
J
H
E
P
0
3
(
2
0
1
6
)
1
8
3

Published for SISSA by Springer

Received: December 4, 2015

Accepted: March 12, 2016

Published: March 29, 2016

The N = 2 superconformal bootstrap

Christopher Beem,a Madalena Lemos,b Pedro Liendo,c Leonardo Rastellib

and Balt C. van Reesd

aInstitute for Advanced Study, Einstein Drive,

Princeton, NJ 08540, U.S.A.
bC. N. Yang Institute for Theoretical Physics, Stony Brook University,

Stony Brook, NY 11794-3840, U.S.A.
cIMIP, Humboldt-Universität zu Berlin, IRIS Adlershof,

Zum Großen Windkanal 6, 12489 Berlin, Germany
dTheory Group, Physics Department, CERN,

CH-1211 Geneva 23, Switzerland

E-mail: beem@ias.edu, madalena.lemos@desy.de,

pliendo@physik.hu-berlin.de, leonardo.rastelli@gmail.com,

vanrees@insti.physics.sunysb.edu

Abstract: In this work we initiate the conformal bootstrap program for N = 2 super-

conformal field theories in four dimensions. We promote an abstract operator-algebraic

viewpoint in order to unify the description of Lagrangian and non-Lagrangian theories,

and formulate various conjectures concerning the landscape of theories. We analyze in

detail the four-point functions of flavor symmetry current multiplets and of N = 2 chiral

operators. For both correlation functions we review the solution of the superconformal

Ward identities and describe their superconformal block decompositions. This provides

the foundation for an extensive numerical analysis discussed in the second half of the pa-

per. We find a large number of constraints for operator dimensions, OPE coefficients, and

central charges that must hold for any N = 2 superconformal field theory.

Keywords: Conformal and W Symmetry, Conformal Field Models in String Theory,

Extended Supersymmetry, Supersymmetric gauge theory

ArXiv ePrint: 1412.7541

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2016)183

mailto:beem@ias.edu
mailto:madalena.lemos@desy.de
mailto:pliendo@physik.hu-berlin.de
mailto:leonardo.rastelli@gmail.com
mailto:vanrees@insti.physics.sunysb.edu
http://arxiv.org/abs/1412.7541
http://dx.doi.org/10.1007/JHEP03(2016)183


J
H
E
P
0
3
(
2
0
1
6
)
1
8
3

Contents

1 Introduction 1

2 The N = 2 superconformal bootstrap program 3

2.1 The insufficiency of Lagrangians 3

2.2 The bootstrap philosophy 5

2.3 Operator algebras of N = 2 SCFTs 10

2.4 A first look at the landscape: theories of low rank 18

3 The moment map four-point function 20

3.1 Structure of the four-point function 21

3.1.1 Constraints of crossing symmetry 23

3.1.2 Fixing the meromorphic functions 24

3.2 Superconformal partial wave expansion 25

3.2.1 Fixing the short multiplets 27

3.3 su(2) global symmetry 30

3.4 e6 global symmetry 31

4 The Er four-point function 31

4.1 Structure of the four-point function 33

4.1.1 The φr0(x1)× φ̄−r0(x2) channel 33

4.1.2 The φr0(x1)× φr0(x2) OPE 34

4.2 Crossing symmetry 35

4.2.1 Free theory expansion 37

5 Operator bounds from crossing symmetry 37

6 Results for the moment map four-point function 40

6.1 su(2) global symmetry 41

6.1.1 Constraints on c and k 43

6.1.2 Dimension bounds for su(2) 45

6.1.3 Bounds for theories of interest 47

6.1.4 Bounds for defect SCFTs 50

6.2 e6 global symmetry 51

6.2.1 Constraints on c and k 52

6.2.2 Dimension bounds in the singlet channel 53

6.2.3 Bounds for theories of interest 54

6.2.4 The rank one theory 55

6.2.5 Bounds for defect SCFTs 57

7 Results for the Er four-point function 57

7.1 Central charge bounds 57

7.2 Dimension bounds for non-chiral channel 59

7.3 E2r OPE coefficient bounds 63

– i –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
3

8 Conclusions 67

A Unitary representations of the N = 2 superconformal algebra 70

B Superconformal block decompositions 72

B.1 Superconformal blocks for the B̂1 four-point function 72

B.2 Superconformal blocks for the Er four-point function 77

B.2.1 Selection rules in the non-chiral channel 77

B.2.2 Selection rules in the chiral channel 78

B.2.3 Superconformal blocks in the non-chiral channel 79

B.2.4 Superconformal blocks in the chiral channel 80

C Semidefinite programming and polynomial inequalities 81

C.1 A toy model for polynomial inequalities 83

C.1.1 The primal problem: ruling out solutions 83

C.1.2 The dual problem: constructing solutions 85

C.2 Notes on implementation 86

D Polynomial approximations and conformal blocks 88

E Exact OPE coefficients for the N = 2 chiral ring 90

1 Introduction

In this work we initiate the conformal bootstrap program for four-dimensional conformal

field theories with N = 2 supersymmetry. These theories are extraordinarily rich, both

physically and mathematically, and have been studied intensively from many viewpoints.

Nevertheless, we feel that a coherent picture is still missing. We hope that the generality

of the conformal bootstrap framework will allow such a picture to be developed. We also

feel the time is ripe for such an investigation — the recent explosion of results for N = 2

superconformal field theories (SCFTs) calls out for a more systematic approach, while the

methods first introduced in [1] have reinvigorated the conformal bootstrap [2–8] with a

powerful and flexible toolkit for studying conformal field theories.

The first examples of N = 2 superconformal field theories (SCFTs) were relatively

simple gauge theories with matter representations chosen so that the beta functions for

all gauge couplings would vanish. Since then, the library of known theories has grown

in size, with the new additions including many Lagrangian models [9], but remarkably

also many theories that appear to admit no such description. In particular, the class S
construction of [10, 11] gives rise to an enormous landscape of theories, most of which resist

description by conventional Lagrangian field theoretic techniques. Despite this abundance,

the current catalog seems fairly structured, and one may reasonably suspect that a complete

classification of N = 2 superconformal field theories (SCFTs) will ultimately be possible.

The development of the N = 2 superconformal bootstrap seems an indispensable step

towards this ambitious goal.
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Our first task is to introduce an abstract operator-algebraic language for N = 2 SCFTs.

In this reformulation, we retain only the vector space of local operators (organized into

representations of the superconformal algebra), and the algebraic structure on this vector

space defined by the operator product expansion. From this viewpoint, we can see that

a theory is free (or contains a free factor) if its operator spectrum includes higher spin

currents; we can see that a theory has a Higgs branch of vacua if its operator algebra

includes an appropriate chiral ring that is the coordinate ring of an affine algebraic variety;

and so on and so forth. Representation theory of the N = 2 superconformal algebra

proves an invaluable tool, as its shortened representations neatly encode different facets of

the physics. This algebraic viewpoint is remarkably rich, and we have dedicated the next

section to its extensive presentation.

Once equipped with the proper language, we can make an informed decision on where

and how to employ numerical bootstrap methods. We explain that there are three classes

of four-point functions that should be the starting point for any systematic exploration

of this type: the stress-tensor four-point function; the moment map four-point function;

and the four-point function of N = 2 chiral operators. In the present work, we report

on numerical investigations into specific examples of the latter two classes. The requisite

superconformal block expansion for the first correlator, which is the most universal, is not

yet available, so this case is left for future work. The moment map four-point function

is related to the flavor symmetry of the theory, and we focus on the cases of su(2) and

e6. The su(2) case is clearly the simplest and is a natural starting point, while e6 case is

interesting because exceptional flavor symmetries cannot appear in any Lagrangian field

theory, and e6 is (among others) the simplest case to bootstrap after su(2). On the other

hand, the four point function of N = 2 chiral operators gives us access to a very different

aspect of the physics, namely the Coulomb branch chiral ring.

There are two broad types of questions that we can hope to address by bootstrap

methods. First of all, we can constrain the space of consistent N = 2 SCFTs. There are

a number of universal structures that appear throughout the N = 2 catalog that cannot

be satisfactorily explained in the abstract bootstrap language. Are Coulomb branch chiral

rings always freely generated? Are central charges bounded from below by those of free

theories, or are there exotic theories with even lower central charges? Is every N = 2

conformal manifold parametrized by gauge couplings? As we will see, these questions can

sometimes be connected with the constraints of crossing symmetry, and then numerical

analysis can provide (partial) answers.

Our second motivation is to learn more about specific N = 2 SCFTs. There are many

cases where supersymmetry can tell us a lot about an N = 2 SCFT even when we have no

Lagrangian description. In many examples we know, e.g., the central charges (including

flavor central charges), the spectrum of protected operators, and some OPE coefficients

associated with protected operators. This partial knowledge can be used as input for a

numerical bootstrap analysis. Optimistically, we may hope that this protected data and

the constraints of crossing symmetry are enough to determine the theory uniquely. The

bootstrap may then allow us to effectively solve the theory along the lines of what has been

done for the three dimensional Ising CFT [12–14]. Because the bootstrap is completely
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nonperturbative in nature, it is a natural tool for studying intrinsically strongly coupled

(non-Lagrangian) theories. In fact, when it comes to studying unprotected operators in a

non-Lagrangian theory, the bootstrap is really the only game in town.

The detailed organization of the paper can be found in the table of contents. In the first

part (sections 2-4) we develop the algebraic viewpoint and the details of the superconformal

block expansion for the two classes of correlators that we consider, while in the second part

(sections 5-8) we present our numerical investigations. Several appendices complement the

main text with technical and reference material.

2 The N = 2 superconformal bootstrap program

In the bootstrap approach to conformal field theories, one adopts an abstract viewpoint

that takes the algebra of local operators as the primary object. On the other hand, the

majority of conventional wisdom and communal intuition about N = 2 field theories arises

from a Lagrangian — or at least quasi-Lagrangian — perspective. This leads to something

of a disconnect. The bootstrap perspective is likely to be unfamiliar to many experts in

supersymmetric field theory, while amongst readers with a background in the conformal

bootstrap the additional structure that follows from N = 2 supersymmetry may not be

well known. In this section we will try to bridge this divide.

2.1 The insufficiency of Lagrangians

Let us recall some aspects of Lagrangian N = 2 field theories, which provide a historical

foundation of the subject and help to guide our thinking even for the non-Lagrangian

theories discussed below. The building blocks of an N = 2 four-dimensional Lagrangian

are vector multiplets, transforming in the adjoint representation of a gauge group G, and

hypermultiplets (the matter content), transforming in some representation R of G.1 For

the theory to be microscopically well-defined, the gauge group should contain no abelian

factors,2 so we can take G to be semi-simple,

G = G1 ×G2 × · · ·Gn . (2.1)

To each simple factor Gi is associated a complexified gauge coupling τi ∈ C, Im τi > 0, and

for each choice of (G,R, {τi}) there is a unique, classically conformally invariant N = 2

Lagrangian. For the quantum theory to be conformally invariant, the matter content must

be chosen so that the one loop beta functions for the gauge couplings vanish. Thanks to

N = 2 supersymmetry, this is also a sufficient condition at the full quantum level.

The classification of the pairs (G,R) that lead to N = 2 SCFTs can therefore be

reduced to a purely combinatorial problem, whose complete solution has been described

recently in [9]. The simplest examples are N = 2 superconformal QCD, which has gauge

1More generally, for appropriate choices of gauge group one can allow for “half-hypermultiplets”, i.e.,

N = 1 chiral multiplets, transforming in pseudo-real representations of G. See, e.g., [9] for a recent

discussion.
2An exception is when no hypermultiplet is charged under the abelian factors, in which case there are

decoupled copies of the free vector multiplet SCFT in the theory.
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group G = SU(Nc) and Nf = 2Nc hypermultiplets in the fundamental representation, and

N = 4 super Yang-Mills theory (which can be regarded as an N = 2 SCFT), for which G

is any simple group and the hypermultiplets transform in the adjoint representation.

The conformal manifold of a CFT is the space of theories that can be realized by

deforming a given CFT by exactly marginal operators. In a slight abuse of terminology we

often refer to the conformal manifold of an N = 2 SCFT as the (not necessarily proper)

submanifold of the full conformal manifold where in addition the full N = 2 supersymmetry

is preserved. For a Lagrangian theory this submanifold coincides with the space of gauge

couplings {τi}, up to the discrete identifications induced by generalized S-dualities.3 The

conformal manifold comes endowed with a metric — the Zamolodchikov metric — which

is Kähler and with respect to which the weak coupling points (where some τi →∞ in some

S-duality frame) are at infinite distance as measured from the interior. Thus the conformal

manifold of any N = 2 Lagrangian SCFT is non-compact with boundaries where gauge

couplings are turned off.

Lagrangian theories also always possess nontrivial moduli spaces of supersymmetric

vacua. The simplest parts of the moduli space are the Coulomb branch and the Higgs

branch. The Coulomb branch consists of vacua where the complex scalar fields ϕi in the

vector multiplets acquire nonzero vacuum expectation values (vevs), while the complex

scalars (q, q̃) in the hypermultiplets are set to zero — this branch is characterized by

the fact that SU(2)R is unbroken, while U(1)r is broken. Alternatively, on the Higgs

branch only the hypermultiplet scalars get nonzero vevs, and this branch is characterized

by SU(2)R breaking with U(1)r preserved. There can also be mixed branches where the

entire R-symmetry is broken, though we will not have much to say about mixed branches

in this paper.

The best way to parametrize these moduli spaces is by the vevs of gauge-invariant

combinations of the elementary fields. The Coulomb branch is parametrized by the vevs

of operators of the form {Trϕk}. These operators form a freely generated ring, called

the Coulomb branch chiral ring, with generators in one-to-one correspondence with the

Casimir invariants of the gauge group. Similarly, the Higgs branch can be parametrized by

the vevs of gauge invariant composites of the hypermultiplet scalars. These operators also

form a finitely generated ring, the Higgs branch chiral ring. The Higgs branch chiral ring is

generally not freely generated, but rather has relations so that the Higgs branch acquires

a description as an affine complex algebraic variety. Alternatively, the Higgs branch can

be expressed as a Hyperkähler quotient [15].

Isolated SCFTs and quasi-Lagrangian theories. Lagrangian SCFTs make up only

small subset of all SCFTs. A wealth of strongly coupled N = 2 SCFTs with no marginal

deformations are known to exist — by virtue of being isolated, they cannot have a conven-

tional Lagrangian description. One particularly elegant way to find such isolated theories

is through generalized S-dualities of the kind discussed in [16]. By taking a Lagrangian

theory and dialing a marginal coupling all the way to infinite strength, one may recover a

3Because the action of S-duality can have fixed points in the space of gauge couplings, the conformal

manifold may have orbifold points, so it may not really be a manifold.
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weakly gauged dual description which involves one or more isolated SCFTs and a set of

vector multiplets to accomplish the gauging. In this dual description the gauging procedure

is described in what we may call a quasi-Lagrangian fashion: the isolated SCFT is treated

as a non-Lagrangian black box with a certain flavor symmetry, which is allowed to talk

to the vector multiplets through minimal coupling of the conserved flavor current of the

isolated SCFT to the gauge field. The one-loop beta function for each simple gauge group

factor is given by

β = −h∨ + 4k , (2.2)

where h∨ is the dual Coxeter number of the group and k the flavor central charge, defined

from the two-point function of the conserved flavor current. (Of course, this expression

for β applies also to the Lagrangian case, where the flavor current is a composite operator

made of the hypermultiplet fields.)

The web of generalized S-dualities for large classes of theories can be elegantly de-

scribed through the class S constructions of [10, 11]. These theories arise from twisted

compactifications of the six-dimensional (2, 0) theories on a punctured Riemann surface,

with additional discrete data specified at each puncture. The marginal deformations of

the four-dimensional theory correspond to the moduli of the Riemann surface, and weakly

gauged theories arise if the Riemann surface degenerates. In this picture the isolated

theories correspond to three-punctured spheres which have no continuous moduli. They

do, however, depend on the discrete data at the three punctures as well as on a choice

of g ∈ {An, Dn, En} for the six-dimensional ancestor theory. In this way several infinite

classes of isolated theories can be constructed. A few of these theories turn out to be equal

to theories of free hypermultiplets, but most cases do not admit a Lagrangian description.

Another large class of isolated theories are the Argyres-Douglas fixed points [17] which

describe the infrared physics at special points on the Coulomb branch of another N =

2 theory. At these distinguished points several BPS particles with mutually non-local

charges become simultaneously massless, which precludes any Lagrangian description of

the infrared theory. Alternatively, many Argyres-Douglas fixed points can be constructed

in class S by allowing for irregular singularities on the UV curve [18]. Argyres-Douglas

theories have also recently been used as building blocks in a quasi-Lagrangian set-up [19].

In order to describe the currently known landscape of N = 2 SCFTs, then, it is clearly

not sufficient to only consider Lagrangians with hypermultiplets and vector multiplets. We

can certainly accommodate any theory in a framework which takes as fundamental the

spectrum and algebra of local operators. This is the basic starting point for the bootstrap

approach that we take in this paper. The remainder of this section is dedicated to the

development of such a framework.

2.2 The bootstrap philosophy

In the bootstrap approach, we take a (super)conformal field theory to be characterized by

its local operator algebra.4 The aim is then to understand the constraints imposed upon

4In adopting this perspective, we are therefore willfully ignoring the complications associated with in-

cluding non-local observables — such as Wilson line operators in conformal gauge theory — and non-trivial
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such algebras by (super)conformal invariance, associativity, and unitarity. This approach

dates back to the foundational papers of [2–8]. See, e.g., [1, 20] for modern expositions.

We will briefly recall the general logic, while placing particular emphasis on the role played

by short representations of the conformal algebra. In the next subsection we describe the

special features that arise in the N = 2 superconformal case.

The local operators {Oi(x)} of a CFT form a vector space that is endowed with a prod-

uct that gives it something like an associative algebra structure. The product for local op-

erators is known as the Operator Product Expansion (OPE), and takes the schematic form

O1(x)O2(y) =
∑
k

c12k(x− y)Ok(y) . (2.3)

Any correlation function of separated local operators in flat spacetime Rd can be evaluated

by successive applications of the OPE, which is an absolutely convergent expansion. The

OPE follows as a straightforward consequence of the state/operator correspondence.5 To

each local operator is associated a state, obtained by acting on the vacuum with the

operator inserted at the origin,

O(x)→ |O〉 := O(0)|0〉 , (2.4)

and conversely each state defines a unique local operator,

|ψ〉 → Oψ(x) . (2.5)

As customary, we will use the language of operators or states interchangeably.

To completely specify a CFT at the level of correlators of local operators, it is there-

fore sufficient to list the set of local operators (that is, the set of their quantum numbers)

and the structure constants appearing in their OPEs. Conformal invariance streamlines

the presentation of this information. First, it allows the local operators to be assembled

into conformal families, each of which transforms as a highest weight representation of the

conformal algebra so(d, 2). The highest weight state, known as the conformal primary, is

annihilated by all raising operators in the conformal algebra, notably the special conformal

generators Kµ. Specializing to the four-dimensional case, a representation R[∆, j1, j2] of

so(4, 2) ∼= su(2, 2) is labeled by the quantum numbers of the primary, namely its confor-

mal dimension ∆ and its Lorentz spins (j1, j2). If the theory enjoys an additional global

symmetry GF , then the local operators can be further organized into GF representations,

labeled by some flavor symmetry quantum numbers f , and the full representations are then

denoted as R[∆, j1, j2; f ]. Conformal symmetry also restricts the spacetime dependence of

the functions cijk(x) appearing in the OPE (2.3). In particular, the functions cijk(x) are

uniquely determined in terms of the quantum numbers of the representations Ri, Rj , and

Rk and the coefficients λsijk that parametrize their three-point functions.6 All told, the

spacetime geometries.
5See [21] for a recent discussion.
6In the simplest case of three spacetime scalars (with no additional flavor charges), the three-point

function is completely fixed up to a single overall coefficient λijk. In general there are multiple parameters

λsijk, s = 1, . . .mult(ijk), where the (finite) multiplicity mult(ijk) is given by the number of independent

conformally covariant tensor structures that can be built from the three reps Ri,j,k.
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data that fully specify the local theory amount to a countably infinite list

{ai, λsijk} , ai := (∆, j1, j2, f)i . (2.6)

These data are constrained by the requirements that the theory be unitary and that the

OPE be associative. The hypothesis underlying the conformal bootstrap is that these

constraints are so powerful that they can completely determine the local data given some

minimal physical input. In practice, one expects that the input will include the global

symmetry of the theory and some simple spectral assumptions such as the number of

relevant operators.

Unitarity and shortening. We first recall the constraints imposed by unitarity. Non-

trivial7 unitary representations of so(4, 2) are required to satisfy the following unitar-

ity bounds,

∆ ≥ j1 + j2 + 2 for j1j2 6= 0 ,

∆ ≥ j2 + 1 for j1 = 0 , (2.7)

∆ ≥ j1 + 1 for j2 = 0 .

Generic representations are denoted as A∆,j1,j2 . Non-generic, or short, representations

occur when the norm of a conformal descendant state in the Verma module built over some

conformal primary is rendered null by a conspiracy of quantum numbers. This happens

precisely when the unitarity bounds are saturated, leading to the following list of short

representations:

Cj1,j2 : ∆ = j1 + j2 + 2 ,

BLj1 : ∆ = j1 + 1 , j2 = 0 ,

BRj2 : ∆ = j2 + 1 , j1 = 0 ,

B : ∆ = 1 , j1 = j2 = 0 .

(2.8)

All of these representations have null states at level one with the exception of B, which has

a null state at level two.

The presence of short representations in the spectrum of a CFT is connected to the

existence of free fields and symmetries in the theory. In particular, the primaries of B-

type representations are decoupled free fields, and as such are not of much interest when

studying interacting CFTs. For example, the primary of a B representation is a free scalar

field φ(x). Modding out by the null state at level two imposes the operator constraint

PµPµφ = �φ(x) = 0 , (2.9)

which is nothing but the free scalar equation of motion. Similarly, B?1
2

multiplets have as

their primaries free Weyl fermions; the null state at level one imposes the free equation

7We use the qualification “non-trivial” to exclude the vacuum representation, which consists of a single

state with ∆ = j1 = j2 = 0.
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of motion

BL1
2

: ∂αα̇ψα(x) = 0 ,

BR1
2

: ∂αα̇ψ̃α̇(x) = 0 .
(2.10)

On the other hand, C-type representations have various conserved currents as their

primaries; their level-one null state is the consequence of a conservation equation,

∂α1α̇1Jα1···α2j1
α̇1···α̇2j2

(x) = 0 . (2.11)

Conserved currents with spin j1 + j2 > 2 are higher-spin currents, which are a hallmark of

free CFTs [22, 23]. For the purposes of the bootstrap, we will usually impose by hand that

no such multiplets appear. Conserved currents with (j1, j2) = (1, 1
2) and (j1, j2) = (1

2 , 1)

give rise to an enhancement of the conformal algebra to a superconformal algebra — when

these operators are present one should therefore be taking full advantage of the power of

superconformal symmetry.

Thus, amongst the short representations of so(4, 2), those which may be present in

an interacting non-supersymmetric CFT are C1,1 and C 1
2
, 1
2
. In the former case, the con-

formal primary is the stress tensor Tµν . In the latter case, the conformal primary is a

conserved current Jµ, so the presence of such multiplets portend the existence of continu-

ous global symmetries.

Locality in the operator algebra. An important remark is in order. When character-

izing CFTs by their local operator algebra, certain ingredients which are usually automat-

ically present in a Lagrangian context are no longer necessarily compulsory. For example,

one need not assume that the local algebra includes a stress tensor at all. Indeed, there are

interesting local algebras, such as the algebra of local operators supported on conformal de-

fects in a higher-dimensional CFT, in which the stress tensor is not present. The presence

of a stress tensor is clearly connected with the notion of locality in the CFT, and we will

take the existence of a unique stress tensor (that is, the existence of a unique conformal

representation of type C1,1) as part of the definition of a local CFT.

Similarly, in the Lagrangian context a continuous global symmetry implies the exis-

tence of a conserved current in the operator spectrum. We will assume the validity of this

claim even in the non-Lagrangian context:

Conjecture 1 (CFT Noether “theorem”) In a local CFT, to any continuous global

symmetry is associated a conserved current in the operator algebra that generates

the symmetry.

Clarifying the conceptual status of this “theorem” is an important open problem. On one

hand, one may take it as part of the definition of what it means for a CFT to be local,

in which case this is a tautology. Alternatively, it is possible that the theorem may be
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derived from general principles in a suitable axiomatic framework.8 Whatever the case

may be, the proof of such a statement is of interest in part due to its reinterpretation via

AdS/CFT, which is the statement that there are no continuous global symmetries in AdS

quantum gravity.

Canonical data. The data associated to short representations of the conformal alge-

bra carries particular physical significance. The three-point function of the stress tensor

depends on three parameters, two of which can be identified with the two coefficients ap-

pearing in the conformal anomaly, conventionally denoted by a and c. The a coefficient

gives a measure of the degrees of freedom of the theory and serves as a height function in

theory space: for two CFTs connected by RG flow, aUV > aIR [24, 25]. However, since a

can only be extracted from the stress tensor three-point function, it is rather difficult to

access by bootstrap methods — one would generally need to consider correlation functions

involving external stress tensors, which are very complicated [26]. By contrast, if one uses

the canonical normalization for the stress tensor, its two-point function is proportional to

c. The c coefficient will then appear in any four-point function containing an intermediate

stress tensor, making its presence ubiquitous in the bootstrap literature. Using “conformal

collider” observables, it was argued in [27] that in a general unitarity CFT the ratio of

conformal anomaly coefficients must obey the bounds9

1

3
≤ a

c
≤ 31

18
. (2.12)

The lower bound is saturated by the free scalar CFT, the upper bound by the free vector

CFT. There is strong evidence that these free CFTs are the only theories saturating the

bounds [29].

Similarly, the two-point function of canonically normalized currents depends on a pa-

rameter k often called the flavor central charge that can be identified with an ’t Hooft

anomaly for the corresponding global symmetry [30, 31]. This parameter appears in the

OPE of conserved currents as follows,

JAµ (x)JBν (0) ∼ 3k

4π4
δAB

x2gµν − 2xµxν
x8

+
2

π2

xµxνf
AB

Cx · JC(0)

x6
+ . . . . (2.13)

Like the c central charge, the flavor central charge makes frequent appearances in the

bootstrap because it controls the contribution of the conserved current in a correlation

function of charged operators.

In a sense, the data associated to the spectrum of conserved currents and stress tensors

and their associated anomaly coefficients is the most basic data associated to a conformal

8It is unclear whether the axioms for the algebra of local operators should be sufficient for this purpose.

It is possible that the existence of a conserved current could follow from the assumptions that the operator

algebra is invariant under a continuous symmetry and that there is a stress tensor. Alternatively, the

framework may need to be enlarged, perhaps allowing for correlation functions in non-trivial geometries,

subject to suitable locality assumptions.
9The argument uses positivity of energy correlators in a unitarity theory, which is a reasonable physical

assumption (see also [28]). It would be interesting to recover the HM bounds by conformal bootstrap

methods. This will likely have to wait for the complete conformal block analysis of the stress tensor four-

point function, a challenging technical problem.
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field theory. We designate this data as the canonical data for the CFT. It is natural to

organize an exploration of the space of conformal field theories in terms of these parameters,

and if one wants to study a particular theory in detail this data is an obvious starting point.

This has not always been the approach in the existing bootstrap literature thus far, but that

is at least in part because the natural observables through which to pursue such a strategy

would be the four point functions of conserved currents and stress tensors. At a technical

level, these are much more complex observables than the correlators of spacetime scalars.

The numerical bootstrap approach. Intuitively, associativity of the operator algebra

is a tremendous constraint. However, aside from the case of two-dimensional CFTs where

the global conformal symmetry algebra enhances to two copies of the infinite-dimensional

Virasoro algebra, it seems very difficult to extract useful information from these conditions.

The way forward was shown in [1], where the focus was shifted away from trying to solve

the associativity problem and towards obtaining constraints for, e.g., the spectrum of local

operators or their OPE coefficients in a unitary CFT. The prototypical bounds that can

be obtained in this way are upper bounds for the dimension of the lowest-lying operator

of a given spin, or a lower bound on the c central charge of a theory, all given some input

about the spectrum of scalar operators.

In order to test associativity it suffices to investigate four-point functions in a given

CFT, where the OPE can be taken in three essentially inequivalent ways by fusing different

pairs of operators together. For each choice one finds a representation of the four-point

function as a sum over conformal blocks [20], with one block for each conformal multi-

plet that appears in both OPEs. The statement that these three decompositions have to

sum to exactly the same result is known as crossing symmetry. It was shown in [1] that

useful bounds can be extracted already from the requirement of crossing symmetry for

a single four-point function involving four identical scalar operators. Such an analysis is

conspicuously tractable — as opposed to trying to solve all of the infinitely many cross-

ing symmetry constraints simultaneously, we simply find the conditions that follow from

a finite subset of those constraints. The structure of four-point functions and their OPE

decompositions are severely constrained by conformal symmetry — see, e.g., [20] for an

introductory exposition.

