the Jacobian matrix. For systems of equations with more than216

one PDV, a so-called block-diagonal structure is formed.217

In MATLAB, it is possible to provide the ODE solver with the Jacobian pattern as a sparse matrix of zeros218

and ones to indicate where the Jacobian matrix is nonzero. This tells the solver to only evaluate the sparse system219

and not the full matrix. In stiff problems with non-constant Jacobian matrices, specifying the Jacobian pattern a220

priori can lead to significant savings in computation time. A pictorial representation of the Jacobian pattern for221

the problem discussed in this article is presented in Fig. 2.222

Spatial grids were locally refined near the well-bore and gradually coarsened away from the injection well to223

ensure simulation stability. Simulation time steps are refined automatically using MATLAB’s ODE15s adaptive224

time stepping scheme. ODE15s is particularly suitable for stiff problems where the governing equations include225

a combination of terms that lead to rapid variation in the solution and terms that vary slowly. For the problem226
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0 10 20 30

0

10

20

30

nz = 396

P

z
2

z
1

P z
2

z
1

Fig. 2 Block-penta-diagonal Jacobian pattern for the sparse system for n=10 grid points and 3 PDVs (nz:number of nonzero elements).

described in this article, compositions propagate very slowly thorough the reservoir compared to the pressure227

waves, which move much more rapidly.228

ODE15s is a multi-order multi-step solver. The scalar relative error tolerance and the absolute error tolerance229

are set to MATLABs default values, 10−3 and 10−6, respectively. For more information about how the solver is230

implemented, readers are referred to Shampine et al. (1997, 2001).231

7 Model verification232

Results from the numerical solution (implemented in MATLAB) were compared against results from the an-233

alytical solution by Hosseini et al. (2012). Both models assume a fully completed well at the center of a 1D234

radially symmetric flow field of radial extent, re. Capillary pressure, molecular diffusion and gravity effects were235

neglected. Initial and boundary conditions were applied as follows:236
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Parameter (unit) Deep Shallow
P0, initial pressure (MPa) 32 10
T , temperature (oC) 124 40
M0, injection rate (kg/s) 16.21 16.21
rw, well radius (m) 0.25 0.25
re, reservoir radius (km) 13.7 13.7
φ, porosity (-) 0.2 0.2
k, permeability (m2) 10−13 10−13

H, formation thickness (m) 50 50

Table 1 Model parameters used for verification of the numerical simulation.

Parameter
S1c, critical gas saturation 0.10
S2c, residual aqueous phase saturation 0.50
kr10, gas end-point relative permeability 0.30
kr20, liquid end-point relative permeability 0.512
n1 = n2, power-law exponents 3.0

Table 2 Relative permeability model parameters used in Eqs. (5) and (6).

z1 = 0, rw ≤ r ≤ re, t = 0

S1 = S10, rw ≤ r ≤ re, t = 0

P = P0, rw ≤ r ≤ re, t = 0

H1 = M0/(2πrwH), r = rw, t > 0

H2 = 0, r = rw, t > 0

H3 = 0, r = rw, t > 0

H1 = 0, r = re, t > 0

H2 = 0, r = re, t > 0

H3 = 0, r = re, t > 0

(46)

where S10 [-] is the initial gas saturation and the other parameters are as specified in tables 1 and 2.237

Fig. 3 shows gas saturation profiles for CO2 injection into deep (Figs. 3a and 3b) and shallow (Figs. 3c and238

3d) reservoirs with 10% residual CH4, during a simulation period of 1,000 days. The solid lines and dashed lines239

represent results from the analytical solution and numerical solution, respectively.240

The high gas saturation around the injection well, often referred to as a dry-out zone (Mathias et al., 2011),241

is due to the vaporization of the residual water saturation by the injected CO2. A CH4 bank with about 22% gas242

saturation in front of the CO2 plume develops. The length of the CH4 bank increases with time. Correspondence243

between the analytical solution and the numerical solution is very good for both gas phase saturation and pressure244
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Fig. 4 The same as figure 3 but only
showing profiles after 1,000 days and
assuming initial gas saturations, S10,
of 0.02, 0.05 and 0.1.
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buildup. The numerical solution is seen to accurately locate the associated shock fronts while considering the245

partial miscibility of both CO2 and CH4 in H2O.246

For the shallow reservoir, just ahead of the CH4 bank, it can be seen that the numerical solution predicts a247

slightly lower gas saturation as compared to the analytical solution. This is due to the fact that the analytical248

solution assumes constant fluid properties and hence is not capturing volume change effects due to pressure249

change. This discrepancy is not noticeable for the deep reservoir because the gas compressibility is a lot lower at250

