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Abstract. The screened exchange (sX) hybrid functional can give good band

structures for simple sp bonded semiconductors and insulators, charge transfer

insulators, Mott-Hubbard insulators, two dimensional systems and defect systems.

This is particularly attributed to the sX hybrid scheme fixing the self-interaction

problem associated with local functionals. We investigate the effect of varying the

screening parameter of the exchange potential on various material properties such as

the band gap. The Thomas Fermi screening scheme in which the screening parameter

varies with an average valence electron density leads to a weak dependence of the band

gap on valence electron density, so that a fixed screening parameter could be applied

to heterogeneous systems like surfaces, interfaces and defects.
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1. Introduction

Density functional theory (DFT) has become the standard method to predict atomic

and electronic properties in condensed matter physics and quantum chemistry[1, 2, 3].

The most widely used exchange-correlation functionals such as the local density

approximation (LDA) or general gradient approximation (GGA) replace the exchange-

correlation energy of the many-electron Schrödinger equation with a functional of the

local electron density[4, 5]. DFT describes the ground state properties such as lattice

constants and bulk modulus quite well at low computational cost. However, it is well

known that both LDA and GGA underestimate the band gap in semiconductors and

insulators as they do not give the energy discontinuity across the Fermi level as a

function of electron occupancy[6, 7]. They also do not describe well localised states or

strongly correlated systems such as Mott insulators[8] partly due to the absence of the

self-interaction correction[9].

Various improvements have been suggested to overcome the drawbacks of LDA and

GGA. One of the simplest is the DFT+U method[10, 11, 12]. This introduces a repulsive

potential U on localised electrons as in the Hubbard model. This functional can be used

for structural relaxation with low computational cost. However, this method strictly

only applies to open shell systems such as the transition metal compounds, although it

is now (often incorrectly) used as an empirical fitting method well outside its true range

of physical validity[12]. Most semiconductors are close shell systems, for which DFT+U

gives only limited improvements.

There are also more advanced methods such as the GW method based on the Greens

function[13, 14, 15, 16, 17] and dynamical mean field theory (DMFT)[18]. In the GW

approximation, the quasi-particle energy is calculated by expanding the electron self-

energy and dielectric function. GW can give accurate band structures. However, it

is computationally expensive, so that often only the first order perturbative version is

used, referred to as G0W0. On the other hand, DMFT maps the many-body problem

onto an impurity model without the approximation of independent electrons. It can

cure some of the problems of DFT such as band gap under estimation and electron

localisation, and has been widely used for actinides and Mott insulators. However, it is

more costly than GW. This makes it computationally expensive to apply these methods

to complex systems such as surfaces, interfaces, or defect supercells with hundreds of

atoms. Thus, it is still desirable to find an accurate yet reasonably low cost DFT-style

functional.

It is well known that the non-local Hartree-Fock (HF) potential tends to over-

estimate band gaps while LDA tends to under-estimate band gaps[5, 6, 9]. Also, HF over-

estimates localisation while LDA under-estimates localisation[9]. Hybrid functionals

are a type of functional which empirically mixes a fraction of the HF potential with

a local exchange-correlation functional and they can give reasonably correct band

gaps and electron/hole localisations[19, 20]. Various hybrid functionals have been

proposed such as B3LYP[20, 21], PBE0[22], and the Heyd-Scuseria-Ernzerhof (HSE)
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functional[23, 24, 25]. These hybrid functionals are generalised Kohn-Sham functionals

that can be used variationally for geometry optimisation just like LDA[20, 26]. These

functionals are found to give good descriptions of the band gap in a variety of

systems[28, 29, 30, 31].

Here, we discuss the screened exchange (sX) hybrid functional of Bylander and

Kleinman[32]. This replaces the short range part of the LDA by a short-range screened

Hartree-Fock exchange energy[26, 32, 33, 34, 35, 36, 37]. sX has been implemented for

a plane wave basis within the Castep code[34]. Geometry optimisation was helped by

a fast algorithm to calculate the Hellman-Feynman stress[38]. sX has been widely used

in many band structure and defect calculations[33, 34, 35, 36, 37, 39, 40, 41, 42, 43].

The band gaps from sX of semiconductors are improved with a mean relative error of

7.4%[34].

The early papers on hybrid functionals used a fixed mixing parameter of α=0.25

(meaning 25% HF exchange) based on Becke’s rationalisation[20]. HSE kept this value

of α and varied the screening parameter between the HSE03 and HSE06 versions[24, 25].