The work of [1] has been extended in numerous directions, and bounds have been ob-

tained in theories with and without supersymmetry and in various spacetime dimensions.

Further numerical bootstrap results can be found for example in [12–14, 32–56]. An es-

sential ingredient in the numerical analysis is the (super)conformal block decomposition

of a four-point functions. These structures have been investigated in various cases in,

e.g., [21, 26, 57–69]. In related work, [70–74] obtained nontrivial constraints for the oper-

ator spectrum by considering in particular the OPE in the limit where operators become

lightlike separated.

2.3 Operator algebras of N = 2 SCFTs

The superconformal case follows largely the same conceptual blueprint as the non-

supersymmetric case, where we replace the conformal algebra so(4, 2) with the supercon-

formal algebra su(2, 2|2). The maximal bosonic subalgebra is just the conformal algebra
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so(4, 2) ≡ su(2, 2) times the R-symmetry algebra SU(2)R × U(1)r. Additionally there

are sixteen fermionic generators — eight Poincaré supercharges and eight conformal super-

charges — denoted as {QIα, Q̃Iα̇, SαJ , S̃J α̇} where I = 1, 2, α = ±, and α̇ = ±̇ are SU(2)R,

su(2)1, and su(2)2 indices, respectively.

The spectrum of local operators can be organized in highest weight representations of

su(2, 2|2) whose highest weight states, known as superconformal primaries, are annihilated

by all lowering operators of the superconformal algebra — in particular, by all the conformal

supercharges S. These representations are labeled by the quantum numbers [∆, j1, j2, R, r]

of the superconformal primary; the additional labels R and r that extend the ordinary

conformal case are the eigenvalues of the Cartan generators of SU(2)R and U(1)r. We

will also consider theories that are invariant under additional flavor symmetry gF (a semi-

simple Lie algebra commuting with su(2, 2|2)), which introduces additional flavor quantum

numbers f . In summary, the local data for an N = 2 SCFT are

{ai, λsijk} , ai := [∆, j1, j2, R, r; f ]i . (2.14)

In analogy with the conformal case, the coefficients λsijk encode the infor-

mation needed to completely reconstruct the superspace three-point functions10

〈Ri(x1, θ1)Rj(x2, θ2)Rk(x3, θ3)〉.

Unitarity and shortening. The unitary representation theory of the N = 2 supercon-

formal algebra is more elaborate than that of the ordinary conformal algebra. The unitarity

bounds are now given by

∆ ≥ ∆i , ji 6= 0 ,

∆ = ∆i−2 or ∆ ≥∆i , ji = 0 ,
(2.15)

where we have defined

∆1 := 2 + 2j1 + 2R+ r , ∆2 := 2 + 2j2 + 2R− r . (2.16)

The unitary representations of su(2, 2|2) have been classified in [75–77]. Short represen-

tations occur when one or more of these bounds are saturated, and the different ways

in which this can happen correspond to different combinations of Poincaré supercharges

that can annihilate the highest weight state of the representation. There are again two

types of shortening conditions, the B type and the C type. Each type now has four in-

carnations corresponding to the choice of chirality (left or right-moving) and the choice of

10In the conformal case, the λsijk can be extracted from the three-point function of the conformal primaries,

because descendant operators are simply derivatives of the primaries and their three-point functions contain

no extra information. In general this is no longer the case with superconformal symmetry: knowledge of

the three-point functions of the superconformal primaries does not always suffice. But at an abstract level

there is no difference: what matters are superconformally covariant structures that can be built from the

three representations.
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SU(2)R component:

BI : QIα|ψ〉 = 0 , α = 1, 2 , (2.17)

B̄I : Q̃Iα̇|ψ〉 = 0 , α̇ = 1, 2 , (2.18)

CI :

ε
αβQIα|ψ〉β = 0 , j1 6= 0 ,

εαβQIαQIβ |ψ〉 = 0 , j1 = 0 ,
(2.19)

C̄I :

ε
α̇β̇Q̃Iα̇|ψ〉β = 0 , j2 6= 0 ,

εα̇β̇Q̃Iα̇Q̃Iβ̇ |ψ〉 = 0 , j2 = 0 .
(2.20)

Some authors refer to B-type conditions as shortening conditions, and to C-type conditions

as semi -shortening conditions, to highlight the fact that a B-type condition is twice as

strong. We refer to appendix A for a tabulation of all allowed combinations of (semi-

)shortening conditions and for naming conventions for the resulting representations.

Because of the proliferation of short representations in the N = 2 context, there is

potentially much more “canonical data” than in the non-supersymmetric case. Indeed,

these many short representations are closely related to various nice features theories with

N = 2 supersymmetry. Here we focus primarily on three classes of short representations

that have particularly straightforward connections to familiar physical characteristics of

N = 2 theories. These representations have the distinction of obeying the maximum

number of shortening or semi-shortening conditions that can simultaneously be imposed

(two and four, respectively). In the notations of [76], they are:

• Er: half-BPS multiplets “of Coulomb type”. These obey two B-type shortening

conditions of the same chirality: B1 ∩ B2. In other terms, they are N = 2 chiral

multiplets, annihilated by the action of all left-handed supercharges.11

• B̂R: half-BPS multiplets “of Higgs type”. These obey two B-type shortening condi-

tions of opposite chirality: B1 ∩ B̄2. These types of operators are sometimes called

“Grassmann-analytic”.

• Ĉ0(j1,j2): the stress tensor multiplet (the special case j1 = j2 = 0) and its higher

spin generalizations. These obey the maximal set of semi-shortening conditions:

C1 ∩ C2 ∩ C̄1 ∩ C̄2.

The CFT data associated to these representations encodes some of the most basic physical

information about an N = 2 SCFT. We now look at each in more detail, starting from the

third and most universal class, which contains the stress tensor multiplet.

11We are focusing on the scalar Er multiplets — Er := Er(0,0) in the notations of table 4. Representation

theory allows for N = 2 chiral multiplets Er(0,j2) with j2 6= 0, but such exotic multiplets do not occur in

any known N = 2 SCFT. See [78] for a recent discussion.
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Stress tensor data. The maximally semi-short multiplets Ĉ0(j1,j2) contain conserved

tensors of spin 2+ j1 + j2. For j1 + j2 > 0, such multiplets are not allowed in an interacting

CFT, and we will always impose their absence from the double OPE of the four-point

functions under consideration.

The Ĉ0(0,0) representation includes a conserved tensor of spin two, which we identify

as the stress tensor of the theory. By definition, a local N = 2 SCFT will contain exactly

one Ĉ0(0,0) multiplet.12 We will usually assume that the theories that we study are local,

but we will also briefly explore non-local theories, which have no stress tensor and thus no

Ĉ0(0,0) multiplet.

The superconformal primary of Ĉ0(0,0) is a scalar operator of dimension two that is

invariant under all R-symmetry transformations. The other bosonic primaries in the mul-

tiplet are the conserved currents for SU(2)R×U(1)r and the stress tensor itself. An analysis

in N = 2 superspace [79] reveals that the three-point function of Ĉ0(0,0) multiplets involves

two independent structures, whose coefficients can be parametrized in terms of the a and

c anomalies. The N = 2 version of the Hofman-Maldacena bounds reads

1

2
≤ a

c
≤ 5

4
. (2.21)

The lower bound is saturated by the free hypermultiplet theory, and the upper bound by

the free vector multiplet theory. By a generalization of the analysis of [29], one should be

able to argue that these are the only N = 2 SCFTs saturating the bounds.

In this paper we will not study the four-point function of the stress tensor multiplet,

because the requisite superconformal block expansion has not yet been worked out. We will,

however, have indirect access to the c anomaly coefficient. As in the non-supersymmetric

case, if one chooses the canonical normalization for the stress tensor then the two-point

function of Ĉ0(0,0) multiplets will depend on c only. The c coefficient will make an appear-

ance in all four-point functions that we study, since Ĉ0(0,0) appears in their double OPE.

Coulomb and Higgs branches. As indicated by our choice of terminology, the two

types of half-BPS multiplets — Er and B̂R — are closely related to the Coulomb and

Higgs branches of the moduli space of vacua, respectively. In Lagrangian theories, the

superconformal primaries in the Er multiplets are the gauge-invariant composites of vector

multiplet scalars that parametrize the Coulomb branch, and the superconformal primaries

in the B̂R multiplets are the gauge-invariant composites of hypermultiplet scalars that

parametrize the Higgs branch.

We should call attention to the fact that a satisfactory understanding of the phe-

nomenon of spontaneous conformal symmetry breaking has not yet been developed in the

language of CFT operator algebras. In principle, the local data should contain all neces-

sary information to describe the phases of the theory where conformal symmetry is spon-

taneously broken. A method to extract this information is, however, presently not known.

Even the basic question of whether a given CFT possesses nontrivial vacua remains out of

12A caveat to this definition of locality is that in the tensor product of two local theories there will be

two stress tensor multiplets. For the purposes of the conceptual discussion here we restrict our attention

to theories that are not factorizable in this manner — we might call such theories simple.
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reach. Since all known examples of vacuum manifolds in CFTs occur in supersymmetric

theories, one might speculate that supersymmetry is a necessary condition for spontaneous

conformal symmetry breaking.

We are now ready to look in more detail at the CFT data encoded in the two classes

of BPS multiplets.

Coulomb branch data. We will refer to the data associated to Er multiplets as Coulomb

branch data. By passing to the cohomology of the left-handed Poincaré supercharges,

one finds a commutative ring of operators known as the Coulomb branch chiral ring, the

elements of which can be identified with the superconformal primaries of Er multiplets.

In all known examples, this ring is exceedingly simple, and it is natural to formulate a

conjecture that the ring is always as simple as it is in the examples:13

Conjecture 2 (Free generation of the Coulomb chiral ring) In any N = 2 SCFT,

the Coulomb branch chiral ring is freely generated.

This conjecture can in principle be translated into a statement about the OPE coefficients

of the Er multiplets. For instance, a simple consequence is that no Er superconformal

primary can square to zero in the chiral ring, so an E2r operator must appear with nonzero

coefficient in the OPE of the Er with itself. Precisely this kind of statement can be tested

by numerical bootstrap methods, as we will describe in section 7.

The number of generators of the Coulomb branch chiral ring is usually referred to as

the rank of the theory. The set {r1, . . . rrank} of U(1)r charges of these chiral ring generators

is one of the most basic invariants of an N = 2 SCFT. Unitarity implies r ≥ 1, with r = 1

only in the case of the free vector multiplet, so we will always assume r > 1. In Lagrangian

SCFTs, the ri are all integers, but there are several non-Lagrangian models that possess Er
multiplets with interesting fractional values of r. We are not aware of any examples where

U(1)r charges take irrational values.

It is widely believed that the Coulomb branch of the moduli space of any N = 2 SCFT

is parametrized by assigning independent vevs to each of the Coulomb branch chiral ring

generators. We will generally operate under the assumption that this statement is true,

which amounts to assuming the validity of the following conjecture.

Conjecture 3 (Geometrization of the Coulomb chiral ring) The Coulomb chiral

ring is isomorphic to the holomorphic coordinate ring on the Coulomb branch.

We note that the union of Conjecture 2 and Conjecture 3 implies that the Coulomb branch

of any N = 2 SCFT just Cr, with r the rank of the theory.

At present we are not sure how one might establish Conjecture 3 using bootstrap

methods due to the obstacle of spontaneous conformal symmetry breaking discussed above.

However, once one has found their way onto the Coulomb branch, the powerful technology

of Seiberg-Witten (SW) theory becomes applicable. The effective action for the low-energy

U(1)rank gauge theory on the Coulomb branch is characterized by geometric data (in the

13To the best of our knowledge, this conjecture was first explicitly stated in the literature by Yuji

Tachikawa in [80].
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simplest cases, this is the SW curve, more generally it is some abelian variety). There are

well-developed techniques to determine the SW geometry, which apply to most Lagrangian

examples and to several non-Lagrangian cases as well. In turn, the SW geometry determines

a wealth of physical information, such as the spectrum of massive BPS states. Unfortu-

nately, how to translate this information into CFT data remains an unsolved problem.14

In [82], Shapere and Tachikawa (ST) proved a remarkable formula that relates the a

and c central charges to the generating r-charges {r1, . . . rrank},

2a− c =
1

4

rank∑
i=1

(2ri − 1) . (2.22)

The ST sum rule holds in all known examples, and it is tempting to conjecture that it is

a general property of all N = 2 SCFTs. The derivation of [82] requires that the SCFTs in

question be realized at a point on the moduli space of a Lagrangian theory. The result can

then be extended to all SCFTs connected to that class of theories by generalized S-dualities.

In particular, this includes a large subset of theories of class S.

According to the ST sum rule, a theory with zero rank necessarily has a/c = 1/2,

which is the value saturating the lower HM bound. As remarked above, there are strong

reasons to believe that the only SCFT saturating this bound is the free hypermultiplet

theory. However, since the whole logic of [82] relies on the existence of a Coulomb branch,

this reasoning is circular. An interacting SCFT of zero rank would be rather exotic, but

we do not know how to rule it out with present methods.

The special case of the E2 multiplet is particularly significant. The top component of

the multiplet, obtained by acting with four right-moving supercharges on the superconfor-

mal primary,15 O4 ∼ Q̃4E2 is a scalar operator of dimension four. This operator provides

an exactly marginal deformation of the SCFT that preserves the full N = 2 supersym-

metry. (By CPT symmetry, there is also a complex conjugate operator O4 ∼ Q4Ē−2.)

The converse is also true: any N = 2 supersymmetric exactly marginal operator O4 must

be the top component of an E2 multiplet. It follows that the number of E2 multiplets is

equal to the (complex) dimension of the conformal manifold of the theory. In a Lagrangian

theory, there is an E2 multiplet for each simple factor of the gauge group, and the exactly

marginal operator O4 ∼ Tr(F 2 + iF̃ 2) (where F is the Yang-Mills field strength) is dual to

the complexified gauge coupling.

Another true feature of all Lagrangian SCFTs (and many non-Lagrangian ones in class

S) is that they can be constructed by taking isolated building blocks with no marginal

deformations (such as hypermultiplets in the Lagrangian case, or TN theories in the class

S case) and gauging global symmetry groups for which the beta function will vanish. A

natural conjecture is that this feature is indeed universal:

14See however [81] for a relation between the spectrum of BPS states on the Coulomb branch and a

certain partition function (evaluated at the conformal point), which appears to be closely related to the

superconformal index.
15In an abuse of notation, we are denoting the superconformal primary with the same symbol E2 that

represents the whole multiplet.

– 15 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
3

Conjecture 4 (Decomposability) Any N = 2 SCFT with an n-dimensional conformal

manifold can be constructed by gauging n simple factors in the global symmetry group of a

collection of isolated N = 2 SCFTs.

Of course such a decomposition need not be unique — the existence of inequivalent de-

compositions of the same theory is what is often called “generalized S-duality”. Note that

the validity of this conjecture would imply the absence of compact conformal manifolds for

N = 2 SCFTs.16

Higgs branch data. In a similar vein, the B̂R multiplets are expected to encode the

information about the Higgs branch of the theory. The B̂R superconformal primaries,

which are also SU(2)R highest weights, form the Higgs branch chiral ring. In all known

examples this ring is described by a finite set of generators obeying polynomial relations.

The algebraic variety defined by this ring is then expected to coincide with the Higgs branch

of vacua. This expectation can be formalized as follows:

Conjecture 5 (Geometrization of the Higgs chiral ring) In any N = 2 SCFT, the

Higgs branch chiral ring is isomorphic to the holomorphic coordinate ring on the Higgs

branch of vacua.

The Higgs branch of vacua is hyperkähler, so there are actually a CP1 worth of holomorphic

coordinate rings on it depending on the choice of complex structure. The choice of complex

structure corresponds to a choice of Cartan element in SU(2)R, so we have implicitly made

the choice already.

In this paper we will focus on the simplest non-trivial17 case of these multiplets, the

B̂1 multiplet. This multiplet plays a distinguished role, because it encodes the information

about the continuous global symmetries of the theory. Indeed, the multiplet contains a

conserved current,

Jαα̇ = εJKQIαQ̃J α̇φIK , (2.23)

where φIJ is the operator of lowest dimension in the B̂1 multiplet. It is an SU(2)R triplet

and is often referred to as the moment map operator. (The superconformal primary is the

highest SU(2)R weight φ11.) The current Jαα̇ generates a continuous global symmetry, and

is thus necessarily in the adjoint representation of some Lie group GF . Vice versa, if the

theory enjoys a continuous global symmetry, it follows from Conjecture 1 that the CFT

contains an associated conserved current Jαα̇, and one can show that in an interacting

N = 2 SCFT such a current must necessarily belong to a B̂1 multiplet. Indeed, one can

survey the list of superconformal representations and identify all the ones that contain

conserved spin one currents that are also SU(2)R × U(1)r singlets. The list is very short:

B̂1 and Ĉ0( 1
2
, 1
2

). The latter multiplet has a conserved current as its superconformal primary,

but also contains conserved a spin three conserved current among its descendants, so by our

usual criterion it is not allowed in an interacting SCFT. What’s more, B̂1 representations

16In the N = 1 case the existence of compact conformal manifolds has recently been established in [83].

The methods used there cannot easily be generalized to the N = 2 case.
17B̂ 1

2
describes a free hypermultiplet.
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cannot combine with other short representations to form long representations, so the B̂1

content of a theory is an invariant on the conformal manifold. To reiterate, a SCFT may

have a flavor symmetry enhancement only in a singular limit where some free subsector

decouples (such as the zero coupling limit of a gauge theory) and Ĉ0( 1
2
, 1
2

) multiplets split off

from long multiplets hitting the unitarity bound. In the “bulk” of the conformal manifold,

flavor symmetries are always associated to B̂1 multiplets.

As we have already mentioned in the context of exactly marginal gauging of SCFTs, to

each simple non-abelian factor of the global symmetry group is associated a flavor central

charge k, defined from the OPE coefficient of the conserved current with itself (2.13).

Thus the most basic data associated to the B̂1 representations in an SCFT are the global

symmetry group GF = G1 × . . . Gk and the corresponding flavor central charges.

Chiral algebra data. It was recognized in [84] (see also [85, 86]) that the local operator

algebra of any N = 2 SCFT admits a closed subsector isomorphic to a two-dimensional

chiral algebra. The operators that play a role in the chiral algebra are the so-called Schur

operators, which (by definition) obey the conditions18

∆− (j1 + j2)− 2R = 0 , j2 − j1 − r = 0 . (2.24)

Schur operators are found in the following short representations,

B̂R , DR(0,j2) , D̄R(j1,0) , ĈR(j1,j2) . (2.25)

One should in particular note the absence of the Er multiplets from this structure. Each

supermultiplet in this list contains precisely one Schur operator: for the B̂R multiplets,

the Schur operator is the superconformal primary itself, while for the other multiplets

in (2.25) it is a superconformal descendant.19 When inserted on a fixed plane R2 ⊂ R4,

parametrized by the complex coordinate z and its conjugate z̄, and appropriately twisted

(the twist identifies the right-moving global conformal algebra sl(2) acting on z̄ with the

complexification of the su(2)R algebra), Schur operators have meromorphic correlation

functions. The rationale behind this construction is that twisted Schur operators are closed

under the action of a certain nilpotent supercharge, Q := Q1
− + S̃1

−̇, and they have well-

defined meromorphic OPEs at the level of Q cohomology. This is precisely the structure

that defines a two-dimensional chiral algebra.

We refer the reader to [84] for a comprehensive explanation of this construction. Here

we mainly wish to emphasize that the chiral algebra data (i.e., the Schur operators and their

three-point functions) are a very natural generalization of the Higgs data. Since they are

subject to associativity conditions expressed by meromorphic equations, the chiral algebra

data can be often determined exactly given some minimum physical input.

The simplest example, and the one that will play a role in this paper, is the case

of moment maps. Moment maps transform in the adjoint representation of the flavor

18In fact one can show that the first condition implies the second in a unitary theory.
19For example, the Schur operator in a Ĉ0(0,0) multiplet is a single component of the SU(2)R conserved

current.
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symmetry group, and in the associated chiral algebra they correspond to affine Kac-Moody

currents, where the level k2d of the affine current algebra is related to the four-dimensional

flavor central charge k by the universal relation

k2d = −k
2
. (2.26)

The four-point function of affine currents is completely determined by meromorphy and

crossing symmetry. In the present context, it admits a reinterpretation as a certain mero-

morphic piece of the full moment map four-point function. Crucially, this meromorphic

piece contains the complete information about the contribution of short representations

to the double OPE of the four-point function.20 All in all, combining the constraints of

four-dimensional unitarity with the ability to solve exactly for the contributions of short

representations leads to novel unitarity bounds for the level k and the trace anomaly coeffi-

cient c that are valid in any interacting N = 2 SCFT. These bounds will play a significant

role in the analysis of section 6.

2.4 A first look at the landscape: theories of low rank

The ultimate triumph of the N = 2 bootstrap program would be the classification of N = 2

SCFTs. If the decomposability conjecture of section 2.3 holds true, then this problem

is reduced to the enumeration of elementary building block theories with no conformal

manifold. Still, this is completely out of reach at present, and any attempt at a direct

attack on the classification problem would be premature. We are still very much in an

exploratory phase.

To organize our explorations we may characterize theories by their rank — i.e., the

dimension of their Coulomb branch or the number of generators in the Coulomb branch

chiral ring. Theories with low rank by and large have smaller values for their central

charges than their higher-rank counterparts, so this may be a reasonable measure of the

complexity of a theory. From the bootstrap point of view, theories with small central

charges are attractive as targets for numerical study.

The rank zero case is probably trivial. The simplest conjecture is that the only N = 2

SCFT with no Coulomb branch is the free hypermultiplet theory. This would be compatible

with the universal validity of the Shapere-Tachikawa bound.

For rank one, we can start by reviewing the list of established theories. This survey

will prove useful in our efforts to interpret the numerical bootstrap results reported in

later sections. The classic rank one theories are the SCFTs that arise on a single D3

brane probing an F -theory singularity with constant dilaton [87–92]. There are seven such

singularities, denoted by H0, H1, H2, D4, E6, E7, E8. With the exception of the theory

associated to the D4 singularity, which is an SU(2) gauge theory with Nf = 4 fundamental

flavors, these theories are all isolated non-Lagrangian SCFTs. They have an alternative

realization in class S, where they are associated to punctured spheres with certain special

punctures — see, e.g., [10, 18, 93–95].

20To be able to uniquely reconstruct the contribution of the short representations from the meromorphic

function, one must make the now-familiar assumption that the theory does not contain higher-spin conserved

currents.
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Basic properties of these rank one SCFTs are summarized in table 1. Their flavor

symmetry algebra h is given by the Lie algebra of the same name (with Hi → Ai; the

H0 theory has no flavor symmetry). From the F -theory realization it is manifest that

the Higgs branch of each theory is the one-instanton moduli space for the corresponding

flavor symmetry group. As algebraic varieties, these Higgs branches are generated by the

h moment maps subject to a set of quadratic relations known as the Joseph relations.

Relatedly, the flavor central charge k and the c anomaly saturate the unitarity bounds

derived in [84]. It was argued in section 4 of [84] that this is strong evidence that the

protected chiral algebra is the affine Lie algebra ĥk2d
at level k2d = −k

2 .21

Another well-known rank one N = 2 SCFT is N = 4 super Yang-Mills theory with

gauge group SU(2). Regarded as an N = 2 theory, it has flavor symmetry h = su(2),

the commutant of SU(2)R × U(1)r in the full SU(4) R-symmetry. There are three more

recent additions to the list of rank one theories. They were initially discovered in [96]

by considering the strong coupling limit of Lagrangian theories and then given a class

S re-interpretation in [97, 98]. In these theories the Coulomb branch is generated by

an Er multiplet with r = 3 , 4 , 6. These are the same values as in the E6, E7 and E8

theories in table 1, but the flavor symmetries for these new theories are smaller. Given

the serendipitous discovery of these “new” rank one theories, one may rightly view with

suspicion the claim that the list of known rank one theories is complete. How could we

find out?

A systematic study of rank one N = 2 SCFTs has been undertaken by Argyres and

collaborators [99, 100] using Seiberg-Witten technology.22 Let us give a quick informal

summary of this approach. The Coulomb branch chiral ring of a rank one theory is by

definition generated by a single operator Er0 . Assuming the validity of Conjecture 2,

this operator should not be nilpotent, and further assuming Conjecture 3, its vacuum

expectation value

u := 〈Er0〉 , (2.27)

parametrizes the Coulomb branch of vacua. For u 6= 0, the theory admits a low-energy

description in terms of an effective U(1) gauge theory, whose data are encoded in a family

of elliptic curves [103, 104],

y2 = x3 + f(u,mi)x+ g(u,mi) , (2.28)

and in a meromorphic one form λSW(u,mi), subject to certain consistency conditions. The

complex parameters {mi} are mass parameters, dual to the Cartan generators of the flavor

symmetry algebra h of the theory. For zero masses, the curve must take a scale invariant

form, i.e., it must transform homogeneously if one rescales x, y and u with the appropriate

weights. The scaling weight of u is nothing but the conformal dimension ∆ = r0 of Er0 .

21We mention in passing, as this will play a role later, that each of these theories admits a rank N

generalization, physically realized on the worldvolume of N parallel D3 branes probing the same F -theory

singularity. The Higgs branches of the higher rank theories are the moduli spaces of rank-N h-instantons,

with global symmetry h⊗ su(2) for N ≥ 2.
22The rank two case is considerably more involved [101, 102].
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G H0 H1 H2 D4 E6 E7 E8

h – su(2) su(3) so(8) e6 e7 e8

h∨ – 2 3 6 12 18 30

k 12
5

8
3 3 4 6 8 12

c 11
30

1
2

2
3

7
6

13
6

19
6

31
6

a 43
120

11
24

7
12

23
24

41
24

59
24

95
24

r0
6
5

4
3

3
2 2 3 4 6

Table 1. Properties of rank one SCFTs associated to maximal mass deformations of the Kodaira

singularities [16, 108, 109]. We list the name of the singularity, the flavor symmetry algebra h and

its dual Coxeter number h∨, the flavor central charge k, the c and a anomaly coefficients, and the

U(1)r charge r0 of the Coulomb branch chiral ring generator.

The possible scale-invariant curves are then given by a subset of Kodaira’s classification

of stable degenerations of elliptic curves depending holomorphically on a single complex

parameter. There turn out to be seven cases, and they are the same as the F -theory sin-

gularities with constant dilaton. Starting from the scale-invariant curve, one can construct

its mass deformations (which must be compatible with the existence of the meromorphic

one-form λSW), and infer the flavor symmetry algebra h. It turns out that for a given

scale invariant curve there can be numerous inequivalent mass deformations [99, 100]. The

“canonical” rank one theories of table 1 correspond to the maximal mass deformation, but

submaximal deformations with smaller flavor symmetry are also possible. An example of

this phenomenon that we have already implicitly encountered is the submaximal deforma-

tion of the D4 singularity, with h = su(2) ⊂ so(8), which corresponds to N = 4 SYM with

gauge group SU(2). The “new” rank one theories of [96, 97] are recognized as submaximal

deformations of the E6, E7 and E8 Kodaira singularities, but several other possibilities also

appear to be consistent23 [100]. In the absence of an independent physical construction (in

class S or otherwise), it is a priori unclear whether the mere existence of a Seiberg-Witten

geometry guarantees the existence of a full fledged SCFT. The bootstrap approach should

be able to shed light on this question, at the very least by providing some consistency

checks of the candidate models.

In summary, even for rank one the situation is not completely settled. There are

several established theories and a growing list of possible additional models.24 A complete

elucidation of the rank one case should be a benchmark for our understanding of the

N = 2 landscape.

3 The moment map four-point function

As our first observable of interest we take the four-point function of moment map operators.

As explained in the previous section, these are the superconformal primaries for represen-

23We are grateful to P. Argyres for sharing some of the results of [100] with us prior to publication.
24See also [105–107] for more rank one theories found after the completion of this work.
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tations containing conserved currents for global symmetries (the B̂1 multiplets). This is in

some sense the paradigmatic observable by means of which we can investigate SCFTs with

flavor symmetries. The moment map operators are spacetime scalars of conformal dimen-

sion two, and they transform in the adjoint representation of SU(2)R while being neutral

with respect to U(1)r. Like the conserved currents in the same multiplet, they transform

in the adjoint representation of the flavor symmetry group GF . We denote these operators

φA(IJ )(x), where I,J = 1, 2 are fundamental indices for SU(2)R and A = 1, . . . , dimGF is

an adjoint index for GF .