34 MPa.251

The possibility that the above mentioned discrepancy was due to insufficient mesh refinement was inves-252

tigated by comparing simulation results using a 600 point grid and a 900 point grid. The comparison study253

confirmed that the discrepancy was not due to numerical error.254

Similar simulations but with different initial gas saturations are compared in Fig. 4. It is found that the extent255

of the dry-out region is insensitive to the initial gas saturation. The extent of the dry-out region is smaller for256

the shallow reservoir and the volume of the gas plume is larger. The reduced dry-out region, in this case, is due257

to the reduced evaporation that occurs at cooler temperatures. The increased gas volume is due to the reduced258

gas density that occurs at lower pressures. Again it can be seen that the numerical solution is able to accurately259

predict the analytical results of Hosseini et al. (2012).260

7.1 Numerical solution performance261

The performance of the MOL numerical solution was explored further through a grid convergence study. The262

shallow reservoir scenario, depicted in figures 3c and d, was repeated using different numbers of grid cells.263

Numerical solution performance was quantified by calculating the mean absolute normalized error (MANE)264

between results (from each grid cell) from the numerical solution and those from the analytical solution for a265

given time. Figure 5 shows a plot of MANE for gas saturation and pressure for the different times previously266

presented in figures 3c and d. Grid convergence can be seen to have been achieved at around 300 grid cells.267

The converged MANE for pressure is around 0.02%. However, the converged MANE for gas saturation268

is quite high at around 0.25%. This is due to conceptual differences between the numerical solution and the269

analytical solution. Recall that the analytical solution assumes constant fluid properties whereas the numerical270

solution is allowing for variations of fluid properties with pressure and composition, as discussed above. Hosseini271

et al. (2012) was able to achieve a very similar level of accuracy for a very similar set of simulations using the272
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commercial reservoir simulator, CMG GEM (Computer Modeling Group Ltd., 2015) (see figure 5 of Hosseini et273

al. (2012)). GEM uses an adaptive-implicit solver as described by Colins et al. (1992).274

In terms of computation time, the 300 grid cell numerical solution using our new MOL approach was able275

to simulate 1000 days of gas injection in around 5 minutes using an Intel Xeon CPU E5-2630 2.30 GHz (2276

processors). For comparison, the GEM simulations undertaken by Hosseini et al. (2012) took around 2 hours on277

an Intel Xeon CPU E5-2687 3.10 GHz (2 processors) (Hosseini, 2015, Personal Communications). Clearly, our278

new MOL solution has the potential to offer significant computation time savings in this context.279
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Fig. 5 Mean absolute normalized error (MANE) between the numerical and analytical pressure and gas saturation values for different
times, plotted against the number of grid cells used for the shallow-reservoir case previously depicted in figures 3c and d.

8 Effect of initial gas saturation280

As was shown in the previous section, numerical simulations of CO2 injection into a reservoir containing CH4281

predict the accumulation of a CH4 bank at the head of the CO2 plume (Oldenburg and Doughty, 2011, Battistelli282

and Marcolini, 2009, Taggart, 2010).283

The system in discussion can be differentiated into three regions (Hosseini et al., 2012). These regions,284

starting from the injection point and moving outward, are:285

1. a single-phase, dry-out region around the well-bore filled with pure CO2.286

2. a two-phase, two-component system containing CO2 and H2O.287

3. a two-phase, two-component system containing CH4 and H2O.288
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Within the two-phase mixture, each phase propagates at a rate according to its mobility. The mobility of each289

phase varies from one region to another due to associated compositional changes. As a consequence, a trailing290

shock forms at the contact between regions (1) and (2) and a leading shock forms at the contact between regions291

(2) and (3).292
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Fig. 6 Schematic diagram illustrating the three-region system associated with CO2 injection into a reservoir initially containing CH4
and H2O. J:Injection, T:Trailing Shock, L:Leading Shock, G:Gas Bank, I:Initial.