On the other hand, some recent papers have varied the mixing fraction, noting that this

parameter might vary with the band gap or the dielectric constant[44, 45] and that

HSE under-estimates the band gap of very wide gap insulators[30]. On the other hand,

Moussa et al[46] considered the optimisation of both parameters for some solids. The

hybrid functionals have been analysed[47, 48, 49] and criticised[50] with respect to GW.

In the case of sX, the mixing fraction is kept at 1, and the screening parameter

is chosen in terms of the screening arising from the valence electron density[34].

Nevertheless, it is interesting to see how the structural properties and band gap

would vary if the screening parameter is allowed to vary. At one level, we find that

the calculated band gap is rather insensitive to the valence electron density in this

approximation. At another level, HSE chose a fixed screening parameter independent of

system[24], a useful simplification when treating heterogeneous systems such as surfaces

or interfaces between systems of electron density. Different approximations have been

proposed to calculate the screening effects[50] but we find that the band gap is rather

insensitive to screening parameter.

This paper is organised as follows. In the next section, we present the methods

used in this work with special attention paid to the screening parameter. In section 3,

we give detailed description of the effect of screening parameter on total energy, lattice

constant, band structure, and defect calculation. In section 4, we discuss the results

and finally draw conclusions from the results obtained in this work.

2. Methods

The sX functional is a non-local Schrödinger equation in which the exchange-correlation

energy depends on both the electron density and electron orbitals,[
−1

2
∇2 + VH [n(r)] + Eext[n(r)] + V XC

loc [n(r)]
]
ψi(r) +
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V XC
nl (r, r′)ψi(r

′)dr′ = εiψi(r) (1)

where the term in brackets is the kinetic energy, the Hartree energy, the external

potential, and the local XC energy such as the LDA or GGA part. The second part is the

non-local part of XC energy which depends explicitly on electron orbitals. sX assumes

that the HF exchange is screened by a Thomas-Fermi (TF) screening parameter, so the

potential decays exponentially with the distance,

EXC
nl = − 1

2

∑
ij,kq

∫ ∫
drdr′

φ∗ik(r)φik(r
′)φ∗jq(r

′)φjq(r)

|r − r′|
exp (−kTF |r − r′|)

(2)

where i and j label the electron bands, k and q for k-points, and kTF is the TF screening

parameter. The local part is modified to avoid the double counting of the local part of

the screening potential,

EXC
loc = EXC

HEG [ρ(r)]− EXC
NL−HEG [ρ(r)] (3)

where the first term on the right is just the LDA functional. The second term is the non-

local exchange-correlation energy of a homogeneous electron gas (HEG) with a density

ρ(r). Combining the local and non-local part gives the full exchange-correlation energy

EXC = EXC
nl + EXC

loc . (4)

The TF screening constant represents the screening range of the electron

interaction. If kTF = 0, the non-local XC becomes the full HF potential and the

local part becomes the LDA correlation energy. Thus the result from HF limit should

not be interpreted as comparable to the pure HF method or advanced methods such

as exact exchange method (EXX). If kTF is infinite, there is full screening. The HF

part is screened away and the local part returns to LDA. Therefore sX gives the correct

asymptotic limit of the free electron gas.

Figure 1 compares the screening in the different hybrid functionals. Figure 1(a)

shows the screened fraction of the HF potential as a function of inter-electron distance.

The HF fraction is a constant for PBE0. For the sX, the screening parameter is

varied to show how this affects the HF fraction. As the increases the fraction of HF

decreases and vice versa. The medium range, from 2 to 4Å, is an important range for

this parameter because most inter-atomic distances fall into this range. Figure 1(b)

compares the screening in reciprocal space. The HSE screening and sX screening with

various screening parameters are compared with the dielectric function of GaAs[51]. We

see that a TF screening parameter of 1-2Å−1 is close to that of the dielectric function.

In principle, we can achieve a good description of the electronic structure if the

screening parameter is allowed to vary. Ideally, the screening parameter should be fixed

by some procedure. If the TF screening model[52, 53] is used, the screening parameter

is given by

kTF = 2

√
kF
π

(5)
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Figure 1. (a) Comparison of HF potential fraction in different hybrid schemes.