The purpose of the present section is to describe the structure of this correlation func-

tion and to formulate its (super)conformal block decomposition. Let us briefly outline the

general trajectory of this analysis. The four-point function of moment map operators can

initially be organized to reflect the constraints of conformal symmetry, SU(2)R symmetry,

and GF flavor symmetry. In practice this means decomposing the general correlator into

a number of functions of conformal cross ratios that encode the contributions of operators

with fixed transformation properties under SU(2)R and GF in the conformal block expan-

sion. These functions are further constrained by superconformal Ward identities [110] (see

also [111, 112]). The ultimate result of these Ward identities is that the functions corre-

sponding to different SU(2)R channels are not independent, but rather the full four-point

function is algebraically determined in terms of a set of meromorphic functions fi(z) and

unconstrained functions Gi(z, z̄), where the index i runs over the irreps that appear in the

tensor product of two copies of the adjoint representation of GF ,

Adj(GF )⊗Adj(GF ) =:
n⊕
i=1

Ri(GF ) . (3.1)

The meromorphic functions are identical to the four-point functions of affine currents in

two dimensions [84], and are completely determined by the flavor central charge. The

unconstrained functions Gi(z, z̄) are best considered in a superconformal partial wave ex-

pansion. They can be split into two parts which we call Gshort
i (z, z̄) and Glong

i (z, z̄). The

former functions encode the contributions of protected operators appearing in the OPE

of two moment maps, and under mild assumptions25 they can be completely determined

in terms of the central charges k and c by reading off the relevant CFT data from the

(now fixed) meromorphic functions. The latter functions encode the spectrum and OPE

coefficients of unprotected operators, about which we generally have scant knowledge. The

point of the numerical analysis of section 6 will be to constrain the CFT data encoded in

the functions Glong
i (z, z̄) using crossing symmetry.

3.1 Structure of the four-point function

The appearance of the four-point function in question can be cleaned up a bit by introducing

some auxiliary structure. Following [111], we eliminate the explicit SU(2)R indices on

25The assumption in question is that there are no higher spin conserved currents appearing in the con-

formal block decomposition. This is expected to hold true for any interacting theory.
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φA(IJ )(xi) in favor of complex polarization vectors tI in terms of which we define

ϕA(t, x) := φA(IJ )(x)tItJ . (3.2)

With these conventions, conformal symmetry and R-symmetry demand that the four-point

function of moment map operators be of the form

〈ϕA(t1, x1)ϕB(t2, x2)ϕC(t3, x3)ϕD(t4, x4)〉 =
(t1 · t2)2(t3 · t4)2

x4
12x

4
34

GABCD(u, v;w) , (3.3)

where u and v are (standard) conformally invariant cross-ratios,

u :=
x2

12x
2
34

x2
24x

2
13

=: zz̄ , v :=
x2

14x
2
23

x2
24x

2
13

=: (1− z)(1− z̄) , (3.4)

w is the unique SU(2)R−invariant “cross-ratio” of the auxiliary variables,

w :=
(t1 · t2) (t3 · t4)

(t1 · t3) (t2 · t4)
, (3.5)

and we have defined the contraction ti · tj := εIJ t
I
i t
J
j .

The flavor symmetry of the correlator can be captured by introducing a complete basis

PABCDi of invariant tensors. We can always choose this basis such that the label i runs

over the various irreducible representations Ri of GF that appear in the tensor product

of two copies of the adjoint representation of GF , with the PABCDi projectors onto this

representation. We may then write

GABCD(u, v;w) =
∑

i∈Adj⊗Adj

Gi(u, v;w)PABCDi , (3.6)

and the projectors themselves satisfy

PABCDi PDCEFj = δijP
ABEF
i , PABBAi = dim(Ri) . (3.7)

For each representation Ri one can decompose the corresponding Gi(u, v;w) into three

terms corresponding to the three SU(2)R channels. In terms of the auxiliary variable w

we find

Gi(u, v;w) =
2∑

R=0

ai,R(u, v)PR(y) , (3.8)

where we have defined y = 2
w − 1, and the PR(y) are Legendre polynomials

P0(y) = 1 , P1(y) = y , P2(y) =
1

2

(
3y2 − 1

)
. (3.9)

Each of the ai,R(u, v) has a conventional conformal block decomposition that encodes the

exchanged conformal families in the appropriate flavor and R-symmetry representations.

These conformal blocks are actually grouped together in superconformal blocks, as we will

explain further below.
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The consequences of superconformal covariance for this four-point function have been

analyzed in detail in [110–112]. Because supersymmetry transformations commute with

flavor symmetries, the superconformal Ward identities apply to each Gi(u, v;w) indepen-

dently. The end result of the analysis in those papers is neatly encapsulated in the following

specialization condition,

Gi(u, v;w)|w=z̄ = fi(z) , Gi(u, v;w)|w=z = fi(z̄) , (3.10)

where it is the same meromorphic function fi appearing in both expressions. We note here

that this condition can also be seen to follow from the existence of the superconformal

twist introduced in [84]. In terms of these meromorphic functions, one then finds that the

the Gi(u, v;w) take the following form [111],

Gi(u, v;w) =
z(w − z̄)fi(z̄)− z̄(w − z)fi(z)

w(z − z̄)
+
(

1− z

w

)(
1− z̄

w

)
Gi(u, v) . (3.11)

Upon decomposing this expression in the basis of Legendre polynomials of y, one recovers

expressions for the various R-symmetry channels in terms of fi and Gi,

ai,2(u, v) =
uGi(u, v)

6
, (3.12)

ai,1(u, v) =
u(fi(z)− fi(z̄))

2(z − z̄)
− (1− v)Gi(u, v)

2
,

ai,0(u, v) = Gi(u, v)

(
v + 1

2
− u

6

)
− u

2(z − z̄)

(
(2− z)fi(z)

z
− (2− z̄)fi(z̄)

z̄

)
.

We see that (for a given flavor symmetry channel) the functions ai,R(u, v) are not inde-

pendent; instead they are all determined in terms of the meromorphic function fi(z) and

a single unconstrained function Gi(u, v).

3.1.1 Constraints of crossing symmetry

As a consequence of Bose symmetry, the four-point function must be invariant under ar-

bitrary permutations of the four inserted operators. For the functions Gi(u, v; y), these

permutations lead to the following relations,

(x1, t1)←→ (x2, t2) =⇒ Gi

(
u

v
,

1

v
;−y

)
= (−1)symm(i)Gi(u, v; y) , (3.13)

(x1, t1)←→ (x3, t3) =⇒ 1− 2y + y2

4
Gi

(
v, u;

y + 3

y − 1

)
=
v2

u2
Gj(u, v; y)F j

i . (3.14)

The first of these is called the braiding relation, while we refer to the second as the crossing

symmetry equation. We have introduced the notation symm(i) which is equal to zero or

one if representation i appears in the symmetric or antisymmetric tensor product of two

copies of the adjoint, respectively. The matrix F j
i relates the projectors in one channel

with the projectors in the crossed channel:

PABCDi = PCBADj F j
i , (3.15)
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and is related to “Wigner’s 6j-coefficients” (see, e.g., [113]). In the cases considered in the

present work this matrix satisfies F j
i F

k
j = δ ki .

The corresponding constraints for the functions fi(z) and Gi(u, v) are obtained

from (3.13) and (3.14) by using the solution for Gi(u, v; y) from (3.11) and reading off

the constraints term by term in a y-expansion. This exercise was already worked out with-

out the flavor symmetry structure in [111]. Upon including flavor symmetry indices we

find two sets of relations involving only the meromorphic functions,

fi(z) = (−1)symm(i)fi

(
z

z − 1

)
, z2fi(1− z) = (1− z)2fj(z)F j

i , (3.16)

and one braiding equation involving only the two-variable functions,

Gi(u, v) = (−1)symm(i) 1

v
Gi
(
u

v
,

1

v

)
. (3.17)

There is one additional non-trivial crossing symmetry relation for the unconstrained

function,

(z − z̄)(1− z)2(1− z̄)2F i
j Gj(u, v) + z2z̄2(z̄ − z)Gi(v, u)

+zz̄
(
z(z̄ − 1)fi(1− z)− z̄(z − 1)fi(1− z̄)

)
= 0 . (3.18)

This is the equation that we will investigate numerically. Before doing so we have to first

compute its superconformal block decomposition and solve the other crossing symmetry

equations, in particular the last equation in (3.16). We will discuss these two topics in the

next two subsections.

3.1.2 Fixing the meromorphic functions

By meromorphicity, the single-variable functions fi(z) are fixed completely by the structure

of their singularities. The only physically allowable singularities occur when two of the

inserted operators collide, i.e., at z = 0, z = 1, and z → ∞. The equations in (3.16)

relate the singularities at these three points, so it suffices to specify the singular behavior

of fi(z) near, say, z = 0. This simple crossing symmetry problem is reminiscent of what

arises in the study of two-dimensional meromorphic conformal field theories. Indeed, a

compelling physical picture that explains the relationship between this crossing symmetry

problem and the two dimensional case has been presented in [84]. There it was shown that

the functions fi(z) are precisely equal to the four-point functions of an extended chiral

algebra that can be isolated by working at the level of cohomology relative to a particular

nilpotent supercharge. Indeed, the equations (3.16) are exactly the crossing equations one

encounters in studying chiral algebra four-point functions.

In [84] it was found that the moment maps φA(IJ )(x) are related to dimension one

affine currents in the corresponding chiral algebra. These affine currents generate an affine

Kac-Moody (AKM) algebra ĜF . The level k2d of this AKM algebra is related to the

four-dimensional flavor central charge k as

k2d = −k
2
. (3.19)
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Many more details about these chiral algebras can be found in [84] (see also [85, 114]).

For our purposes here we need only know that the chiral algebra completely determines

the one-variable part of the four-point function fABCD(z) to be the four-point function of

affine currents, which for any group GF takes the form:

fABCD(z) = δABδCD + z2δACδBD +
z2δADδCB

(1− z)2
+

2z

k
fACEfBDE +

2z

k(z − 1)
fADEfBCD .

(3.20)

Note that the normalization here is such that the current operator is unit normalized, so

the level k appears in the denominator in this expression.

3.2 Superconformal partial wave expansion

So far we have understood the functional form of the four-point function as follows from

su(2, 2|2) symmetry and an analysis of the associated chiral algebra. The next step is to

consider the superconformal partial wave expansion of the correlator.

The supersymmetric OPE of a B̂1 representation with itself has been studied in [115].

The approach taken in that paper was to analyze all possible three-point functions of two

B̂1 representations with a third a priori generic representation in harmonic superspace.

The result can be summarized in the following “fusion rule”,

B̂1 × B̂1 ∼ 1 + B̂1 + B̂2 + Ĉ0(j,j) + Ĉ1(j,j) +A∆
0,0(j,j) . (3.21)

This fusion rule can be further refined by taking into account flavor symmetry representa-

tions, which lead to some additional constraints. For example, long multiplets can appear

in all possible flavor symmetry representations but the stress tensor multiplet Ĉ0(0,0) can

only appear as a flavor singlet. The precise selection rules are summarized in table 6.

Each superconformal multiplet X in flavor representation i that appears on the right-

hand side of (3.21) must contribute a finite number of conventional conformal blocks to

each of the three functions ai,R(u, v) with 0 ≤ R ≤ 2. We denote these contributions

as aXi R(u, v). For this particular four-point function the coefficients of the conventional

conformal blocks are all related by the superconformal Ward identities [110], and we end

up with just a single undetermined OPE coefficient (squared) for each superconformal

block. This leads to the decomposition:

GABCD(u, v; y) =
∑
i

PABCDi

∑
X in rep i

(−1)symm(i)λ2
iX

(
2∑

R=0

PR(y)aXi R(u, v)

)
, (3.22)

where the term in parentheses is the superconformal block. The factor of (−1)symm(i)

follows from reflection positivity. In a unitary theory the λiX are real and their square is

therefore always positive.

The complete set of superconformal blocks for this four-point function was obtained

in [110]. It is most naturally given in terms of the functions Gi(u, v) and fi(z) introduced

above, which is presented in table 2, where ` = 2j1 = 2j2 = 2j since all the multiplets

appearing in this OPE have j1 = j2. In the table G
(`)
∆ (u, v) denotes the four-dimensional
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Multiplet Contribution to GXi (u, v) Contribution to fXi (z) Restrictions

Id. 0 1

A∆
0,0j,j) 6u

∆−`
2 G

(`)
∆+2(u, v) 0 ∆ ≥ `+ 2

Ĉ0(j,j) 0 2g2j+2(z) j ≥ 0

B̂1 0 2g1(z)

Ĉ1(j,j) 6uG
(`+1)
`+5 (u, v) −12g2j+3(z) j ≥ 0

B̂2 6uG
(0)
4 (u, v) −12g2(z)

Table 2. Superconformal blocks for the B̂1 four-point function.

conformal block which is given by (B.1) in our conventions, and

g` =
(
−z

2

)`−1
z2F1(`, `; 2`; z) (3.23)

is a two-dimensional conformal block in a chiral algebra, as we discuss in more detail

below. Through (3.12), the contribution of each superconformal multiplet to the ai,R(u, v)

is obtained from the contribution of said multiplet to Gi(u, v) and fi(z). This is worked

out in detail in appendix B.1.

From inspection of table 2 it follows that the decomposition into superconformal blocks

of a given four-point function can be ambiguous. For example, a long multiplet at the

unitarity bound ∆ = ` + 2 contributes in exactly the same manner as a combination of

two short multiplets. These ambiguities can be understood from the fact that these two

multiplets can recombine to form a long multiplet according to26

A∆=2j+2
0,0(j,j) ' Ĉ0(j,j) ⊕ Ĉ 1

2
(j− 1

2
,j) ⊕ Ĉ 1

2
(j,j− 1

2
) ⊕ Ĉ1(j− 1

2
,j− 1

2
) . (3.24)

Only the first and last multiplet are allowed in the OPE of two scalars. For the case

j = 0 we can use Ĉ1(− 1
2
,− 1

2
) = B̂2 and we get ' Ĉ0(0,0) + B̂2 on the right-hand side. These

ambiguities will be fixed below.

The braiding relations (3.17) together with table 2 correlate the allowed spins of multi-

plet Xi to symm(i): only even/odd spins appear in Gi(u, v) for a representation appearing

in the symmetric/antisymmetric tensor product, respectively. This follows from the braid-

ing relations from the individual conformal blocks, G
(`)
∆ (u, v) = (−1)`v−

∆−`
2 G

(`)
∆ (uv ,

1
v ). As

an example, for flavor singlets the spin of these operators is always even and for the flavor

adjoint multiplets it is always odd.

While the meromorphic functions fi(z) receive contributions only from short multi-

plets, the two-variable functions Gi(u, v) include contributions from both long and short

26Appendix A provides an overview of all the recombination rules for the unitary irreps of su(2, 2|2).
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multiplets. It is then useful to split the two-variable functions into the long and short

contributions appearing in a given channel,

Gi(u, v) = Gshort
i (u, v) + Glong

i (u, v) , (3.25)

where we have

Gshort
i (u, v) = 6λ2

i B̂2
uG

(0)
4 (u, v) +

∑
`=0,1,...

6λ2
i Ĉ1(j,j)

(−1)`uG
(`+1)
`+5 (u, v) ,

Glong
i (u, v) =

∑
∆≥`+2,`

6λ2
iA∆

`
(−1)`u

∆−`
2 G

(`)
∆+2(u, v) .

(3.26)

In the next subsection we will show that the coefficients of the short superconformal blocks

— and therefore the complete functional form of Gshort
i (u, v) — are completely fixed from

the chiral algebra correlator (3.20). All the undetermined information in the four-point

function is then contained in Glong
i (u, v). These are the functions that will be analyzed

numerically in section 6.

3.2.1 Fixing the short multiplets

Because the meromorphic functions fi(z) are completely determined by crossing symmetry

(or alternatively by analyzing the associated chiral algebra), their decomposition in chiral

blocks of the form (3.23) is determined. We can thus write

fi(z) =
∑
`≥−2

bi, `(−1)`g`+2(z) , (3.27)

with known coefficients bi, `. Upon examining the contributions of general supermultiplets

to fi(z) in table 2, we see that the chiral OPE coefficients are related to four-dimensional

OPE coefficients of the short multiplets as follows,

b1,−2 = λ2
1, Id ,

bi,−1 = 2λ2
i, B̂1

, (3.28)

bi, 0 = 2λ2
i, Ĉ0(0,0)

− 12λ2
i, B̂2

,

bi, ` = 2λ2
i, Ĉ0(j,j)

− 12λ2
i, Ĉ

1(j− 1
2 ,j−

1
2 )

, ` = 2j ≥ 1 .

Note that in the first line, the identity operator can only appear in the flavor singlet channel

i = 1. If we now further assume that the theory has (a) no higher spin currents, and (b) a

unique stress tensor, then one can actually fix the OPE coefficients of all short multiplets.

Indeed, the first assumption implies the absence of any Ĉ0(j,j) multiplets with j ≥ 1, so

in particular

λ2
i, Ĉ0(j,j)

= 0 for ` = 2j ≥ 1 . (3.29)

Our second assumption implies that there is a unique multiplet of type Ĉ0(0,0), which

is a flavor singlet, and whose OPE coefficient is fixed in terms of the c central charge

according to

λ2
i, Ĉ0(0,0)

=
dimGF

6c
δi,1 , (3.30)
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where dimGF is the dimension of GF . This numerical value follows from conformal Ward

identities upon imposing appropriate normalization conventions which we spell out below.

With these additional conditions, we see that (3.28) completely determines the OPE

coefficients λ2
i, B̂1

, λ2
i, B̂2

, and λ2
i, Ĉ1(j,j)

, in addition to the coefficient of the identity λ2
1, Id

which is merely an overall normalization. The remaining undetermined variables in the

four-point function are the spectrum of long multiplets A∆
` and the corresponding OPE

coefficients λ2
i,A∆

`
. This demonstrates how the chiral algebra leads to a clear distinction

between the contributions of the short multiplets, which we can solve analytically, and the

contribution of the long multiplets, which we can determine only numerically.

The precise values of the coefficient bi, ` can be read off from (3.20) after decomposing

it in the different flavor symmetry channels, using the projectors PABCDi . The form of

these projectors generally depends on GF , see for example [113] for many examples. For

the singlet and adjoint representation the projectors always have the same universal form,

so we can discuss the corresponding decomposition in full generality.

The projector onto the singlet channel is always given by PABCD1 = 1
dimGF

δABδCD,

where the normalization is chosen such that the trace of the projector corresponds to the

dimension of the representation. The projection of (3.20) in the singlet channel then yields:

f1(z) = dimGF + z2

(
1 +

1

(1− z)2

)
+

2ψ2z2h∨

k(z − 1)

= dimGF −
∑

`=0,2,···

2`(`+ 1)(`!)2
(
2(`+ 1)(`+ 2)k − 4ψ2 h∨

)
k(2`+ 1)!

g`+2(z) ,
(3.31)

where h∨ is the dual Coxeter number of GF , and ψ2 the length squared of the longest root.

In a similar vein, the adjoint projector is fixed to be PABCDAdj. = 1
ψ2h∨ f

ABEfEDC , which

traces to dimGF , and so we find that for any flavor group:

fAdj.(z) = −
(z − 2)z

(
h∨ψ2z
k − h∨ψ2

k + z2
)

(z − 1)2
(3.32)

= −2ψ2h∨

k
g1(z) +

∑
`=1,3,···

2`(`+ 1)(`!)2
(

2(`+ 1)(`+ 2)− 2h∨ψ2

k

)
(2`+ 1)!

g`+2(z) .

Equations (3.31) and (3.32) determine an infinite number of coefficients bi `. It is worthwhile

to analyze the coefficients of the first few low-lying operators in more detail.

Let us begin with the identity operator, which only appears in the singlet channel.

From equations (3.28) and (3.31) we find

λ2
1, Id = dimGF . (3.33)

The explicit factor dimGF cancels against the same factor in the projector and therefore

the operator is unit normalized, so

〈φA(t1, x1)φB(t2, x2)〉 =
(t1 · t2)δAB

|x1 − x2|4
(3.34)

in our conventions.
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Next we consider the ` = −1 term in (3.27). This block corresponds to the B̂1 multi-

plet and therefore appears only in the adjoint flavor channel. From (3.28) and (3.32) we

obtain that

λ2
B̂1

=
ψ2h∨

k
. (3.35)

In table 5 in appendix B we expanded the superconformal block into a sum of conventional

conformal blocks, and with the given coefficient we find the correct contribution of the

flavor current conformal block for a four-point function of adjoint fields, see, e.g., [35, 39].

At the next order in (3.27) we find the coefficients bi,0 which according to (3.28) get

contributions from Ĉ0(0,0) and B̂2 multiplets. As we mentioned above, the former multiplet

contains the stress tensor and we can fix its coefficient in terms of the central charge. In

a general CFT, the contribution of the stress tensor conformal block to the four-point

function of a scalar of dimension 2 is, e.g., [35, 39]

x4
12x

4
34〈φ(x1)φ(x2)φ(x3)φ(x4)〉 ∼ 4

90c
uG

(2)
4 . (3.36)

According to the third entry in table 5 this conformal block appears in the superconformal

block with a factor of 4
15 . After adding an additional factor dimGF in order to cancel

the corresponding factor in the singlet projector we recover (3.30). Using this equation in

conjunction with (3.28) and the expression of b1, 0 that can be read off from (3.31), we find

that for any flavor group

λ2
1, B̂2

=
1

12

(
dimGF

3c
− 4ψ2h∨

k
+ 4

)
. (3.37)

This coefficient must be positive for unitarity theories, and so we obtain a constraint on

the allowed values of k and c for a given flavor group GF :

dimGF
c

≥ 12ψ2h∨

k
− 12 . (3.38)

This is one of the unitary bounds obtained in [84]. Its saturation corresponds to the

absence of the B̂2 multiplet in the singlet representation, which implies a relation in the

Higgs branch chiral ring of these theories.

Finally, from the last line of (3.28) we see that for j > 1 the two multiplets contribut-

ing to the meromorphic function are Ĉ0(j,j) and Ĉ1(j− 1
2
,j− 1

2
). As we already mentioned

before, the Ĉ0(j,j) multiplets contain conserved currents of spin higher than two and are

not expected to be present in an interacting theory and we can set the corresponding OPE

coefficients to zero. In the singlet channel this for example directly leads to

λ2
1, Ĉ1(0,0)

=
2

5

(
2− ψ2h∨

3k

)
, (3.39)

whose positivity implies another bound of [84],

k ≥ ψ2h∨

6
. (3.40)

This bound can also be found by using similar arguments in the adjoint channel.

In what follows we will fix the normalization of the longest root to be ψ2 = 2.
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3.3 su(2) global symmetry

The first special case of the above structure that we will investigate is the case of global

symmetry algebra su(2). This is quantitatively the simplest case because it is the unique

simple algebra for which only three irreducible representations appear in the tensor product

of two copies of the adjoint representation — in particular, we have

3⊗ 3 = 1⊕ 3⊕ 5 . (3.41)

Interesting examples of N = 2 superconformal theories with su(2) flavor symmetry are the

theory of a single D3 brane probing an H1 singularity in F-theory as well as the theories of

any number n > 1 of D3 branes probing any of the F-theory singularities listed in table 1.

(Recall also that the theory of a single free hypermultiplet is invariant under an su(2)F
flavor symmetry.)

The projectors onto each of the representations in (3.41) are easy to compute, see,

e.g., [113],

PABCD1 =
1

3
δABδCD ,

PABCD3 =
1

2

(
δADδCB − δACδBD

)
,

PABCD5 =
1

2

(
δADδCB + δACδBD

)
− PABCD1 ,

where A = 1 . . . 3 is an adjoint index. From [113] the F matrix can be computed as

F j
i =

1

dim(j)
PBDCAi PABDCj , (3.42)

where dim(j) = PABBAj . We will arrange the rows and columns of F such that i, j = 1, 2, 3

correspond to the 1, 3, 5 channels respectively. The F matrix for su(2) is then,

F =


1
3

1
3

1
3

1 1
2 −

1
2

5
3 −

5
6

1
6

 . (3.43)

We can now use equation (3.20) and compute the fi(z) functions,

f1(z) =
3− 6z + (5− 8

k )z2 − (2− 8
k )z3 + z4

(1− z)2
,

f3(z) =
− 8
kz + 12

k z
2 + (2− 4

k )z3 − z4

(1− z)2
, (3.44)

f5(z) =
(2 + 4

k )(z2 − z3) + z4

(1− z)2
.

We have chosen conventions in which the flavor central charge of the free hypermultiplet

is k = 1.

As described in the previous subsection, we can use this expression to solve for the

bi, ` coefficients in the expansion (3.27). By demanding that the stress tensor is unique
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and that the theory does not contain higher spin currents we find the OPE coefficients of

all the semishort multiplets. After performing the infinite sums in the Gshort
i (u, v) we will

be left with a crossing equation involving only long operators. The final expressions for

Gshort
i (u, v) are given in (B.9). The singlet and quintuplet channels are symmetric and so

they involve only even spins in the expansion of fi(z) and Gi(u, v), while the triplet channel

is antisymmetric and contains only odd spins.

3.4 e6 global symmetry

As a second case we consider theories with global symmetry e6. This flavor symmetry

group also arises in the F -theory singularities described above. From the point of view

of the crossing symmetry relations, this is actually the second simplest case because five

irreducible representations appear in the square of the adjoint representation,

78⊗ 78 = 1⊕ 650⊕ 2430⊕ 78⊕ 2925 , (3.45)

whereas for all other simple groups (aside from su(2)) there are five or more representations.

The projection tensors for e6 can be found in [113], in terms of which the F matrix can be

computed using (3.42):

F =



1
78

1
78

1
78

1
78

1
78

25
3 −

7
24

5
24

25
12 −1

6
405
13

81
104

29
104 −

135
52 −

9
26

1 1
4 − 1

12
1
2 0

75
2 −3

4 −
5
12 0 1

2


. (3.46)

The indices of the above matrix F j
i run over the ordered set of irreps i, j ∈

{1,650,2430,78,2925}.
Positivity of the coefficient of the B̂2 multiplet in the 650 representation requires

k ≥ 6 , (3.47)

with saturation of the bound occurring when the coefficient of B̂2 goes to zero. The absence

of this multiplet corresponds to a relation in the Higgs branch chiral ring [84]. The only

known theory with k = 6 is the rank one E6 theory.

As before we now compute the fi(z) functions, which are given in (B.10). Once again

we can use these expressions to solve for the coefficients of the short multiplets and to

perform the infinite sums in Gshort
i (u, v), the final results are given in (B.11). We note that

the channels 1, 650 and 2430 appear in the symmetric tensor product, while channels

78 and 2925 appear in the antisymmetric tensor product. As such the former will only

include even spins and the latter only odd spins.

4 The Er four-point function

Our second observable of interest is the four-point function of N = 2 chiral operators,

i.e., the superconformal primaries of Er0 multiplets. These multiplets were introduced
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in section 2 as being connected to the Coulomb data of a theory. We recall that these

superconformal primaries are spacetime scalars with non-zero U(1)r charge r0 that are

neutral with respect to SU(2)R and that have conformal dimension ∆ = r0. We will denote

the operator of interest as φr0 , with the conjugate anti-chiral operator being φ̄−r0 . Unitarity

requires ∆ ≥ 1. In principle, one would like to focus on generators of the Coulomb branch

chiral ring. Our methods are such that it is not easy to distinguish between generators and

composites. However, if we take r0 ≤ 2, then unitarity dictates that φr0 must be a chiral

ring generator.

We will be investigating the four-point function of a single chiral operator and its

conjugate, 〈
φr0(x1)φ̄−r0(x2)φr0(x3)φ̄−r0(x4)

〉
. (4.1)

The general procedure is now analogous to that of the previous section. We should de-

termine what operators can be exchanged in each channel and find the corresponding

superconformal blocks. In contrast to the previous section, here we are dealing with opera-

tors that are invariant under any flavor symmetries in the theory but that are nontrivially

charged under U(1)r. Although this is an R-symmetry, the role it plays in this correlator

will be largely that of a SO(2) flavor symmetry, with some minor differences that we discuss

below. After obtaining the superconformal blocks in all channels we have to work out the

constraints imposed by crossing symmetry. The Er multiplets are not involved with the

chiral algebra data of a theory. This means that unlike the previous section, we are not

able to fix the coefficients of all the short and semi-short multiplets being exchanged. Of

all the short and semi-short multiplets appearing in the partial wave expansion, the only

coefficient we are able to fix is that of the stress tensor, which must appear in the φr0×φ̄−r0
OPE. This gives us a handle on the central charge c of the theory, which together with the

dimension of the external operators ∆ = r0 are the two parameters we can tune. We can

therefore in principle derive bounds or other constraints as a function of the pair (r0, c),

but we will sometimes leave the central charge arbitrary in order to obtain bounds that

are universally valid for all central charges, or alternatively in order to bound c itself.