The development of the CH4 bank ahead of the CO2 has been explained as follows (Taggart, 2010, Oldenburg293

and Doughty, 2011, Hosseini et al., 2012). As CO2 is injected, it partitions into the gas phase and the aqueous294

phase. The initially dissolved CH4 exsolves immediately, and is then pushed ahead of the growing CO2 plume295

leading to the development of a CH4 bank (Oldenburg and Doughty, 2011). Mathematically, the system is con-296

strained to constantly enter and leave the two phase region along the tie-lines representing the injection and initial297

compositions, therefore the leading CH4 bank is free from injected gas, CO2 (Taggart, 2010).298

Intuitively, it is expected that the amount of CH4 initially present should affect the methane bank satura-299

tion; the more the initial CH4 saturation, the higher the bank saturation. However, numerical simulation of CO2300

injection for different initial gas saturations (everything else being the same), show that the bank saturation is in-301

dependent of the initial CH4 saturation (see Figs. 4 and 7). In fact, Hosseini et al. (2012) showed mathematically302

that the CH4 bank saturation is independent of the initial gas saturation.303

This can be further explained using the principles of fractional flow theory (Pope , 1980, Orr, 2007). Because304

of the differences in phase viscosities in the two phase region (i.e. between mixtures of CO2-H2O and CH4-305

H2O), flow occurs on different fractional flow curves in the two phase region (Fig. 7). Figs. 7a, c and e show the306

fractional flow curves (plots of Hi/ρi1 against Gi/ρi1) for CO2 and CH4 along with the locations of the shock307

fronts for different initial gas saturations.308
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The partial derivative ∂Hi/∂Gi represents the wave velocity of the system. The wave velocities of the shock309

fronts are found from the gradients of straight lines that link the two conditions on either side of the shock.310

Fractional flow theory dictates that valid solutions should satisfy both the velocity constraint and the so-called311

entropy constraint (Orr, 2007). The velocity constraint implies that wave velocity should always decrease with312

increasing distance from the injection boundary. The entropy constraint implies that the shock wave velocity313

should be equal to the gradient of the fractional flow curve immediately upstream of the shock.314

Due to the zero initial condition for G1, the only valid path on the CO2 fractional flow curve is a tangent315

(i.e., (0,0) to L). On the other hand, velocities must be equal at the contact between a pair of different fluids316

(Pope , 1980) (i.e. points G and L in Fig. 6). This means that the gas bank saturation (point G) is dictated by the317

intersection of the tangent to the CO2 curve with the CH4 curve.318

Figs. 7b, d and f show the corresponding saturation profiles for different initial gas saturations. The level of319

saturation at point G is always determined by the tangent from (0,0) to point L. Physically, this implies that the320

bank saturation is only dependent on how fast the injected gas propagates. The solid and dashed lines in Figs. 7b,321

d and f are from the analytical solution and numerical solution, respectively. There is an excellent correspondence322

between the two. The analytical solution was developed on the basis of the fractional theory described above. The323

numerical solution therefore further confirms the finding of Hosseini et al. (2012), that the CH4 bank saturation324

is independent of the initial gas saturation.325

However, if the initial gas saturation is sufficiently high it may not be possible to build a solution that travels326

from the initial condition (point I in figure 6) to the intersection point of the tangent line with the CH4 fractional327

flow curve (point G in figure 6). As a consequence, a CH4 bank will no longer be present. Therefore, it should328

be noted that the existence of the CH4 bank is dependent on the initial gas saturation (LaForce and Johns, 2010).329

Nevertheless, providing the CH4 bank exists, the CH4 bank saturation is independent of the initial gas saturation.330

9 Summary and conclusions331

A numerical simulator was developed for 1D, compressible, two-phase, three-component, radially symmetric332

flow using the method of lines (MOL) and a 3rd order accurate spatial discretization using weighted essentially333

non oscillatory (WENO) scheme. The MOL implementation enabled application of the state of the art MATLAB334

ODE-Solver, ODE15s, for time integration. Pressure and overall component mass fraction (zi) were selected335

as the primary dependent variables (PDV). The sparsity of the system of equations was taken advantage of by336
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Fig. 7 Illustration of CH4 bank saturation independence of initial CH4 mass fraction for the deep reservoir scenario after 1000 days
of injection (with parameters as set in Table 1): a) and b) S1I < S1G , c) and d) S1I = S1G , e) and f) S1I > S1G .
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provision of a penta-diagonal Jacobian pattern for the ODE solver. Simulation examples were developed in the337

context of CO2 into a reservoir containing a mixture of CH4 and H2O.338

Following an assumption of constant equilibrium ratios (Ki) for CO2 and CH4, it was possible to derive a339

ternary flash calculator by deriving closed-form relationships for exact interpolation between equations of state340

for CO2-H2O and CH4-H2O binary mixtures. This helped ensure improved stability and mass conservation and341

led to reduced computational requirements associated with multi-dimensional lookup tables. The numerical code342

was successfully tested and verified for a range of scenarios by comparison to an existing analytical solution.343
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