Different TF screening parameters are used in sX (green lines). For PBE0 (blue

line) α = 0.25. For HSE (red line), α = 0.25 and µ = 0.2. (b) Comparison of

the inverse dielectric constant for different functionals. The same parameters as (a)

have been used. The inverse dielectric function of GaAs has been plotted (black line)

for comparison[51]. Note the similarity of sX screening to that of the experimental

inverse dielectric function.
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where kF is the electron Fermi wavevector. We can also write kTF in terms of electron

density ρ(r),

kTF = 2
(

3ρ

π

) 1
6

(6)

so the screening parameter is proportional to the one sixth order of valence electron

density, which explains why the kTF is a slowly varying function of ρ(r). Unless stated

otherwise, all the values used in this work is summarised in Table 1.
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Table 1. The screening parameter used for different materials in units of Å−1.

Material kTF

C 2.50

Si 2.09

Ge 2.06

GaAs 2.04

Al2O3 2.48

HfO2 2.54

Ti2O3 2.43

Cr2O3 2.52

Fe2O3 2.56

BN 2.56

The plane wave basis pseudopotential package Castep is used to carry out all

the calculations in this work[54]. The norm-conserving pseudo potentials are defined

in Ref. 21, where most of them are the default pseudopotentials while some more

transferable potentials are generated using the Opium code. A Monkhorst-Pack (MP)

k-point mesh is used for the integration over the Brillouin zone[55]. The convergence

of the total energy differences with respect to the mesh size and cutoff is better than

0.01 eV/atom. The density mixing scheme is used for electronic energy minimisation

for most sp semiconductors, while a preconditioned conjugate-gradient scheme is used

for most transition metals because the density mixing method can be unstable due to

the orbital dependence of the functional[26].

3. Results

3.1. Wave function

It has been pointed out by several groups that the sX wave function can be almost

identical to that from LDA/GGA in many cases[26]. We have confirmed this similarity.

First of all the LDA/PBE wave function can be a good starting point for sX calculation.

This greatly reduces the computational time. Furthermore the LDA/GGA wave function

can be used for a sX band structure calculation:

εsXn,k =
〈
ψsXn,k

∣∣∣V sX
[{
ψLDAn′,k′

}]∣∣∣ψsXn,k〉 . (7)

The band structure from an LDA/PBE basis with an sX potential shares the similar

curve as the self-consistent sX band structure. But the band gap is lower compared to

a self-consistent sX calculation. Figure 2 compares the Si band gap as a function of the

screening parameter from LDA/GGA with the self-consistent sX band gaps. The same

6 × 6 × 6 MP grid has been used for reciprocal space integrations. The experimental

crystal structure has been used for all cases. The difference between the sX and the

LDA/GGA bands increases as the screening parameter decreases. At the HF limit, the

error could be as be large as 25% of the band gap. However, the error is about 2%-3%
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Figure 2. The calculated band gap of Si as function of screening parameter with

difference wave functions from LDA (orange line), PBE (black line), and sX (green

line). The figures shows that LDA and PBE wave function gives similar results

when screening parameter is larger than 1. The difference becomes significant when

approaching HF limit. The dashed line shows the experimental band gap.
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Table 2. sX band gaps (in eV) based on different wave functions.

Material sX wavefunction LDA wavefunction Difference

C 5.32 5.04 0.28

Si 1.09 1.07 0.02

Ge 0.69 0.60 0.09

GaAs 1.52 1.47 0.05

Ti2O3 0.22 0.00 0.22

Cr2O3 3.56 3.48 0.08

for reasonable screening parameters of 1.8-2.5Å−1, which suggests that the LDA/GGA

wave function could be almost identical to the sX wave function, in agreement with

previous results.

Table 2 shows the band gap of several solids with their respect the TF screening

parameter using the LDA wave function or the sX wave function. The error induced by

the LDA wave function is usually less than 0.2eV. Therefore, it is acceptable for most

semiconductors and insulators. However, the LDA wave function should not be used for

small band gap or correlated semiconductors. Ti2O3, a paramagnetic semiconductor,

whose band gap is only 0.1-0.2eV, can be well described by the self-consistent sX with

a band gap 0.22eV, but a LDA/GGA wave function will give a metallic band structure.
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Figure 3. Variation of lattice parameter of Si with screening length (black line). The

dashed line marks the experimental lattice parameter of 5.41Å. We see the usual LDA

(large kTF ) overbinding and HF (small kTF ) overbinds further.
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3.2. Lattice constant

We used sX to relax the lattice constant of Si to see the influence of various screening

lengths, kTF . The LDA is known to under-estimate lattice constants while GGA tends

to over-estimate it (5.40Å and 5.46Å respectively). The sX hybrid functional mixes the

screened HF potential and LDA local potential. The results are shown in Figure 3.