Another short operator of special interest is the superconformal primary φ2r0 of the

E2r0 multiplet, which appears in the φr0 × φr0 OPE as part of the Coulomb branch chiral

ring. The corresponding conformal block appears with a nontrivial coefficient that is not

protected by supersymmetry. As we will see this multiplet is isolated and thus we will be

able to bound this coefficient both from below and from above. In this way we will also be

able to probe relations on the Coulomb branch chiral ring of the type φr0φr0 ∼ 0.

Finally, let us note that exactly marginal deformations of an N = 2 SCFT that pre-

serve the full N = 2 superconformal invariance lie in E2 multiplets. More specifically, he

deforming operators are obtained by acting with all four anti-chiral supercharges Q̃Iα̇ on

the superconformal primary of those multiplets. Theories with E2 multiplets in their spec-

trum therefore necessarily lie on a conformal manifold of positive dimension. As we will

review below, the coefficient of the E4 multiplet in the OPE of two E2 multiplets is related

to the curvature of the Zamolodchikov metric on this conformal manifold. This curvature

is thus a natural target for numerical investigation.
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φr0

φr0 φ−r0

φ−r0

(a) Chiral OPE channel.

φr0

φr0 φ−r0

φ−r0

(b) Nonchiral OPE

channel.

Figure 1. The two inequivalent OPE channels for the Er four-point function.

4.1 Structure of the four-point function

In contrast to the case of moment maps, there are now two qualitatively different OPE

channels to consider depending on whether we take the non-chiral OPE φr0(x1)× φ̄−r0(x2)

or the chiral OPE φr0(x1) × φr0(x2) (see figure 1). We now describe the various selection

rules for superconformal representations appearing in these two channels, as well as the

corresponding superconformal blocks.

4.1.1 The φr0(x1)× φ̄−r0(x2) channel

We begin with the selection rules for the non-chiral OPE. The problem simplifies due

to the fact that an operator O(x3) can participate in a non-zero three-point function

〈φr0(x1)φ̄−r0(x2)O(x3)〉 only if the superconformal primary of the multiplet to which it

belongs also participates in such a non-vanishing three-point function. A sketch of the

derivation of this result can be found in appendix B.2.1.

Selection rules for the U(1)r and SU(2)R require that any such operator O(x3) be an

SU(2)R singlet and have rO = 0. To appear in the OPE of two scalars they must also have

j1 = j2 =: j. Taken together, these conditions imply the following selection rule:

Er0 × Ē−r0 ∼ 1 + Ĉ0,(j,j) +A∆
0,0(j,j) . (4.2)

Note that the structure of the OPE we present here is only for the superconformal primaries

of the Er0 and Ē−r0 multiplets, despite our abuse of notation in using the name of the full

multiplet on the left-hand side of the above equation. The superconformal blocks for these

multiplets have been computed in [66]. They are given by the general formula

Gsc
∆,`(z, z̄) :=

(zz̄)
1
2

(∆−`)

z − z̄

((
−z

2

)`
z 2F1

(
1

2
(∆ + `) ,

1

2
(∆ + `+ 4) ; ∆ + `+ 2; z)

)
(4.3)

2F1

(
1

2
(∆− `− 2) ,

1

2
(∆− `+ 2) ; ∆− `; z̄)

)
− z ↔ z̄

)
,

with ∆ and ` = 2j denoting the dimension and spin of the superconformal primary of each

multiplet. The spin can be either even or odd. Note that the superconformal blocks for

the Ĉ0(j,j) representations are simply the specialization of (4.3) to the case ∆ = `+2, while

the block for the identity operator is just a constant as usual. These superconformal blocks

– 33 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
3

Multiplet Contribution to Gî=2̂(u, v) Restrictions

A0,2r0−2(j,j) u
∆−`

2 G
(`)
∆ (u, v) ∆ ≥ 2 + 2r0 + `

E2r0 ur0 G
(0)
2r0

(u, v)

C0,2r0−1(j−1,j) ur0 G
(`)
2r0+`(u, v) ` ≥ 2

B1,2r0−1(0,0) ur0+1G
(0)
2r0+2(u, v)

C 1
2
,2r0− 3

2
(j− 1

2
,j) ur0+1G

(`)
2r0+`+2(u, v) ` ≥ 2

D1(0,0) u2G
(0)
∆=4 r0 = 1

Ĉ 1
2

(j− 1
2
,j) u2G

(`)
∆=`+4 ` ≥ 2; r0 = 1

Ĉ0(j−1,j) uG
(`)
∆=`+2 ` ≥ 2; r0 = 1

Table 3. Superconformal blocks for the Er0 four point function in the chiral channel.

can of course be written as a finite sum of conventional conformal blocks — we provide

such a decomposition in appendix B.2.3.

4.1.2 The φr0(x1)× φr0(x2) OPE

We now turn to the chiral OPE. In this case only SU(2)R singlets with rO = 2r0 and

j1 = j2 =: j are allowed, and the spin ` := 2j is required to be even because we are

considering the OPE of two identical scalars. The complete selection rules for this channel

are worked out in appendix B.2.2, where it is shown that only one conformal family per

superconformal multiplet can contribute, implying the superconformal blocks are then

equal to the standard conformal blocks corresponding to that family. The complete list of

superconformal multiplets that can appear in this OPE is derived in the aforementioned

appendix. All told we find the following selection rules, where for simplicity we momentarily

assume that r0 > 1,

Er0 × Er0 ∼ A0,2r0−2(j,j) + E2r0 + C0,2r0−1(j−1,j) + B1,2r0−1(0,0) + C 1
2
,2r0− 3

2
(j− 1

2
,j) . (4.4)

Once again we note that these selection rules only necessarily hold true for the supercon-

formal primaries of the Er0 multiplets. The corresponding superconformal blocks for these

multiplets are given in table 3. The blocks for certain additional short multiplets that

are allowed when r0 = 1 are presented in the second part of the table. Note that the

C 1
2
,2r0− 3

2
(j− 1

2
,j) and B1,2r0−1(0,0) classes of short representations lie at the unitarity bound

for long multiplets, and their superconformal blocks are simply the specializations of the

long multiplet block to appropriate values of ∆ and `. The E2r0 and C0,2r0−1(j−1,j) represen-

tations, on the other hand, are separated from the continuous spectrum of long multiplets
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by a gap. The three short multiplets that are available only when r0 = 1 contribute with

the same blocks as some of the other blocks appearing in table 3.

4.2 Crossing symmetry

To formulate the crossing symmetry condition for this correlator we will treat U(1)r as

an SO(2) global symmetry — this is similar to the approach used in [39] to study the

four-point function of chiral operators in N = 1 SCFTs. In this approach, the fields φr0
and φ̄−r0 are combined in the fundamental representation of SO(2) with charge |r0|, which

we denote as 2|r0|. This representation has the following tensor product with itself,

2|r0| ⊗ 2|r0| =
(
1⊕ 2|2r0|

)
symm.

⊕ 1antisymm. , (4.5)

where the subscripts denote which representations appear in the symmetrized tensor prod-

uct and which appear in the antisymmetrized tensor product. The crossing symmetry

discussion of section 3.1 is now directly applicable, with the crossing matrix F j
i given by 1

2
1
2

1
2

1 0 −1
1
2 −

1
2

1
2

 , (4.6)

where the ordering of the rows and columns is the same as in (4.5). The crossing equation

then takes the form

(z − z̄)((1− z)(1− z̄))r0F j
i Gj(z, z̄) + (z̄ − z)(zz̄)r0Gi(1− z, 1− z̄) = 0 , (4.7)

where each Gi(z, z̄) can be expanded in the blocks relevant for the SO(2) channel i. As usual,

the braiding relation requires that only operators of even spin appear in the symmetric

channels while only operators of odd spin appear in the antisymmetric channel.

In more conventional terms, the symmetric traceless channel 2|2r0| encodes the opera-

tors appearing in the φr0 × φr0 OPE. This channel can therefore be expanded entirely in

terms of the conformal blocks G
(`)
∆ given in table 3 with even spins. The singlet channels,

on the other hand, describe the φr0 × φ̄−r0 OPE, with the symmetric channel getting all

the even spin conformal block contributions and the antisymmetric channel getting the odd

spin ones. The blocks in these latter two channels are related by supersymmetry because

the U(1)r symmetry is part of the superconformal algebra, and conformal families from

the same superconformal multiplet appear in both channels. To wit, in the symmetric sin-

glet channel we have contributions from the superconformal primaries appearing in (4.2)

with even spin, together with their even spin superconformal descendants, and the even

spin superconformal descendants of odd spin superconformal primaries. For the antisym-

metric channel the opposite takes place. We have therefore broken the superconformal

blocks (4.3) apart, splitting them by the parity of the spin, with each channel enjoying a

“partial” superconformal block.

This splitting of superconformal blocks can be ameliorated by a change of basis. Let

us define

G1̂,3̂ := G1 ± G3 , G2̂ := G2 . (4.8)
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All conformal blocks arising from the same superconformal multiplet are now grouped

together, with each superconformal multiplet from the singlet channels appearing twice:

once each in G1̂ and G3̂. The channels 1̂ and 3̂ are almost identical — the only difference is

an extra minus sign for all the odd spin conformal blocks in G3̂ due to the extra minus sign

in (4.8). There are two ways to insert this minus sign. The first option is to decompose

the superconformal block (4.3) into ordinary conformal blocks and insert extra factors of

(−1)` in front of every block. However the second option is more efficient. We recall that

ordinary conformal blocks satisfy the following braiding relation:(
z

z − 1

z̄

z̄ − 1

)∆−`
2

G
(`)
∆

(
z

z − 1
,

z̄

z̄ − 1

)
= (−1)`(zz̄)

∆−`
2 G

(`)
∆ (z, z̄) . (4.9)

We can thus insert the necessary factors of (−1)` by substituting z → z
z−1 and z̄ → z̄

z̄−1 in

the superconformal block (4.3). We thus find that a supermultiplet in the singlet channel

contributes to the four-point function as follows,

Gî=1(z, z̄) ∼ Gsc∆,`(z, z̄) , Gî=3(z, z̄) ∼ Gsc∆,`

(
z

z − 1
,

z̄

z̄ − 1

)
, (4.10)

with the same OPE coefficient appearing in both channels. The operators contributing to

the doublet channel still contribute to G2̂(z, z̄) as before.

The relevant crossing equation is now the same as in (4.7) but with î and ĵ replacing

i and j, and with the flavor matrix F j
i replaced by

F ĵ

î
=

 1 0 0

0 0 2

0 1
2 0

 . (4.11)

This is the same as the crossing equation that was previously derived for chiral operators

in N = 1 SCFTs [39]. This matrix squares to one, which is relevant for the numerical

implementation described in the next section.

When ∆ = ` = 0 in the î = 1̂, 3̂ channels we get the contribution of the identity

operator, which we set equal to two. This fixes the normalization of the external operators

to be one as is conventional (the factor of two arises from the projector onto the singlet,

similarly to the discussion in the previous section). The contribution of the stress tensor

is contained in the superconformal block (4.3) with ∆ = 2 and ` = 0. When expanded in

ordinary conformal blocks, the contribution is given by

GĈ0,(0,0)

i=1 (z, z̄) = uG
(0)
2 (u, v)− u

2
G

(1)
3 (u, v) +

2u

30
G

(2)
4 (u, v) . (4.12)

The coefficient of this block can be fixed in terms of the central charge c as was done

in the previous section. Namely, fixing the coefficient of uG
(2)
4 (u, v) requires that this

superconformal block should appear with coefficient
r2
0

3c (again, a factor of two comes from

the projector onto the singlet). The “braided” superconformal block appears with the

same coefficient.
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4.2.1 Free theory expansion

A simple illustration of the superconformal block decomposition procedure is the explicit

analysis of free field theory. Namely we consider the theory of a free vector multiplet,

and we study the four-point function of the chiral scalar which has r0 = 1. Decomposing

the free field correlator in terms of the superconformal blocks described above we find the

following channel expansions,

Gi=1̂(z, z̄) =
∞∑
`=0

(`+ 2)(`!)2(−2)`

(2`+ 1)(2`)!
Gsc
`+2,`(z, z̄) ,

Gi=2̂(z, z̄) =
∞∑
`=0

(
(−1)` + 1

)
(`!)2(−2)`

(2`)!
uG

(`)
`+2(u, v) ,

Gi=3̂(z, z̄) =

∞∑
`=0

(`+ 2)(`!)2(−2)`

(2`+ 1)(2`)!
Gsc
`+2,`

(
z

z − 1
,

z̄

z̄ − 1

)
. (4.13)

We can immediately verify that the only difference between channel 1̂ and 3̂ is the replace-

ment z → z
z−1 and z̄ → z̄

z̄−1 . We can also ferret out the stress tensor block Gsc
2,0(z, z̄)

and see that it appears with coefficient two. This suggests a central charge of 1
6 , which is

correct for the theory of a free vector multiplet. For future reference, we also note that the

E2 block, which is the uG
(0)
2 term in the 2̂ channel, comes with coefficient two.

5 Operator bounds from crossing symmetry

The output from the previous two sections was a collection of crossing symmetry equations

and their (super)conformal block decompositions. In this section we describe the numerical

methods by which these equations can be used to extract useful information about N = 2

SCFTs. We follow the approach of [39], where the original numerical analysis of [1] was

recast as a semidefinite programming problem.

Each of the nontrivial crossing symmetry equations can be put into the general form

Hi(z, z̄) + F j
i Hj(1− z, 1− z̄) = 0 . (5.1)

Here and below, summation over repeated indices is always implied. The functions Hi(z, z̄)

can always be written as

Hi(z, z̄) = Gi(z, z̄)− ai(z, z̄) , (5.2)

where the ai(z, z̄) are some known functions that have been fixed analytically, and the

Gi(z, z̄) have a decomposition of the form

Gi(z, z̄) =
∑
ki

λ2
ki
G̃

(`ki )

∆ki
(z, z̄) . (5.3)

The coefficients λ2
ki

are real, positive numbers, and the G̃
(`)
∆ (z, z̄) are roughly the super-

conformal blocks, the precise form of which depends on the crossing symmetry equation
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in question.27 The sum is over all operators that appear in the i’th channel, and the ma-

trix F j
i is related to Wigner’s 6j symbol for the relevant global symmetry group and in

particular is involutory: F j
i F

k
j = δ ki for the cases considered here.

As in [1], we will analyze these equations by considering the action of certain linear

functionals upon them. We may introduce one linear functional φi for each channel i. The

functionals that we consider are defined by taking linear combinations of various numbers

of derivatives of the function and evaluating at the symmetric point z = z̄ = 1/2, i.e.,

φi[fi(z, z̄)] =
∑
m,n

αimn∂
m
z ∂

n
z̄ fi(z, z̄)

∣∣
z=z̄= 1

2
. (5.4)

The matrices 1
2(δ ji ± F

j
i ) are projectors onto the positive and negative eigenspaces

of F j
i , so we can split the coefficients into even and odd parts, αimn = αimn,+ + αimn,−,

satisfying
1

2
αj±(δ i

j ± F
i
j ) = αi± ,

1

2
αj±(δ i

j ∓ F
i
j ) = 0 . (5.5)

Upon acting with our functionals on both sides of (5.1), we find the following equation,∑
m,n

(αimn,+ + αimn,−)
(
δ ji + (−1)m+nF j

i

)
∂mz ∂

n
z̄Hj(z, z̄)|z=z̄= 1

2
= 0 . (5.6)

Only those terms with m+n even in φi+ and those with m+n odd in φi− have a nontrivial

action on the crossing symmetry equation (5.1). Without loss of generality, we can therefore

set the other terms to zero. With this choice now implicit, the action of the functional on

the crossing symmetry equation can be succinctly written as

0 = φi
[
Hi(z, z̄) + F j

i Hj(1− z, 1− z̄)
]

= 2
∑
m,n

(
αimn,+ + αimn,−

)
∂mz ∂

n
z̄ Hi(z, z̄)|z=z̄= 1

2

= 2φi [Hi(z, z̄)] .

(5.7)

The nontrivial relations between the different global symmetry channels have been com-

pletely accounted for by the eigenvector constraints (5.5), which are simple algebraic con-

straints that are easily solved in any given case.

By construction, all the functions appearing in this relation are symmetric under the

exchange of z and z̄, so we lose nothing by restricting the coefficients of the functionals

to obey m ≤ n. We obtain a finite-dimensional functional space by introducing a cutoff

Λ ∈ N, and demanding that m + n ≤ Λ. For each i, we then find (1 + bΛ
2 c)(2 + bΛ−1

2 c)
independent derivative combinations. The total number of independent coefficients αimn,±
is then determined by multiplying the number of derivative combinations with m+n even by

the number of positive eigenvalues of F j
i and the number of derivative combinations with

m+n odd by the number of negative eigenvalues and then taking the sum. Quantitatively,

27These G̃ functions are not exactly the superconformal blocks of the previous sections, but rather they

include simple prefactors that have been absorbed in their definition. This is not particularly important

for the discussion here.
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if the total number of channels is c and F j
i has b positive eigenvalues, then the dimension

of the space of functionals is given by

dimΛ,c,b =
c

2

(
1 +

⌊
Λ− 1

2

⌋)(
2 +

⌊
Λ− 1

2

⌋)
+
b

2

(
1 + (−1)Λ

)(
1 +

⌊
Λ

2

⌋)
. (5.8)

This is the dimension of the space in which we will be performing a numerical search,

and is therefore an important measure of the complexity of the numerical problem. For

large Λ the dimension behaves approximately like c/2 times the total number of derivative

combinations.

The numerical results presented in subsequent sections are the results of two different

strategies. The aim of the first strategy is to provide an upper bound for the lowest

dimension operator in a given channel and with a given spin that may appear in a solution

of crossing symmetry. For instance, we may want to find an upper bound ∆?
0 for the

dimension of the first scalar operator in channel î. Such a bound follows immediately from

the existence of a functional possessing the following properties:

φj
[
G̃

(`)
∆ (z, z̄)

]
≥ 0 , ∀ (∆, `) in channel j 6= î ,

φî
[
G̃

(`)
∆ (z, z̄)

]
≥ 0 , ∀ (∆, `) in channel î with ` > 0 ,

φî
[
G̃

(0)
∆ (z, z̄)

]
≥ 0 , ∀ ∆ ≥ ∆?

0 in channel î ,∑
i

φi [ai(z, z̄)] ≤ 0 .

(5.9)

It is implicit in this description that the functional need not be positive for scaling di-

mensions below the unitarity bound, since such operators cannot be present in the type of

solution of crossing symmetry that we are aiming to constrain. The optimal bound that

can be obtained by this method at a given cutoff will then be the minimal value of ∆?
0 for

which such a functional exists.

The aim of the second strategy is to provide an upper bound for value of a particular

OPE coefficient, say λ2
kî

which multiplies the block corresponding to an operator with

dimension ∆kî
and spin `kî in channel î. Such a bound follows from performing the following

optimization over the space of functionals:

φj
[
G̃

(`)

∆ (z, z̄)

]
≥ 0, ∀(∆, `) in all channels j ,

φî
[
G̃

(`k
î
)

∆k
î

(z, z̄)

]
= 1 ,

minimize
∑
i

φi [ai(z, z̄)] .

(5.10)

If the minimum is positive and equal to, say, M , then we obtain an upper bound

λ2
kî
≤M . (5.11)
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If, on the other hand, the minimum turns out to be negative then we are effectively back

to the previous case and there can be no solution to crossing symmetry. In our analysis,

we often apply this minimization procedure to the block corresponding to the stress tensor

multiplet. The OPE coefficient for that block is inversely proportional to the c central

charge, so an upper bound on the OPE coefficient translates to a lower bound for c.

Finally, there are some cases where the quantum numbers (∆kî
, `kî) of an operator of

interest are isolated, in the sense that the corresponding conformal block is not contin-

uously connected to the set of blocks for which the functional is required to be positive

in (5.10). This is common in supersymmetric CFTs because of the various distinguished

short multiplets whose scaling dimensions lie strictly below the unitarity bound for generic

representations with the same Lorentz and R-symmetry quantum numbers. In such cases

we can flip the sign on the second line of (5.10) and instead require

φî[G̃
(`k

î
)

∆k
î

(z, z̄)] = −1 . (5.12)

In such a case, a negative value for M provides a lower bound on the corresponding OPE

coefficient,

λ2
kî
≥ −M . (5.13)

Here the result of the optimization is only meaningful if M ≤ 0. because unitarity con-

strains the coefficient is nonnegative.

In each of the cases just described, the search for functionals of appropriate type

can be reduced to a semidefinite programming problem [39]. We review this story in

appendices C and D, where we also offer additional details about our particular numerical

implementation.

6 Results for the moment map four-point function

The four-point function of moment map operators depends on a choice of global symmetry

GF , the associated flavor central charge k, and the trace anomaly coefficient c. Under

mild assumptions, the contributions of all short multiplets that appear in the conformal

block decomposition are completely determined by those parameters. For each such triple

(GF , k, c) there is then a corresponding crossing symmetry relation for the CFT data

associated to long multiplets that can be subjected to numerical analysis.

We have restricted our attention to flavor symmetries su(2) and e6. From the per-

spective of the bootstrap equations, these are the least complicated of all simple algebras

because the number of irreps appearing in the tensor product of two copies of the adjoint is

the lowest (three for su(2) and five for e6). Moreover, since every non-abelian semi-simple

Lie algebra has su(2) as a subalgebra, the su(2) bounds are in a sense universal and must

hold for any N = 2 superconformal field theory with a non-abelian flavor symmetry.

Below we will first discuss how in certain regions of the (c, k) plane the crossing symme-

try equations can never be satisfied by a unitary theory, irrespective of the precise spectrum

of long multiplets. Recall that certain combinations of c and k are already excluded by the

unitarity bounds that follow from the chiral algebra [84]. We will show that the numerical
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analysis carves out an even smaller region. Within the allowed region in the (c, k) plane we

then obtain bounds on operators in various Lorentz and flavor symmetry representations.

We finally focus on values of c and k that correspond to known theories and compute more

detailed bounds for the scaling dimensions of unprotected operators.

6.1 su(2) global symmetry

Before presenting the results of the numerical analysis, it is useful to review our expectations

based on our present knowledge of N = 2 theories with su(2) flavor symmetry. Let us

consider the projection of the landscape of such SCFTs to the plane spanned by the two

central charges c and k. Every point on this plane then falls into one of three categories.

First, there are points where a solution to crossing symmetry cannot exist because it would

violate a known unitarity bound. Second, there are points where a solution to crossing

symmetry is guaranteed to exist because it can in principle be constructed from known

theories. All the other points then fall in the third category where we do not a priori

know if a solution exists. These three regions are charted in figure 2 and we discuss each

of them below.

Besides positivity of c and k, there are additional unitarity bounds that originate from

the chiral algebra construction of [84]. For GF = su(2) these bounds are given by

k ≥ 2

3
, k ≥ 16c

1 + 4c
. (6.1)

We refer to these bounds as the analytic bounds, and the regions that they exclude in the

(c, k) plane are shaded in red in our plots.

Theories that saturate the analytic bounds have some special properties. For exam-

ple, if the second of the analytic bounds is saturated then there can be no B̂2 multiplet

contributing to the moment map four point function in the singlet channel, which implies

a relation in the Higgs branch chiral ring. Examples of theories with this feature are the

theory of a free hypermultiplet with (c, k) = ( 1
12 , 1) and the rank one Argyres-Douglas

theory with (c, k) = (1
2 ,

8
3), which is the rightmost point of type H1 in figure 2. Notice that

the two bounds in (6.1) intersect at (c, k) = ( 1
20 ,

2
3). The equivalent intersection point for

e6 flavor symmetry corresponds precisely to the Minahan-Nemeschansky theory [91]. It is

natural to ask if a theory might exist at the intersection point for su(2) flavor symmetry.

The second region contains all pairs (c, k) that correspond to a known N = 2 SCFT.

The region is however not limited to just those points, because we can take linear combi-

nations of known solutions as well: the sum of two solutions to crossing symmetry, with

relative weights that sum to one, is again a good solution to crossing symmetry (at the level

of a single four-point function). Since the central charges appear in four-point functions

only through OPE coefficients that are proportional to 1/c or 1/k, a solution constructed

in this way has effective central charges

1

ceff
=
α

c1
+

1− α
c2

,
1

keff
=

α

k1
+

1− α
k2

, (6.2)

in terms of central charges (ci, ki) of the two original solutions and a weight factor 0 ≤ α ≤
1. In the (1

c ,
1
k ) plane, the values of c and k that can be realized as linear combinations in
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Figure 2. The (c, k) plane for theories with an su(2) flavor symmetry. The red region on the

right is excluded by analytic unitarity bounds, whereas we are guaranteed to have valid solutions

to the crossing symmetry constraints in the blue region. The curves connect points corresponding

to theories related to F-theory singularities of different rank, which increases with c. We show

the (c, k) values corresponding the su(2)L flavor symmetry of all F-theory singularities with rank

N ≥ 2, and also to su(2) flavor symmetry of the rank N ≥ 1 H1 theory. We also show a curve

connecting points corresponding to the (c, k) values of N = 4 SYM with gauge group SU(N). The

“new” rank one theory is one of the theories obtained in [96]. It has a product flavor symmetry

with one factor being su(2), which is the one whose value of k is shown in the plot. The vertical

dotted line corresponds to the value of k for the codimension two defect of the six-dimensional (2, 0)

theory of type A1, which effectively has c→∞.

this way span the convex hull of all points corresponding to known theories. This region is

shaded in blue in figure 2. It is effectively spanned by three points: the free hypermultiplet

at (c, k) = ( 1
12 , 1), the generalized free field theory solution where c and k are both infinity,

and the four-point function on a codimension two defect in the six-dimensional (2, 0) theory

of type A1 where c is infinite and k = 4. We will discuss these three points in more detail

below. We have computed the values of c and k for many other known theories but were

not able to find any instance corresponding to a point outside the blue region in figure 2.

We should emphasize that taking linear combinations of solutions to crossing symmetry

is not the same thing as taking correlation functions of operators in the tensor product of

two theories. In particular, there is no guarantee that a linear combination of solutions can

be realized in a complete N = 2 SCFT. We can however be sure that our kind of numerical

analysis will not rule out any points corresponding to linear combinations of solutions. A

more sophisticated bootstrap analysis might exclude them, but we leave this direction for

future work.

Plotting the entire set of known N = 2 superconformal theories with at least su(2)

flavor symmetry is a daunting task, so we have opted to show only a subset. In figure 2 we
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show in particular the location of the theories that describe the low-energy behavior of N

D3 branes probing F-theory singularities. As we discussed in section 2.4, there are seven

types of these singularities and they are denoted by the corresponding global symmetry

group of the SCFT: H0, H1, H2, D4, E6, E7, E8 (with Hi → Ai). The theories with N > 1

have an additional su(2)L flavor symmetry.

The full set of central charges of these theories was calculated in [109] as a function of

N using holography. Let us denote by k the flavor central charge of the global symmetry

group indicated by the name of the theory, and by kL the level of the additional su(2)L for

the theories with rank greater than one. Then the relevant central charges are given by

c =
1

2
N2r0 +

3

4
N(r0 − 1)− 1

12
,

k = 2Nr0 ,

kL= N2r0 −N(r0 − 1)− 1 , N ≥ 2 ,

(6.3)

where the vale of r0 for each of the seven types is given in table 1. The resulting values of

c and k for these theories are plotted in figure 2.

Our plan for the remainder of this subsection can now be formulated as follows. We

will first focus on the unshaded, third region in figure 2. Could there be theories hidden

in this region, or some of these points be excluded? We will see that the latter is true,

and we can numerically obtain a universal lower bound on c for each value of k. For

the remaining allowed region, which includes the entire blue region in figure 2, we find

upper bounds for the dimension of several unprotected operators as a function of c and

k. The numerical analysis necessary to generate these bounds was computationally rather

demanding because of the two-dimensional parameter space, which limited the value of Λ

for which the computation was feasible to a maximum of Λ = 18. For restricted values of

c and k that are of particular interest, we generated superior bounds by going as high as

Λ = 22. In particular, we chose to study the H0 and H1 curves shown in figure 2. We

also studied the point at k = 4 and c = ∞, which corresponds to an interesting defect

SCFT. Bounds for the e6 curve are postponed until the next subsection for the purposes

of comparison to bounds extracted from the e6 moment map four-point function.

6.1.1 Constraints on c and k

To constrain the (c, k) plane we employed the second numerical method described in the

previous section. For a given value of k we normalize the functional by demanding that it

evaluate to one on the contribution of protected operators to (3.18) that are proportional

to the inverse central charge 1/c. We then minimize its value when acting on the remaining

protected contribution to crossing. The upper bound that we obtain in this way for 1/c

then corresponds to a lower bound on the central charge.28

The results of this program are shown in figure 3. The numerically excluded region

is shaded in gray. This result was obtained with Λ = 30, i.e., by taking at most 30

28Bounds obtained in this way for the central charge, and more generally for OPE coefficients, have been

studied in the literature starting with [34–36].
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Figure 3. Bounds for the central charge c of a theory with su(2) flavor symmetry as a function of

the flavor central charge k. These bounds are a consequence of crossing symmetry for the B̂1 four-

point function. The red regions on the right are excluded by the analytic bounds (6.1), and the gray

region at the bottom is the numerically excluded region. The gray and black lines correspond to the

numerical bounds, shown for Λ = 10, 14, . . . , 30, with the strongest bound (black line) corresponding

to Λ = 30. The curves are interpolations through the data points shown in the figure. The red dot

denotes the free hypermultiplet theory.

Figure 4. Minimum allowed value of c for a theory with su(2) flavor symmetry and k = 1 as a

function of the (inverse of) the maximum number of derivatives. The red dots are our data points,

and the blue curves are possible extrapolations to infinite Λ intended to guide the eye. The dashed

line corresponds to the central charge of the free hypermultiplet c = 1
12 .

derivatives in the z or z̄ directions. Bounds for smaller Λ are indicated with gray curves.

One interesting and very general lesson to be drawn from figure 3 is that the analytic and

the numerical bounds complement each other, and the most stringent constraints can only

be obtained by using both methods. For example, the numerical analysis eliminates the
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possibility of a unitary SCFT existing at the intersection point (c, k) = ( 1
20 ,

2
3) of the two

analytic bounds given in (6.1). We also find that for all values of k, there exists a universal

lower bound on the central charge,

c ≥ 0.055 , (6.4)

for any N = 2 SCFT with a non-abelian flavor symmetry. For comparison we may note

that for a free hypermultiplet c = 1/12 = 0.0833 . . .. From figure 3 it seems that there

may in fact be a solution to crossing symmetry with roughly this minimum value of the

central charge, because the global minimum of the exclusion curve at 1/k ' 0.68 seems

rather stable against increasing Λ. We are however not aware of any N = 2 SCFT (with

or without non-abelian flavor symmetry) with such a low central charge.

A feature of these numerical bounds that will be repeated both here and in the next

section is that they are non-optimal, meaning that they display substantial dependence on

Λ for the values of the cutoff considered. This is in contrast with, e.g., the three-dimensional

investigations in [12]. In that paper the bounds converge much faster and on the scales

that we consider here they are essentially constant at Λ = 22.29 Notice that with Λ = 30

and three flavor symmetry channels we have a functional with 392 components, which sur-

passes even the 231 components used in the precision work on the three-dimensional Ising

model [13]. Apparently this crossing symmetry problem is numerically more expensive.

We cannot currently offer a good explanation as to why this is the case.

A natural way to deal with the relatively poor convergence is to extrapolate our results

from finite to infinite Λ.30 In this way we can generate a rough guess of where the best

possible bound may lie. Figure 4 shows an example of such an extrapolation. The minimum

allowed value of c for k = 1 is plotted as a function of the cutoff Λ, and a possible

extrapolation to infinite cutoff is sketched. The dashed line in the figure corresponds to

the central charge which saturates the analytic bound at k = 1 (corresponding to the free

hypermultiplet with c = 1
12). It seems plausible that in the Λ → ∞ limit the numerical

bounds will intersect the analytic bound at this point.

6.1.2 Dimension bounds for su(2)

We now focus on the allowed region in the (c, k) plane and generate bounds for the di-

mension of the first unprotected operator appearing in the B̂1 × B̂1 OPE. In the tensor

product of two copies of the adjoint representation of su(2) one finds three irreps: the

singlet, triplet, and quintuplet. We will report on bounds for the dimension of the first

unprotected operator of lowest spin in each of these channels.

Singlet channel. In figure 5 we present the upper bound for the scaling dimension ∆

of the first unprotected scalar operator in the singlet channel, for all allowed values of

the central charges. The values shown are an interpolation through a total of 572 data

points, distributed on a square grid with finer resolution near the edges. The cutoff for

this analysis is Λ = 18. The surface so obtained appears smooth and monotonic, with the

29In [12] the cutoff is defined differently — Λ = 22 here corresponds to nmax = 11 there.
30We do not currently have theoretical control of the dependence of the numerical bounds on Λ, but we

hope the apparent smoothness of the numerical results is enough to justify such extrapolations.
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Figure 5. Upper bounds for the dimension of the first unprotected singlet scalar operator in

theories with su(2) flavor symmetry, as a function of 1/k and 1/c. The cutoff used for this plot

was Λ = 18. The two- and three-dimensional plots are generated with the same data set. The

gray and light red surfaces in the figure are the excluded regions from figure 3, and the vertical red

wall is added help visualize the constraints imposed by the analytic bounds. The black dot is the

generalized free field theory solution to crossing.

bound getting stronger when approaching the wall that represents the analytic bound and

at large central charge.

The bounds shown in figure 5 are completely universal — any four-dimensional N = 2

SCFT with at least su(2) flavor symmetry corresponds to a point somewhere inside the

allowed region. We will discuss several examples of such theories below, but as a zeroth-

order check we confirm that our bounds are consistent with some elementary solutions to

crossing symmetry.

At the infinite point (1/c, 1/k) = (0, 0) the stress tensor and the flavor current decouple,

their OPE coefficients being λT ∼ 1
c and λJ ∼ 1

k respectively. A well-known solution to

crossing symmetry for which these operators are absent is generalized free field theory, for

which the four-point function is a sum of disconnected pieces,

〈φ1(x1) . . . φ4(x4)〉 = 〈φ1(x1)φ2(x2)〉〈φ3(x3)φ4(x4)〉+ two permutations . (6.5)

Specializing this solution to the four-point function of moment map operators, we find that

the first operator in the conformal block decomposition has dimension four. As is indicated

in figure 5, the generalized free field solution is consistent with the numerical upper bound

which gives ∆ ≤ 4.47 at this point. The numerical bound is similarly consistent with the

theory of a free hypermultiplet with (c, k) = ( 1
12 , 1), since the first unprotected singlet

scalar in the corresponding four-point function again has dimension four and numerically

we have ∆ ≤ 4.38. Finally, we can take a linear combination of the two solutions with

positive weights that sum to one. This results in a valid solution to crossing symmetry

along the straight line in figure 5 that runs from the origin to the free-field point, with a first

unprotected singlet scalar operator that always has dimension four. Again, this is consistent
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with the numerical bound which is greater than four everywhere above this line. Much like

the bound on c sketched in figure 4, we expect these bounds to decrease substantially as Λ

is increased, and to converge to four along this line as Λ →∞. An extrapolation in Λ for

(1/c, 1/k) = (0, 0) (not shown) bolsters this intuition. Similar extrapolation experiments

suggest that the bound should end up below 4 for all values in the (c, k) plane between the

analytic bound and the interpolating solution of the previous paragraph.

Although we have presented the two results in figures 3 and 5 as independent results,

they are in fact related. Indeed, the bound on the first scalar operator drops sharply to the

unitarity bound when we venture inside the numerically excluded region of figure 3. Such

a drop indicates that there does not exist any spectrum that is simultaneously consistent

with unitarity and crossing, and delineating the region where this happens is another way

to obtain the numerically excluded region in figure 3. The c-minimization approach used

to generate figure 3 is much more efficient, and could consequently be performed at higher

values of Λ.

Triplet and quintuplet channels. We now present numerical results for the triplet

and quintuplet channels. The triplet appears in the antisymmetric combination of two

adjoints, so only odd spins can be exchanged. In this case we bound the dimension of the

first unprotected spin one operator appearing in the B̂1 × B̂1 OPE. This bound is shown

in figure 6 for the allowed range of c and k. Note that the unitarity bound for a spin one

multiplet is ∆ ≥ 3. The numerical upper bound is again represented by a smooth surface,

with weaker bounds appearing at larger values of k. In the limit where both c and k go to

infinity the bound is close to 5, which is the value for generalized free field theory.

The quintuplet channel is again symmetric, so the exchanged operators will have even

spin as they did in the singlet channel. We have generated upper bounds for the dimension

of the first scalar operator. These are shown in figure 7 as a three-dimensional plot and a

density plot. The behavior of the bounds when approaching the minimum allowed values

of c and k is different from the other two channels — in this case the bound drops smoothly

to the unitarity bound at ∆ = 2. As either c or k are increased the bound gets weaker,

and when they both go to infinity the bound is near ∆ = 4, which is the correct value in

generalized free field theory.

We note that the triplet and quintuplet bounds approach the unitarity bound near

the minimum of the exclusion curve of figure 3 at 1/k ' 0.68. This is a strong indication

that the solution to crossing symmetry at that point has higher spin currents, which we

would generally associate to a free theory. Because the central charge is not that of a free

hypermultiplet, one may suspect that this point is not related to a physical theory.

6.1.3 Bounds for theories of interest

In the previous subsections we discussed bounds on operator dimensions for the entire (c, k)

plane that were obtained with a cutoff Λ = 18. We will now turn to a discussion of stronger

bounds, obtained with Λ = 22, which we computed only for specific values of c and k that

correspond to theories of interest. In this subsection we present operator dimension bounds

along the curves in the (c, k) plane that correspond to the H0 and H1 theories shown in
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Figure 6. Upper bounds for the dimension of the first unprotected spin one multiplet in the triplet

channel of a theory with su(2) flavor symmetry, for all allowed values of c and k, presented both

as a three-dimensional plot and as a density plot. The gray and light red surfaces in the figure are

the excluded regions from figure 3. These bounds were obtained with Λ = 18 and 547 data points

in the (c, k) plane.

Figure 7. Upper bounds for the dimension of the first unprotected scalar in the quintuplet channel

of a theory with su(2) flavor symmetry, for all allowed values of c and k, presented both as a

three-dimensional plot and as a density plot. The gray and light red surfaces in the figure are the

excluded regions from figure 3. This plot was obtained with Λ = 18 and 398 data points in the

(c, k) plane.

figure 2. In the next subsection we will discuss the defect theory at infinite c and k = 4

that corresponds to the dotted line in figure 2.

For the H0 theories with N ≥ 2 the only flavor symmetry is su(2)L. We can trace the

results shown in figure 5 along the H0 curve in figure 2 to recover upper bounds for the

dimension of the first unprotected scalar singlet in these theories. This slice is displayed in

figure 8. The H1 theories with N ≥ 2 have two independent su(2) symmetries with different
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Figure 8. Upper bounds for the first unprotected scalar in the theories of type H0 as a function

of the inverse rank. The bounds are extracted from the four-point function of the su(2)L flavor

symmetry moment map and are valid only for N ≥ 2. The different lines correspond to cutoff

values Λ = 10, 14, . . . , 22, with the strongest bound shown as the black line.

(a) (b)

Figure 9. Bounds for the dimension of the first unprotected spin zero multiplet in the singlet

channel for the H1 theories, as a function of the inverse of the rank of the theories. The left

plot comes from studying the four-point function of the ordinary su(2) flavor symmetry moment

map and is valid for all N ≥ 1. The right plot comes from the four-point function of the su(2)L
flavor symmetry moment map and valid only for N ≥ 2. The different lines correspond to Λ =

10, 14, . . . , 22, with the strongest bound shown as the black line.

flavor central charges. We derived bounds for the two different cases by following the two

different curved labeled H1 in figure 2. Both of the singlet scalar bounds so obtained are

shown in figure 9.

In all of our plots corresponding to lines of interesting theories, we have shown the

progression of the bounds as a function of the cutoff. This gives a feeling for how close

to the optimal bound we have gotten — information that is absent from the plots of the

previous section where all the results came from analyses with Λ = 18. In general, there

seems to be some distance yet to go before the bounds will have effectively converged. In

particular, in the infinite-rank limit N →∞ the stress tensor and flavor current decouple

from the OPE expansion and the bounds should reach the generalized free field theory

value ∆ = 4. The difference between the Λ = 22 bounds at large N and the generalized

free field theory value offer a simple proxy for how far we have yet to go.
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Figure 10. Bound on the first unprotected scalar in the singlet channel for a theory with k = 4

and infinite central charge, as a function of the cutoff. The red dots correspond to derivatives 10

to 22 in steps of four, and the black dots to the remaining values of Λ ranging from 10 to 20.

Despite slow convergence, we may naively extrapolate our bounds to generate estimates

for their optimal values. In particular, for the rank one H1 theory there is a single su(2)

flavor factor and we might expect that the bound generated by studying the corresponding

four-point function of moment maps to be saturated by this theory. Extrapolation for this

value of c and k leads to a conjectural optimal bound in the range of 3.2− 3.4. Moving on

to the rank two case, there are now two independent bounds extracted from the two su(2)

flavor symmetries. These two bounds could conceivably apply to the same operator. In

other words, the same unprotected scalar singlet has no particular reason not to appear in

both moment map four-point functions. However, the two bounds appear to be unrelated.

The su(2)L bound dominates at low ranks, while the ordinary su(2) bound dominates for

higher ranks.

Similar bounds to those derived here can be obtained for the triplet and the quintuplet

channels by the same methods, though we have not done so here.

6.1.4 Bounds for defect SCFTs

An interesting aspect of the analytic bound (6.1) is that as c → ∞ the bound on k stays

finite and we have k ≥ 4 = 2h∨. The limit where c → ∞ and k remains finite should

correspond to a theory without a stress tensor but with conserved global symmetry current.

This kind of physics can be found on certain defects or interfaces in higher-dimensional

theories where the global symmetry is confined to the defect but energy can leak into

the bulk. There is in fact a natural set of defects that preserves N = 2 superconformal

invariance in four dimensions, namely the codimension two defects in the six-dimensional

(2, 0) SCFTs (see, e.g., [116] and references therein). For a (2, 0) theory of type g ∈
{An, Dn, En}, the possible defects are labeled by an embedding ρ : sl(2)→ g. The degrees

of freedom localized on the defect carry a flavor symmetry h which is the commutant of

the image of ρ. When ρ is trivial, the flavor symmetry is just g and the corresponding

flavor central charge is then given by k = 2h∨. The bounds that we obtain at the point
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Figure 11. An overview of the of known theories with e6 flavor symmetry, shown here as points in

the plane spanned by their c and k central charges. The red region is excluded by analytic central

charge bounds. The vertical dotted line designates the value k = 6 with is the value of the central

charge for the maximal defect SCFT in the six-dimensional (2, 0) theory of type e. The blue wedges

with vertices at each of the e6 theories are the region of the plane for which solutions of crossing

symmetry can be realized as linear combinations of the four-point function for the theory at the

vertex and those of generalized free field theory and the defect theory.

k = 2h∨ with c = ∞ therefore constrain the spectrum of unprotected operators living on

such a surface operator. Since we consider su(2) flavor symmetry, this bound is valid for

the defects of the (2, 0) theory of type A1.

In figure 10 we show the upper bound for scalar singlets in the defect theory as a

function of the inverse cutoff. The best bound is given by 2.99, and naive extrapolation

suggests a relatively low value for the optimal bound somewhere between 2.5 and 2.9. It

is natural to suspect that this is indeed the value of the first unprotected singlet scalar on

the defect.

We notice that the bound in figure 10 displays a step-like behavior whenever Λ−2 is a

multiple of four, corresponding to the red dots in the figure. Given our lack of theoretical

control over the behavior of the bound as a function of the cutoff, we cannot currently offer

any theoretical explanation for this quasi-periodicity. It however suggests an extrapolation

scheme based on a restricted data set where Λ increases in steps of four. This is what was

done in generating figure 4.

6.2 e6 global symmetry

Our second investigation focuses on theories with e6 global symmetry. Let us again begin

by making a rough sketch of the landscape of such theories as seen by the moment map

four-point function. We show such a sketch in figure 11. There are analytic bounds for the

central charges of theories with e6 global symmetry arising from the chiral algebra of [84].
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Figure 12. Bound on the central charge c of a theory with e6 flavor symmetry as a function of

the flavor central charge k, obtained from the B̂1 four-point function. The shaded red regions on

the right are the analytic bounds given in (6.6), and the shaded gray region at the bottom is the

numerically excluded region. The gray and black lines correspond to the numerical bounds, shown

for 10 to 26 derivatives in steps of four, with the strongest bound (black line) corresponding to 26

derivatives. The red dot at the intersection of the two analytic bound corresponds to the rank one

e6 theory [90].

These are given by

k ≥ 6 , k ≥ 48c

13 + 2c
. (6.6)

The region excluded by these bounds is shown in red in figure 11. We have also plotted

several known families of theories whose flavor symmetry contains an e6 factor, namely

the theories originating from F -theory singularities of type en for n = 6, 7, 8 and for all

ranks. The existence of these theories gives a collection of solutions to crossing symmetry

with various values of c and k. By taking linear combinations of these solutions, one can

find solutions of crossing symmetry with (c, k) values anywhere inside the blue region in

figure 11. In particular, for each irreducible solution there is a wedge corresponding to

linear combinations of that solution with the generalized free field theory solution and the

defect solution at k = 6 and c→∞. These wedges are shown for the e6 theories.

For the purposes of numerical analysis, the fact that there are now five irreps in the

tensor product of two copies of the adjoint representations makes the search space larger

than the su(2) case for a given value of Λ. As such, the maximum value of Λ that we were

able to reach is lower than for the su(2) case.

6.2.1 Constraints on c and k

We have obtained numerical lower bounds on c as a function of k following the same

approach as in the su(2) case. Here we considered a maximum cutoff of Λ = 26. The lower
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Figure 13. Lower bounds on c for a theory with e6 flavor symmetry and k = 6 as a function the

inverse cutoff Λ. The red dots correspond to derivatives 10, 14, . . . , 26, while the black dots show

the remaining even values of Λ ranging from 10 to 24. The dashed line at c = 13
6 marks the central

charge of the rank one e6 theory.

bound is displayed in figure 12 as a function of the (inverse) flavor current central charge.

The regions shaded in red are again the ones ruled out by the analytic bounds (6.6). We

see that independent of k, any N = 2 SCFT with at least e6 flavor symmetry has

c ≥ 0.83 . (6.7)

In contrast to the case of su(2) global symmetry, for e6 there is a theory living at the

intersection of the two analytic bounds. This is the rank one e6 theory of Minahan and

Nemeschansky. One may wonder whether there is another theory with k = 6 but with a

lower value of c. In figure 13 we show the lower bound on c for k = 6 derived from the

moment map four-point function as a function of Λ. Though the bounds still seem to be

improving, it appears unlikely that the optimal bound will reach the value c = 13
6 (the

value of the rank one e6 theory). Instead, our best estimate for the optimal value of the

central charge bound is somewhere between 1.1 and 1.2. We are not aware of a theory

with such a low central charge and (at least) e6 flavor symmetry. It would be interesting

to determine whether the solution to crossing symmetry being approximated here contains

higher spin currents.

6.2.2 Dimension bounds in the singlet channel

Bounds for the first unprotected scalar in the singlet channel as a function of the (inverse)

central charges are shown in figure 14. The range of central charges allowed by unitarity is

limited by (6.6). Our plot therefore starts at k = 6, and the vertical red wall delimits the

region allowed by the second bound in (6.6). The gray region in figure 14 for low values

of the central charge represents central charges excluded by the numerical bounds of the

previous section. As both central charges go to infinity we expect the bound to go to the

generalized free field theory value of ∆ = 4, which we denoted with a black dot in the

figure. This point is consistent with the numerical bounds, and naive extrapolation of the

numerical results (not shown) suggests convergence towards ∆ = 4.
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Figure 14. Upper bounds for the dimension of the first unprotected scalar in the singlet channel of

a theory with e6 flavor symmetry as a function of the inverse of the central charges. These bounds

were generated with Λ = 16. The vertical red wall corresponds to the second analytic unitarity

bounds in (6.6), with the excluded region being the top right corner. The plot starts at 1
k = 1

6 ,

where the first analytic unitarity bound is saturated.

6.2.3 Bounds for theories of interest

We now specialize to the values in the (c, k) plane that correspond to the theories of D3

branes probing F-theory singularities with e6 flavor symmetry. The central charges for

these theories, shown in orange in figure 11, are given by [109]

c =
3

4
N2 +

3

2
N − 1

12
,

k = 6N ,
(6.8)

where N is the rank of the theory. All theories with rank N ≥ 2 have an extra su(2)L
flavor symmetry, with kL = 3N2 − 2N − 1.

We derived upper bounds for the dimensions of the first unprotected operators of

lowest spin in each of the flavor symmetry channels appearing in the tensor product of

two adjoints. For the case of symmetric representations (singlet, 650, 2430) we therefore

obtain a bound for spin zero operators, and for antisymmetric representations (78, 2925)

we bound spin one operators. These bounds are displayed in figure 15. They are still

far from optimal, but serve to give us a feeling for the general shape of things. It would

be interesting to improve our numerical search power to the point where these bounds

would converge.

We should compare the singlet bounds in figure 15(a) for rank N ≥ 2 to the bounds

obtained from the su(2)L flavor symmetry of those theories. In principle the same unpro-

tected operators may contribute to the four-point functions of both sets of moment maps,

so if the bounds recovered from both correlators are related to these rank N theories then

they should agree to some extent. These bounds are shown in figure 16. The two sets of

bounds appear to have nothing in common. It is hard to say whether this is a feature of the

space of solutions to crossing symmetry or a consequence of inadequate numerical power.
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(a) Singlet, scalar. (b) 78, spin 1.

(c) 650, scalar. (d) 2925, spin 1.

(e) 2430, scalar.

Figure 15. Bound for the dimension of the first unprotected spin zero multiplet in the singlet,

78, 650, 2925 and 2430 channels for the theories with flavor symmetry e6 arising from F-theory

singularities, as a function of the inverse of the rank of the theories. The number of derivatives is

increased from 10 to 16 in steps of two, with the strongest bound given by the black line.

6.2.4 The rank one theory

We performed a higher precision analysis at the point k = 6 and c = 13
6 , which are the

central charges of the e6 Minahan-Nemeschansky theory. It is plausible that this theory is

the unique theory with these central charges and e6 flavor symmetry. What’s more, because

of the location of these central charges in a corner of the allowed region of the (c, k) plane,
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Figure 16. Upper bounds for the dimension of the first unprotected scalar in the singlet channel

of the su(2)L moment map correlator for the e6 theories, as a function of the inverse of the rank of

the theories. The cutoff is increased from 10 to 22 in steps of four, with the strongest bound given

by the black line.
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Figure 17. Upper bounds for the first unprotected scalar singlet in the rank one e6 theory as a

function of the inverse cutoff. The points where Λ − 2 is a multiple of four are shown in red. For

the best bound shown, the dimension of the search space in the associated semidefinite program

was 366.

there can be no pollution at this point by solutions of crossing symmetry that are linear

combinations of other irreducible solutions. This gives us some room to be optimistic that

the numerical bounds at this point will converge to physical values that correspond to the

scaling dimensions of operators in this theory.

As a first example we may consider again the bound on the first unprotected singlet

scalar. We have plotted this bound as a function of the cutoff in figure 17. Naive extrapo-

lation suggests an optimal value in the neighborhood of ∆ ' 4.4 for the first scalar singlet.

We can also explore simultaneous bounds for various channels by searching for func-

tionals with ∆?
Ri

greater than the unitarity bound for several choices of flavor symmetry

channel Ri. We performed such an analysis for these central charges to derive simultaneous
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Figure 18. Three-dimensional exclusion plot in the octant spanned by the scaling dimensions of

the first unprotected scalar in the R = 1,650,2430 representations of e6 with k = 6 and c = 13
6 .

The cutoff used while generating these bounds was Λ = 12.

bounds for the first scalars in the 1, 650, and 2430 channels. The numerics were performed

with Λ = 12, and the results are shown in figure 18 in the form of an exclusion plot in the

three-dimensional space spanned by the scaling dimensions (∆1,∆650,∆2430) of the first

operator in those channels. The usual superconformal unitarity bounds constrain us to be

in the octant where all these three dimensions are greater than two, but within this octant

we have numerically carved out a further excluded region where one or more of the three

operator dimensions is too high to satisfy the crossing symmetry equations.

6.2.5 Bounds for defect SCFTs

We can again consider the limit where we send c→∞ with k at the analytic bound, which

gives k = 24 in this case. In this limit we expect to recover information about the theory

living on the codimension two defect corresponding to the trivial embedding in the six-

dimensional (2, 0) theory of type e6. A nontrivial bound for the first unprotected scalar in

the singlet channel is given in figure 19 as a function of the cutoff. Once again we observe

some quasi-periodic behavior where the bounds have a sharper jump at every fourth step

in the cutoff. By naive extrapolation of the bound we arrive at a rough estimate that the

optimal upper bound should be between ∆ = 3 and ∆ = 3.2.

7 Results for the Er four-point function

We now turn to the numerical results obtained for the four-point function of the Coulomb

branch operators Er0 . Unlike in the previous section we can vary the dimension of these

operators, which we recall is given in terms of their U(1)r charge r0 by ∆ext = r0. Unitarity

requires r0 ≥ 1. We will consider four-point functions where all operators have equal

dimension. A second parameter is again the c central charge which appears in front of the

conformal block of the stress tensor multiplet. We will therefore be able to obtain bounds

as a function of r0 and c.

7.1 Central charge bounds

Our first bound is again a lower bound for the c central charge, now as a function of

the dimension r0 of the Coulomb branch operators. Assuming the moduli space/chiral
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Figure 19. Bound on the first unprotected scalar in the singlet channel for a theory with k = 24

and infinite central charge as a function of the cutoff. Red dots correspond to cutoff values Λ =

10, 14, . . . , 22, while black dots show the remaining cutoff values ranging from Λ = 10 to Λ = 20.

ring correspondence for the Coulomb branch, the Shapere-Tachikawa relation provides an

analytic lower bound for c. More precisely this bound is obtained combining the ST sum

rule (2.22) and the Hofman-Maldacena upper bound (2.21) on a
c . If the Coulomb branch,

which is assumed to be freely generated, has dimension N with generators of dimension

{r1, . . . , rN}, then the following bound holds,

c ≥ 1

6

N∑
i=1

(2ri − 1) . (7.1)

The fact that only the dimensions of generators of the Coulomb branch chiral ring appear

in this expression is important. For example, Coulomb branch operators of dimension

r0 ≥ 3c + 1
2 are certainly allowed by this bound, they just cannot be generators. On

the other hand, a theory that has any Coulomb branch at all must have c ≥ 1
6 , since

the dimension of a Coulomb branch generator cannot be smaller than one. Moreover, if

c = 1
6 then the Coulomb branch must have a single generator of dimension r0 = 1, so will

necessarily be the theory of a single free vector multiplet.

In setting up the bootstrap for this correlator, there is no straightforward way to insist

that the Coulomb branch operators be generators (or that they not be generators, for that

matter). Of course, any such operator with r0 < 2 will necessarily a generator because

it cannot be a product of two operators with dimensions above the unitarity bound. For

r0 ≥ 2 if we assume that we are dealing with a generator, then the following analytic bound

will be obeyed:

c ≥ 1

6
(2r0 − 1) . (7.2)

Notice that if we drop the generator assumption and consider four-point functions of op-

erators that are not generators, then only the weaker bound c ≥ 1
6 applies for r0 ≥ 2. This

bound is in fact saturated at any r0 ∈ N by the operators of the Coulomb branch chiral

ring of the free vector multiplet.
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Figure 20. Lower bounds for the central charge c of a theory with Coulomb branch operator Er0
as a function of its dimension r0. The straight red line is the analytic bound for the case when

Er0 is a Coulomb branch generator, given in (7.2), with the excluded region lying to the right of

the line. The shaded gray region is the numerically excluded region, and the gray and black lines

correspond to bounds obtained with Λ = 10, 14, 18, 22, with larger Λ giving the stronger bounds.

The red dot denotes the free vector multiplet, and the black dot the rank one H0 theory.

In figure 20 we show the results of a numerical c-minimization procedure as a function

of r0. The analytic bound (7.2) is superimposed in red. For large values of r0 the analytic

bound always dominates over the numerical one, but for r0 . 1.4 the numerical bound is

dominant. Nevertheless, we would like to stress that the analytic bound is contingent upon

the validity of the Coulomb branch version of the moduli space/chiral ring correspondence.

If there are exceptions to this rule, then the analytic bounds will not hold, whereas the

numerical bounds will still necessarily hold true.

As r0 approaches one the bound drops sharply towards c = 1
6 , the central charge of

the free vector. Though it is not clear from the figure, c = 1
6 is not ruled out for r0 = 1,

where convergence with Λ is very fast.31 Away from r0 = 1, convergence as a function

of Λ is slower, and the bounds presented here are still quite suboptimal. One interesting

question is whether the bound at r0 = 6
5 might converge to c ≥ 11

30 , with the rank one H0

theory lying at the boundary. Using our methods, this would require a substantial increase

in Λ. Similarly, at r0 = 2 it seems possible that the bound may converge to the free vector

value c = 1
6 .