The LDA gives 5.40Å which is below the experimental value, while the HF limit gives

5.355Å. This underestimate of lattice parameter using HF is expected given standard

molecular results[27].

3.3. Band structure

The most important application of the sX hybrid functional is to correct the band

gap problem in DFT. Here, the band structures are calculated with various screening

parameters for various materials ranging from the simple sp semiconductors, to

transition metal oxides with d electrons, Mott-Hubbard systems and 2-dimensional

systems. The data is summarised in Figure 4. The gaps are normalised to the

experimental band gap as 1 and to the band gap in the HF limit as 2, for each

material. The experimental value of band gap gathers round a screening length of

1.8-2.5Å−1 which confirms that TF screening scheme gives a correct band gap. It has

been shown previously that the sX functional can give much better band gaps in many

sp semiconductors[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Here we show the band

gap variance as a function of the screening parameter. In order to eliminate the effect of

lattice constants, we use the experimental lattice constants. Figure 4 shows the results

from Si, C (diamond), Ge, and GaAs. The electron configuration and crystal structure

are the same for these semiconductors, thus their TF screening parameters are similar.

We see that the slope of the variation of band gap with screening parameter is smaller
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Figure 4. The band gaps versus screening parameter for Si, C (diamond), Ge,

GaAs, Al2O3, HfO2, BN, Ti2O3, Cr2O3, Fe2O3, and Si(111)-(2 × 1) surface. The

data is normalised by two limits, the experimental band gap and HF limit band gap

(respectively, 1.0 and 2.0 on the vertical axis).
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than the experimental band gap, so that the band gap is not so sensitive to the screening

parameter. The error induced by a small deviation from the optimum TF value is quite

small.

Figure 4 also shows the band gaps for the wide gap, closed-shell, insulators

BN, HfO2 and Al2O3. These insulators are important from both the scientific and

technological points of view. HfO2 and Al2O3 are the widely used as gate insulators in

field effect transistors. Hexagonal BN is now used as a substrate for 2D systems such

as graphene and MoS2. We see that the normalised trend of band gap versus screening

parameter is similar in all these systems, and that the optimum value is close to the TF

value.

Another problem for the LDA/GGA functional is over delocalisation of semi-core

states such as the d and f electrons. For the sp semiconductors only the band gap is

under-estimated but the band structure is qualitatively correct. However LDA/GGA

fails qualitatively for localised, open-shell, d and f electron systems. The LDA band

gap disappears in systems such as the Mott-Hubbard insulators Ti2O3. We previously

found that sX gives good band gaps for several transition metal oxides[41, 42] and that

hybrid functionals in general can treat the transition metal and lanthanides well[31, 43].

Here, we have calculated the band gap of Ti2O3, Cr2O3, and Fe2O3 as a function

of screening parameter as also shown in Figure 4. These transition metal oxides

range from small band gap semiconductor to wide band gap semiconductor with both

paramagnetic and anti-ferromagnetic ordering. sX was found to successfully describe all

these systems. The experimental lattice constants are used for the primitive cells. Ti2O3

is a paramagnetic semiconductor with band gap of about 0.1eV. We noted above that sX

with an LDA wavefunction will give a metallic band structure. The band gap does not
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open up until the screening parameter is less than 5Å−1. Cr2O3 is an anti-ferromagnetic

insulator, intermediate between a charge transfer and Mott-Hubbard insulator. Fe2O3

is an anti-ferromagnetic Mott-Hubbard insulator. We see here that TF screening can

also give a correct band gap for these correlated d electron systems.

Surface band structures might be quite different from the bulk band structures.

Quantum confinement effects are quite important in quasi-2D surface band structures.

It has been claimed that the hybrid functionals could not give the correct prediction of

2D and 1D systems[50]. However we find here that the sX functional with a similar TF

screening can give a reasonable band gap of low-dimension systems. We previously found

that sX will reproduce the Fermi velocity of graphene[40], which is under-estimated by

LDA. Here we calculate the Si(111)-(2× 1) surface as an example of a 2D system.