7.2 Dimension bounds for non-chiral channel

In the allowed region of the (r0, c) plane we can bound the dimension of the first un-

protected, R-symmetry singlet, scalar operator appearing in the Er0 Ē−r0 OPE. Unitarity

31A similar phenomenon was observed in the context of central charge minimization in N = 1 SCFTs [39].
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requires that such an operator have ∆ ≥ 2. When ∆ = 2 the long multiplet sits at the

unitarity bound and decomposes into the stress tensor multiplet along with other short

multiplets whose OPE coefficients vanish. In order to study local theories we should there-

fore add the superconformal block with ∆ = 2 to the problem by hand and then impose a

gap so that the subsequent scalar operator has dimension strictly greater than two.

This situation presents two natural options. First, we can leave the coefficient of the

stress tensor block unfixed and simply require that the functional be positive when acting

upon it. This approach leads to upper bounds for ∆?
0 that are valid for any value of c.

Alternatively, we can fix the coefficient of the stress tensor block by hand and in doing so

fix the value of the central charge. We can then extract bounds on ∆?
0 as a function of c.

Let us make a brief comment about the free vector theory. When r0 = 1 we know that

there exists a solution with c = 1/6, and in this solution there is no other scalar singlet

block after the stress tensor multiplet at ∆ = 2. Thus at this point in the (r0, c) plane

our numerical procedure will never produce a nontrivial bound for the next operator, since

any such bound would rule out the free field solution.32 To avoid this singular point in our

searches we have studied regions of the (r0, c) plane with r0 ≥ 1.001.

Arbitrary central charge. The results of the first strategy are displayed in figure 21.

We find an upper bound on the dimension of the first scalar singlet as a function of

r0 ≥ 1.001, with the bound at a given r0 being valid for arbitrary values of c. Note that

because there is no restriction on the value of c in this approach, there may be approximate

solutions to crossing symmetry that influence this plot for which the value of c has been

ruled out by (7.2). Indeed, we will find below that excluded central charge values are

responsible for the local maximum at r0 slightly less than two. For higher values of r0, it

seems plausible that the bounds will converge to the generalized free field theory solution

indicated in the figure with a dashed line. The results for fixed values of the central charge

will shed light on the features of this bound, so we postpone further discussion of its shape

to the next subsection.

The analogous chiral/anti-chiral OPE for N = 1 SCFTs was considered in [39]. The

exclusion curve obtained in that work for the dimension of the first unprotected scalar

operator exhibited an interesting “kink”. However, in that case a gap larger than two was

being imposed, so any theory associated to the kink could not come from an N = 2 theory

with a stress tensor multiplet.

Fixed central charge. We turn next to operator dimension bounds for fixed central

charge. The results for fixed Λ take the form of a function ∆∗0(r0, c) that is well defined for

all points in the (r0, c) plane that were not excluded by the numerical bounds of section 7.1.

This is displayed as a three-dimensional exclusion plot in figure 22, which corresponds to

Λ = 18. The red line in figure 22 corresponds to the analytic bound (7.2), but since it may

not hold in all circumstances we have extracted bounds even for points in the plane that

violate it.

32If for r0 = 1 we do not to include the stress tensor block by hand, then the resulting bound on the first

operator dimension would come be very close to two.

– 60 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
3

Figure 21. Bound on the first scalar in the Er0 × Ē−r0 OPE as a function of r0 for arbitrary

central charge. The lines correspond to Λ = 8, 10, . . . , 20, with the strongest bound being the black

line. The excluded region is shaded. The dashed line corresponds to generalized free field theory

solution, for which ∆ = 2r0.

This exclusion surface was determined in a slightly unconventional manner. Rather

than fixing c and r0 and performing boolean searches to obtain a dimension bound, we

fixed r0 and imposed a gap in the scalar singlet channel and searched for upper and lower

bounds on c consistent with that gap.33 In this way we were able to find bounds for the

whole of the plane with only a single numerical search required for each data point.

By taking constant central charge slices of this surface, a feature which is not apparent

in figure 22 comes into view. Several such slices are superimposed in figure 23, where

the dimension bound is shown as a function of r0 for various values of the central charge

(including infinity). The results that are shown correspond to Λ = 20. Together with these

bounds there is a blue dashed straight line at ∆ = 2r0 corresponding to the generalized free

field theory solution, and a thick dashed black line showing the Λ = 20 dimension bound

for arbitrary central charge. Since the latter line is the best possible bound without fixing

the central charge, it envelopes all the lines for fixed c.

Although figure 23 could have been obtained by interpolating between the data points

that define the three-dimensional plane in figure 22, we chose to revert to performing

separate boolean searches for each point as this yields more precise results. As in the

results reported in the previous sections, these boolean searches were performed by fixing

33Obtaining a lower bound for an OPE coefficient is possible as long as there is a gap between the

superconformal block under consideration and the next operator, so this method can be used precisely for

bounding the first scalar operator.
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Figure 22. Bound on the first scalar in the Er0 × Ē−r0 OPE as a function of the central charge

c and dimension of the external operators r0. These bounds are for Λ = 18, and are obtained by

imposing a gap and minimizing/maximizing the central charge value after imposing a gap in the

spectrum. The gray area in the figure is a copy of the excluded region from figure 20. The red line

corresponds to the bound (7.2), and the excluded region, if Er0 is to be a generator, is the one with

smaller central charge.

the stress tensor coefficient in terms of c, imposing a gap in the spectrum and finding

whether a functional exists as described in section 5.

These bounds clearly have two qualitatively different regimes, depending on whether

r0 is greater or less than two. For r0 > 2 the bound gets weaker (increases) as the central

charge is increased. The weakest bound is just the c = ∞ line, and it coincides with the

bound with unspecified central charge. In this region convergence is relatively slow, and so

it is hard to guess where the bound will end up as the cutoff is lifted. Of course we cannot

exclude known solutions, so for c =∞ the bound will not be able to cross the generalized

free field theory line. More trivially, for c = 1
6 the bound will have to allow the points

r0 = 2n, ∆ = 4 for n ∈ N.

The point r0 = 2 is particularly interesting. Here the lines for all central charges

converge at a value that is close to, and seems to be approaching, ∆ = 4. The absence of a

stronger bound can be explained by the existence of a one-parameter family of four-point

functions — constructed by taking a linear combination of the free field solution and the

generalized free field solution — which can realize any c ≥ 1/6 and for which the first scalar

operator always has dimension four. However, recall that theories with a chiral operator

with r0 = 2 necessarily have a conformal manifold. If these bounds converge to ∆ = 4,

then it would follow that at any point on any conformal manifold there must be a relevant,

unprotected operator with nonzero coefficient in the chiral/anti-chiral OPE. It would be

interesting to check this at low order(s) in perturbation theory.

For r0 < 2 the picture is reversed. The bound for infinite central charge still appears to

be approaching the generalized free field theory value, but the bounds now grows stronger

(decreases) as a function of the central charges. The solution to crossing symmetry along
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Figure 23. Bound on the first unprotected scalar in the Er0 Ē−r0 OPE as a function of r0 for several

different values of the central charge, obtained with Λ = 20. The dashed blue line corresponds to the

generalized free field theory solution ∆ = 2r0, the thick dashed black line is the same as in figure 21,

and the red line segment is the bound obtained for the central charge which saturates (7.2). If the

central charge of a theory is known then it must correspond to a point below the curve corresponding

to that central charge. If the central charge is not known and the theory has a freely generated

Coulomb branch, then equation (7.2) together with our numerics dictate that the theory must lie

below both the black line and below the red line segment. If we do not know either c or whether

the Coulomb branch is freely generated then the theory must still lie below the black curve.

the black line corresponds to the lowest allowed value of the central charge consistent with

crossing, which is precisely the bound shown in figure 20. For example, the c = 1/6 line

ends on the black curve at the same value of r0 where 20 begins to exclude the value

c = 1/6, and for even smaller r0 and fixed c there is no unitary solution anymore.

If Er0 is a Coulomb branch generator the central charge cannot be arbitrarily small,

and in particular must satisfy (7.2). This renders part of the black curve with r0 < 2

unphysical, since it corresponds to solutions with a central charge that violates (7.2). We

can correct this by assuming the central charge to be at least 1
6(2r0−1). We then obtain a

correction to the black curve that is shown in figure 23 as a red dashed line. Any unitary

N = 2 SCFT with a freely generated Coulomb branch must now lie below both the black

curve and, because of (7.2), also below the red line segment. This improvement removes

the local maximum from figure 21.

7.3 E2r OPE coefficient bounds

In the chiral OPE channel it is natural to look for constraints on the (squared) OPE

coefficient λ2
E2r0

of the E2r0 multiplet. The conformal block associated to the exchange
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Figure 24. Upper and lower bounds on the OPE coefficient squared of E2r0 as a function of r0 and
1
c , corresponding to a cutoff Λ = 22. The vertical red “wall” corresponds to the bound (7.2), and

the excluded region if Er0 is a Coulomb branch generator is the one with smaller central charge.

of this multiplet is given by G
(0)
2r0

(z, z̄), while the next multiplet appearing in the chiral

channel has G
(0)
2r0+2(z, z̄) as its conformal block. Thus the E2r0 contribution is isolated, and

we can look for both upper and lower bounds on its coefficient. These bounds are displayed

in figure 24 for Λ = 22. Physical theories must lie between the two blue/red sheets. The

vertical “wall” corresponds to c = 1
6(2r0 − 1).

As a sanity check, we can compare these numerical bounds to some known theories.

The free vector multiplet gives a solution to crossing symmetry with r0 = 1 and c = 1
6 , and

from the decomposition (4.13) we can see that λ2
E2r0

= 2. This ends up being consistent

with the numerical bounds, since at this point both the lower and upper bound are very

close to two. Similarly, for infinite c we find the generalized free field solution with an OPE

coefficient that is also equal to two - again consistent with the numerical bounds.

It is interesting to observe that the lower bound on this OPE coefficient is strictly

positive in a large region of the (r0, c) plane. In this region, these bounds rigorously

exclude the possibility of Coulomb branch chiral ring relations of the form Er0Er0 ∼ 0. The

region of the plane where the lower bound is positive is displayed in figure 25. It is clear

that the bound will improve substantially at larger Λ.

In interpreting figures 24, 25 there is an important subtlety. In obtaining these bounds

we have fixed c to a given value, which corresponds to inserting the superconformal stress

tensor block with a fixed coefficient in the appropriate channel. However we have also

allowed for arbitrary superconformal blocks for long multiplets in the same channel, both

at and above the unitarity bound. A long block at the unitarity bound however reduces

exactly to the stress tensor block and can therefore mimic the effect of the stress tensor.

Since the coefficient of the stress tensor block is proportional to 1/c, the bounds obtained

for a given value of c are also valid for all smaller central charges. In other words, when

increasing c the bounds can never improve — instead they either worsen or stay constant.

In future searches this issue could be circumvented by imposing a gap in the scalar channel.
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Figure 25. Region where the lower bound on the OPE coefficient squared of E2r0 is strictly positive

as a function of r0 and 1
c , for Λ varying from 10 to 22 in steps of four. The shading indicates the OPE

coefficient squared is positive in that region. The red line corresponds to the unitarity bound (7.2),

and the excluded region (if Er0 is a Coulomb branch generator) is to the right of the line. Note that

these results are approximate, as this plot is obtained by an interpolation procedure from results

like those shown in figure 24. The slight wiggles in the lines are likely due to small errors introduced

by this procedure.

OPE coefficient bounds and the Zamolodchikov metric. The slice r0 = 2 of fig-

ure 24 is of special interest because of its relation to the curvature of the Zamolodchikov

metric on the conformal manifold [117, 118]. Namely, consider an N = 2 SCFT with a

moduli spaceM of exactly marginal deformations. The different marginal deformations at

a given point onM are the top components of E2 multiplets (and their complex conjugates)

whose superconformal primary we will denote as φa, a = 1, . . . , dimC(M). The Zamolod-

chikov metric gab̄ on M is determined by the two-point functions of these primaries,34

〈φa(x)φ̄b̄(0)〉 =
gab̄
x4

. (7.3)

Unit normalizing these operators corresponds to choosing local holomorphic coordinates on

M such that gab̄ = δab̄ at the point of interest. In these coordinates, the only non-vanishing

four-point function involving the φa and their complex conjugates is given by

〈φa(x1)φb(x2)φ̄c̄(x3)φ̄d̄(x4)〉 . (7.4)

The OPE of φa(x1) and φb(x2) is regular and correspondingly the first conformal block

in the chiral channel for this four-point function is a dimension four scalar that is the

superconformal primary of an E4 multiplet. According to eq. (3.13) of [118], the coefficient

for this superconformal block is given by

µE4 abc̄d̄ = −Rac̄bd̄ + δac̄δbd̄ + δbc̄δad̄ . (7.5)

34In [118] this is the “metric” written as gab̄, which differs from the actual metric Gab̄ studied in that by

a factor 192.
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Figure 26. Upper and lower bounds on λ2E4 as a function of the central charge c. Shaded regions

are excluded by our numerics, with Λ ranging from 10 to 22 in steps of four (the upper bound for

Λ = 10 is outside the plotted region). The dotted lines are the best possible value of the bounds as

dictated by the free vector multiplet solution, and it seems likely that our bounds will converge to

these values. We highlighted the known values of the coefficients for N = 4 SYM theories (which

are protected), the N = 2 SCQCD theories with gauge group SU(Nc) and Nf = 2Nc fundamental

flavors (tree level values only), and finally the special case of SU(2) SCQCD which we call the

so(8) theory. The line in the latter case shows the range of values that λ2E4 takes as a function

of the exactly marginal coupling, cf. the computation in appendix E. The individual dots in the

colored lines correspond to gauge groups SU(N) (with N ≥ 2), plus the U(1) theory at c = 1/4 for

N = 4 SYM.

where Rac̄bd̄ is the Riemann curvature tensor (in the aforementioned distinguished coordi-

nates) of the Zamolodchikov metric on M.35

We have obtained upper and lower bounds for the OPE coefficient in the particular

four-point function with identical operators, a = b = c = d. In that case we have

λ2
E4 = µE3 aaāā = 2−Raāaā . (7.6)

When dimC(M) = 1, this expression simplifies to

λ2
E4 = 2− 1

2
R , (7.7)

with R the Ricci scalar of gaā. The bounds for λ2
E4 can therefore be interpreted as bounds

for the scalar curvature of one-dimensional conformal manifolds.

The r0 = 2 slice of figure 24 is shown in figure 26, with the excluded regions shaded in

gray. The bounds for lower values of Λ are also shown to indicate the cutoff-dependence.

Inside the allowed region we highlighted several points and loci that correspond to known

theories. The computation of λ2
E4 for these theories is reviewed in appendix E.

35Recall that the Zamolodchikov metric is Kähler and therefore Rac̄bd̄ is symmetric under exchange of a

and b (as well as exchange of c̄ and d̄). This is required by the braiding relation of the four-point function.
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Even at infinite Λ, the the upper and lower bounds will not be able to penetrate

beyond the dashed blue lines. The reason for this is as follows. In the theory of n free

vector multiplets one finds a chiral four-point function with r0 = 2 for which

λ2
E4 = 2 +

2

3c
,

1

c
< 6 . (7.8)

This is the lower dashed line in figure 26. The upper horizontal dashed line, on the other

hand, is simply given by λ2
E4 = 6, which is the value for the solution corresponding to a single

free vector multiplet at c = 1/6. The numerical upper bound cannot pass this line because

of the aforementioned fact that by design the bound is a non-increasing function of 1/c.

From the dependence of the bounds on Λ it seems natural to expect that they will

eventually converge to the dashed blue lines. If this were to happen, then the purely

diagonal components of the Riemann tensor would have to obey the following bound:

− 4 ≤ Raāaā ≤ −
2

3c
. (7.9)

In particular, for theories with one-dimensional conformal manifolds crossing symmetry

appears to dictate that their scalar curvature is always negative. To see if this is also

true for higher-dimensional moduli spaces a bound for Raābb̄ will be necessary. We plan to

investigate the corresponding four-point function in the near future.

8 Conclusions

The abstract operator viewpoint offers a unified language for the description of both La-

grangian and non-Lagrangian CFTs. It has also become the entry point for powerful

numerical studies in the style of [1]. In this paper we have advocated for the utility of

this viewpoint in studying N = 2 superconformal field theories. We have highlighted the

interplay between superconformal representation theory and interesting physics in these

theories, and we identified three types of distinguished representations of particular physi-

cal interest. Our numerical investigations focused on the four-point functions of two types

of multiplets, B̂1 and Er. The result was a plethora of numerical unitarity bounds for N = 2

SCFTs involving central charges, operator dimensions, and OPE coefficients.

Our results reveal a number of interesting details about N = 2 superconformal field

theories, some of which are new numerical bounds for its observables and some of which

make contact with other known facts. For example, we have rigorously established that

Coulomb branch chiral operators Er with sufficiently low values of r cannot satisfy a certain

type of chiral ring relations, and that theories with su(2) flavor symmetry must have at

least one flavor singlet multiplet of type Ĉ1,`=1 and one flavor triplet multiplet of type

Ĉ1,`=0. The latter follows from our numerical exclusion of theories with k = 2/3 for which

these multiples decouple from the B̂1×B̂1 OPE. Similarly, if our extrapolations are on track

then we should be able to rule out one complex dimensional conformal manifolds like a

smooth two-sphere, for which the Euler characteristic is not compatible with the sign of the

curvature of the Zamolodchikov metric. In the future it would be very interesting to look for

analytic arguments for some of these statements and to understand if the connection with
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associativity of the operator algebra can be made analytically tractable. More generally,

the combination of both analytic and numerical methods appears to be the most promising

way to constrain and explore the landscape of N = 2 superconformal field theories.

Throughout this work, we have observed a strong dependence on the cutoff Λ that

determines the size of the numerical problem being investigated. In other words, the

bounds derived here — though valid — do not appear to be close to their optimal value.

This is not for lack of trying: the strength of our numerical methods is completely on

par with (and in some cases exceeds) the state of the art in almost all of the present

literature. The strong cutoff dependence therefore appears to be an intrinsic property of

bounds extracted from our specific four-point functions. In the near future we are hopeful

that better numerical software tailored to the problem at hand will allow for searches with

much greater reach and higher precision. Even then, however, it is not clear that the

bounds presented here should be expected converge to some limiting value. For example, if

the extrapolation shown in figure 4 is more or less correct, then a cutoff Λ of order O(100)

will be necessary to reach a value of the lower bound that is within a few percent of the

asymptotic value. The corresponding search space dimension would have to be a factor

ten higher than the ones used in this work. Until such methods become computationally

feasible, we are stuck with the sorts of extrapolation presented in this work if we want a

rough guess for the limiting value of a bound.

With additional work and the development of improved numerical methods, we see a

number attractive directions for future work.

Additional correlation functions. An obvious and interesting avenue is to analyze a

more diverse collection of four-point functions. The four-point functions of B̂1 multiplets

with a flavor symmetry algebra other than su(2) or e(6) is a natural choice that would

involve very little groundwork on top of what we have reported here. Perhaps the most

important extension will be to study the four-point functions of operators in the stress-

tensor multiplet. In this case there are several natural candidates.

Recall that the superconformal primary of this multiplet is a dimension two scalar,

and among its descendants we find the R-symmetry currents and the stress tensor. The

first step towards bootstrapping any operators in this multiplet is to determine the corre-

sponding selection rules and superconformal blocks, and this prerequisite has not yet been

fulfilled. This analysis seems quite complicated for the four-point function of the stress

tensor multiplet in superspace, but should be tractable for just the four-point function of

the superconformal primary. An interesting case of intermediate complexity is the four-

point function of SU(2)R currents, for which the chiral algebra data fixes a large number

of OPE coefficients. From either of these four-point functions one may obtain bounds on

the a anomaly coefficient, which is a piece of data that was conspicuously absent from the

four-point functions considered in this paper.

Multiple correlation functions. The bounds reported here are valid and must be

obeyed by physical theories, but they were derived as a consequence of crossing symmetry

for individual correlators. In an honest CFT, crossing symmetry must hold in all possible

correlators. The simultaneous investigation of multiple correlators in a single numerical
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program is then a natural next step. The pioneering work of this type was [14], where

three-dimensional non-supersymmetric CFTs were studied. With minimal additional as-

sumptions, the mixed correlator approach has the potential to rule out spurious solutions

to single-correlator crossing symmetry that have no place in a consistent SCFT. In an

optimistic scenario, this would also rule out (presumably spurious) linear combinations of

solutions that may saturate the single-correlator bounds for large Λ. In the N = 2 setting

one should consider all mixed four-point functions containing a given subset of Coulomb

or Higgs branch chiral ring generators. For the Higgs branch chiral ring, the structure of

many relevant four-point functions and superconformal blocks have already been worked

out in [111, 112].

Theory-specific analysis. In this exploratory paper we have taken as general an ap-

proach as possible to the N = 2 superconformal bootstrap program. In particular, we have

avoided making assumptions that might not be shared by all theories. A complementary

strategy is to try to specify a particular theory of interest and “zoom in” on that theory

in the space of SCFTs. By including as much information as possible about a theory of

interest, one hopes to effectively isolate the corresponding solution to crossing symmetry

at a boundary of the numerically allowed region. On can then begin to solve that theory

at the level of the spectrum of local operators and OPE coefficients.

The numerical results obtained here do not offer much guidance in choosing between

known N = 2 theories, mostly because of the absence of “kinks” in the bounds. Some

natural candidates still present themselves upon further thought. A particularly elegant

theory that we think deserves further study is SU(2) SCQCD with Nf = 4. For this theory

the exact OPE coefficients derived in [117] make it possible to use the exactly marginal

coupling constant τ as an input variable, at least for the four-point function of Er multiplets.

This opens the way towards exploring the contours of a nontrivial conformal manifold by

deriving coupling constant-dependent bounds. This was not possible in the work of [42]

on N = 4 SYM because in that case the known OPE coefficients are constant on the

conformal manifold. The SU(2) SCQCD also enjoys an so(8) flavor symmetry, and it would

be interesting to compare bounds for the corresponding B̂1 multiplet with those of the Er
multiplets. More precisely, in [42] it was conjectured that for certain N = 4 SYM theories

the coupling-independent bounds were saturated at self-dual values of the coupling. If one

can achieve reasonable convergence, it may be possible to check the equivalent conjecture

for this theory.

Perhaps the most obvious candidate for targeted bootstrap analysis is the e6 theory

of Minahan and Nemeschansky [90], which lies at the intersection of two lines where ana-

lytic bounds derived from the two-dimensional chiral algebra are saturated. The current

numerical analysis does not appear to be extremely constraining, but we expect the more

refined strategies that we have mentioned to yield stronger results.
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A Unitary representations of the N = 2 superconformal algebra

The representation theory of the four-dimensional N = 2 superconformal algebra plays a

central role both in our choice of strategy and in the structure of the partial wave analysis

of four-point functions. In this appendix we review the classification of unitary irreducible

representations of su(2, 2|2) (cf. [75–77]).

Unitary representations of su(2, 2|2) are highest weight representations and are labeled

by quantum numbers (∆, j1, j2, r, R) of the highest weight state also called the supercon-

formal primary of the representation. A generic representation — also called a long rep-

resentation — is obtained by the action of the eight Poincaré supercharges as well as the

momentum generators and SU(2)R lowering operators on the highest weight state. Short

representations occur when a superconformal descendant state in what would otherwise be

a long representation is rendered null by a conspiracy of quantum numbers. The unitarity

bounds for a superconformal primary operator are given by

∆ ≥ ∆i , ji 6= 0 ,

∆ = ∆i−2 or ∆ ≥∆i , ji = 0 ,
(A.1)

where we have defined

∆1 := 2 + 2j1 + 2R+ r , ∆2 := 2 + 2j2 + 2R− r . (A.2)

Short representations occur when one or more of these bounds are saturated. The dif-

ferent ways in which this can happen correspond to different combinations of Poincaré

supercharges that will annihilate the superconformal primary state in the representation.

There are two types of shortening conditions, each of which has four incarnations

corresponding to an SU(2)R doublet’s worth of conditions for each supercharge chirality:

BI : QIα|ψ〉 = 0 , α = 1, 2 , (A.3)

B̄I : Q̃Iα̇|ψ〉 = 0 , α̇ = 1, 2 , (A.4)

CI :

ε
αβQIα|ψ〉β = 0 , j1 6= 0 ,

εαβQIαQIβ |ψ〉 = 0 , j1 = 0 ,
(A.5)
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Shortening Quantum Number Relations DO KMMR

∅ ∆ ≥ max(∆1,∆2) A∆
R,r(j1,j2) aa∆,j1,j2,r,R

B1 ∆ = 2R+ r j1 = 0 BR,r(0,j2) ba0,j2,r,R

B̄2 ∆ = 2R− r j2 = 0 B̄R,r(j1,0) abj1,0,r,R

B1 ∩ B2 ∆ = r R = 0 Er(0,j2) ba0,j2,r,0

B̄1 ∩ B̄2 ∆ = −r R = 0 Ēr(j1,0) abj1,0,r,0

B1 ∩ B̄2 ∆ = 2R j1 = j2 = r = 0 B̂R bb0,0,0,R

C1 ∆ = 2 + 2j1 + 2R+ r CR,r(j1,j2) caj1,j2,r,R

C̄2 ∆ = 2 + 2j2 + 2R− r C̄R,r(j1,j2) acj1,j2,r,R

C1 ∩ C2 ∆ = 2 + 2j1 + r R = 0 C0,r(j1,j2) caj1,j2,r,0

C̄1 ∩ C̄2 ∆ = 2 + 2j2 − r R = 0 C̄0,r(j1,j2) acj1,j2,r,0

C1 ∩ C̄2 ∆ = 2 + 2R+ j1 + j2 r = j2 − j1 ĈR(j1,j2) ccj1,j2,j2−j1,R

B1 ∩ C̄2 ∆ = 1 + 2R+ j2 r = j2 + 1 DR(0,j2) bc0,j2,j2+1,R

B̄2 ∩ C1 ∆ = 1 + 2R+ j1 −r = j1 + 1 D̄R(j1,0) cbj1,0,−j1−1,R

B1 ∩ B2 ∩ C̄2 ∆ = r = 1 + j2 r = j2 + 1 R = 0 D0(0,j2) bc0,j2,j2+1,0

C1 ∩ B̄1 ∩ B̄2 ∆ = −r = 1 + j1 −r = j1 + 1 R = 0 D̄0(j1,0) cbj1,0,−j1−1,0

Table 4. Summary of unitary irreducible representations of the N = 2 superconformal algebra.

C̄I :

ε
α̇β̇Q̃Iα̇|ψ〉β̇ = 0 , j2 6= 0 ,

εα̇β̇Q̃Iα̇Q̃Iβ̇ |ψ〉 = 0 , j2 = 0 .
(A.6)

The different admissible combinations of shortening conditions that can be simultaneously

realized by a single unitary representation are summarized in table 4, where we also list the

relations that must be satisfied by the quantum numbers of the superconformal primary in

such a representation. We also list two common notations used to designate the different

representations — one from [76] (DO) and the other from [77] (KMMR).36

In the limit where the dimension of a long representation approaches a unitarity bound,

it becomes decomposable into a collection of short representations. This fact is often

referred to as the existence of recombination rules for short representations into a long

representation at the unitarity bound. The generic recombination rules are as follows,

A∆→2R+r+2+2j1
R,r(j1,j2) ' CR,r(j1,j2) ⊕ CR+ 1

2
,r+ 1

2
(j1− 1

2
,j2) ,

A∆→2R−r+2+2j2
R,r(j1,j2) ' C̄R,r(j1,j2) ⊕ C̄R+ 1

2
,r− 1

2
(j1,j2− 1

2
) , (A.7)

A∆→2R+j1+j2+2
R,j1−j2(j1,j2) ' ĈR(j1,j2) ⊕ ĈR+ 1

2
(j1− 1

2
,j2) ⊕ ĈR+ 1

2
(j1,j2− 1

2
) ⊕ ĈR+1(j1− 1

2
,j2− 1

2
) .

In special cases the quantum numbers of the long multiplet at threshold are such that some

Lorentz quantum numbers in (A.7) would be negative and unphysical. In these cases the

36We are adopting the the R-charge conventions of [76].
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following exceptional recombination rules apply,

A2R+r+2
R,r(0,j2) ' CR,r(0,j2) ⊕ BR+1,r+ 1

2
(0,j2) ,

A2R−r+2
R,r(j1,0) ' C̄R,r(j1,0) ⊕ B̄R+1,r− 1

2
(j1,0) ,

A2R+j2+2
R,−j2(0,j2)' ĈR(0,j2) ⊕DR+1(0,j2) ⊕ ĈR+ 1

2
(0,j2− 1

2
) ⊕DR+ 3

2
(0,j2− 1

2
) , (A.8)

A2R+j1+2
R,j1(j1,0) ' ĈR(j1,0) ⊕ ĈR+ 1

2
(j1− 1

2
,0) ⊕ D̄R+1(j1,0) ⊕ D̄R+ 3

2
(j1− 1

2
,0) ,

A2R+2
R,0(0,0) ' ĈR(0,0) ⊕DR+1(0,0) ⊕ D̄R+1(0,0) ⊕ B̂R+2 .