The Si(111)-(2× 1) surface is a good test of a 2D system because of its well known

atomic and electronic structure[56, 57, 58, 59, 60, 61]. Figure 5(a) shows that the (2×1)

reconstruction causes the surface dangling bonds to form a π-bonded chain along the

[011] direction.

In our calculation, the same pseudopotential and screening parameter from the

bulk Si is used for the surface calculation and the bulk band structures. The surface is

constructed from a 16-layer Si slab with 20Å of vacuum. Hydrogen is used to passivate

the opposite side of the slab. The Brillouin zone is sampled with a 2×4×1 k-point mesh.

This supercell is found to converge the energy to within 0.01 eV with respect to the

slab thickness. In order to eliminate the effects of geometry relaxation, the sX-relaxed

structure with the bulk TF screening parameter is used during all calculations. The

force is relaxed to less than 0.02eV/Å. The surface atomic structure from sX is almost

the same as the PBE-relaxed structure as long as the same bulk lattice constant is used.

Figure 5(b) shows the surface band structure calculated in sX, compared to the

surface states found by photoemission and inverse-photoemission[57], and also to the

GW calculations of Northrup et al[61]. The band gap of the surface π-bonded chain is

direct and at J . Most bulk semiconductors and insulators that we have discussed so far

have small exciton binding energies, so that it is not necessary to distinguish between the

optical gap and quasi-particle gaps. However, the exciton binding energy of the Si(111)

surface is 0.28eV, much larger than the bulk binding energy of 0.015 eV[58]. Thus,

the quasi-particle gap is significantly different from the optical gap. The calculated sX

surface band gap is 0.45 eV. Interestingly, this is closer to the experimental optical band

gap of 0.47 eV, but is 0.2 eV less than the experimental photoemission gap of 0.65 eV.

This behaviour is unusual, but it is consistent with the observation of Scuseria et al[62]

that the HSE band gap might be identified more with the optical gap.

Figure 6 shows the band gaps of Si(111)-(2 × 1) as a function of sX screening

parameter. The figure shows similar trends as other systems. The error by TF screening

with average electron density is less than 0.05eV. The slope of band gap versus screening

parameter is relatively small around the experimental gap.

In order to compare the screening effects in 2D and 3D systems, we also consider the

electronic structure and screening in bulk (3D) and monolayer (2D) MoS2[63, 64, 65, 66].
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Figure 5. (a) Geometric structure of Si(111)-(2 × 1) surface. (b) Band structure of

the Si(111)-(2 × 1) surface from sX (black lines), comparing to band energies from

photoemission (PE) and inverse photoemission (IPE) (triangle)[57], and GW quasi-

particle energies (cross) from Northrup et al[61].
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Figure 6. Variation of the calculated surface band gap of Si(111)-(2 × 1) with sX

screening length.
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Here, the exciton binding energy is small in bulk MoS2, whose band gap is 1.27 eV

and indirect. In contrast, the exciton energy is large, of order 0.9 eV, in monolayer

MoS2[63, 64]. The minimum optical gap of monolayer MoS2 is 1.88 eV and direct. The

quasi-particle gap of monolayer and bulk MoS2 is taken to be 2.7 eV from refs [63, 64].

This is consistent again with comment of Scuseria et al [62] that the HSE band gap

might be identified more with the optical gap, not the quasi particle gap.

Our sX calculations of MoS2 use the same pseudopotential and calculation

parameters as in our previous work[66]. Figure 7(a) shows that the variation of band

gap with screening parameter for 3D and 2D MoS2. We see that the variation is the

same when normalised to the optical gap (Figure7(b)). However, it is different if it

is normalised to the quasi-particle gap, where the effect of low screening particularly

affects the 2D system. These results illustrate that low dimensional systems are quite

useful to study the effects of low screening, without going to wide gap systems.

To summarise, the TF average density method gives quite good band structures

for all the systems studied so far. The band gap varies slowly for screening parameters

around the TF value, 1.8-2.5Å−1. This should allow us to use an average screening

parameter for mixed systems such as interfaces or surfaces.

3.4. Charge transition level

The defect levels of semiconductors are an important application of hybrid functionals.

The charge transition level is defined as the energy where the two charge states of

the defect have the same formation energy. First-principles calculations are a useful

tool to determine defect properties. However, semi-local XC functional are unlikely

to get transition levels correct, due to the band gap problem. Moreover, the electron

delocalisation problem of semi-local DFT can lead to the incorrect ground state for some
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Figure 7. Dependence with respect to screening length of (a) minimum band gaps of

2D (curved dashed line) and 3D (curved solid line) MoS2, and (b) normalised to the

experimental optical gap. Experimental gaps are shown in (a) by the horizontal lines for

2D (dashed line, 1.88 eV) and 3D (solid line, 1.27 eV) materials and the quasiparticle

gap also indicated (dot-dash line, 2.7 eV). Note in (b) the similar dependence of 2D

and 3D when normalised to the optical gap (1.0 on the vertical axis). Both diagrams

indicate that the same screening is suitable for both 2D and 3D materials.
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defects[67, 68, 69, 70]. The sX hybrid functional is known to correct these problems in

several semiconductors and insulators[35, 39, 66, 71, 72]. HSE has been widely used in

defect calculations. Here we investigate the effects of the sX screening parameter on the

charge transition levels for the As anti-site centre in GaAs.

There are not so many cases where the defect is fully identified experimentally and

the transition level is known. The As anti-site or EL2 centre in GaAs has been selected

for this study. It is responsible for the Fermi level pinning in the mid band gap. It

has been confirmed to give two transition states at 0.5eV (+ + /+) and 0.7eV (+/0)

by experiments such as scanning tunneling spectroscopy, and electron paramagnetic

resonance[72, 73]. Its atomic structure is also known from both experiments and DFT

calculations[72, 73, 74, 75]. It is a rare case where both the atomic and electronic

structure of the defect are known from experiments.

We used a 64-atom cubic super cell with one As anti-site. A 2 × 2 × 2 MP grid

is used for Brillouin zone integrations. The geometry is relaxed with the sX hybrid

functional for each different screening parameter. The formation enthalpy is calculated

for the 0, +, and ++ states. The total energy of the defect cell and the perfect cell are

calculated for each charge state. The defect formation energy is then calculated as,

Hq (EF , µ) = [Eq − EH ] + q (EV + ∆EF ) +
∑
α

nα
(
µ0
α + ∆µα

)
(8)

where Eq is the defect cell energy, EH is the perfect cell energy, qEV is the change in

energy of the Fermi level when charge q is added and nα is the number of atoms of species

α. The charge correction process follows the procedure of our previous calculations[39].

Figure 8(a) plots the two defect transition levels as a function of the screening

parameter. The difference between these two states remains constant at 0.1eV. As the

HF part becomes larger, the transition level rises, just like the band gap. The sX hybrid

functional gives a slightly higher transition level compared to experiment. However

other hybrid functionals, such as HSE, also give higher transition levels for EL2[74, 75].

The error could be due to the small size of supercell and pseudopotentials without d

electrons. However we note that the charge transition level is not shifted significantly

for screening parameters of 1.8-2.3Å−1. Figure 8(b) plots the transition energies as a

fraction of the calculated band gap.

4. Discussion

We find that the sX hybrid functional works well for such a wide range of materials. Its

success is based on the following two facts. First the screened exchange term can give

the correct band structure for these materials due to the introduction of the long-range

screened HF terms. Compared to LDA+U or LDA+DMFT where the weak correlation

is still based on LDA, the sX hybrid functional could give a better description for the

simple sp semiconductor and the strong correlated systems such as transition metal

oxides at the same time. Secondly, the TF screening parameter which determines the

fraction of HF exchange has only a weak effect on the band gap, around its optimum
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Figure 8. (a) Calculated sX band gap (solid line) and the 0/+ (dashed line) and

+/+ + (dotted line) transition levels of the As anti-site in GaAs as a function of the

sX screening parameter, in eV. (b) Transition levels (labels as in (a)) normalised to

the GaAs band gap, as a function of screening length, kTF . Note the levels fall as a

fraction of the total band gap towards to HF limit on the left.
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value. The band gap changes slow near the correct value. kTF is proportional to the one

sixth power of the valence electron density, so the screening parameter is always in the

range of 1.8-2.5Å−1. This slow dependence allows a fixed value of screening parameter to

be used if desired, for example in heterogeneous situations such as surfaces or interfaces.
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5. Conclusions

To summarise, we analysed the performance of the sX hybrid functional calculation of

band structures in this work. The TF screening with average valence electron density

is found to give good agreement with experiment. Due to the nature of screening and

similar valence density in materials, the screening parameter always falls into a similar

range of 1.8-2.5Å−1. This TF screening parameter guarantees that the sX functional

are reliable as in the simple systems.
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