The only recombinations that play a role in the analyses of this paper are the last recom-

binations in (A.7) and (A.8). This is relevant for the partial wave analysis of the moment

map four-point function in section 3.1.

B Superconformal block decompositions

This appendix contains a number of technical details pertaining to the superconformal

block decompositions of correlators investigated in this paper. The conventional conformal

blocks of four-dimensional non-supersymmetric CFT make repeated appearances here, and

for those we adopt the conventions of [110]. Namely, the conformal block associated to the

exchange of an so(4, 2) conformal family whose primary has dimension ∆ and spin ` in the

four-point function of degenerate scalars is given by u
1
2

(∆−`)G
(`)
∆ (u, v), where

G
(`)
∆ (u, v) :=

1

z − z̄

((
−z

2

)`
z 2F1

(
1

2
(∆ + `) ,

1

2
(∆ + `) ; ∆ + `; z)

)
× 2F1

(
1

2
(∆− `− 2) ,

1

2
(∆− `− 2) ; ∆− `− 2; z̄)

)
− z ↔ z̄

)
.

(B.1)

Here, as in the main text, we will only ever need to consider operators with j1 = j2 =: j,

for which the spin ` is defined as ` := 2j.

B.1 Superconformal blocks for the B̂1 four-point function

The superconformal blocks relevant to the partial wave decomposition of the B̂1 four-point

function were derived in the beautiful work of [110]. In this subsection we summarize

those results. As our starting point we take the selection rule for operators appearing in

the OPE of two moment map operators. These selection rules were determined in [115]

via an analysis of three-point functions in harmonic superspace.37 The results can be

schematically presented as follows

B̂1 × B̂1 ∼ 1 + B̂1 + B̂2 + Ĉ0(j,j) + Ĉ1(j,j) + A∆
0,0(j,j) . (B.2)

37These selection rules can also be understood as following a few simple criteria. Namely, a conformal

primary can only have a non-zero three point function with two moment map operators if the superconformal

primary of the same multiplet does as well. Ordinary Lorentz symmetry and R-symmetry selection rules

then constrain the possible superconformal multiplets appearing in the OPE. A further constraint comes

from the fact that any R-symmetry quintuplet appearing in the OPE comes from the product of two Higgs

branch chiral ring operators, and so must itself be annihilated by the action of Q1
α and Q̃2α̇.
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Below we outline the contribution of each of these multiplets in the superconformal partial

wave expansion of a moment map four-point function. We do so in two ways. First, we

describe the contribution of such a multiplet to the functions Gi(z, z̄) and fi(z) that appear

in the solution of the superconformal Ward identities described in section 3.1. This is the

form of the superconformal blocks for the numerical analysis of crossing symmetry described

in section 6. In order to make the structure of these contributions more transparent, we

also list the contribution of each multiplet to the functions aR,i(u, v) associated with a

fixed SU(2)R channel. Since these expressions are rather lengthy, we have collected them

in table 5.

We start with the case of long multiplets. For these multiplets only the two-variable

functions Gi(u, v) are non-zero (the fi(z) is protected and only receives contributions from

short and semi-short multiplets). In the long multiplets listed in (B.2), there is a unique

conformal primary in the 5 of SU(2)R that can appear in the OPE. This determines the

contribution of a long multiplet to a2,i(u, v), which in turn via (3.12) fixes the contribution

of long multiplets as follows

A∆
0,0(j,j) in Ri :

{
Gi(u, v) = 6u

∆−`
2 G

(`)
∆+2(u, v) ,

fi(z) = 0 .
(B.3)

The full conformal block expansion in the three R-symmetry channels can now be deter-

mined by inserting (B.3) back into (3.12) and making use of various identities for hyper-

geometric functions [110]. The full expansion in terms of conventional conformal blocks is

given in table 5.

Next we turn to the Ĉ0(j,j) and B̂1 multiplets. These multiplets do not include any

operators that can contribute in the R = 2 channel, from which it follows that for these

multiplets Gi(u, v) = 0. In the R = 1 channel, each of these multiplets contributes exactly

one conformal primary of dimension ` + 3 and spin ` + 1 (dimension 2 and spin 0 in the

B̂1 case). This allows the values of the single-variable functions for these multiplets to be

fixed from (3.12), and we find

Ĉ0(j,j) in Ri :

{
Gi(u, v) = 0 ,

fi(z) = 2g2j+2(z) .
(B.4)

B̂1 in Ri :

{
Gi(u, v) = 0 ,

fi(z) = 2g1(z) .
(B.5)

Again, the contributions of these multiplets to the individual SU(2)R channels is determined

by (3.12), and the subsequent decomposition into conventional conformal blocks follows

from identities for hypergeometric functions. The result is displayed in table 5. (Another

operator that contributes only to fi(z) is the identity operator, which only arises in the

R = 0 channel and contributes to fi(z) as a constant.)

The superconformal blocks for the remaining two multiplets can be understood by

studying the behavior of a generic long multiplet as it approaches the unitarity bound

∆ = 2 + `. At the unitarity bound, the representation becomes reducible and decomposes
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Multiplet in Ri Contribution to aR,i(u, v)

a0,i(u, v) = 1
3uG

(1)
3 (u, v)

B̂1 a1,i(u, v) = uG
(0)
2 (u, v)

a2,i(u, v) = 0

a0,i(u, v) = 1
30u

3G
(0)
6 (u, v)

B̂2 a1,i(u, v) = 2
5u

2G
(1)
5 (u, v)

a2,i(u, v) = u2G
(0)
4 (u, v)

a0,i(u, v) = uG
(`)
`+2(u, v) + (`+2)2

(2`+3)(2`+5)uG
(`+2)
`+4 (u, v)

Ĉ0(j,j) a1,i(u, v) = uG
(`+1)
`+3 (u, v)

a2,i(u, v) = 0

a0,i(u, v) = 1
2u

2G
(`+1)
`+5 (u, v) + 1

8u
3G

(`−1)
`+5 (u, v) + (`+3)2

8(2`+5)(2`+7)u
3G

(`+1)
`+7 (u, v)

Ĉ1(j,j) a1,i(u, v) = 3
2u

2G
(`)
`+4(u, v) + 3

24u
3G

(`)
`+6(u, v) + 3(`+3)2

2(2`+5)(2`+7)u
2G

(`+2)
`+6 (u, v)

a2,i(u, v) = u2G
(`+1)
`+5 (u, v)

a0,i(u, v) = u
∆−`

2

(
6G

(`)
∆ (u, v) + 3(∆+`+2)2

2(∆+`+1)(∆+`+3)G
(`+2)
∆+2 (u, v)

+ 3(∆−`)2

32(∆−`−1)(∆−`+1)u
2G

(`−2)
∆+2 (u, v) + 1

2uG
(`)
∆+2(u, v)

+ 3(∆+`+2)2(∆−`)2

128(∆+`+1)(∆+`+3)(∆−`−1)(∆−`+1)u
2G

(`)
∆+4(u, v)

)
A∆

0,0(j,j) a1,i(u, v) = 3u
∆−`

2

(
2G

(`+1)
∆+1 (u, v) + 1

2G
(`−1)
∆+1 (u, v)

+ (∆+`+2)2

8(∆+`+1)(∆+`+3)uG
(`+1)
∆+3 (u, v) + (∆−`)2

32(∆−`−1)(∆−`+1)u
2G

(`−1)
∆+3 (u, v)

)
a2,i(u, v) = u

∆+2−`
2 G`∆+2(u, v)

Table 5. Superconformal blocks for the different su(2, 2|2) representations appearing in the OPE

of two moment map operators.

according to the relevant rules in (A.7) and (A.8) specialized to the case R = 0,

A∆=2j+2
0,0(j,j) ' Ĉ0(j,j) ⊕ Ĉ 1

2
(j− 1

2
,j) ⊕ Ĉ 1

2
(j,j− 1

2
) ⊕ Ĉ1(j− 1

2
,j− 1

2
) ,

A∆=2j+2
0,0(0,0) ' Ĉ0(0,0) ⊕D1(0,0) ⊕ D̄1(0,0) ⊕ B̂2 .

(B.6)

In each case, only the first and last multiplet are allowed in the four-point function by the

selection rules. This simplifies the task of finding superconformal blocks for Ĉ1(j,j) and B̂2

multiplets. Namely, by subtracting six copies of the Ĉ0(j,j) block from the long supercon-

formal block with ∆ = 2 + ` one obtains the superconformal block for a Ĉ1(j− 1
2
,j− 1

2
) with
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Multiplet Possible Ri in simple theories

B̂1 R = Adj.

B̂2 R ∈ Sym2(Adj.)

Ĉ0(j,j) R = 1 for ` = 0.

None for ` ≥ 1.

Ĉ1(j,j) R ∈ ∧2(Adj.) for ` even.

R ∈ Sym2(Adj.) for ` odd.

A∆
0,0(j,j) R ∈ Sym2(Adj.) for ` even.

R ∈ ∧2(Adj.) for ` odd.

Table 6. Flavor symmetry selection rules for multiplets appearing in the B̂1 × B̂1 OPE in simple

theories.

j ≥ 1
2 . Similarly, subtracting six copies of the Ĉ0(0,0) block from the long superconformal

block with ∆ = 2 yields the superconformal block for the B̂2 representation. The result is

that these multiplets contribute both to fi(z) and to Gi(u, v) as follows,

Ĉ1(j,j) in Ri :

{
Gi(u, v) = 6uG

(`+1)
`+5 (u, v) ,

fi(z) = −12g2j+3(z) ,
(B.7)

B̂2 in Ri :

{
Gi(u, v) = 6uG

(0)
4 (u, v) ,

fi(z) = −12g2(z) .
(B.8)

The decomposition in the three SU(2)R channels of all these superconformal blocks are

again displayed in table 5.

Finally, there are a few extra selection rules having to do with the representation Ri

of the flavor symmetry group in which the various multiplets can appear. For example, B̂1

multiplets are those containing the conserved flavor symmetry currents, so they necessarily

appear only in the adjoint representation R = Adj. In a theory with a unique stress

tensor, there will be only one Ĉ0(0,0) multiplet, so it will necessarily transform in the singlet

representation R = 1. In general, one may take tensor products of multiple SCFTs and

violate this kind of selection rule. We will call a theory that is not decomposable as the

tensor product of several theories simple. The complete set of flavor symmetry selection

rules for simple theories are displayed in table 6.

Protected contributions to the crossing symmetry equation. Here we collect the

contributions to the crossing symmetry equation (3.18) coming from short multiplets and

that are completely fixed following the discussion in section 3.2.

su(2) global symmetry. For the global symmetry su(2) the single variable functions

fi(z) are shown in (3.44). From these single variable functions, the spectrum and OPE
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coefficients of short multiplets contributing to the four-point function can be determined

in the manner described in section 3.2. The contributions of these short multiplets to the

two-variable functions Gi(z, z̄) are then given by infinite sums of the type displayed on the

second line in (3.26). Performing the sums yields the following expressions,

Gshort
1 (z, z̄) =

log(1− z̄)
(
k(6− z(z(c((z − 2)z + 2)− 6) + 12))− 8c(z − 1)z2

)
ck(z − z̄)(z − 1)2

+
log(1− z)

(
k(z̄(z̄(c((z̄ − 2)z̄ + 2)− 6) + 12)− 6) + 8c(z̄ − 1)z̄2

)
ck(z − z̄)(z̄ − 1)2

−6 log(1− z) log(1− z̄)

czz̄
, (B.9)

Gshort
3 (z, z̄) =

(z − 2)z(z(kz + 4)− 4) log(1− z̄)

k(z − z̄)(z − 1)2
− (z̄ − 2)z̄(z̄(kz̄ + 4)− 4) log(1− z)

k(z − z̄)(z̄ − 1)2
,

Gshort
5 (z, z̄) =

z̄2(kz̄2 − 2(2 + k)(z̄ − 1)) log(1−z)

k(z̄ − 1)2(z − z̄)
− z2(kz2 − 2(2 + k)(z − 1)) log(1−z̄)

k(z − 1)2(z − z̄)
.

These expressions are part of the input to the “known” part of the amplitude denoted as

ai(z, z̄) in (5.2).

e6 global symmetry. For e6 global symmetry, the single-variable functions fi(z), ob-

tained by acting with the appropriate projectors on (3.20), are given by

f1(z) =
k(z(z((z − 2)z + 80)− 156) + 78) + 48(z − 1)z2

k(z − 1)2
,

f650(z) =
z2(k((z − 2)z + 2) + 12(z − 1))

k(z − 1)2
,

f2430(z) =
z2(k((z − 2)z + 2)− 4z + 4)

k(z − 1)2
, (B.10)

f78(z) = −(z − 2)z(z(kz + 24)− 24)

k(z − 1)2
,

f2925(z) = −(z − 2)z3

(z − 1)2
.

The functions Gshort
i (z, z̄) are again computed by fixing the OPE coefficients for all

short multiplets as described in section 3.2 and performing the infinite sums like in (3.26).

We find:

Gshort
1 (z, z̄) =

log(1− z̄)
(
k(156− z(z(c((z − 2)z + 2)− 156) + 312))− 48c(z − 1)z2

)
ck(z − z̄)(z − 1)2

+
log(1− z)

(
k(z̄(z̄(c((z̄ − 2)z̄ + 2)− 156) + 312)− 156) + 48c(z̄ − 1)z̄2

)
ck(z − z̄)(z̄ − 1)2

− 156 log(1− z) log(1− z̄)

czz̄
,

Gshort
650 (z, z̄) =

z̄2(kz̄2 + 2(k − 6)(1−z̄)) log(1−z)

k(z̄ − 1)2(z − z̄)

− z2(kz2 + 2(k − 6)(1−z)) log(1− z̄)

k(z − 1)2(z − z̄)
, (B.11)
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Gshort
2430(z, z̄) =

z̄2(k((z̄ − 2)z̄ + 2)− 4z̄ + 4) log(1− z)

k(z̄ − 1)2(z − z̄)

− z2(k((z − 2)z + 2)− 4z + 4) log(1− z̄)

k(z − 1)2(z − z̄)
,

Gshort
78 (z, z̄) =

(z − 2)z(z(kz + 24)− 24) log(1− z̄)

k(z − z̄)(z − 1)2

− (z̄ − 2)z̄(z̄(kz̄ + 24)− 24) log(1− z)

k(z − z̄)(z̄ − 1)2
,

Gshort
2925(z, z̄) =

(z − 2)z3 log(1− z̄)

(z − z̄)(z − 1)2
− (z̄ − 2)z̄3 log(1− z)

(z − z̄)(z̄ − 1)2
.

B.2 Superconformal blocks for the Er four-point function

In the case of the four-point function of N = 2 chiral operators described in section 4,

there are two qualitatively different sets of superconformal blocks corresponding to the

chiral channel and the non-chiral channel for the double OPE (see figure 1). In the first

part of this appendix, we sketch the arguments that lead to the superconformal selection

rules for these two OPE channels. It is explained in section 4 that, for the purposes of

crossing symmetry, it is useful to change basis and introduce three channels 1̂, 2̂, and

3̂. In the second part of this appendix, we present the superconformal blocks for these

different channels.

B.2.1 Selection rules in the non-chiral channel

The set of representations that may appear in an Er0 × Ē−r0 OPE can be determined by

means of a simple selection rule. Without loss of generality, we may focus on conformal

primary operators. Then let us consider an operator O(x) that is a conformal primary but

a descendant of a superconformal primary O′(x). The selection rule that we will derive

below can then be summarized as follows,〈
φ(x1)φ̄(x2)O(x3)

〉
6= 0 =⇒

〈
φ(x1)φ̄(x2)O′(x3)

〉
6= 0 . (B.12)

In other words, for any operator that is a super-descendant to have a nonvanishing three-

point function with an N = 2 chiral primary and its conjugate, the superconformal primary

for that operator must also have such a nonvanishing three-point function.

This selection rule follows from a direct application of superconformal Ward identities.

The relevant Ward identities have been derived in [119], and they take the following form,

ψα(x3)
〈
φ(x1)φ̄(x2)

[
QIα,O

}
(x3)

〉
+ ∂αα̇ψ

α(x3)
〈
φ(x1)φ̄(x2)

[
S̃I,α̇,O

}
(x3)

〉
= 0 . (B.13)

As in [119], the commutators appearing in the above expression should be interpreted as

meaning that the relevant commutator has been computed at the origin and the resulting

operator has been translated to the appropriate insertion point. An analogous identity

holds with Q̃I,α̇ and SαI . Now if O(x3) is a superconformal primary operator itself, then the

second term in (B.13) vanishes, from which it follows that operators of the form
[
QIα,O(x)

}
cannot appear in the φ× φ̄ OPE. If instead we take O(x) =

[
Q̃J ,β̇ ,O

′(x)
}

, with O′ being
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a superconformal primary, then some algebraic manipulations lead to the following form

of the Ward identity,38

ψα(x3)〈φ(x1)φ̄(x2)
{
QIα,

[
Q̃J ,β̇ ,O

′K1,...Kn
α1...α2j α̇1...α̇2j

]}
(x3)〉 =

− ∂αα̇ψ
α(x3)

(
δIJ

(
j〈φ(x1)φ̄(x2)O′K1,...Kn

α1...α2j β̇(α̇1...α̇2j−1
(x3)〉δα̇α̇2j)

+

(
∆− j + r − n

2

)
δα̇
β̇
〈φ(x1)φ̄(x2)O′K1,...Kn

α1...α2j α̇1...α̇2j
(x3)〉

)
+δα̇

β̇
δ

(K1

J 〈φ(x1)φ̄(x2)O′K2,...Kn),I
α1...α2j α̇1...α̇2j

(x3)〉
)
. (B.14)

where r and ∆ are the U(1)r charge and dimension of O′. It follows from

this identity that the three-point function including the superconformal descendant{
QIα,

[
Q̃J ,β̇ ,O

′K1,...Kn
α1...α2j1

α̇1...α̇2j2

]}
is fixed in terms of the three point function of the super-

conformal primary. Similar results can be derived for all higher descendants of O′(x)

using (B.13) plus the corresponding relation involving the conjugate supercharges. All

told, we are left with the selection rule given above in (B.12).

Given these selection rules, the possible superconformal representations that may ap-

pear in the φ× φ̄ OPE are severely restricted. Namely, only representations for which the

superconformal primary has R = r = 0 and j := j1 = j2 may appear. A brief survey of the

representations in appendix A leads to the following list,

Er0(0,0) × Ē−r0(0,0) ∼ 1 + Ĉ0(j,j) + A∆
0,0(j,j) . (B.15)

We should note that this selection rule has only been derived here for the superconformal

primaries of the Er0(0,0) and Ē−r0(0,0) multiplets.

B.2.2 Selection rules in the chiral channel

The selection rules for the chiral OPE can be determined by a generalization of arguments

of [35], where the analogous problem for N = 1 SCFTs was considered. Suppose an

operator O(x) appears in the φr0 ×φr0 OPE. Ordinary non-supersymmetric selection rules

imply that O must be an SU(2)R singlet with rO = 2r0 and j := j1 = j2 ∈ Z. There

are then additional constraints that come from the supersymmetry properties of the chiral

operators that are being multiplied. Namely, we observe that for any x, we have

[QIα, φr0(x)] = 0 , [S̃I,α̇, φr0(x)] = 0 . (B.16)

The first condition is simply a part of the definition of the Er multiplet. The latter is

automatic when x = 0 because φr0 is the superconformal primary in its representation.

For x 6= 0, we note the following relation from the N = 2 superconformal algebra,

[Pαα̇, S̃I,β̇ ] = δβ̇α̇Q
I
α . (B.17)

38In this calculation we have assumed that O′(x3) is bosonic. A similar calculation leading to the same

conclusion holds in the fermionic case.
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It follows that when φr0 is translated away from the origin, its variation under the action of

S̃I,α̇ is proportional to its variation under the action of a chiral supercharge, which vanishes.

Thus we see that φr0(x1)× φr0(x2) itself is invariant under the action of QIα and S̃I,α̇,

and so must be any operator appearing in the corresponding OPE,

[QIα,O(x)] = 0 , [S̃I,α̇,O(x)] = 0 . (B.18)

The only superconformal primary operator that can appear in the chiral OPE is therefore

that of an E2r multiplet, and its superconformal descendants are excluded from appearing.

Any other operator that appears must be a superconformal descendant obtained by acting

on a given superconformal primary with all possible supercharges QIα that do not annihilate

it. Thus only one conformal family per superconformal multiplet can contribute, and the

superconformal blocks in this channel will be equal to the conventional conformal blocks

for that family.

Upon consulting the catalog of N = 2 superconformal multiplets reviewed in ap-

pendix A, it is straightforward to identify the multiplets that fit the bill. (For simplicity,

we temporarily assume that r0 > 1.) To illustrate the procedure, let us consider the case of

long multiplets. The above argument implies that a long multiplet may only contribute to

this OPE via a descendant of the schematic form O = Q4O′, where O′ is a superconformal

primary. This descendant must be an SU(2)R singlet with rO = rO′ + 2 = 2r0 and spin

`O = 2j = `O′ . The relevant long multiplet is therefore of type A0,2r0−2(j,j). Unitarity

requires that the dimension of the superconformal primary satisfies ∆O′ ≥ 2r0 + `, so the

contributing descendant will have ∆O ≥ 2r0 + `+ 2.

Similar reasoning leads to the complete list of short multiplets that may contribute to

the OPE, with the final selection rule taking the form

Er0(0,0) × Er0(0,0) ∼ E2r0(0,0) + C0,2r0−1(j−1,j) + B1,2r0−1(0,0) + C 1
2
,2r0− 3

2
(j− 1

2
,j) +A0,2r0−2(j,j).

(B.19)

We note that again, this derivation applies only to the OPE for superconformal primaries

of the Er0(0,0) multiplets. For r0 = 1 we can find additional short multiplets of types

D1(0,0), Ĉ 1
2

(j− 1
2
,j), Ĉ0(j−1,j) . (B.20)

The last of these multiplets contains higher spin conserved currents, as is to be expected

since the chiral operator with r0 = 1 is a free scalar field.

B.2.3 Superconformal blocks in the non-chiral channel

The superconformal blocks for the various representations appearing in the non-chiral chan-

nel have been determined in [66]. In the language of section 4, these are the superconformal

blocks in the 1̂ channel. They are as follows,

GId
1̂

(z, z̄) := 1 ,

GĈ,`
1̂

(z, z̄) :=
zz̄

z − z̄

((
−z

2

)`
z 2F1 (`+ 1, `+ 3; 2`+ 4; z))− z ↔ z̄

)
, (B.21)
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G∆,`

1̂
(z, z̄):=

(zz̄)
∆−`

2

z − z̄

((
−z

2

)`
z 2F1

(
1

2
(∆ + `) ,

1

2
(∆ + `+ 4) ; ∆ + `+ 2; z)

)
× 2F1

(
1

2
(∆− `− 2) ,

1

2
(∆− `+ 2) ; ∆− `; z̄)

)
− z ↔ z̄

)
,

Note that the superconformal block for the Ĉ0(j,j) representation is just the specialization of

the superconformal block for a long multiplet to the case ∆ = `+ 2. This is to be expected

based on the recombination rules of appendix A. The superconformal block for a long multi-

plet can be decomposed into ordinary conformal blocks, which makes manifest the collection

of conformal families from this multiplet that contribute to the four-point function:

G∆,`

i=1̂
(z, z̄) = u

∆−`
2 G

(`)
∆ (u, v) +

(
1

2(∆− `)
− 1

4

)
u

∆−`+2
2 G

(`−1)
∆+1 (u, v)

− (∆ + `)

(∆ + `+ 2)
u

∆−`
2 G

(`+1)
∆+1 (u, v) +

(∆ + `)2

4(∆ + `+ 1)(∆ + `+ 3)
u

∆−`
2 G

(`+2)
∆+2 (u, v)

+
(∆− `− 2)(∆ + `)

4(∆− `)(∆ + `+ 2)
u

∆−`+2
2 G

(`)
∆+2(u, v)

+
(∆− `− 2)2

64 ((∆− `)2 − 1)
u

∆−`+4
2 G

(`−2)
∆+2 (u, v)

− (∆− `− 2)2(∆ + `)

64(∆− `− 1)(∆− `+ 1)(∆ + `+ 2)
u

∆−`+4
2 G

(`−1)
∆+3 (u, v)

− (∆− `− 2)(∆ + `)2

16(∆− `)(∆ + `+ 1)(∆ + `+ 3)
u

∆−`+2
2 G

(`+1)
∆+3 (u, v)

+
(∆− `− 2)2(∆ + `)2

256(∆− `− 1)(∆− `+ 1)(∆ + `+ 1)(∆ + `+ 3)
u

∆−`+4
2 G

(`)
∆+4(u, v) .

(B.22)

The same multiplets contributing to the non-chiral channel also contribute to the 3̂ channel

via the “braided” version of the above superconformal blocks. The braided version is

obtained by replacing each G
(`)
∆ by (−1)`G

(`)
∆ in (B.22).

B.2.4 Superconformal blocks in the chiral channel

Because the supermultiplets appearing in the chiral channel contribute a single conformal

family to the four point function, the superconformal blocks in the chiral channel (or 2̂

channel in the language of section 4) are just the conventional conformal blocks appropriate

to those conformal families. Table 7 displays the corresponding block for each allowed

supermultiplet.

The fourth and fifth lines in table 7 correspond to short representations that lie at the

unitarity bound for long multiplets. Accordingly, their superconformal blocks are simply

the specializations of the long multiplet block to appropriate values of ∆ and `. On the

other hand, the first two classes of short representations are separated from the continuous

spectrum of long multiplets by a gap. The last three representations are only present when

we relax our assumption that there are no higher spin conserved currents or free fields in

the theory.
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Multiplet Contribution to Gî=2̂(u, v) Restrictions

A0,2r0−2(j,j) u
∆−`

2 G
(`=2j)
∆ (u, v) ∆ ≥ 2 + 2r0 + `

E2r0 ur0 G
(0)
2r0

(u, v)

C0,2r0−1(j−1,j) ur0 G
(`)
2r0+`(u, v) ` ≥ 2

B1,2r0−1(0,0) ur0+1G
(0)
2r0+2(u, v)

C 1
2
,2r0− 3

2
(j− 1

2
,j) ur0+1G

(`)
2r0+`+2(u, v) ` ≥ 2

D1(0,0) u2G
(0)
∆=4 r0 = 1

Ĉ 1
2

(j− 1
2
,j) u2G

(`)
∆=`+4 ` ≥ 2; r0 = 1

Ĉ0(j−1,j) uG
(`)
∆=`+2 ` ≥ 2; r0 = 1

Table 7. Superconformal blocks for the Er0 four point function in the 2̂ channel.

C Semidefinite programming and polynomial inequalities

This appendix is devoted to a review of the methods of [39], whereby the search for a linear

functional of the type described in section 5 can be recast as a semidefinite program. The

principal observation that leads to this reformulation is that, up to a universal prefactor,

any derivative of a conformal block for fixed ` can be arbitrarily well approximated by a

polynomial in the conformal dimension ∆, that is

∂mz ∂
n
z̄G

(`)
∆ (z, z̄)|z=z̄= 1

2
≈ χ(∆, `)P(`)

m,n(∆) . (C.1)

Here χ(∆, `) may be complicated, but it is positive for all physical values of ∆ and ` and

is independent of the choice of derivative. On the other hand, P(`)
m,n(∆) is a finite order

polynomial in ∆. For the superconformal blocks appearing in this paper, the details of this

polynomial approximation are explained below in appendix D.

With the aid of this approximation, we consider the action of a linear functional on

smooth functions of z and z̄ of the form

φ[F (z, z̄)] =
Λ∑

m,n=0

am,n ∂
m
z ∂

n
z̄ F (z, z̄)|z=z̄= 1

2
. (C.2)

Up to the positive prefactor described above, the action of this functional on a conformal

block is now given by a finite order polynomial in the conformal dimension,

φ[G
(`)
∆ (z, z̄)] = χ(∆, `)

Λ∑
m,n=0

am,nP(`)
m,n(∆) =: χ(∆, `)P`(∆) . (C.3)
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The numerical problem in question (see section 5) is thus transformed into a search in the

space of am,n ∈ R such that the polynomial P`(∆) ≥ 0 for ∆ ≥ ∆?
` for each `. Note that

the range of values of ∆ for which the polynomial must be positive is always bounded from

below, either by the unitarity bound or by the chosen value ∆?
` .

A polynomial in ∆ that is positive for all ∆ > ∆? can always be decomposed as follows,

P(∆) = P (∆) + (∆−∆∗)Q(∆) , (C.4)

where P (∆) and Q(∆) are polynomials that are positive for all real ∆. Furthermore, in

terms of the monomial vector ~∆ := (1,∆,∆2, . . . ,∆N ), such non-negative polynomials can

always be written as

P (∆) = ~∆tP ~∆ , Q(∆) = ~∆tQ~∆ , (C.5)

where P and Q are positive semidefinite matrices, which is notated as P,Q � 0. We should

emphasize that the matrices P and Q are not completely fixed in terms of P (∆) and Q(∆).

There is a redundancy to which we will return shortly.

The action of the functional on conformal blocks will therefore be non-negative above

some dimension ∆?
` in the spin ` channel if and only if there exist two positive semidefinite

matrices, P (`), Q(`) � 0 such that

am,nP
(`)
m,n(∆) = ~∆tP (`)~∆ + (∆−∆∗` )

~∆tQ(`)~∆ . (C.6)

In words, we are demanding that the left- and right-hand sides of (C.6) be the same

polynomial in ∆, which amounts to linear relations between the coefficients of P (`) and

Q(`) and the am,n. Such an equation must hold for each ` appearing in the crossing

symmetry equation, and if there are multiple flavor symmetry channels then there will be

such an equation for each channel. The problem is thus reduced to the search for a set

of positive semidefinite matrices whose entries satisfy certain linear constraints. This is a

prototypical instance of a semidefinite program, the basic theory of which we review next.

Semidefinite programming. A semidefinite program (SDP) is an optimization problem

wherein the goal is to minimize a linear objective function over the intersection of the cone

of positive semidefinite matrices with an affine space. Such a problem can be described in

terms of a vector of real variables xi as follows,

minimize
xi

(xic
i)

such that X := xiF
i − F 0 � 0 ,

(C.7)

where ci is a fixed cost vector that defines the objective function, and F i and F 0 are some

fixed square matrices.

This semidefinite program has a dual problem that is defined as the search for a posi-

tive semi-definite matrix Y that maximizes an appropriate objective function and satisfies

certain linear constraints,
maximize

Y
Tr(F 0 · Y )

such that Y � 0 ,

Tr(F i · Y ) = ci .

(C.8)
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The original problem written in (C.7) — called the primal problem — and the dual problem

of (C.8) are not generally guaranteed to be equivalent. Indeed, given a solution xi to the

primal problem and a solution Y to the dual problem, a measure of the inequivalence of

the solutions is the duality gap:

xic
i − Tr(F 0 · Y ) = xiTr(F i · Y )− Tr(F 0 · Y ) = Tr(X · Y ) ≥ 0 , (C.9)

where the last line holds because both matrices are positive semidefinite.

The absence of a duality gap, and the existence of an optimal solution to the primal

(dual) problem, is guaranteed if the dual (primal) problem is bounded from above (below)

and has a strictly feasible solution, i.e., there exists a matrix Y � 0 (X � 0) satisfying the

relevant constraints. This is called Slater’s condition.

C.1 A toy model for polynomial inequalities

To demonstrate the application of semidefinite programming techniques to the type of

crossing symmetry problem being considered in this paper, let us consider a simplified

model in which the notation is less burdensome. Namely, consider the problem of studying

the space of solutions to a “crossing symmetry” equation of the form∑
k

λ2
kG∆k

(z) = c(z) , (C.10)

where ∆k are allowed to vary over the entire real line. We will assume that the functions

G∆(z) and their derivatives can be well approximated by polynomials in ∆, so we have

∂izG∆(z)
∣∣∣
z=1/2

≈
2N∑
α=0

piα∆α =: P̂ i(∆) , (C.11)

where we have assumed that for a given range of values of i, each such polynomial has

degree less than or equal to some fixed even number 2N .39

C.1.1 The primal problem: ruling out solutions

To constrain the space of solutions to such a problem, we consider acting with a linear

functional φ on both sides of the equality and check for contradictions. The problem can

be formalized as follows,

minimize
φ

φ[c(z)]

such that φ[G∆(z)] ≥ 0 ∀ ∆ .
(C.12)

If the minimum turns out to be negative then our toy problem has no solution. Taking

φ[f(z)] :=
∑n

i=0 ai∂
i
zf(z)

∣∣
z=1/2

, we can reformulate the optimization problem as follows

minimize
ai

aici

such that aiP̂
i(∆) ≥ 0 ∀∆ .

(C.13)

39For the sake of comparison, we note that in the actual crossing symmetry equations encountered in

this work we have an additional z̄ coordinate, as well as sums over spins and possibly flavor symmetry

channels. Also the values of ∆k are bounded below in a given channel by unitarity bounds. However, these

complications do not conceptually change this discussion.
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where we have defined

ci := ∂izc(z)
∣∣
z= 1

2
. (C.14)

In terms of the vector ~∆ = (1,∆,∆2, . . .∆N )t, the second line of (C.13) requires the

existence of a symmetric, positive semidefinite matrix P̂ such that

P̂ (∆) = ~∆tP ~∆ with P � 0 . (C.15)

This allows us to reformulate the polynomial inequalities as a semidefinite program.

We begin by introducing two sets of matrices in terms of which the problem is naturally

reformulated. For N > 1, the matrix P is not completely fixed by (C.15) because there are

only 2N+1 components in P̂ (∆) whereas P has (N+1)(N+2)/2 independent components.

This redundancy in P can be parametrized by matrices Q satisfying

~∆tQ~∆ = 0 ∀∆ . (C.16)

Examples of such matrices Q are the 3× 3 matrices with (−1, 2,−1) on the cross-diagonal,

or the 4 × 4 matrix with (1,−1,−1, 1) on the cross-diagonal. All other matrices Q take a

similar form, and the first set of matrices we must introduce is a complete basis for such

Q. We denote the elements of this basis as Qî.

The second set of matrices are in one-to-one correspondence with the polynomials

P̂ i(∆). They take the form:

P i :=


pi0

1
2p
i
1 0 0 . . .

1
2p
i
1 pi2

1
2p
i
3 0 . . .

0 1
2p
i
3 pi4

1
2p
i
5 . . .

0 0 1
2p
i
5 pi6 . . .

...
...

...
...

. . .

 . (C.17)

By construction these matrices satisfy the condition

P̂ i(∆) = ~∆tP i~∆ . (C.18)

Armed with these matrices we can write down the most general matrix that, upon

contraction from both sides with ~∆, gives the requisite polynomial:

aiP̂
i(∆) = ~∆t

(
aiP

i + bîQ
î
)
~∆ , (C.19)

where the bî are arbitrary real parameters. The optimization (C.13) can now be

rephrased as
minimize

ai,bî

aici

such that aiP
i + bîQ

î � 0 ,

(C.20)

which we recognize to be precisely a semidefinite program of the form given in (C.7), with

xi ∼ (ai, bî) , F i ∼ (P i, Qî) , F 0 = 0 . (C.21)

– 84 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
3

The constraints in (C.20) are invariant under an overall rescaling of the (ai, bî), so the

optimal value is either zero or negative infinity. To render the primal formulation bounded

we can introduce an additional normalization constraint

Tr(P ) = aiTr(P i) + bîTr(Qî) = 1 . (C.22)

This condition is always enforceable because a nonzero, positive semidefinite matrix has

strictly positive trace. Although other normalization conditions are possible, we will see

that (C.22) is particularly natural from the perspective of the dual problem. In practice, we

can simply solve the additional constraint for, say, a1 to end up with a bounded variation

of (C.20).

C.1.2 The dual problem: constructing solutions

Let us now address the dual problem to (C.20) with the additional constraint (C.22). After

a little rewriting, the problem is as follows:

maximize
λ,Y

− λ

such that Y + λI � 0 ,

Tr(P i · Y ) = ci ∀ i,

Tr(Qî · Y ) = 0 ∀ î .

(C.23)

This is a well-known form of a feasibility problem, which is the search for a matrix Y � 0

subject to linear constraints. If the optimal value of λ comes out non-positive then such

a matrix Y exists (i.e., there is a feasible solution), otherwise it does not. In standard

applications the reason for introducing a variable λ multiplying the identity matrix I is

to ensure that a strictly feasible solution will always exist, because for λ � 0 the matrix

Y +λI � 0. Its appearance in (C.23) is a consequence of the trace constraint (C.22) in the

primal problem.

Whereas the primal problem amounted to the search for functionals that certify the

absence of solutions to crossing symmetry, dual problem is related to constructing solutions

to crossing symmetry [13]. Let us observe how this works for these semidefinite programs.

We first solve the constraints Tr(Qî · Y ) = 0. The most general solution is given by

Y = yαYα , α = 0, . . . , 2N, (C.24)

with arbitrary coefficients yα and with matrices Yα defined as

Y0 =


1 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 , Y1 =


0 1 0 0 · · ·
1 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 , Y2 =


0 0 1 0 · · ·
0 1 0 0 · · ·
1 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 , · · · .

(C.25)
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Now let us choose tuples (λ2
k,∆k) so that yα =

∑
k λ

2
k(∆k)

α. We then have Y =∑
k λ

2
k
~∆k

~∆t
k and the additional constraints of the form Tr(P i · Y ) = ci become∑

k

λ2
kP̂

i(∆k) = ci . (C.26)

This is precisely the crossing symmetry equation (C.10) after truncating to a finite number

of derivatives.

Finally, let us comment on the duality gap and the interpretation of solutions to

this problem. The freedom to set λ to a large positive number ensures that the above

formulation of the dual problem is strictly feasible. It is, however, not obviously bounded.

From the formulation of the problem it is clear that this is related to the existence of

solutions to crossing symmetry where c(z) = 0. More precisely, the problem is unbounded

if there is a positive semidefinite matrix Y that satisfies Tr(P i · Y ) = 0 and Tr(Qî · Y ) = 0

for all i and î. In the absence of such solutions the problem is bounded, Slater’s condition

is satisfied, and there is no duality gap, so for the optimal values we find that −λ = aici.

This equation makes intuitive sense. Indeed, suppose the dual formulation does not find

a solution to crossing symmetry. This happens when −λ = aici < 0 and therefore the

primal formulation indeed provides a functional that proves that such a solution cannot

exist. Similarly, suppose we do find a matrix Y � 0 satisfying all the above constraints. In

that case −λ = aici ≥ 0, so no functional can be found in the primal problem.

Extremal functionals. In the applications of this framework to study interesting phys-

ical theories, there are often additional parameters in the problem such as assumed gaps

in the spectrum for certain spins. In such cases we are usually interested in finding the

boundary in the space of such parameters between regions where crossing symmetry can

and cannot be satisfied. Precisely at the boundary −λ = aici = 0. This turns out to

imply that the corresponding solution to crossing symmetry is completely determined by

the zeroes of the extremal functional [35, 41]. This is because the absence of a duality gap

implies Tr(X ·Y ) = 0 which together with the above assumption on the form of Y leads to

aiP
i(∆k) = 0 . (C.27)

The solution to crossing symmetry encoded in Y therefore involves precisely those values

of ∆ for which the extremal functional vanishes. This observation leads to the following

algorithm for finding the solution to crossing symmetry: one first lists the ∆k for which

the ~∆t
kX

~∆k = 0, and then finding the λ2
k reduces to solving the linear problem yα =∑

k λ
2
k(∆k)

α. Note that we require both the X and the Y matrix here.

C.2 Notes on implementation

In this work we have utilized the dual formulation of the semidefinite program associated to

crossing symmetry. We first solved all the linear constraints analogous to those appearing

in (C.23), leading to a smaller set of independent parameters that we denote zα̂ and

corresponding matrices Zα̂. The nonzero ci lead to an inhomogeneous term that we may

call Z0̂. The complete semidefinite program is then as above with

xi ⇒ (zα̂, λ) , F i ⇒ (Zα̂, I) , F 0 ⇒ Z0̂ , (C.28)
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Parameter Value

maxIteration 1000

epsilonStar 10−12

lambdaStar 108

omegaStar 106

lowerBound −1030

upperBound 1030

betaStar 0.1

betaBar 0.3

gammaStar 0.9

epsilonDash 10−12

precision 200

Table 8. Parameters used for the SDPA and SDPA-GMP solvers. The ‘precision’ variable is only

relevant for the SDPA-GMP solver.

and a cost vector such that only λ is extremized. Since we were unable to rigorously show

that the dual problem was bounded in all cases, we added an additional constraint λ ≥ 0.

In the primal problem this additional constraint transforms the trace equality (C.22) into

the inequality Tr(P ) ≤ 1. With this condition the optimal value will be zero if a solution

exists and no functional is found, or strictly negative if the opposite happens.

We used SDPA and SDPA-GMP solvers [120, 121], which use an interior point method

that simultaneously optimizes both the primal and dual problems, and that terminates

when the duality gap is below a certain (small) threshold. This requires a strictly feasible

solution to both the primal and the dual problem, and our formulation of the problem en-

sures that such strictly feasible solutions exist. Furthermore, we found that a normalization

of the form given in (C.22) improves numerical stability compared to other normalizations

such as, e.g., aici = 1. We ascribe this difference to the fact that aici naturally tends to

zero in physically interesting regions, and so setting it to one as a normalization leads to

large numbers elsewhere.40

In order to achieve maximal numerical stability we ‘renormalized’ many of the numbers

fed into the problem. For example, the polynomials P i(∆) can be redefined by multiplying

with an overall (positive) constant, by affine redefinitions of ∆, and by choosing a different

basis for the space of derivatives. Altogether these reparametrizations give us the freedom

to transform the problem according to

P i(∆)→M i
jP

j(a∆ + b) , ci →M i
jc
j . (C.29)

We choose M i
j , a, and b so as to minimize the potential for numerical inaccuracies. Numer-

ical stability can be further improved by rescaling the normalization condition Tr(X) = 1

to Tr(X) = µ for a positive real µ. (In the dual problem µ becomes the cost vector, so this

parameter is introduced through the optimization of µλ instead of λ.) In order to avoid

40Our normalization is not suitable for obtaining bounds on OPE coefficients. In that case we need to

normalize the functional as described in section 5.
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large numerical differences between the primal and the dual formulation, we choose µ large

so that X, which is a matrix of size O(103), can have O(1) entries on its diagonal.

In previous implementations of the numerical bootstrap as a semidefinite program [39],

it was necessary to employ the arbitrary precision solver SDPA-GMP to avoid numerical

instabilities. The setup described above, with Slater’s condition satisfied and coefficients

that are suitably renormalized, has allowed us to use the double precision SDPA program

for low and intermediate values of Λ. Since working at machine precision is significantly

faster than working at arbitrary precision, we were able to explore a much greater range

of the parameter space given our computational resources. We still found it necessary to

switch to SDPA-GMP for higher values of Λ, with the exact transition value somewhat

dependent on the problem at hand. For example, we had to switch at Λ = 16 for the

bounds on theories with e6 flavor symmetry shown in section 6, but were able to obtain

reliable results with double precision numerics up to Λ = 22 for some of the bounds on

theories with su(2) flavor symmetry. Typical settings for the parameters of both the SDPA

and SDPA-GMP solvers can be found in table 8.

D Polynomial approximations and conformal blocks

The semidefinite programming approach to the numerical bootstrap depends on our ability

to approximate conformal blocks of fixed spin ` and varying conformal dimension ∆ by

polynomials in ∆ [39, 44]. This appendix includes a brief review of these approximations

and some details relevant to the special cases of interest. The goal is to express the

conformal blocks and their derivatives in a factorized form, with one factor being a function

that can be well approximated by a polynomial in ∆, and the other a non-polynomial

term that is strictly positive and independent of the choice of derivative. We denote the

polynomial in ∆ by P(`)
m,n(∆) and the non-polynomial term by χ(∆, `), so the approximation

takes the following form,

∂mz ∂
n
z̄G

(`)
∆ (z, z̄)|z=z̄= 1

2
≈ χ(∆, `)P(`)

m,n(∆) . (D.1)

The starting point for this approximation scheme is a recursion relation for derivatives of

the hypergeometric functions appearing in conformal blocks,[
d2

dz2
+

1− a− b
z − 1

d

dz
+
β2 − β + abz

z2(z − 1)

](
zβ 2F1 (β − a, β − b, 2β, z)

)
= 0 . (D.2)

This recursion relation follows immediately from the fact that the 2F1 hypergeometric func-

tion is a solution to Euler’s differential equation. Using this relation, any derivative of the

above hypergeometric function at fixed z can be expressed as the sum of the zeroth and first

order derivatives of the same hypergeometric function, each with some polynomial in β as

a prefactor. Thus the only non-polynomial feature of any derivative of the hypergeometric

function can be expressed in terms of the value of the hypergeometric function itself and

that of its first derivative.

To approximate conventional conformal blocks we follow exactly the same steps as

in [39]. From (B.1) any derivative of a conformal block ∂mz ∂
n
z̄G

(`)
∆ (z, z̄) can be rewritten,
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by recursive use of (D.2) with a = b = 0, in terms of the hypergeometric functions and

their first derivatives. These functions encode all of the non-polynomial dependence on ∆.

We can then pull out factors out of the blocks such that the leftover expression can be well

approximated by polynomials. To start we factor out the following term

1

ββ̄

(
∂

∂z
zβ2F1(β, β, 2β, z)

)∣∣∣∣
z= 1

2

(
∂

∂z
zβ̄2F1(β̄, β̄, 2β̄, z)

)∣∣∣∣
z= 1

2

. (D.3)

Here we have β = ∆+`
2 , β̄ = ∆−`−2

2 . This is positive for all β ≥ −1, and so it is positive

for any conformal block appearing in a unitary theory. After factoring out this positive

non-polynomial term, the remaining non-polynomial dependence is isolated in the following

ratio (and a similar one for β → β̄),

Kβ =
βzβ2F1(β, β, 2β, z)
∂
∂z z

β
2F1(β, β, 2β, z)

∣∣∣∣∣
z= 1

2

' 1√
2

M∏
j=0

(β − rj)
(β − sj)

≡ NM (β)

DM (β)
. (D.4)

The coefficient rj is the j-th zero of 2F1(β, β, 2β, z) and sj the j-th zero of
∂
∂z z

β
2F1(β, β, 2β, z).41 The rational function NM (β)

DM (β) is an approximation of Kβ obtained by

restricting to the first M zeroes of both the numerator and denominator. The approxima-

tion becomes arbitrarily good as M is increased, and converges very quickly, as described

in [39].

The last step is to multiply by D(β)D(β̄), which is strictly positive for the same

range of β and β̄. In this way we have factored out all of the nonpolynomial dependence

of ∂mz ∂
n
z̄G

(`)
∆ (z, z̄), which defines χ(∆, `) in (D.1), and are left with a polynomial in ∆,

P(`)
m,n(∆), whose degree is controlled by the number of terms M kept in the approxima-

tion (D.4). Exactly this approximation is used for the blocks in the 2̂ channel for the Er
correlator, and for all the blocks in the B̂1 correlator (with a shift ∆→ ∆ + 4).

For superconformal blocks in the 1̂ channel given in (4.3) the procedure is analogous.

This time we use (D.2), where now a = 1 and b = −1, to write all of the block derivatives

in terms of the zeroth and second derivatives of the hypergeometric function. In this case

we define β = ∆+`+2
2 and β̄ = ∆−`

2 . The first step is again to factor out(
1

β(β − 1)

∂2

∂z2
zβ2F1(β, β, 2β, z)

)∣∣∣∣
z= 1

2

(
1

β̄(β̄ − 1)

∂2

∂z2
zβ2F1(β̄, β̄, 2β̄, z)

)∣∣∣∣
z= 1

2

, (D.6)

which is positive for all possible values of β and β̄ occurring in the relevant OPE (β, β̄ ≥ 1).

The remaining nonpolynomial dependence is then encoded by ratios of hypergeometric

functions and their second derivatives. As it happens, an application of various identities

41In practice we compute the zeros of the latter by making use of the following identity, which relates it

to another hypergeometric function

dn

dzn

[
zβ−a+n−1

2F1 (β − a, β − b, 2β, z)
]

= (β − a)n z
β−a−1

2F1 (β − a+ n, β − b, 2β, z) , (D.5)

where in this case we want to use n = 1, and we have a = 0.
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for hypergeometric functions (cf. [122]) allows us to express this nonpolynomial quantity

in terms of the same function Kβ , so we utilize the same approximation of (D.4) and find

2F1

(
β − 1, β + 1, 2β, 1

2

)
2F1

(
β + 1, β + 1, 2β, 1

2

) =
1 + 4(β − 1)Kβ

4 + 8(β − 1)Kβ
' DM (β) + 4(β − 1)NM (β)

4DM (β) + 8(β − 1)NM (β)
. (D.7)

Here we used (D.5) to relate the second derivative of the hypergeometric function to a

different hypergeometric function. A similar ratio appears for the β̄ dependent hyper-

geometric functions, which we approximate in the same way. After approximating Kβ

by (D.4) we can again factor out another strictly positive denominator (4DM (β) + 8(β −
1)NM (β))(4DM (β̄) + 8(β̄ − 1)NM (β̄)) for the same range of β, β̄.

The approximation for the braided superconformal block goes in the same way. (We

will now ignore the β̄ dependence since it is simply obtained by β → β̄ in the discus-

sion below.) We start by noting that braiding the block has the following effect on the

hypergeometric functions [122]

2F1

(
β − 1, β + 1, 2β,

z

z − 1

)
= (1− z)β−1

2F1 (β − 1, β − 1, 2β, z) . (D.8)

The next step is now to write all derivatives in terms of the zeroth and second derivatives of

the hypergeometric function by means of (D.2) with a = 1, b = 1. We can then again factor

out any nonnegative and nonpolynomial terms, beginning with zβ2F1(β−1, β−1, 2β, 1
2)(β−

1)β which is strictly positive for β ≥ 1. The residual non-polynomial dependence is then

given by

2F1

(
β − 1, β + 1, 2β, 1

2

)
2F1

(
β − 1, β − 1, 2β, 1

2

) = 4
2F1

(
β − 1, β + 1, 2β, 1

2

)
2F1

(
β + 1, β + 1, 2β, 1

2

) ' 4
DM (β) + 4(β − 1)NM (β)

4DM (β) + 8(β − 1)NM (β)
,

(D.9)

where we have rewritten, through (D.5), the second derivative of the hypergeometric func-

tion as zβ−2
2F1 (β − 1, β + 1, 2β, 1/2), and used several hypergeometric identities. For the

relevant range of β the denominator in the above equation is strictly positive, and it is the

final term to be factored out.

The ratio rj/sj tends to one extremely fast, and we observed that truncating the

product in (D.4) at M = 4 was already accurate enough for all Λ ≤ 22. For 22 < Λ ≤ 30

we found that M = 5 was sufficient. In a number of cases we repeated the numerical

analysis with M = 6 and verified that there was no change in the results.

E Exact OPE coefficients for the N = 2 chiral ring

The OPE coefficients of Coulomb branch chiral ring operators in four-dimensional N = 2

SCFTs satisfy four-dimensional tt? equations [117, 118]. In this appendix we limit our

attention to the case of theories with a conformal manifold that has one complex dimension,

i.e., theories with just a single E2 multiplet. In such cases there is a close connection between

the chiral ring OPE coefficients and the Zamolodchikov metric on the conformal manifold.
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After diagonalization of the fields, the OPE of the (unit normalized) chiral operators takes

the form

E2(x)E2(0) = λE4E4(0) + . . . , (E.1)

and we are interested in the squared OPE coefficient λ2
E4 . Precisely this coefficient is part

of a solvable subsector of the tt∗ equations and it takes the form

λ2
E4 = 2 +

∂τ∂τ̄ log(gτ τ̄ )

gτ τ̄
= 2− 1

2
R[gτ τ̄ ] , (E.2)

where gτ τ̄ is the only nonvanishing component of the Zamolodchikov metric on the confor-

mal manifold.42 On the right-hand side we recognize the expression for the scalar curvature

of the Zamolodchikov metric. The bounds reported in section 7 for λ2
E4 therefore provide

lower and upper bounds on this curvature.

Let us consider a few examples, starting with the theory of n free vector multiplets.

The superconformal primary of the flavor singlet E2 multiplet in this theory is ϕaϕa(x),

with ϕ(x) the scalar operator in the vector multiplet. We can compute λ2
E4 directly by

performing Wick contractions, whereupon we find

n free vector multiplets: λ2
E4 = 2 +

4

n
= 2 +

2

3c
. (E.3)

In the last equality we have used the precise value of the central charge in this theory:

c = n/6. In any N = 2 superconformal gauge theory with gauge group G, the tree-level

value for this OPE coefficient takes the same form,

tree level gauge theory: λ2
E4 = 2 +

4

dim(G)
≥ 2 +

2

3c
. (E.4)

The inequality is a consequence of the fact that the central charge of a superconformal

gauge theory is always greater than that of the vector multiplets alone.

In N = 4 supersymmetric Yang-Mills theory, the central charge is c = 1
4 dim(G). In

this special case, extended supersymmetry prevents the OPE coefficient in question from

being renormalized. Consequently the exact value (for all values of the complex gauge

coupling) is given by the tree-level result,

N = 4 super Yang-Mills: λ2
E4 = 2 +

1

c
. (E.5)

In many N = 2 SCFTs, this OPE coefficient is made accessible by the relation between

the Kähler metric on the conformal manifold and the S4 partition function [123],

gij̄ = ∂i∂k̄ log(ZS4) . (E.6)

It is frequently the case that the partition function ZS4 can be computed exactly using

supersymmetric localization [124]. As an example, consider N = 2 SCQCD with Nf = 4

flavors (sometimes referred to in the text as the so(8) theory). The Nekrasov instanton

42In the notations of [118], this is the metric written as gij̄ . This differs from the true Zamolodchikov

metric Gij̄ by a factor of 192.
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partition function that features in the localization result is related to four-point Virasoro

conformal blocks [125]. These in turn are efficiently computed using the recursion relations

developed in [126]. Altogether, one ultimately finds the following expression for the S4

partition function,

logZS4(q) = log

(∫ ∞
−∞

da a2|16q|2a2

∣∣∣∣G(1 + 2ia)2

G(1 + ia)8

∣∣∣∣2H(a, q)H(a, q̄)

)
+ f(τ) + f(τ̄) , (E.7)

where the functions f(τ) are Kähler transformations that drop out in the computation of

the curvature, and G(z) is Barnes’ G-function.43 The function H(a, q) has been defined

in [126] by means of a somewhat intricate recursion relation that we will not review here. It

is a building block of the Virasoro four-point conformal block with c = 25, all four external

dimensions equal to one, and internal dimension equal to 1 + a2. The first few terms in its

series expansion take the form

H(a, q) = 1 +
12
(
a2 + 2

)
q2

(4a2 + 9)2 +
18
(
32a6 + 308a4 + 955a2 + 940

)
q4

(4a2 + 9)2 (4a2 + 25)2 + · · · . (E.8)

One should note that the parameter q is qIR which is not the same parameter as the

parameter qUV used in [124] and in [117, 118].44 The relation between the two is given

in [125], and also in [126],

qIR = exp(iπτIR) = exp

(
−πK(1− qUV)

K(qUV)

)
. (E.9)

Here K(m) is the complete elliptic integral of the first kind.45 The explicit form of this

transformation is in fact not particularly relevant for our purposes because the scalar

curvature is a diffeomorphism invariant. But it is τIR that is valued in the fundamental

domain for the action of SL(2,Z) on the upper half plane. Namely, under S- and T -

transformations we have

T : τIR → −1/τIR , qUV → 1− qUV , (E.10)

S : τIR → τIR + 1 , qUV →
qUV

qUV − 1
. (E.11)

The transformations of qUV describe the action of crossing symmetry on the Liouville

four-point function.

The value of the OPE coefficient λ2
E4(τ) can be computed numerically to arbitrary

accuracy at any value of the coupling. The free-field value is given by λ2
E4(τ =∞) = 10/3.

The OPE coefficient decreases monotonically as a function of the gauge coupling and

becomes stationary at the self-dual points. To get reasonable accuracy we need to expand

H(q) to order q8, resulting in the following stationary values:

λ2
E4(τ = i) = 2.8983769 . . . λ2

E4(τ = eiπ/3) = 2.8940994 . . . (E.12)

43This function is implemented in Mathematica as BarnesG[z].
44An early discussion of this point can be found in [127].
45This function is implemented in Mathematica as EllipticK[m].
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Figure 27. The value of λ2E4 for N = 2 SQCD with Nf = 4 flavors. The coupling is shown as a

function of the exactly marginal complexified gauge coupling τ = θ
2π + 4πi

g2 , and the fundamental

domain for the action of SL(2,Z)-duality on the coupling plane is outlined in red.

This OPE coefficient is plotted in figure 27. The stationary point at τ = i is a saddle

point, while the global minimum occurs at τ = eiπ/3, so the range for this OPE coefficient

is given by

2.8940994 . . . ≤ λ2
E4(τ) ≤ 10

3
. (E.13)

This is the range of values that appear in figure 26 of section 7.
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